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Static analysis in a nutshell

Statically infer properties of a program that hold for all its executions.

At this program point, 0 < x ≤ y and pointer p is not NULL.

Emphasis on infer: no help from the programmer.
(E.g. loop invariants are not written in the source.)

Emphasis on statically:

The inputs to the program are not known.

The analysis must terminate.

The analysis must run in reasonable time and space.
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Example of properties that can be inferred

Properties of the value of one variable: (value analysis)

x = a constant propagation

x > 0 ou x = 0 ou x < 0 signs

x ∈ [a, b] intervalles

x = a (mod b) congruences

valid(p[a . . . b]) memory validity

p pointsTo x or p 6= q (non-) aliasing between pointers

(a, b, c are constants inferred by the analyzer.)
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Example of properties that can be inferred

Properties of several variables: (relational analysis)

∑
aixi ≤ c polyhedra

±x1 ± · · · ± xn ≤ c octagons

expr1 = expr2 Herbrand equivalences

doubly-linked-list(p) shape analysis

Non-functional properties:

Memory consumption.

Worst-case execution time (WCET).

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 5 / 48



Using static analysis for code optimization

Apply algebraic identities when their conditions are met:

x / 4 → x >> 2 if analysis says x ≥ 0

Optimize array accesses and pointer dereferences:

a[i]=1; a[j]=2; x=a[i]; → a[i]=1; a[j]=2; x=1;

if analysis says i 6= j

*p = a; x = *q; → x = *q; *p = a;

if analysis says p 6= q

Automatic parallelization:

loop1; loop2 → loop1 ‖ loop2 if polyh(loop1) ∩ polyh(loop2) = ∅
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Using static analysis for verification

Use the results of static analysis to prove the absence of certain run-time
errors:

y ∈ [a, b] ∧ 0 /∈ [a, b] =⇒ x/y cannot fail

valid(p[a . . . b]) ∧ i ∈ [a, b] =⇒ p[i] cannot fail

Report an alarm otherwise.
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True alarms, false alarms

True alarm False alarm
(wrong behavior) (analysis too imprecise)

More precise analysis (octagons instead of intervals):
the false alarm goes away.
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Some properties verifiable by static analysis

Absence of run-time errors:

Arrays and pointers:
I No out-of-bound accesses.
I No dereferencing the null pointer.
I No access after a free.
I Alignment constraints are respected.

Integer arithmetic:
I No division by zero.
I No (signed) arithmetic overflows.

Floating-point arithmetic:
I No arithmetic overflows (result is ±∞)
I No undefined operations (result Not a Number)
I No catastrophic cancellation.

Simple programmer-inserted assertions:
e.g. assert (0 <= x && x < sizeof(tbl)).
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Abstract interpretation in a nutshell

Execute (“interpret”) the program with a nonstandard semantics that:

Computes over an abstract domain of the desired properties
(e.g. “x ∈ [a, b]′′ for interval analysis)
instead of computing with concrete values and states
(e.g. numbers).

Handles Boolean conditions even if they cannot be resolved statically:
I The then and else branches of an if are both taken → joins.
I Loops and recursions execute arbitrarily many times → fixpoints.

Always terminates.
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Example of abstract interpretation with intervals

x ∈ [−∞,∞]
IF x < 0 THEN

x := 0;

x ∈ [0, 0]

ELSE IF x > 1000 THEN

x := 1000;

x ∈ [1000, 1000]

ELSE

SKIP;

x ∈ [0,∞] ∩ [−∞, 1000] = [0, 1000]

ENDIF

x ∈ [0, 0] ∪ [1000, 1000] ∪ [0, 1000] = [0, 1000]
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Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x := x + 1;

DONE

Widening heuristic to accelerate convergence
Narrowing iteration to improve the result
Fixpoint reached!
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x := 0; x ∈ [0, 0]
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x ∈ ([0, 0] ∪ [1, 1]) ∩ [−∞, 1000] = [0, 1]
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Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ ([0, 0] ∪ [1, 1001]) ∩ [−∞, 1000] = [0, 1000]
x := x + 1;

x ∈ [1, 1001]
DONE

x ∈ [1001,∞] ∩ [1, 1001] = [1001, 1001]

Widening heuristic to accelerate convergence
Narrowing iteration to improve the result

Fixpoint reached!
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Fixpoint computations with widening and narrowing

X

F (X )

Tarski iteration
Xn+1 = F (Xn)

Widened iteration
Xn+1 = Xn∇F (Xn)

Narrowing
Xn+1 = F (Xn)
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Non-relational vs. relational analysis

Non-relational analysis:

abstract environment = variable 7→ abstract value

(Like simple typing environments.)

Relational analysis:
abstract environments are a domain of their own, featuring:

a semi-lattice structure: ⊥, >, @, t
an abstract operation for assignment / binding.

