This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections.
Require Export base tactics orders.
Instance collection_subseteq `{
ElemOf A C} :
SubsetEq C := λ
X Y,
∀
x,
x ∈
X →
x ∈
Y.
Basic theorems
Section simple_collection.
Context `{
SimpleCollection A C}.
Lemma elem_of_empty x :
x ∈ ∅ ↔
False.
Proof.
split. apply not_elem_of_empty. done. Qed.
Lemma elem_of_union_l x X Y :
x ∈
X →
x ∈
X ∪
Y.
Proof.
intros. apply elem_of_union. auto. Qed.
Lemma elem_of_union_r x X Y :
x ∈
Y →
x ∈
X ∪
Y.
Proof.
intros. apply elem_of_union. auto. Qed.
Global Instance:
EmptySpec C.
Proof.
firstorder auto. Qed.
Global Instance:
JoinSemiLattice C.
Proof.
firstorder auto. Qed.
Lemma elem_of_subseteq X Y :
X ⊆
Y ↔ ∀
x,
x ∈
X →
x ∈
Y.
Proof.
done. Qed.
Lemma elem_of_equiv X Y :
X ≡
Y ↔ ∀
x,
x ∈
X ↔
x ∈
Y.
Proof.
firstorder. Qed.
Lemma elem_of_equiv_alt X Y :
X ≡
Y ↔ (∀
x,
x ∈
X →
x ∈
Y) ∧ (∀
x,
x ∈
Y →
x ∈
X).
Proof.
firstorder. Qed.
Lemma elem_of_equiv_empty X :
X ≡ ∅ ↔ ∀
x,
x ∉
X.
Proof.
firstorder. Qed.
Lemma collection_positive_l X Y :
X ∪
Y ≡ ∅ →
X ≡ ∅.
Proof.
rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
Qed.
Lemma collection_positive_l_alt X Y :
X ≢ ∅ →
X ∪
Y ≢ ∅.
Proof.
eauto using collection_positive_l. Qed.
Lemma elem_of_singleton_1 x y :
x ∈ {[
y]} →
x =
y.
Proof.
by rewrite elem_of_singleton. Qed.
Lemma elem_of_singleton_2 x y :
x =
y →
x ∈ {[
y]}.
Proof.
by rewrite elem_of_singleton. Qed.
Lemma elem_of_subseteq_singleton x X :
x ∈
X ↔ {[
x ]} ⊆
X.
Proof.
split.
* intros ??. rewrite elem_of_singleton. by intros ->.
* intros Ex. by apply (Ex x), elem_of_singleton.
Qed.
Global Instance singleton_proper :
Proper ((=) ==> (≡))
singleton.
Proof.
by repeat intro; subst. Qed.
Global Instance elem_of_proper:
Proper ((=) ==> (≡) ==>
iff) (∈) | 5.
Proof.
intros ???; subst. firstorder. Qed.
Lemma elem_of_union_list Xs x :
x ∈ ⋃
Xs ↔ ∃
X,
X ∈
Xs ∧
x ∈
X.
Proof.
split.
* induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
* intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
intros. apply elem_of_union_r; auto.
Qed.
Lemma non_empty_singleton x : {[
x ]} ≢ ∅.
Proof.
intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
Lemma not_elem_of_singleton x y :
x ∉ {[
y ]} ↔
x ≠
y.
Proof.
by rewrite elem_of_singleton. Qed.
Lemma not_elem_of_union x X Y :
x ∉
X ∪
Y ↔
x ∉
X ∧
x ∉
Y.
Proof.
rewrite elem_of_union. tauto. Qed.
Section leibniz.
Context `{!
LeibnizEquiv C}.
Lemma elem_of_equiv_L X Y :
X =
Y ↔ ∀
x,
x ∈
X ↔
x ∈
Y.
Proof.
unfold_leibniz. apply elem_of_equiv. Qed.
Lemma elem_of_equiv_alt_L X Y :
X =
Y ↔ (∀
x,
x ∈
X →
x ∈
Y) ∧ (∀
x,
x ∈
Y →
x ∈
X).
Proof.
unfold_leibniz. apply elem_of_equiv_alt. Qed.
Lemma elem_of_equiv_empty_L X :
X = ∅ ↔ ∀
x,
x ∉
X.
