
Verasco:
Formal verification of a C static analyzer

based on abstract interpretation

Jacques-Henri Jourdan, Vincent Laporte
Sandrine Blazy, Xavier Leroy, David Pichardie

Inria / U. Rennes 1 / ENS Rennes

Workshop on Realistic Program Verification, 2015-12-02

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 1 / 48

Plan

1 An overview of static analysis

2 The abstract interpretation approach

3 Scaling up: the Verasco project

4 Technical zoom: the abstract interpreter and its proof

5 Conclusions and perspectives

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 2 / 48

Static analysis in a nutshell

Statically infer properties of a program that hold for all its executions.

At this program point, 0 < x ≤ y and pointer p is not NULL.

Emphasis on infer: no help from the programmer.
(E.g. loop invariants are not written in the source.)

Emphasis on statically:

The inputs to the program are not known.

The analysis must terminate.

The analysis must run in reasonable time and space.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 3 / 48

Example of properties that can be inferred

Properties of the value of one variable: (value analysis)

x = a constant propagation

x > 0 ou x = 0 ou x < 0 signs

x ∈ [a, b] intervalles

x = a (mod b) congruences

valid(p[a . . . b]) memory validity

p pointsTo x or p 6= q (non-) aliasing between pointers

(a, b, c are constants inferred by the analyzer.)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 4 / 48

Example of properties that can be inferred

Properties of several variables: (relational analysis)

∑
aixi ≤ c polyhedra

±x1 ± · · · ± xn ≤ c octagons

expr1 = expr2 Herbrand equivalences

doubly-linked-list(p) shape analysis

Non-functional properties:

Memory consumption.

Worst-case execution time (WCET).

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 5 / 48

Using static analysis for code optimization

Apply algebraic identities when their conditions are met:

x / 4 → x >> 2 if analysis says x ≥ 0

Optimize array accesses and pointer dereferences:

a[i]=1; a[j]=2; x=a[i]; → a[i]=1; a[j]=2; x=1;

if analysis says i 6= j

*p = a; x = *q; → x = *q; *p = a;

if analysis says p 6= q

Automatic parallelization:

loop1; loop2 → loop1 ‖ loop2 if polyh(loop1) ∩ polyh(loop2) = ∅

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 6 / 48

Using static analysis for verification

Use the results of static analysis to prove the absence of certain run-time
errors:

y ∈ [a, b] ∧ 0 /∈ [a, b] =⇒ x/y cannot fail

valid(p[a . . . b]) ∧ i ∈ [a, b] =⇒ p[i] cannot fail

Report an alarm otherwise.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 7 / 48

Using static analysis for verification

Use the results of static analysis to prove the absence of certain run-time
errors:

y ∈ [a, b] ∧ 0 /∈ [a, b] =⇒ x/y cannot fail

valid(p[a . . . b]) ∧ i ∈ [a, b] =⇒ p[i] cannot fail

Report an alarm otherwise.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 7 / 48

True alarms, false alarms

True alarm False alarm
(wrong behavior) (analysis too imprecise)

More precise analysis (octagons instead of intervals):
the false alarm goes away.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 8 / 48

Some properties verifiable by static analysis

Absence of run-time errors:

Arrays and pointers:
I No out-of-bound accesses.
I No dereferencing the null pointer.
I No access after a free.
I Alignment constraints are respected.

Integer arithmetic:
I No division by zero.
I No (signed) arithmetic overflows.

Floating-point arithmetic:
I No arithmetic overflows (result is ±∞)
I No undefined operations (result Not a Number)
I No catastrophic cancellation.

Simple programmer-inserted assertions:
e.g. assert (0 <= x && x < sizeof(tbl)).

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 9 / 48

Plan

1 An overview of static analysis

2 The abstract interpretation approach

3 Scaling up: the Verasco project

4 Technical zoom: the abstract interpreter and its proof

5 Conclusions and perspectives

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 10 / 48

Abstract interpretation in a nutshell

Execute (“interpret”) the program with a nonstandard semantics that:

Computes over an abstract domain of the desired properties
(e.g. “x ∈ [a, b]′′ for interval analysis)
instead of computing with concrete values and states
(e.g. numbers).

Handles Boolean conditions even if they cannot be resolved statically:
I The then and else branches of an if are both taken → joins.
I Loops and recursions execute arbitrarily many times → fixpoints.