Example: polyhedra, i.e. conjunctions of linear inequalities
∑

aixi ≤ c .
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Classic presentation: Galois connections

A semi-lattice A,v of abstract states and two functions:

Abstraction function α : set of concrete states → abstract state

Concretization function γ : abstract state → set of concrete states

(x , y) ∈ [1, 5]× [1, 3]

α γ

E.g. for intervals α(S) = [inf S , sup S ] and γ([a, b]) = {x | a ≤ x ≤ b}.
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Axioms of Galois connections

(x , y) ∈ [1, 5]× [1, 3]

α γ

α

The adjunction property:

∀A, S , α(S) v A⇔ S ⊆ γ(A)

or, equivalently:

α increasing

∧ γ increasing

∧ ∀S , S ⊆ γ(α(S)) (soundness)

∧ ∀A, α(γ(A)) v a (optimality)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 17 / 48



Calculating abstract operators

For any concrete operator F : C → C we define its abstraction
F# : A→ A by

F#(a) = α{F (x) | x ∈ γ(a)}

This abstract operator is:

Sound: if x ∈ γ(a) then F (x) ∈ γ(F#(a)).

Optimally precise: every a′ such that x ∈ γ(a)⇒ F (x) ∈ γ(a′)
is such that F#(a) v a′.

Moreover, an algorithmic definition of F# can be calculated from the
definition above.
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Calculating +# for intervals

[a1, b1] +# [a2, b2]

= α{x1 + x2 | x1 ∈ γ[a1, b1], x2 ∈ γ[a2, b2]}

= [ inf{x1 + x2 | a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2},
sup{x1 + x2 | a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2} ]

= [+∞,−∞] if a1 > b1 or a2 > b2

= [a1 + b1, a2 + b2] otherwise

Note: the intuitive definition [a1, b1] +# [a2, b2] = [a1 + b1, a2 + b2] is
sound but not optimal.
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Problems with Galois connections

For some domains, the abstraction function α does not exist!
(The optimality condition a v α(γ(a)) cannot be satisfied.)

Example 1: intervals of rationals.

α{x | x2 ≤ 2} = ???

There is no best rational
approximation of [−

√
2,
√

2].

Example 2: polyhedra

α{(x , y) | x2 + y 2 ≤ 1} = ???
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Type-theoretic difficulties

In the context of a Coq/Agda verification:

γ is easily modeled as

γ : A→ (C → Prop) (two-place predicate)

but α is generally not computable as soon as C is infinite:

α : (C → Prop)→ A morally constant functions only?
α : (C → bool)→ A can only query a finite number of C ’s

(E.g. α(S) = [inf S , sup S ], no more computable than inf and sup.)
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Plan B: γ-only presentation

Remember the two properties of abstract operators F# calculated from
F#(a) = α{F (x) | x ∈ γ(a)} :

1 Soundness: if x ∈ γ(a) then F (x) ∈ γ(F#(a)).

2 Optimality: every a′ such that x ∈ γ(a)⇒ F (x) ∈ γ(a′)
is such that F#(a) v a′.

Instead of calculating F#, we can guess a definition for F#, then verify

property 1: soundness (mandatory!)

possibly property 2: optimality (optional sanity check).

These proofs only need the concretization relation γ, which is
unproblematic.
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Soundness first!

Having made optimality entirely optional, we can further simplify the
analyzer and its soundness proof, while increasing its algorithmic efficiency:

Abstract operators that return over-approximations (or just >) in
difficult / costly cases.

Join operators t that return an upper bound for their arguments but
not necessarily the least upper bound.

“Fixpoint” iterations that return a post-fixpoint but not necessarily
the smallest (widening + return > when running out of fuel).

Validation a posteriori of algorithmically-complex operations,
performed by an untrusted external oracle. (Next slide.)
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Validation a posteriori

Some abstract operations can be implemented by unverified code if it is
easy to validate the results a posteriori by a validator. Only the validator
needs to be proved correct.

Example: the join operator t over polyhedra.

Computing the join vs. Inclusion test
(convex hull) (Presburger formula)

The inclusion test can itself use validation a posteriori (Farkas certificate).
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The Verasco project
Inria Celtique, Gallium, Abstraction, Toccata + Verimag + Airbus

Goal: develop and verify in Coq a realistic static analyzer by abstract
interpretation:

Language analyzed: the CompCert subset of C.

Nontrivial abstract domains, including relational domains.

Modular architecture inspired from Astrée’s.

Decent alarm reporting.

Slogan: if “CompCert = 1/10th of GCC but formally verified”,
likewise “Verasco = 1/10th of Astrée but formally verified”.
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Architecture

source → C → Clight → C#minor → Cminor → · · ·
CompCert compiler

Abstract interpreter

Memory & pointers abstraction

Z→ int

Channel-based combination of domains

NR→ R NR→ R

Integer & F.P.

intervals

Integer
congruences

Symbolic
equalities

Convex
polyhedra

Octagons

OK / AlarmsControl

State

Numbers
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Upper layer: the abstract interpreter

CompCert C → Clight → C#minor → Cminor → RTL → . . .

