Module fin_collections

This file collects definitions and theorems on finite collections. Most importantly, it implements a fold and size function and some useful induction principles on finite collections .
Require Import Permutation ars listset.
Require Export numbers collections.

Instance collection_size `{Elements A C} : Size C := lengthelements.
Definition collection_fold `{Elements A C} {B}
  (f : ABB) (b : B) : CB := foldr f belements.

Section fin_collection.
Context `{FinCollection A C}.

Global Instance elements_proper: Proper ((≡) ==> (≡ₚ)) elements.
Proof.
  intros ?? E. apply NoDup_Permutation.
  * apply NoDup_elements.
  * apply NoDup_elements.
  * intros. by rewrite !elem_of_elements, E.
Qed.

Global Instance collection_size_proper: Proper ((≡) ==> (=)) size.
Proof. intros ?? E. apply Permutation_length. by rewrite E. Qed.
Lemma size_empty : size (∅ : C) = 0.
Proof.
  unfold size, collection_size. simpl.
  rewrite (elem_of_nil_inv (elements ∅)); [done |].
  intro. rewrite elem_of_elements. solve_elem_of.
Qed.

Lemma size_empty_inv (X : C) : size X = 0 → X ≡ ∅.
Proof.
  intros. apply equiv_empty. intro. rewrite <-elem_of_elements.
  rewrite (nil_length_inv (elements X)). by rewrite elem_of_nil. done.
Qed.

Lemma size_empty_iff (X : C) : size X = 0 ↔ X ≡ ∅.
Proof. split. apply size_empty_inv. intros E. by rewrite E, size_empty. Qed.
Lemma size_non_empty_iff (X : C) : size X ≠ 0 ↔ X ≢ ∅.
Proof. by rewrite size_empty_iff. Qed.
Lemma size_singleton (x : A) : size {[ x ]} = 1.
Proof.
  change (length (elements {[ x ]}) = length [x]).
  apply Permutation_length, NoDup_Permutation.
  * apply NoDup_elements.
  * apply NoDup_singleton.
  * intros. by rewrite elem_of_elements,
      elem_of_singleton, elem_of_list_singleton.
Qed.

Lemma size_singleton_inv X x y : size X = 1 → xXyXx = y.
Proof.
  unfold size, collection_size. simpl. rewrite <-!elem_of_elements.
  generalize (elements X). intros [|? l]; intro; simplify_equality'.
  rewrite (nil_length_inv l), !elem_of_list_singleton by done. congruence.
Qed.

Lemma collection_choose_or_empty X : (∃ x, xX) ∨ X ≡ ∅.
Proof.
  destruct (elements X) as [|x l] eqn:HX; [right|left].
  * apply equiv_empty. intros x. by rewrite <-elem_of_elements, HX, elem_of_nil.
  * exists x. rewrite <-elem_of_elements, HX. by left.
Qed.

Lemma collection_choose X : X ≢ ∅ → ∃ x, xX.
Proof. intros. by destruct (collection_choose_or_empty X). Qed.
Lemma collection_choose_L `{!LeibnizEquiv C} X : X ≠ ∅ → ∃ x, xX.
Proof. unfold_leibniz. apply collection_choose. Qed.
Lemma size_pos_elem_of X : 0 < size X → ∃ x, xX.
Proof.
  intros Hsz. destruct (collection_choose_or_empty X) as [|HX]; [done|].
  contradict Hsz. rewrite HX, size_empty; lia.
Qed.

Lemma size_1_elem_of X : size X = 1 → ∃ x, X ≡ {[ x ]}.
Proof.
  intros E. destruct (size_pos_elem_of X); auto with lia.
  exists x. apply elem_of_equiv. split.
  * rewrite elem_of_singleton. eauto using size_singleton_inv.
  * solve_elem_of.
Qed.

Lemma size_union X Y : XY ≡ ∅ → size (XY) = size X + size Y.
Proof.
  intros [E _]. unfold size, collection_size. simpl. rewrite <-app_length.
  apply Permutation_length, NoDup_Permutation.
  * apply NoDup_elements.
  * apply NoDup_app; repeat split; try apply NoDup_elements.
    intros x. rewrite !elem_of_elements. esolve_elem_of.
  * intros. rewrite elem_of_app, !elem_of_elements. solve_elem_of.
Qed.

Instance elem_of_dec_slow (x : A) (X : C) : Decision (xX) | 100.
Proof.
  refine (cast_if (decide_rel (∈) x (elements X)));
    by rewrite <-(elem_of_elements _).
Defined.

