This files gives an implementation of finite sets using finite maps with
elements of the unit type. Since maps enjoy extensional equality, the
constructed finite sets do so as well.
Require Export fin_map_dom.
Record mapset (
Mu :
Type) :=
Mapset {
mapset_car:
Mu }.
Arguments Mapset {
_}
_.
Arguments mapset_car {
_}
_.
Section mapset.
Context `{
FinMap K M}.
Instance mapset_elem_of:
ElemOf K (
mapset (
M unit)) := λ
x X,
mapset_car X !!
x =
Some ().
Instance mapset_empty:
Empty (
mapset (
M unit)) :=
Mapset ∅.
Instance mapset_singleton:
Singleton K (
mapset (
M unit)) := λ
x,
Mapset {[ (
x,()) ]}.
Instance mapset_union:
Union (
mapset (
M unit)) := λ
X1 X2,
let (
m1) :=
X1 in let (
m2) :=
X2 in Mapset (
m1 ∪
m2).
Instance mapset_intersection:
Intersection (
mapset (
M unit)) := λ
X1 X2,
let (
m1) :=
X1 in let (
m2) :=
X2 in Mapset (
m1 ∩
m2).
Instance mapset_difference:
Difference (
mapset (
M unit)) := λ
X1 X2,
let (
m1) :=
X1 in let (
m2) :=
X2 in Mapset (
m1 ∖
m2).
Instance mapset_elems:
Elements K (
mapset (
M unit)) := λ
X,
let (
m) :=
X in (
map_to_list m).*1.
Lemma mapset_eq (
X1 X2 :
mapset (
M unit)) :
X1 =
X2 ↔ ∀
x,
x ∈
X1 ↔
x ∈
X2.
Proof.
split; [by intros ->|].
destruct X1 as [m1], X2 as [m2]. simpl. intros E.
f_equal. apply map_eq. intros i. apply option_eq. intros []. by apply E.
Qed.
Global Instance mapset_eq_dec `{∀
m1 m2 :
M unit,
Decision (
m1 =
m2)}
(
X1 X2 :
mapset (
M unit)) :
Decision (
X1 =
X2) | 1.
Proof.
refine
match X1, X2 with Mapset m1, Mapset m2 => cast_if (decide (m1 = m2)) end;
abstract congruence.
Defined.
Global Instance mapset_elem_of_dec x (
X :
mapset (
M unit)) :
Decision (
x ∈
X) | 1.
Proof.
solve_decision. Defined.
Instance:
Collection K (
mapset (
M unit)).
Proof.
split; [split | | ].
* unfold empty, elem_of, mapset_empty, mapset_elem_of.
simpl. intros. by simpl_map.
* unfold singleton, elem_of, mapset_singleton, mapset_elem_of.
simpl. by split; intros; simplify_map_equality.
* unfold union, elem_of, mapset_union, mapset_elem_of.
intros [m1] [m2] ?. simpl. rewrite lookup_union_Some_raw.
destruct (m1 !! x) as [[]|]; tauto.
* unfold intersection, elem_of, mapset_intersection, mapset_elem_of.
intros [m1] [m2] ?. simpl. rewrite lookup_intersection_Some.
assert (is_Some (m2 !! x) ↔ m2 !! x = Some ()).
{ split; eauto. by intros [[] ?]. }
naive_solver.
* unfold difference, elem_of, mapset_difference, mapset_elem_of.
intros [m1] [m2] ?. simpl. rewrite lookup_difference_Some.
destruct (m2 !! x) as [[]|]; intuition congruence.
Qed.
Global Instance:
PartialOrder (@
subseteq (
mapset (
M unit))
_).
Proof.
split; try apply _. intros ????. apply mapset_eq. intuition. Qed.
Global Instance:
FinCollection K (
mapset (
M unit)).
Proof.
split.
* apply _.
* unfold elements, elem_of at 2, mapset_elems, mapset_elem_of.
intros [m] x. simpl. rewrite elem_of_list_fmap. split.
+ intros ([y []] &?& Hy). subst. by rewrite <-elem_of_map_to_list.
+ intros. exists (x, ()). by rewrite elem_of_map_to_list.
* unfold elements, mapset_elems. intros [m]. simpl.
apply NoDup_fst_map_to_list.
Qed.
Definition mapset_map_with {
A B} (
f :
bool →
A →
option B)
(
X :
mapset (
M unit)) :
M A →
M B :=
let (
mX) :=
X in merge (λ
x y,
match x,
y with
|
Some _,
Some a =>
f true a |
None,
Some a =>
f false a |
_,
None =>
None
end)
mX.
Definition mapset_dom_with {
A} (
f :
A →
bool) (
m :
M A) :
mapset (
M unit) :=
Mapset $
merge (λ
x _,
match x with
|
Some a =>
if f a then Some ()
else None |
None =>
None
end)
m (@
empty (
M A)
_).
Lemma lookup_mapset_map_with {
A B} (
f :
bool →
A →
option B)
X m i :
mapset_map_with f X m !!
i =
m !!
i ≫=
f (
bool_decide (
i ∈
X)).
Proof.
destruct X as [mX]. unfold mapset_map_with, elem_of, mapset_elem_of.
rewrite lookup_merge by done. simpl.
by case_bool_decide; destruct (mX !! i) as [[]|], (m !! i).
Qed.
Lemma elem_of_mapset_dom_with {
A} (
f :
A →
bool)
m i :
i ∈
mapset_dom_with f m ↔ ∃
x,
m !!
i =
Some x ∧
f x.
Proof.
unfold mapset_dom_with, elem_of, mapset_elem_of.
simpl. rewrite lookup_merge by done. destruct (m !! i) as [a|].
* destruct (Is_true_reflect (f a)); naive_solver.
* naive_solver.
Qed.
Instance mapset_dom {
A} :
Dom (
M A) (
mapset (
M unit)) :=
mapset_dom_with (λ
_,
true).
Instance mapset_dom_spec:
FinMapDom K M (
mapset (
M unit)).
Proof.
split; try apply _. intros. unfold dom, mapset_dom, is_Some.
rewrite elem_of_mapset_dom_with; naive_solver.
Qed.
End mapset.
These instances are declared using Hint Extern to avoid too
eager type class search.
Hint Extern 1 (
ElemOf _ (
mapset _)) =>
eapply @
mapset_elem_of :
typeclass_instances.
Hint Extern 1 (
Empty (
mapset _)) =>
eapply @
mapset_empty :
typeclass_instances.
Hint Extern 1 (
Singleton _ (
mapset _)) =>
eapply @
mapset_singleton :
typeclass_instances.
Hint Extern 1 (
Union (
mapset _)) =>
eapply @
mapset_union :
typeclass_instances.
Hint Extern 1 (
Intersection (
mapset _)) =>
eapply @
mapset_intersection :
typeclass_instances.
Hint Extern 1 (
Difference (
mapset _)) =>
eapply @
mapset_difference :
typeclass_instances.
Hint Extern 1 (
Elements _ (
mapset _)) =>
eapply @
mapset_elems :
typeclass_instances.
Arguments mapset_eq_dec _ _ _ _ :
simpl never.