Proof.
unfold_leibniz. apply elem_of_equiv_empty. Qed.
Lemma collection_positive_l_L X Y :
X ∪
Y = ∅ →
X = ∅.
Proof.
unfold_leibniz. apply collection_positive_l. Qed.
Lemma collection_positive_l_alt_L X Y :
X ≠ ∅ →
X ∪
Y ≠ ∅.
Proof.
unfold_leibniz. apply collection_positive_l_alt. Qed.
Lemma non_empty_singleton_L x : {[
x ]} ≠ ∅.
Proof.
unfold_leibniz. apply non_empty_singleton. Qed.
End leibniz.
Section dec.
Context `{∀
X Y :
C,
Decision (
X ⊆
Y)}.
Global Instance elem_of_dec_slow (
x :
A) (
X :
C) :
Decision (
x ∈
X) | 100.
Proof.
refine (cast_if (decide_rel (⊆) {[ x ]} X));
by rewrite elem_of_subseteq_singleton.
Defined.
End dec.
End simple_collection.
Definition of_option `{
Singleton A C,
Empty C} (
x :
option A) :
C :=
match x with None => ∅ |
Some a => {[
a ]}
end.
Fixpoint of_list `{
Singleton A C,
Empty C,
Union C} (
l :
list A) :
C :=
match l with [] => ∅ |
x ::
l => {[
x ]} ∪
of_list l end.
Section of_option_list.
Context `{
SimpleCollection A C}.
Lemma elem_of_of_option (
x :
A)
o :
x ∈
of_option o ↔
o =
Some x.
Proof.
destruct o; simpl;
rewrite ?elem_of_empty, ?elem_of_singleton; naive_solver.
Qed.
Lemma elem_of_of_list (
x :
A)
l :
x ∈
of_list l ↔
x ∈
l.
Proof.
split.
* induction l; simpl; [by rewrite elem_of_empty|].
rewrite elem_of_union, elem_of_singleton;
intros [->|?]; constructor (auto).
* induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
Qed.
End of_option_list.
Global Instance collection_guard `{
CollectionMonad M} :
MGuard M :=
λ
P dec A x,
match dec with left H =>
x H |
_ => ∅
end.
Section collection_monad_base.
Context `{
CollectionMonad M}.
Lemma elem_of_guard `{
Decision P} {
A} (
x :
A) (
X :
M A) :
x ∈
guard P;
X ↔
P ∧
x ∈
X.
Proof.
unfold mguard, collection_guard; simpl; case_match;
rewrite ?elem_of_empty; naive_solver.
Qed.
Lemma elem_of_guard_2 `{
Decision P} {
A} (
x :
A) (
X :
M A) :
P →
x ∈
X →
x ∈
guard P;
X.
Proof.
by rewrite elem_of_guard. Qed.
Lemma guard_empty `{
Decision P} {
A} (
X :
M A) :
guard P;
X ≡ ∅ ↔ ¬
P ∨
X ≡ ∅.
Proof.
rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
destruct (decide P); naive_solver.
Qed.
Lemma bind_empty {
A B} (
f :
A →
M B)
X :
X ≫=
f ≡ ∅ ↔
X ≡ ∅ ∨ ∀
x,
x ∈
X →
f x ≡ ∅.
Proof.
setoid_rewrite elem_of_equiv_empty; setoid_rewrite elem_of_bind.
naive_solver.
Qed.
End collection_monad_base.
Tactics
Given a hypothesis H : _ ∈ _, the tactic destruct_elem_of H will
recursively split H for (∪), (∩), (∖), map, ∅, {[_]}.
Tactic Notation "
decompose_elem_of"
hyp(
H) :=
let rec go H :=
lazymatch type of H with
|
_ ∈ ∅ =>
apply elem_of_empty in H;
destruct H
| ?
x ∈ {[ ?
y ]} =>
apply elem_of_singleton in H;
try first [
subst y |
subst x]
| ?
x ∉ {[ ?
y ]} =>
apply not_elem_of_singleton in H
|
_ ∈
_ ∪
_ =>
apply elem_of_union in H;
destruct H as [
H|
H]; [
go H|
go H]
|
_ ∉
_ ∪
_ =>
let H1 :=
fresh H in let H2 :=
fresh H in apply not_elem_of_union in H;
destruct H as [
H1 H2];
go H1;
go H2
|
_ ∈
_ ∩
_ =>
let H1 :=
fresh H in let H2 :=
fresh H in apply elem_of_intersection in H;
destruct H as [
H1 H2];
go H1;
go H2
|
_ ∈
_ ∖
_ =>
let H1 :=
fresh H in let H2 :=
fresh H in apply elem_of_difference in H;
destruct H as [
H1 H2];
go H1;
go H2
| ?
x ∈
_ <$>
_ =>
apply elem_of_fmap in H;
destruct H as [? [?