Global Program Instance collection_subseteq_dec_slow (X Y : C) :
    Decision (XY) | 100 :=
  match decide_rel (=) (size (XY)) 0 with
  | left E1 => left _ | right E1 => right _
  end.
Next Obligation.
  intros x Ex; apply dec_stable; intro. destruct (proj1 (elem_of_empty x)).
  apply (size_empty_inv _ E1). by rewrite elem_of_difference.
Qed.

Next Obligation.
  intros E2. destruct E1. apply size_empty_iff, equiv_empty. intros x.
  rewrite elem_of_difference. intros [E3 ?]. by apply E2 in E3.
Qed.

Lemma size_union_alt X Y : size (XY) = size X + size (YX).
Proof.
  rewrite <-size_union by solve_elem_of.
  setoid_replace (YX) with ((YX) ∖ X) by esolve_elem_of.
  rewrite <-union_difference, (commutative (∪)); solve_elem_of.
Qed.

Lemma subseteq_size X Y : XYsize Xsize Y.
Proof. intros. rewrite (union_difference X Y), size_union_alt by done. lia. Qed.
Lemma subset_size X Y : XYsize X < size Y.
Proof.
  intros. rewrite (union_difference X Y) by solve_elem_of.
  rewrite size_union_alt, difference_twice.
  cut (size (YX) ≠ 0); [lia |].
  by apply size_non_empty_iff, non_empty_difference.
Qed.

Lemma collection_wf : wf (strict (@subseteq C _)).
Proof. apply (wf_projected (<) size); auto using subset_size, lt_wf. Qed.
Lemma collection_ind (P : CProp) :
  Proper ((≡) ==> iff) P
  P ∅ → (∀ x X, xXP XP ({[ x ]} ∪ X)) → ∀ X, P X.
Proof.
  intros ? Hemp Hadd. apply well_founded_induction with (⊂).
  { apply collection_wf. }
  intros X IH. destruct (collection_choose_or_empty X) as [[x ?]|HX].
  * rewrite (union_difference {[ x ]} X) by solve_elem_of.
    apply Hadd. solve_elem_of. apply IH. esolve_elem_of.
  * by rewrite HX.
Qed.

Lemma collection_fold_ind {B} (P : BCProp) (f : ABB) (b : B) :
  Proper ((=) ==> (≡) ==> iff) P
  P b ∅ → (∀ x X r, xXP r XP (f x r) ({[ x ]} ∪ X)) →
  ∀ X, P (collection_fold f b X) X.
Proof.
  intros ? Hemp Hadd.
  cut (∀ l, NoDup l → ∀ X, (∀ x, xXxl) → P (foldr f b l) X).
  { intros help ?. apply help; [apply NoDup_elements|].
    symmetry. apply elem_of_elements. }
  induction 1 as [|x l ?? IH]; simpl.
  * intros X HX. setoid_rewrite elem_of_nil in HX.
    rewrite equiv_empty. done. esolve_elem_of.
  * intros X HX. setoid_rewrite elem_of_cons in HX.
    rewrite (union_difference {[ x ]} X) by esolve_elem_of.
    apply Hadd. solve_elem_of. apply IH. esolve_elem_of.
Qed.

Lemma collection_fold_proper {B} (R : relation B) `{!Equivalence R}
    (f : ABB) (b : B) `{!Proper ((=) ==> R ==> R) f}
    (Hf : ∀ a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) :
  Proper ((≡) ==> R) (collection_fold f b).
Proof. intros ?? E. apply (foldr_permutation R f b); auto. by rewrite E. Qed.
Global Instance set_Forall_dec `(P : AProp)
  `{∀ x, Decision (P x)} X : Decision (set_Forall P X) | 100.
Proof.
  refine (cast_if (decide (Forall P (elements X))));
    abstract (unfold set_Forall; setoid_rewrite <-elem_of_elements;
      by rewrite <-Forall_forall).
Defined.

Global Instance set_Exists_dec `(P : AProp) `{∀ x, Decision (P x)} X :
  Decision (set_Exists P X) | 100.
Proof.
  refine (cast_if (decide (Exists P (elements X))));
    abstract (unfold set_Exists; setoid_rewrite <-elem_of_elements;
      by rewrite <-Exists_exists).
Defined.

Global Instance rel_elem_of_dec `{∀ x y, Decision (R x y)} x X :
  Decision (elem_of_upto R x X) | 100 := decide (set_Exists (R x) X).
End fin_collection.