Module base

This file collects type class interfaces, notations, and general theorems that are used throughout the whole development. Most importantly it contains abstract interfaces for ordered structures, collections, and various other data structures.
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid NArith.

General

The following coercion allows us to use Booleans as propositions.
Coercion Is_true : bool >-> Sortclass.

Ensure that simpl unfolds id, compose, and flip when fully applied.
Arguments id _ _/.
Arguments compose _ _ _ _ _ _ /.
Arguments flip _ _ _ _ _ _/.

Change True and False into notations in order to enable overloading. We will use this in the file assertions to give True and False a different interpretation in assert_scope used for assertions of our axiomatic semantics.
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.

Notation curry := prod_curry.
Notation uncurry := prod_uncurry.

Throughout this development we use C_scope for all general purpose notations that do not belong to a more specific scope.
Delimit Scope C_scope with C.
Global Open Scope C_scope.

Introduce some Haskell style like notations.
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, xy) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, xy) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, yx) (only parsing) : C_scope.

Hint Extern 0 (?x = ?x) => reflexivity.

Notation "(→)" := (λ A B, AB) (only parsing) : C_scope.
Notation "( A →)" := (λ B, AB) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, AB) (only parsing) : C_scope.

Notation "t $ r" := (t r)
  (at level 65, right associativity, only parsing) : C_scope.
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.

Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, AB) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, AB) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, AB) (only parsing) : C_scope.

Set convenient implicit arguments for existT and introduce notations.
Arguments existT {_ _} _ _.
Notation "xp" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) : C_scope.

Type classes

Provable propositions

This type class collects provable propositions. It is useful to constraint type classes by arbitrary propositions.
Class PropHolds (P : Prop) := prop_holds: P.

Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
Proof. repeat intro; trivial. Qed.

Ltac solve_propholds :=
  match goal with
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
  end.

Decidable propositions

This type class by (Spitters/van der Weegen, 2011) collects decidable propositions. For example to declare a parameter expressing decidable equality on a type A we write `{∀ x y : A, Decision (x = y)} and use it by writing decide (x = y).
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

Inhabited types

This type class collects types that are inhabited.
Class Inhabited (A : Type) : Prop := populate { _ : A }.
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with
  | populate x, populate y => populate (x,y)
  end.
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
  match iA with
  | populate x => populate (inl x)
  end.
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
  match iB with
  | populate y => populate (inl y)
  end.
Instance option_inhabited {A} : Inhabited (option A) := populate None.

Setoid equality

We define an operational type class for setoid equality. This is based on (Spitters/van der Weegen, 2011).
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( x ≡)" := (equiv x) (only parsing) : C_scope.
Notation "(≡ x )" := (λ y, yx) (only parsing) : C_scope.
Notation "(≢)" := (λ x y, ¬xy) (only parsing) : C_scope.
Notation "xy":= (¬xy) (at level 70, no associativity) : C_scope.
Notation "( x ≢)" := (λ y, xy) (only parsing) : C_scope.
Notation "(≢ x )" := (λ y, yx) (only parsing) : C_scope.

A Params f n instance forces the setoid rewriting mechanism not to rewrite in the first n arguments of the function f. We will declare such instances for all operational type classes in this development.
Instance: Params (@equiv) 2.

The following instance forces setoid_replace to use setoid equality (for types that have an Equiv instance) rather than the standard Leibniz equality.
Instance equiv_default_relation `{Equiv A} : DefaultRelation (≡) | 3.
Hint Extern 0 (__) => reflexivity.
Hint Extern 0 (__) => symmetry; assumption.

Operations on collections

We define operational type classes for the traditional operations and relations on collections: the empty collection , the union (∪), intersection (∩), and difference (∖), the singleton {[_]}, the subset (⊆) and element of (∈) relation, and disjointess (⊥).
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

Class Union A := union: AAA.
Instance: Params (@union) 2.
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.

Definition union_list `{Empty A}
  `{Union A} : list AA := fold_right (∪) ∅.
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃ l") : C_scope.

Class Intersection A := intersection: AAA.
Instance: Params (@intersection) 2.
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: AAA.
Instance: Params (@difference) 2.
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.