H]];
try (
subst x);
go H
|
_ ∈
_ ≫=
_ =>
let H1 :=
fresh H in let H2 :=
fresh H in apply elem_of_bind in H;
destruct H as [? [
H1 H2]];
go H1;
go H2
| ?
x ∈
mret ?
y =>
apply elem_of_ret in H;
try first [
subst y |
subst x]
|
_ ∈
mjoin _ ≫=
_ =>
let H1 :=
fresh H in let H2 :=
fresh H in apply elem_of_join in H;
destruct H as [? [
H1 H2]];
go H1;
go H2
|
_ ∈
guard _;
_ =>
let H1 :=
fresh H in let H2 :=
fresh H in apply elem_of_guard in H;
destruct H as [
H1 H2];
go H2
|
_ ∈
of_option _ =>
apply elem_of_of_option in H
|
_ ∈
of_list _ =>
apply elem_of_of_list in H
|
_ =>
idtac
end in go H.
Tactic Notation "
decompose_elem_of" :=
repeat_on_hyps (
fun H =>
decompose_elem_of H).
Ltac decompose_empty :=
repeat
match goal with
|
H : ∅ ≡ ∅ |-
_ =>
clear H
|
H : ∅ = ∅ |-
_ =>
clear H
|
H : ∅ ≡
_ |-
_ =>
symmetry in H
|
H : ∅ =
_ |-
_ =>
symmetry in H
|
H :
_ ∪
_ ≡ ∅ |-
_ =>
apply empty_union in H;
destruct H
|
H :
_ ∪
_ ≢ ∅ |-
_ =>
apply non_empty_union in H;
destruct H
|
H : {[
_ ]} ≡ ∅ |-
_ =>
destruct (
non_empty_singleton _ H)
|
H :
_ ∪
_ = ∅ |-
_ =>
apply empty_union_L in H;
destruct H
|
H :
_ ∪
_ ≠ ∅ |-
_ =>
apply non_empty_union_L in H;
destruct H
|
H : {[
_ ]} = ∅ |-
_ =>
destruct (
non_empty_singleton_L _ H)
|
H :
guard _ ;
_ ≡ ∅ |-
_ =>
apply guard_empty in H;
destruct H
end.
The first pass of our collection tactic consists of eliminating all
occurrences of (∪), (∩), (∖), (<$>), ∅, {[_]}, (≡), and (⊆),
by rewriting these into logically equivalent propositions. For example we
rewrite A → x ∈ X ∪ ∅ into A → x ∈ X ∨ False.