Abstract
interp 1

Abstract
interp 2

Connected to the intermediate languages of the CompCert compiler.

Parameterized by a relational abstract domain for execution states
(environment + memory state + call stack).

1 Abstract interpreter for RTL (Blazy, Maronèze, Pichardie)

Unstructured control + all functions inlined
→ one global fixpoint (Bourdoncle).

2 Abstract interpreter for C#minor (Jourdan)

Local fixpoints for each loop + per-function fixpoint for goto +
unrolling of functions at call point.
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Lower layer: numerical domains

Non-relational:

Integer intervals (over Z).

Floating-point intervals (on top of the Flocq library).

Integer congruences (over Z).

Relational:

Symbolic equalities var = expr and facts expr = true or false.

The VPL library (Fouilhé, Monniaux, Périn, SAS 2013):
polyhedra with rational coefficients, implemented in OCaml,
producing certificates verifiable in Coq.

Octagons (direct Coq implementation).
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What is a generic interface for a numerical domain?

For a non-relational domain:

A semilattice (A,v) of abstract values.

A concretization relation γ : A→ ℘(Z)

“Forward” abstract operators such as +#, satisfying

v1 ∈ γ(a1) v2 ∈ γ(a2)

v1 + v2 ∈ γ(a1 +# a2)

“Backward” abstract operators (to refine abstractions based on the
results of conditionals) such as <−1

#

v1 ∈ γ(a1) v2 ∈ γ(a2) v1 < v2 (a′1, a
′
2) = (a1 <

−1
# a2)

v1 ∈ γ(a′1) ∧ v2 ∈ γ(a′2)
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What is a generic interface
for a numerical domain?

For a relational domain, the main abstract operations are:

assign var = expr

forget var = any-value

assume expr is true or expr is false

var are program variables or abstract memory locations.

expr are simple expressions (+ − × div mod . . .) over variables and
constants.

To report alarms, we also need to query the domain, e.g.
“is x < y?” or “is x mod 4 = 0?”. A basic query is

get_itv expr → variation interval

(Next slide: Coq interface.)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 31 / 48



The abstract operations

Class ab_machine_env (t var: Type): Type :=

{ leb: t -> t -> bool

; top: t

; join: t -> t -> t

; widen: t -> t -> t

; forget: var -> t -> t+⊥
; assign: var -> nexpr var -> t -> t+⊥
; assume: nexpr var -> bool -> t -> t+⊥
; get_itv: nexpr var -> t -> num_val_itv+>+⊥
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. . . and their specifications

; γ : t -> ℘ (var->num_val)

; gamma_monotone: forall x y,

leb x y = true -> γ x ⊆ γ y;

; gamma_top: forall x, x ∈ γ top;

; join_sound: forall x y,

γ x ∪ γ y ⊆ γ (join x y)

; forget_correct: forall x ρ n ab,

ρ ∈ γ ab -> (upd ρ x n) ∈ γ (forget x ab)

; assign_correct: forall x e ρ n ab,

ρ ∈ γ ab -> n ∈ eval_nexpr ρ e ->

(upd ρ x n) ∈ γ (assign x e ab)

; assume_correct: forall e ρ ab b,

ρ ∈ γ ab -> of_bool b ∈ eval_nexpr ρ e ->

ρ ∈ γ (assume e b ab)

; get_itv_correct: forall e ρ ab,

ρ ∈ γ ab -> (eval_nexpr ρ e) ⊆ γ (get_itv e ab)

}.
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The middle layer: domain transformers

Communications between numerical domains.

From mathematical integers to N-bit machine integers
(accounts for overflow and wrap-around).

Memory and pointer domain:
1 abstract memory cell = 1 variable of the numerical domains
Plus: points-to information and type information.
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Abstract interpretation of structured control

For a simple imperative language like IMP:

F (s, abstract state “before” s) = abstract state “after” s + alarm

Follows the structure of statement s.

No need to talk about program points (unlike in dataflow analysis).
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Some cases of the abstract interpreter F

F ((s1; s2),A) = F (s2,F (s1,A))

F ((IF b THEN s1 ELSE s2),A) = F (s1,A ∧ b) t F (s2,A ∧ ¬b)

F ((WHILE b DO s DONE),A) = pfp (λX . A t F (X ∧ b, s)) ∧ ¬b

Note: taking a post-fixpoint pfp at every loop.