Class Singleton A B := singleton: AB.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z)) : C_scope.

Class SubsetEq A := subseteq: AAProp.
Instance: Params (@subseteq) 2.
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, subseteq Y X) (only parsing) : C_scope.
Notation "XY" := (¬XY) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, XY) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, XY) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, YX) (only parsing) : C_scope.

Hint Extern 0 (__) => reflexivity.

Class Subset A := subset: AAProp.
Instance: Params (@subset) 2.
Infix "⊂" := subset (at level 70) : C_scope.
Notation "(⊂)" := subset (only parsing) : C_scope.
Notation "( X ⊂ )" := (subset X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, subset Y X) (only parsing) : C_scope.
Notation "XY" := (¬XY) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, XY) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, XY) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, YX) (only parsing) : C_scope.

Class ElemOf A B := elem_of: ABProp.
Instance: Params (@elem_of) 3.
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "xX" := (¬xX) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, xX) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, xX) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, xX) (only parsing) : C_scope.

Class Disjoint A := disjoint : AAProp.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥)" := (disjoint X) (only parsing) : C_scope.
Notation "(⊥ X )" := (λ Y, disjoint Y X) (only parsing) : C_scope.

Inductive list_disjoint `{Disjoint A} : list AProp :=
  | disjoint_nil :
     list_disjoint []
  | disjoint_cons X Xs :
     Forall (⊥ X) Xs
     list_disjoint Xs
     list_disjoint (X :: Xs).
Lemma list_disjoint_cons_inv `{Disjoint A} X Xs :
  list_disjoint (X :: Xs) →
  Forall (⊥ X) Xslist_disjoint Xs.
Proof. inversion_clear 1; auto. Qed.

Instance generic_disjoint `{ElemOf A B} : Disjoint B | 100 :=
  λ X Y, ∀ x, xXxY.

Class Filter A B :=
  filter: ∀ (P : AProp) `{∀ x, Decision (P x)}, BB.

Monadic operations

We define operational type classes for the monadic operations bind, join and fmap. These type classes are defined in a non-standard way by taking the function as a parameter of the class. For example, we define
  Class FMapD := fmap: ∀ {A B}, (A → B) → M A → M B.
instead of
  Class FMap {A B} (f : A → B) := fmap: M A → M B.
This approach allows us to define fmap on lists such that simpl unfolds it in the appropriate way, and so that it can be used for mutual recursion (the mapped function f is not part of the fixpoint) as well. This is a hack, and should be replaced by something more appropriate in future versions.
Class MRet (M : TypeType) := mret: ∀ {A}, AM A.
Instance: Params (@mret) 3.
Arguments mret {_ _ _} _.

Class MBindD (M : TypeType) {A B} (f : AM B) := mbind: M AM B.
Notation MBind M := (∀ {A B} (f : AM B), MBindD M f)%type.
Instance: Params (@mbind) 5.
Arguments mbind {_ _ _} _ {_} !_ / : simpl nomatch.

Class MJoin (M : TypeType) := mjoin: ∀ {A}, M (M A) → M A.
Instance: Params (@mjoin) 3.
Arguments mjoin {_ _ _} !_ / : simpl nomatch.

Class FMapD (M : TypeType) {A B} (f : AB) := fmap: M AM B.
Notation FMap M := (∀ {A B} (f : AB), FMapD M f)%type.
Instance: Params (@fmap) 6.
Arguments fmap {_ _ _} _ {_} !_ / : simpl nomatch.

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "xy ; z" := (y ≫= (λ x : _, z))
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.
Infix "<$>" := fmap (at level 65, right associativity) : C_scope.

Class MGuard (M : TypeType) :=
  mguard: ∀ P {dec : Decision P} {A}, M AM A.
Notation "'guard' P ; o" := (mguard P o)
  (at level 65, only parsing, next at level 35, right associativity) : C_scope.

Operations on maps

In this section we define operational type classes for the operations on maps. In the file fin_maps we will axiomatize finite maps. The function lookup m !! k should yield the element at key k in m.
Class Lookup (K A M : Type) :=
  lookup: KMoption A.
Instance: Params (@lookup) 4.

Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, lookup i m) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.

The function insert <[k:=a]>m should update the element at key k with value a in m.
Class Insert (K A M : Type) :=
  insert: KAMM.
Instance: Params (@insert) 4.
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.

The function delete delete k m should delete the value at key k in m. If the key k is not a member of m, the original map should be returned.
Class Delete (K M : Type) :=
  delete: KMM.
Instance: Params (@delete) 3.
Arguments delete _ _ _ !_ !_ / : simpl nomatch.

The function alter f k m should update the value at key k using the function f, which is called with the original value.
Class AlterD (K A M : Type) (f : AA) :=
  alter: KMM.
Notation Alter K A M := (∀ (f : AA), AlterD K A M f)%type.
Instance: Params (@alter) 5.
Arguments alter {_ _ _} _ {_} !_ !_ / : simpl nomatch.

The function alter f k m should update the value at key k using the function f, which is called with the original value at key k or None if k is not a member of m. The value at k should be deleted if f yields None.
Class PartialAlter (K A M : Type) :=
  partial_alter: (option Aoption A) → KMM.
Instance: Params (@partial_alter) 4.
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.

The function dom C m should yield the domain of m. That is a finite collection of type C that contains the keys that are a member of m.
Class Dom (K M : Type) :=
  dom: ∀ C `{Empty C} `{Union C} `{Singleton K C}, MC.
Instance: Params (@dom) 7.
Arguments dom _ _ _ _ _ _ _ !_ / : simpl nomatch.

The function merge f m1 m2 should merge the maps m1 and m2 by constructing a new map whose value at key k is f (m1 !! k) (m2 !! k) provided that k is a member of either m1 or m2.
Class Merge (A M : Type) :=
  merge: (option Aoption Aoption A) → MMM.
Instance: Params (@merge) 3.
Arguments merge _ _ _ _ !_ !_ / : simpl nomatch.

We lift the insert and delete operation to lists of elements.
Definition insert_list `{Insert K A M} (l : list (K * A)) (m : M) : M :=
  fold_rightp, <[ fst p := snd p ]>) m l.
Instance: Params (@insert_list) 4.
Definition delete_list `{Delete K M} (l : list K) (m : M) : M :=
  fold_right delete m l.
Instance: Params (@delete_list) 3.

Definition insert_consecutive `{Insert nat A M}
    (i : nat) (l : list A) (m : M) : M :=
  fold_rightx f i, <[i:=x]>(f (S i))) (λ _, m) l i.
Instance: Params (@insert_consecutive) 3.

The function union_with f m1 m2 is supposed to yield the union of m1 and m2 using the function f to combine values of members that are in both m1 and m2.
Class UnionWith (A M : Type) :=
  union_with: (AAoption A) → MMM.
Instance: Params (@union_with) 3.

Similarly for intersection and difference.
Class IntersectionWith (A M : Type) :=
  intersection_with: (AAoption A) → MMM.
Instance: Params (@intersection_with) 3.
Class DifferenceWith (A M : Type) :=
  difference_with: (AAoption A) → MMM.
Instance: Params (@difference_with) 3.

Definition intersection_with_list `{IntersectionWith A M}
  (f : AAoption A) : Mlist MM := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

Common properties

These operational type classes allow us to refer to common mathematical properties in a generic way. For example, for injectivity of (k ++) it allows us to write injective (k ++) instead of app_inv_head k.
Class Injective {A B} R S (f : AB) :=
  injective: ∀ x y : A, S (f x) (f y) → R x y.
Class Idempotent {A} R (f : AAA) :=
  idempotent: ∀ x, R (f x x) x.
Class Commutative {A B} R (f : BBA) :=
  commutative: ∀ x y, R (f x y) (f y x).
Class LeftId {A} R (i : A) (f : AAA) :=
  left_id: ∀ x, R (f i x) x.
Class RightId {A} R (i : A) (f : AAA) :=
  right_id: ∀ x, R (f x i) x.
Class Associative {A} R (f : AAA) :=
  associative: ∀ x y z, R (f x (f y z)) (f (f x y) z).
Class LeftAbsorb {A} R (i : A) (f : AAA) :=
  left_absorb: ∀ x, R (f i x) i.
Class RightAbsorb {A} R (i : A) (f : AAA) :=
  right_absorb: ∀ x, R (f x i) i.
Class AntiSymmetric {A} (R : AAProp) :=
  anti_symmetric: ∀ x y, R x yR y xx = y.