Ltac unfold_elem_of :=
repeat_on_hyps (
fun H =>
repeat match type of H with
|
context [
_ ⊆
_ ] =>
setoid_rewrite elem_of_subseteq in H
|
context [
_ ⊂
_ ] =>
setoid_rewrite subset_spec in H
|
context [
_ ≡ ∅ ] =>
setoid_rewrite elem_of_equiv_empty in H
|
context [
_ ≡
_ ] =>
setoid_rewrite elem_of_equiv_alt in H
|
context [
_ = ∅ ] =>
setoid_rewrite elem_of_equiv_empty_L in H
|
context [
_ =
_ ] =>
setoid_rewrite elem_of_equiv_alt_L in H
|
context [
_ ∈ ∅ ] =>
setoid_rewrite elem_of_empty in H
|
context [
_ ∈ {[
_ ]} ] =>
setoid_rewrite elem_of_singleton in H
|
context [
_ ∈
_ ∪
_ ] =>
setoid_rewrite elem_of_union in H
|
context [
_ ∈
_ ∩
_ ] =>
setoid_rewrite elem_of_intersection in H
|
context [
_ ∈
_ ∖
_ ] =>
setoid_rewrite elem_of_difference in H
|
context [
_ ∈
_ <$>
_ ] =>
setoid_rewrite elem_of_fmap in H
|
context [
_ ∈
mret _ ] =>
setoid_rewrite elem_of_ret in H
|
context [
_ ∈
_ ≫=
_ ] =>
setoid_rewrite elem_of_bind in H
|
context [
_ ∈
mjoin _ ] =>
setoid_rewrite elem_of_join in H
|
context [
_ ∈
guard _;
_ ] =>
setoid_rewrite elem_of_guard in H
|
context [
_ ∈
of_option _ ] =>
setoid_rewrite elem_of_of_option in H
|
context [
_ ∈
of_list _ ] =>
setoid_rewrite elem_of_of_list in H
end);
repeat match goal with
| |-
context [
_ ⊆
_ ] =>
setoid_rewrite elem_of_subseteq
| |-
context [
_ ⊂
_ ] =>
setoid_rewrite subset_spec
| |-
context [
_ ≡ ∅ ] =>
setoid_rewrite elem_of_equiv_empty
| |-
context [
_ ≡
_ ] =>
setoid_rewrite elem_of_equiv_alt
| |-
context [
_ = ∅ ] =>
setoid_rewrite elem_of_equiv_empty_L
| |-
context [
_ =
_ ] =>
setoid_rewrite elem_of_equiv_alt_L
| |-
context [
_ ∈ ∅ ] =>
setoid_rewrite elem_of_empty
| |-
context [
_ ∈ {[
_ ]} ] =>
setoid_rewrite elem_of_singleton
| |-
context [
_ ∈
_ ∪
_ ] =>
setoid_rewrite elem_of_union
| |-
context [
_ ∈
_ ∩
_ ] =>
setoid_rewrite elem_of_intersection
| |-
context [
_ ∈
_ ∖
_ ] =>
setoid_rewrite elem_of_difference
| |-
context [
_ ∈
_ <$>
_ ] =>
setoid_rewrite elem_of_fmap
| |-
context [
_ ∈
mret _ ] =>
setoid_rewrite elem_of_ret
| |-
context [
_ ∈
_ ≫=
_ ] =>
setoid_rewrite elem_of_bind
| |-
context [
_ ∈
mjoin _ ] =>
setoid_rewrite elem_of_join
| |-
context [
_ ∈
guard _;
_ ] =>
setoid_rewrite elem_of_guard
| |-
context [
_ ∈
of_option _ ] =>
setoid_rewrite elem_of_of_option
| |-
context [
_ ∈
of_list _ ] =>
setoid_rewrite elem_of_of_list
end.
The tactic solve_elem_of tac composes the above tactic with intuition.
For goals that do not involve ≡, ⊆, map, or quantifiers this tactic is
generally powerful enough. This tactic either fails or proves the goal.
Tactic Notation "
solve_elem_of"
tactic3(
tac) :=
simpl in *;
decompose_empty;
unfold_elem_of;
solve [
intuition (
simplify_equality;
tac)].
Tactic Notation "
solve_elem_of" :=
solve_elem_of auto.
For goals with quantifiers we could use the above tactic but with
firstorder instead of intuition as finishing tactic. However, firstorder
fails or loops on very small goals generated by solve_elem_of already. We
use the naive_solver tactic as a substitute. This tactic either fails or
proves the goal.
Tactic Notation "
esolve_elem_of"
tactic3(
tac) :=
simpl in *;
decompose_empty;
unfold_elem_of;
naive_solver tac.
Tactic Notation "
esolve_elem_of" :=
esolve_elem_of eauto.
More theorems
Section collection.
Context `{
Collection A C}.
Global Instance:
Lattice C.
Proof.
split. apply _. firstorder auto. solve_elem_of. Qed.
Lemma intersection_singletons x : {[
x]} ∩ {[
x]} ≡ {[
x]}.
Proof.
esolve_elem_of. Qed.
Lemma difference_twice X Y : (
X ∖
Y) ∖
Y ≡
X ∖
Y.
Proof.
esolve_elem_of. Qed.
Lemma subseteq_empty_difference X Y :
X ⊆
Y →
X ∖
Y ≡ ∅.
Proof.
esolve_elem_of. Qed.
Lemma difference_diag X :
X ∖
X ≡ ∅.
Proof.
esolve_elem_of. Qed.