Always terminates.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 11 / 48

Example of abstract interpretation with intervals

x ∈ [−∞,∞]
IF x < 0 THEN

x := 0;

x ∈ [0, 0]

ELSE IF x > 1000 THEN

x := 1000;

x ∈ [1000, 1000]

ELSE

SKIP;

x ∈ [0,∞] ∩ [−∞, 1000] = [0, 1000]

ENDIF

x ∈ [0, 0] ∪ [1000, 1000] ∪ [0, 1000] = [0, 1000]

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 12 / 48

Example of abstract interpretation with intervals

x ∈ [−∞,∞]
IF x < 0 THEN

x := 0; x ∈ [0, 0]
ELSE IF x > 1000 THEN

x := 1000;

x ∈ [1000, 1000]

ELSE

SKIP;

x ∈ [0,∞] ∩ [−∞, 1000] = [0, 1000]

ENDIF

x ∈ [0, 0] ∪ [1000, 1000] ∪ [0, 1000] = [0, 1000]

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 12 / 48

Example of abstract interpretation with intervals

x ∈ [−∞,∞]
IF x < 0 THEN

x := 0; x ∈ [0, 0]
ELSE IF x > 1000 THEN

x := 1000; x ∈ [1000, 1000]
ELSE

SKIP;

x ∈ [0,∞] ∩ [−∞, 1000] = [0, 1000]

ENDIF

x ∈ [0, 0] ∪ [1000, 1000] ∪ [0, 1000] = [0, 1000]

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 12 / 48

Example of abstract interpretation with intervals

x ∈ [−∞,∞]
IF x < 0 THEN

x := 0; x ∈ [0, 0]
ELSE IF x > 1000 THEN

x := 1000; x ∈ [1000, 1000]
ELSE

SKIP; x ∈ [0,∞] ∩ [−∞, 1000] = [0, 1000]
ENDIF

x ∈ [0, 0] ∪ [1000, 1000] ∪ [0, 1000] = [0, 1000]

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 12 / 48

Example of abstract interpretation with intervals

x ∈ [−∞,∞]
IF x < 0 THEN

x := 0; x ∈ [0, 0]
ELSE IF x > 1000 THEN

x := 1000; x ∈ [1000, 1000]
ELSE

SKIP; x ∈ [0,∞] ∩ [−∞, 1000] = [0, 1000]
ENDIF

x ∈ [0, 0] ∪ [1000, 1000] ∪ [0, 1000] = [0, 1000]

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 12 / 48

Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x := x + 1;

DONE

Widening heuristic to accelerate convergence
Narrowing iteration to improve the result
Fixpoint reached!

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 13 / 48

Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ [0, 0] ∩ [−∞, 1000] = [0, 0]
x := x + 1;

x ∈ [1, 1]
DONE

Widening heuristic to accelerate convergence
Narrowing iteration to improve the result
Fixpoint reached!

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 13 / 48

Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ ([0, 0] ∪ [1, 1]) ∩ [−∞, 1000] = [0, 1]
x := x + 1;

x ∈ [1, 2]
DONE

Widening heuristic to accelerate convergence
Narrowing iteration to improve the result
Fixpoint reached!

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 13 / 48

Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ ([0, 0] ∪ [1, 2]) ∩ [−∞, 1000] = [0, 2]
x := x + 1;

x ∈ [1, 3]
DONE

Widening heuristic to accelerate convergence
Narrowing iteration to improve the result
Fixpoint reached!

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 13 / 48

Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ [0,∞]
x := x + 1;

x ∈ [1,∞]
DONE

Widening heuristic to accelerate convergence

Narrowing iteration to improve the result
Fixpoint reached!

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 13 / 48

Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ ([0, 0] ∪ [1,∞]) ∩ [−∞, 1000] = [0, 1000]
x := x + 1;

x ∈ [1, 1001]
DONE

Widening heuristic to accelerate convergence

Narrowing iteration to improve the result

Fixpoint reached!

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 13 / 48

Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ ([0, 0] ∪ [1, 1001]) ∩ [−∞, 1000] = [0, 1000]
x := x + 1;

x ∈ [1, 1001]
DONE

Widening heuristic to accelerate convergence
Narrowing iteration to improve the result

Fixpoint reached!

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 13 / 48

Example of abstract interpretation with intervals

x := 0; x ∈ [0, 0]

WHILE x <= 1000 DO

x ∈ ([0, 0] ∪ [1, 1001]) ∩ [−∞, 1000] = [0, 1000]
x := x + 1;

x ∈ [1, 1001]
DONE

x ∈ [1001,∞] ∩ [1, 1001] = [1001, 1001]

Widening heuristic to accelerate convergence
Narrowing iteration to improve the result

Fixpoint reached!

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 13 / 48

Fixpoint computations with widening and narrowing

X

F (X)

Tarski iteration
Xn+1 = F (Xn)

Widened iteration
Xn+1 = Xn∇F (Xn)

Narrowing
Xn+1 = F (Xn)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 14 / 48

Non-relational vs. relational analysis

Non-relational analysis:

abstract environment = variable 7→ abstract value

(Like simple typing environments.)