Arguments injective {_ _ _ _} _ {_} _ _ _.
Arguments idempotent {_ _} _ {_} _.
Arguments commutative {_ _ _} _ {_} _ _.
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
Arguments associative {_ _} _ {_} _ _ _.
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
Arguments anti_symmetric {_} _ {_} _ _ _ _.

Instance: Commutative (↔) (↔).
Proof. red. intuition. Qed.
Instance: Commutative (↔) (∧).
Proof. red. intuition. Qed.
Instance: Associative (↔) (∧).
Proof. red. intuition. Qed.
Instance: Idempotent (↔) (∧).
Proof. red. intuition. Qed.
Instance: Commutative (↔) (∨).
Proof. red. intuition. Qed.
Instance: Associative (↔) (∨).
Proof. red. intuition. Qed.
Instance: Idempotent (↔) (∨).
Proof. red. intuition. Qed.
Instance: LeftId (↔) True (∧).
Proof. red. intuition. Qed.
Instance: RightId (↔) True (∧).
Proof. red. intuition. Qed.
Instance: LeftAbsorb (↔) False (∧).
Proof. red. intuition. Qed.
Instance: RightAbsorb (↔) False (∧).
Proof. red. intuition. Qed.
Instance: LeftId (↔) False (∨).
Proof. red. intuition. Qed.
Instance: RightId (↔) False (∨).
Proof. red. intuition. Qed.
Instance: LeftAbsorb (↔) True (∨).
Proof. red. intuition. Qed.
Instance: RightAbsorb (↔) True (∨).
Proof. red. intuition. Qed.
Instance: LeftId (↔) True impl.
Proof. unfold impl. red. intuition. Qed.
Instance: RightAbsorb (↔) True impl.
Proof. unfold impl. red. intuition. Qed.

The following lemmas are more specific versions of the projections of the above type classes. These lemmas allow us to enforce Coq not to use the setoid rewriting mechanism.
Lemma idempotent_eq {A} (f : AAA) `{!Idempotent (=) f} x :
  f x x = x.
Proof. auto. Qed.
Lemma commutative_eq {A B} (f : BBA) `{!Commutative (=) f} x y :
  f x y = f y x.
Proof. auto. Qed.
Lemma left_id_eq {A} (i : A) (f : AAA) `{!LeftId (=) i f} x :
  f i x = x.
Proof. auto. Qed.
Lemma right_id_eq {A} (i : A) (f : AAA) `{!RightId (=) i f} x :
  f x i = x.
Proof. auto. Qed.
Lemma associative_eq {A} (f : AAA) `{!Associative (=) f} x y z :
  f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_eq {A} (i : A) (f : AAA) `{!LeftAbsorb (=) i f} x :
  f i x = i.
Proof. auto. Qed.
Lemma right_absorb_eq {A} (i : A) (f : AAA) `{!RightAbsorb (=) i f} x :
  f x i = i.
Proof. auto. Qed.

Axiomatization of ordered structures

A pre-order equiped with a smallest element.
Class BoundedPreOrder A `{Empty A} `{SubsetEq A} := {
  bounded_preorder :>> PreOrder (⊆);
  subseteq_empty x : ∅ ⊆ x
}.
Class PartialOrder A `{SubsetEq A} := {
  po_preorder :>> PreOrder (⊆);
  po_antisym :> AntiSymmetric (⊆)
}.