Lemma difference_union_distr_l X Y Z : (
X ∪
Y) ∖
Z ≡
X ∖
Z ∪
Y ∖
Z.
Proof.
esolve_elem_of. Qed.
Lemma difference_intersection_distr_l X Y Z : (
X ∩
Y) ∖
Z ≡
X ∖
Z ∩
Y ∖
Z.
Proof.
esolve_elem_of. Qed.
Section leibniz.
Context `{!
LeibnizEquiv C}.
Lemma intersection_singletons_L x : {[
x]} ∩ {[
x]} = {[
x]}.
Proof.
unfold_leibniz. apply intersection_singletons. Qed.
Lemma difference_twice_L X Y : (
X ∖
Y) ∖
Y =
X ∖
Y.
Proof.
unfold_leibniz. apply difference_twice. Qed.
Lemma subseteq_empty_difference_L X Y :
X ⊆
Y →
X ∖
Y = ∅.
Proof.
unfold_leibniz. apply subseteq_empty_difference. Qed.
Lemma difference_diag_L X :
X ∖
X = ∅.
Proof.
unfold_leibniz. apply difference_diag. Qed.
Lemma difference_union_distr_l_L X Y Z : (
X ∪
Y) ∖
Z =
X ∖
Z ∪
Y ∖
Z.
Proof.
unfold_leibniz. apply difference_union_distr_l. Qed.
Lemma difference_intersection_distr_l_L X Y Z :
(
X ∩
Y) ∖
Z =
X ∖
Z ∩
Y ∖
Z.
Proof.
unfold_leibniz. apply difference_intersection_distr_l. Qed.
End leibniz.
Section dec.
Context `{∀
X Y :
C,
Decision (
X ⊆
Y)}.
Lemma not_elem_of_intersection x X Y :
x ∉
X ∩
Y ↔
x ∉
X ∨
x ∉
Y.
Proof.
rewrite elem_of_intersection. destruct (decide (x ∈ X)); tauto. Qed.
Lemma not_elem_of_difference x X Y :
x ∉
X ∖
Y ↔
x ∉
X ∨
x ∈
Y.
Proof.
rewrite elem_of_difference. destruct (decide (x ∈ Y)); tauto. Qed.
Lemma union_difference X Y :
X ⊆
Y →
Y ≡
X ∪
Y ∖
X.
Proof.
split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
destruct (decide (x ∈ X)); intuition.
Qed.
Lemma non_empty_difference X Y :
X ⊂
Y →
Y ∖
X ≢ ∅.
Proof.
intros [HXY1 HXY2] Hdiff. destruct HXY2. intros x.
destruct (decide (x ∈ X)); esolve_elem_of.
Qed.
Lemma empty_difference_subseteq X Y :
X ∖
Y ≡ ∅ →
X ⊆
Y.
Proof.
intros ? x ?; apply dec_stable; esolve_elem_of. Qed.
Context `{!
LeibnizEquiv C}.
Lemma union_difference_L X Y :
X ⊆
Y →
Y =
X ∪
Y ∖
X.
Proof.
unfold_leibniz. apply union_difference. Qed.
Lemma non_empty_difference_L X Y :
X ⊂
Y →
Y ∖
X ≠ ∅.
Proof.
unfold_leibniz. apply non_empty_difference. Qed.
Lemma empty_difference_subseteq_L X Y :
X ∖
Y = ∅ →
X ⊆
Y.
Proof.
unfold_leibniz. apply empty_difference_subseteq. Qed.
End dec.
End collection.
Section collection_ops.
Context `{
CollectionOps A C}.
Lemma elem_of_intersection_with_list (
f :
A →
A →
option A)
Xs Y x :
x ∈
intersection_with_list f Y Xs ↔ ∃
xs y,
Forall2 (∈)
xs Xs ∧
y ∈
Y ∧
foldr (λ
x, (≫=
f x)) (
Some y)
xs =
Some x.
Proof.
split.
* revert x. induction Xs; simpl; intros x HXs; [eexists [], x; intuition|].
rewrite elem_of_intersection_with in HXs; destruct HXs as (x1&x2&?&?&?).
destruct (IHXs x2) as (xs & y & hy & ? & ?); trivial.
eexists (x1 :: xs), y. intuition (simplify_option_equality; auto).