Notation: A ∧ b is A where we assert that b is true.
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Control flow in the C#minor language

Unlike in IMP, a C#minor statement can terminate in several different
ways, and can also be entered in several ways:

stmt
normally

searching for

substatement
labeled `

normally
early by exit(n)
early by return(v)
early by goto(`)

The abstract interpreter becomes:

F (s,Ai ,Al) = (Ao ,Ar ,Ae ,Ag ) + alarm

Ai : abstract state (normal entry)
Al : label→ abstract state (incoming goto)

Ao : abstract state (normal termination)
Ar : abstract value× abstract state (early return)
Ae : exit level→ abstract state
Ag : label→ abstract state (outgoing goto)
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Proving the soundness of an abstract interpreter

For IMP, a simple soundness property:

If F (s,A) 6= alarm and m ∈ γ(A),
statement s, started in memory m, does not go wrong;
moreover, if it terminates with memory m′, then m′ ∈ γ(F (s,A)).

Can be stated formally and proved directly using big-step operational
semantics with error rules:

m ` s ⇒ m′ safe termination on state m′

m ` s ⇒ err termination by going wrong
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The C#minor operational semantics

A big-step semantics for C#minor is painful to define, owing to goto

statements. Instead, we use CompCert’s small-step semantics with
continuations:

(s, k ,m)→ (s ′, k ′,m′)→ · · ·

where s statement under focus
k continuation term (what to do after s terminates)
m current memory state and environment

Representative rules:

((s1; s2), k ,m) → (s1, Kseq s2 k ,m)

(block s, k ,m) → (s, Kblock k,m)

(skip, Kseq s k ,m) → (s, k ,m)

(exit 0, Kblock k ,m) → (skip, k ,m)

(exit (n + 1), Kblock k ,m) → (exit n, k ,m)
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Using a Hoare logic
(Yves Bertot, 2005)

Proving the abstract interpreter sound w.r.t. the small-step semantics is
feasible but painful. Instead, we break the proof in two steps, using a weak
Hoare logic:

Step 1: “Hoare soundness” of the abstract interpreter:
If F (s,Ai ,Al) = (Ao ,Ar ,Ae ,Ag ) (and not alarm),
then the weak Hoare 7-tuple

{γ(Ai ), γ(Al} s {γ(Ao), γ(Ar ), γ(Ae), γ(Ag )}

is derivable.

Step 2: soundness of the Hoare logic w.r.t. the operational semantics.
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Small-step soundness of a Hoare logic
(Andrew Appel and Sandrine Blazy, 2007)

Going back to IMP and standard Hoare triples {P} s {Q} for simplicity:

Definition

A configuration (s, k ,m) is safe for n steps if no sequence of at most n
transitions starting with (s, k ,m) reaches a “going wrong” state.

Definition

A continuation k is safe for n steps w.r.t. postcondition Q if, for all
memory states m satisfying Q, the configuration (skip, k ,m) is safe for n
steps.

Theorem

If the Hoare triple {P} s {Q} holds, then for all n, all continuations k safe
for n steps w.r.t. Q, and all memory states m satisfying P, the
configuration (s, k,m) is safe for n steps.
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Two ways to define the Hoare logic

Shallow embedding: (Appel and Blazy)

use the soundness theorem as the definition of {P} s {Q};
show the usual Hoare logic rules as lemmas.

Deep embedding: (what we use in CompCert)

define {P} s {Q} as a coinductive predicate, with each rule as a
constructor;

prove the soundness theorem by induction on the number n of steps.

(The coinductive definition helps to handle function calls just by unrolling
of the function definition.)
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Conjunction and disjunction rules

The Verasco abstract interpreter contains some heuristics (unrolling of the
last N iterations of a loop) whose soundness proof makes use of unusual
Hoare logic rules:

{P1} s {Q} {P2} s {Q}

{P1 ∨ P2} s {Q}

{P} s {Q1} {P} s {Q2}

{P} s {Q1 ∧ Q2}

These rules are admissible in the deep embedding approach (with the
coinductive predicate), but we could not prove them in the shallow
embedding approach.
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Status of Verasco

It works!

Fully proved (30 000 lines of Coq)

Executable analyzer obtained by extraction.

Able to show absence of run-time errors in small but nontrivial C
programs.

It needs improving!

Some loops need manual unrolling
(to show that an array is fully initialized at the end of a loop).

Analysis is slow (up to one minute for 100 LOC).
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Future work

Improve algorithmic efficiency, esp. sharing between representations
of abstract states (hash-consing?).

More precise and more efficient abstractions of memory states.
(Cf. Antoine Miné’s memory domain, LCTES 2006.)

More (combinations of) abstract domains, e.g. trace partitioning,
array-specific domains.

Debugging the precision of the analyses.
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One step at a time. . .

. . . we get closer to the formal verification of the tools that participate in
the production and verification of critical embedded software.

C
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ScadeSimulink

Handwritten

Compiler

Code gen. Code gen.

Test

Code

review

Static
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Program

proof
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checking
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