We do not include equality in the following interfaces so as to avoid the need for proofs that the relations and operations respect setoid equality. Instead, we will define setoid equality in a generic way as λ X Y, XYYX.
Class BoundedJoinSemiLattice A `{Empty A} `{SubsetEq A} `{Union A} := {
  bjsl_preorder :>> BoundedPreOrder A;
  subseteq_union_l x y : xxy;
  subseteq_union_r x y : yxy;
  union_least x y z : xzyzxyz
}.
Class MeetSemiLattice A `{Empty A} `{SubsetEq A} `{Intersection A} := {
  msl_preorder :>> BoundedPreOrder A;
  subseteq_intersection_l x y : xyx;
  subseteq_intersection_r x y : xyy;
  intersection_greatest x y z : zxzyzxy
}.
Class LowerBoundedLattice A `{Empty A} `{SubsetEq A}
    `{Union A} `{Intersection A} := {
  lbl_bjsl :>> BoundedJoinSemiLattice A;
  lbl_msl :>> MeetSemiLattice A
}.

Axiomatization of collections

The class SimpleCollection A C axiomatizes a collection of type C with elements of type A.
Instance: Params (@map) 3.
Class SimpleCollection A C `{ElemOf A C}
  `{Empty C} `{Singleton A C} `{Union C} := {
  not_elem_of_empty (x : A) : x ∉ ∅;
  elem_of_singleton (x y : A) : x ∈ {[ y ]} ↔ x = y;
  elem_of_union X Y (x : A) : xXYxXxY
}.
Class Collection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C} `{IntersectionWith A C} := {
  collection_simple :>> SimpleCollection A C;
  elem_of_intersection X Y (x : A) : xXYxXxY;
  elem_of_difference X Y (x : A) : xXYxXxY;
  elem_of_intersection_with (f : AAoption A) X Y (x : A) :
    xintersection_with f X Y ↔ ∃ x1 x2, x1Xx2Yf x1 x2 = Some x
}.

We axiomative a finite collection as a collection whose elements can be enumerated as a list. These elements, given by the elements function, may be in any order and should not contain duplicates.
Class Elements A C := elements: Clist A.
Instance: Params (@elements) 3.

We redefine the standard library's In and NoDup using type classes.
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : xx :: l
  | elem_of_list_further (x y : A) l : xlxy :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list AProp :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : xlNoDup lNoDup (x :: l).

Decidability of equality of the carrier set is admissible, but we add it anyway so as to avoid cycles in type class search.
Class FinCollection A C `{ElemOf A C} `{Empty C} `{Singleton A C}
    `{Union C} `{Intersection C} `{Difference C} `{IntersectionWith A C}
    `{Filter A C} `{Elements A C} `{∀ x y : A, Decision (x = y)} := {
  fin_collection :>> Collection A C;
  elem_of_filter X P `{∀ x, Decision (P x)} x :
    xfilter P XP xxX;
  elements_spec X x : xXxelements X;
  elements_nodup X : NoDup (elements X)
}.
Class Size C := size: Cnat.
Arguments size {_ _} !_ / : simpl nomatch.
Instance: Params (@size) 2.

The class Collection M axiomatizes a type constructor M that can be used to construct a collection M A with elements of type A. The advantage of this class, compared to Collection, is that it also axiomatizes the the monadic operations. The disadvantage, is that not many inhabits are possible (we will only provide an inhabitant using unordered lists without duplicates removed). More interesting implementations typically need decidability of equality, or a total order on the elements, which do not fit in a type constructor of type TypeType.
Class CollectionMonad M `{∀ A, ElemOf A (M A)}
    `{∀ A, Empty (M A)} `{∀ A, Singleton A (M A)} `{∀ A, Union (M A)}
    `{!MBind M} `{!MRet M} `{!FMap M} `{!MJoin M} := {
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : AM B) (X : M A) (x : B) :
    xX ≫= f ↔ ∃ y, xf yyX;
  elem_of_ret {A} (x y : A) :
    xmret yx = y;
  elem_of_fmap {A B} (f : AB) (X : M A) (x : B) :
    xf <$> X ↔ ∃ y, x = f yyX;
  elem_of_join {A} (X : M (M A)) (x : A) :
    xmjoin X ↔ ∃ Y, xYYX
}.