* intros (xs & y & Hxs & ? & Hx). revert x Hx.
induction Hxs; intros; simplify_option_equality; [done |].
rewrite elem_of_intersection_with. naive_solver.
Qed.
Lemma intersection_with_list_ind (
P Q :
A →
Prop)
f Xs Y :
(∀
y,
y ∈
Y →
P y) →
Forall (λ
X, ∀
x,
x ∈
X →
Q x)
Xs →
(∀
x y z,
Q x →
P y →
f x y =
Some z →
P z) →
∀
x,
x ∈
intersection_with_list f Y Xs →
P x.
Proof.
intros HY HXs Hf. induction Xs; simplify_option_equality; [done |].
intros x Hx. rewrite elem_of_intersection_with in Hx.
decompose_Forall. destruct Hx as (? & ? & ? & ? & ?). eauto.
Qed.
End collection_ops.
Sets without duplicates up to an equivalence
Section NoDup.
Context `{
SimpleCollection A B} (
R :
relation A) `{!
Equivalence R}.
Definition elem_of_upto (
x :
A) (
X :
B) := ∃
y,
y ∈
X ∧
R x y.
Definition set_NoDup (
X :
B) := ∀
x y,
x ∈
X →
y ∈
X →
R x y →
x =
y.
Global Instance:
Proper ((≡) ==>
iff) (
elem_of_upto x).
Proof.
intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Global Instance:
Proper (
R ==> (≡) ==>
iff)
elem_of_upto.
Proof.
intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
* rewrite <-E1, <-E2; intuition.
* rewrite E1, E2; intuition.
Qed.
Global Instance:
Proper ((≡) ==>
iff)
set_NoDup.
Proof.
firstorder. Qed.
Lemma elem_of_upto_elem_of x X :
x ∈
X →
elem_of_upto x X.
Proof.
unfold elem_of_upto. esolve_elem_of. Qed.
Lemma elem_of_upto_empty x : ¬
elem_of_upto x ∅.
Proof.
unfold elem_of_upto. esolve_elem_of. Qed.
Lemma elem_of_upto_singleton x y :
elem_of_upto x {[
y ]} ↔
R x y.
Proof.
unfold elem_of_upto. esolve_elem_of. Qed.
Lemma elem_of_upto_union X Y x :
elem_of_upto x (
X ∪
Y) ↔
elem_of_upto x X ∨
elem_of_upto x Y.
Proof.
unfold elem_of_upto. esolve_elem_of. Qed.
Lemma not_elem_of_upto x X : ¬
elem_of_upto x X → ∀
y,
y ∈
X → ¬
R x y.
Proof.
unfold elem_of_upto. esolve_elem_of. Qed.
Lemma set_NoDup_empty:
set_NoDup ∅.
Proof.
unfold set_NoDup. solve_elem_of. Qed.
Lemma set_NoDup_add x X :
¬
elem_of_upto x X →
set_NoDup X →
set_NoDup ({[
x ]} ∪
X).
Proof.
unfold set_NoDup, elem_of_upto. esolve_elem_of. Qed.
Lemma set_NoDup_inv_add x X :
x ∉
X →
set_NoDup ({[
x ]} ∪
X) → ¬
elem_of_upto x X.
Proof.
intros Hin Hnodup [y [??]].
rewrite (Hnodup x y) in Hin; solve_elem_of.
Qed.
Lemma set_NoDup_inv_union_l X Y :
set_NoDup (
X ∪
Y) →
set_NoDup X.
Proof.
unfold set_NoDup. solve_elem_of. Qed.
Lemma set_NoDup_inv_union_r X Y :
set_NoDup (
X ∪
Y) →
set_NoDup Y.
Proof.
unfold set_NoDup. solve_elem_of. Qed.
End NoDup.
Quantifiers
Section quantifiers.
Context `{
SimpleCollection A B} (
P :
A →
Prop).
Definition set_Forall X := ∀
x,
x ∈
X →
P x.
Definition set_Exists X := ∃
x,
x ∈
X ∧
P x.
Lemma set_Forall_empty :
set_Forall ∅.
Proof.
unfold set_Forall. solve_elem_of. Qed.
Lemma set_Forall_singleton x :
set_Forall {[
x ]} ↔
P x.
Proof.
unfold set_Forall. solve_elem_of. Qed.