The function fresh X yields an element that is not contained in X. We will later prove that fresh is Proper with respect to the induced setoid equality on collections.
Class Fresh A C := fresh: CA.
Instance: Params (@fresh) 3.
Class FreshSpec A C `{ElemOf A C}
    `{Empty C} `{Singleton A C} `{Union C} `{Fresh A C} := {
  fresh_collection_simple :>> SimpleCollection A C;
  fresh_proper_alt X Y : (∀ x, xXxY) → fresh X = fresh Y;
  is_fresh (X : C) : fresh XX
}.

Miscellaneous

Lemma proj1_sig_inj {A} (P : AProp) x (Px : P x) y (Py : P y) :
  xPx = yPyx = y.
Proof. injection 1; trivial. Qed.

Lemma symmetry_iff `(R : relation A) `{!Symmetric R} (x y : A) :
  R x yR y x.
Proof. intuition. Qed.

Pointwise relations

These instances are in Coq trunk since revision 15455, but are not in Coq 8.4 yet.
Instance pointwise_reflexive {A} `{R : relation B} :
  Reflexive RReflexive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_symmetric {A} `{R : relation B} :
  Symmetric RSymmetric (pointwise_relation A R) | 9.
Proof. firstorder. Qed.
Instance pointwise_transitive {A} `{R : relation B} :
  Transitive RTransitive (pointwise_relation A R) | 9.
Proof. firstorder. Qed.

Products

Definition fst_map {A A' B} (f : AA') (p : A * B) : A' * B :=
  (f (fst p), snd p).
Definition snd_map {A B B'} (f : BB') (p : A * B) : A * B' :=
  (fst p, f (snd p)).
Arguments fst_map {_ _ _} _ !_ /.
Arguments snd_map {_ _ _} _ !_ /.

Instance: ∀ {A A' B} (f : AA'),
  Injective (=) (=) fInjective (=) (=) (@fst_map A A' B f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * apply (injective f). congruence.
  * congruence.
Qed.

Instance: ∀ {A B B'} (f : BB'),
  Injective (=) (=) fInjective (=) (=) (@snd_map A B B' f).
Proof.
  intros ????? [??] [??]; simpl; intro; f_equal.
  * congruence.
  * apply (injective f). congruence.
Qed.


Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (fst x) (fst y) ∧ R2 (snd x) (snd y).

Section prod_relation.
  Context `{R1 : relation A} `{R2 : relation B}.
  Global Instance:
    Reflexive R1Reflexive R2Reflexive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance:
    Symmetric R1Symmetric R2Symmetric (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance:
    Transitive R1Transitive R2Transitive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance:
    Equivalence R1Equivalence R2Equivalence (prod_relation R1 R2).
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

Other

Definition lift_relation {A B} (R : relation A)
  (f : BA) : relation B := λ x y, R (f x) (f y).
Definition lift_relation_equivalence {A B} (R : relation A) (f : BA) :
  Equivalence REquivalence (lift_relation R f).
Proof. unfold lift_relation. firstorder auto. Qed.
Hint Extern 0 (Equivalence (lift_relation _ _)) =>
  eapply @lift_relation_equivalence : typeclass_instances.

Instance: ∀ A B (x : B), Commutative (=) (λ _ _ : A, x).
Proof. red. trivial. Qed.
Instance: ∀ A (x : A), Associative (=) (λ _ _ : A, x).
Proof. red. trivial. Qed.
Instance: ∀ A, Associative (=) (λ x _ : A, x).
Proof. red. trivial. Qed.
Instance: ∀ A, Associative (=) (λ _ x : A, x).
Proof. red. trivial. Qed.
Instance: ∀ A, Idempotent (=) (λ x _ : A, x).
Proof. red. trivial. Qed.
Instance: ∀ A, Idempotent (=) (λ _ x : A, x).
Proof. red. trivial. Qed.

Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f → ∀ x, PropHolds (R (f i x) x).
Proof. red. trivial. Qed.
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f → ∀ x, PropHolds (R (f x i) x).
Proof. red. trivial. Qed.
Instance idem_propholds {A} (R : relation A) f :
  Idempotent R f → ∀ x, PropHolds (R (f x x) x).
Proof. red. trivial. Qed.