Lemma set_Forall_union X Y :
set_Forall X →
set_Forall Y →
set_Forall (
X ∪
Y).
Proof.
unfold set_Forall. solve_elem_of. Qed.
Lemma set_Forall_union_inv_1 X Y :
set_Forall (
X ∪
Y) →
set_Forall X.
Proof.
unfold set_Forall. solve_elem_of. Qed.
Lemma set_Forall_union_inv_2 X Y :
set_Forall (
X ∪
Y) →
set_Forall Y.
Proof.
unfold set_Forall. solve_elem_of. Qed.
Lemma set_Exists_empty : ¬
set_Exists ∅.
Proof.
unfold set_Exists. esolve_elem_of. Qed.
Lemma set_Exists_singleton x :
set_Exists {[
x ]} ↔
P x.
Proof.
unfold set_Exists. esolve_elem_of. Qed.
Lemma set_Exists_union_1 X Y :
set_Exists X →
set_Exists (
X ∪
Y).
Proof.
unfold set_Exists. esolve_elem_of. Qed.
Lemma set_Exists_union_2 X Y :
set_Exists Y →
set_Exists (
X ∪
Y).
Proof.
unfold set_Exists. esolve_elem_of. Qed.
Lemma set_Exists_union_inv X Y :
set_Exists (
X ∪
Y) →
set_Exists X ∨
set_Exists Y.
Proof.
unfold set_Exists. esolve_elem_of. Qed.
End quantifiers.
Section more_quantifiers.
Context `{
SimpleCollection A B}.
Lemma set_Forall_weaken (
P Q :
A →
Prop) (
Hweaken : ∀
x,
P x →
Q x)
X :
set_Forall P X →
set_Forall Q X.
Proof.
unfold set_Forall. naive_solver. Qed.
Lemma set_Exists_weaken (
P Q :
A →
Prop) (
Hweaken : ∀
x,
P x →
Q x)
X :
set_Exists P X →
set_Exists Q X.
Proof.
unfold set_Exists. naive_solver. Qed.
End more_quantifiers.
Fresh elements
We collect some properties on the fresh operation. In particular we
generalize fresh to generate lists of fresh elements.
Fixpoint fresh_list `{
Fresh A C,
Union C,
Singleton A C}
(
n :
nat) (
X :
C) :
list A :=
match n with
| 0 => []
|
S n =>
let x :=
fresh X in x ::
fresh_list n ({[
x ]} ∪
X)
end.
Inductive Forall_fresh `{
ElemOf A C} (
X :
C) :
list A →
Prop :=
|
Forall_fresh_nil :
Forall_fresh X []
|
Forall_fresh_cons x xs :
x ∉
xs →
x ∉
X →
Forall_fresh X xs →
Forall_fresh X (
x ::
xs).
Section fresh.
Context `{
FreshSpec A C}.
Global Instance fresh_proper:
Proper ((≡) ==> (=))
fresh.
Proof.
intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
Global Instance fresh_list_proper:
Proper ((=) ==> (≡) ==> (=))
fresh_list.
Proof.
intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal'; [by rewrite E|].
apply IH. by rewrite E.
Qed.
Lemma Forall_fresh_NoDup X xs :
Forall_fresh X xs →
NoDup xs.
Proof.
induction 1; by constructor. Qed.
Lemma Forall_fresh_elem_of X xs x :
Forall_fresh X xs →
x ∈
xs →
x ∉
X.
Proof.
intros HX; revert x; rewrite <-Forall_forall.
by induction HX; constructor.
Qed.
Lemma Forall_fresh_alt X xs :
Forall_fresh X xs ↔
NoDup xs ∧ ∀
x,
x ∈
xs →
x ∉
X.
Proof.
split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
rewrite <-Forall_forall.
intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
Qed.
Lemma Forall_fresh_subseteq X Y xs :
Forall_fresh X xs →
Y ⊆
X →
Forall_fresh Y xs.
Proof.
rewrite !Forall_fresh_alt; esolve_elem_of. Qed.
Lemma fresh_list_length n X :
length (
fresh_list n X) =
n.
Proof.
revert X. induction n; simpl; auto. Qed.
Lemma fresh_list_is_fresh n X x :
x ∈
fresh_list n X →
x ∉
X.
Proof.
revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
apply IH in Hin; solve_elem_of.
Qed.
Lemma NoDup_fresh_list n X :
NoDup (
fresh_list n X).
Proof.
revert X. induction n; simpl; constructor; auto.
intros Hin; apply fresh_list_is_fresh in Hin; solve_elem_of.
Qed.
Lemma Forall_fresh_list X n :
Forall_fresh X (
fresh_list n X).
Proof.
rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
Qed.
End fresh.
Properties of implementations of collections that form a monad
Section collection_monad.
Context `{
CollectionMonad M}.
Global Instance collection_fmap_proper {
A B} (
f :
A →
B) :
Proper ((≡) ==> (≡)) (
fmap f).
Proof.
intros X Y E. esolve_elem_of. Qed.
Global Instance collection_ret_proper {
A} :
Proper ((=) ==> (≡)) (@
mret M _ A).
Proof.
intros X Y E. esolve_elem_of. Qed.
Global Instance collection_bind_proper {
A B} (
f :
A →
M B) :
Proper ((≡) ==> (≡)) (
mbind f).
Proof.
intros X Y E. esolve_elem_of. Qed.
Global Instance collection_join_proper {
A} :
Proper ((≡) ==> (≡)) (@
mjoin M _ A).
Proof.
intros X Y E. esolve_elem_of. Qed.
Lemma collection_bind_singleton {
A B} (
f :
A →
M B)
x : {[
x ]} ≫=
f ≡
f x.
Proof.
esolve_elem_of. Qed.
Lemma collection_guard_True {
A} `{
Decision P} (
X :
M A) :
P →
guard P;
X ≡
X.
Proof.
esolve_elem_of. Qed.
Lemma collection_fmap_compose {
A B C} (
f :
A →
B) (
g :
B →
C)
X :
g ∘
f <$>
X ≡
g <$> (
f <$>
X).
Proof.
esolve_elem_of. Qed.
Lemma elem_of_fmap_1 {
A B} (
f :
A →
B) (
X :
M A) (
y :
B) :
y ∈
f <$>
X → ∃
x,
y =
f x ∧
x ∈
X.
Proof.
esolve_elem_of. Qed.
Lemma elem_of_fmap_2 {
A B} (
f :
A →
B) (
X :
M A) (
x :
A) :
x ∈
X →
f x ∈
f <$>
X.
Proof.
esolve_elem_of. Qed.
Lemma elem_of_fmap_2_alt {
A B} (
f :
A →
B) (
X :
M A) (
x :
A) (
y :
B) :
x ∈
X →
y =
f x →
y ∈
f <$>
X.
Proof.
esolve_elem_of. Qed.
Lemma elem_of_mapM {
A B} (
f :
A →
M B)
l k :
l ∈
mapM f k ↔
Forall2 (λ
x y,
x ∈
f y)
l k.
Proof.
split.
* revert l. induction k; esolve_elem_of.
* induction 1; esolve_elem_of.
Qed.
Lemma collection_mapM_length {
A B} (
f :
A →
M B)
l k :
l ∈
mapM f k →
length l =
length k.
Proof.
revert l; induction k; esolve_elem_of. Qed.
Lemma elem_of_mapM_fmap {
A B} (
f :
A →
B) (
g :
B →
M A)
l k :
Forall (λ
x, ∀
y,
y ∈
g x →
f y =
x)
l →
k ∈
mapM g l →
fmap f k =
l.
Proof.
intros Hl. revert k. induction Hl; simpl; intros;
decompose_elem_of; f_equal'; auto.
Qed.
Lemma elem_of_mapM_Forall {
A B} (
f :
A →
M B) (
P :
B →
Prop)
l k :
l ∈
mapM f k →
Forall (λ
x, ∀
y,
y ∈
f x →
P y)
k →
Forall P l.
Proof.
rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
Lemma elem_of_mapM_Forall2_l {
A B C} (
f :
A →
M B) (
P:
B →
C →
Prop)
l1 l2 k :
l1 ∈
mapM f k →
Forall2 (λ
x y, ∀
z,
z ∈
f x →
P z y)
k l2 →
Forall2 P l1 l2.
Proof.
rewrite elem_of_mapM. intros Hl1. revert l2.
induction Hl1; inversion_clear 1; constructor; auto.
Qed.
End collection_monad.