Relational analysis:
abstract environments are a domain of their own, featuring:

a semi-lattice structure: ⊥, >, @, t
an abstract operation for assignment / binding.

Example: polyhedra, i.e. conjunctions of linear inequalities
∑

aixi ≤ c .

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 15 / 48

Classic presentation: Galois connections

A semi-lattice A,v of abstract states and two functions:

Abstraction function α : set of concrete states → abstract state

Concretization function γ : abstract state → set of concrete states

(x , y) ∈ [1, 5]× [1, 3]

α γ

E.g. for intervals α(S) = [inf S , sup S] and γ([a, b]) = {x | a ≤ x ≤ b}.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 16 / 48

Axioms of Galois connections

(x , y) ∈ [1, 5]× [1, 3]

α γ

α

The adjunction property:

∀A, S , α(S) v A⇔ S ⊆ γ(A)

or, equivalently:

α increasing

∧ γ increasing

∧ ∀S , S ⊆ γ(α(S)) (soundness)

∧ ∀A, α(γ(A)) v a (optimality)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 17 / 48

Calculating abstract operators

For any concrete operator F : C → C we define its abstraction
F# : A→ A by

F#(a) = α{F (x) | x ∈ γ(a)}

This abstract operator is:

Sound: if x ∈ γ(a) then F (x) ∈ γ(F#(a)).

Optimally precise: every a′ such that x ∈ γ(a)⇒ F (x) ∈ γ(a′)
is such that F#(a) v a′.

Moreover, an algorithmic definition of F# can be calculated from the
definition above.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 18 / 48

Calculating +# for intervals

[a1, b1] +# [a2, b2]

= α{x1 + x2 | x1 ∈ γ[a1, b1], x2 ∈ γ[a2, b2]}

= [inf{x1 + x2 | a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2},
sup{x1 + x2 | a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2}]

= [+∞,−∞] if a1 > b1 or a2 > b2

= [a1 + b1, a2 + b2] otherwise

Note: the intuitive definition [a1, b1] +# [a2, b2] = [a1 + b1, a2 + b2] is
sound but not optimal.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 19 / 48

Problems with Galois connections

For some domains, the abstraction function α does not exist!
(The optimality condition a v α(γ(a)) cannot be satisfied.)

Example 1: intervals of rationals.

α{x | x2 ≤ 2} = ???

There is no best rational
approximation of [−

√
2,
√

2].

Example 2: polyhedra

α{(x , y) | x2 + y 2 ≤ 1} = ???

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 20 / 48

Problems with Galois connections

For some domains, the abstraction function α does not exist!
(The optimality condition a v α(γ(a)) cannot be satisfied.)

Example 1: intervals of rationals.

α{x | x2 ≤ 2} = ???

There is no best rational
approximation of [−

√
2,
√

2].

Example 2: polyhedra

α{(x , y) | x2 + y 2 ≤ 1} = ???

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 20 / 48

Problems with Galois connections

For some domains, the abstraction function α does not exist!
(The optimality condition a v α(γ(a)) cannot be satisfied.)

Example 1: intervals of rationals.

α{x | x2 ≤ 2} = ???

There is no best rational
approximation of [−

√
2,
√

2].

Example 2: polyhedra

α{(x , y) | x2 + y 2 ≤ 1} = ???

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 20 / 48

Problems with Galois connections

For some domains, the abstraction function α does not exist!
(The optimality condition a v α(γ(a)) cannot be satisfied.)

Example 1: intervals of rationals.

α{x | x2 ≤ 2} = ???

There is no best rational
approximation of [−

√
2,
√

2].

Example 2: polyhedra

α{(x , y) | x2 + y 2 ≤ 1} = ???

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 20 / 48

Type-theoretic difficulties

In the context of a Coq/Agda verification:

γ is easily modeled as

γ : A→ (C → Prop) (two-place predicate)

but α is generally not computable as soon as C is infinite:

α : (C → Prop)→ A morally constant functions only?
α : (C → bool)→ A can only query a finite number of C ’s

(E.g. α(S) = [inf S , sup S], no more computable than inf and sup.)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 21 / 48

Plan B: γ-only presentation

Remember the two properties of abstract operators F# calculated from
F#(a) = α{F (x) | x ∈ γ(a)} :

1 Soundness: if x ∈ γ(a) then F (x) ∈ γ(F#(a)).

2 Optimality: every a′ such that x ∈ γ(a)⇒ F (x) ∈ γ(a′)
is such that F#(a) v a′.

Instead of calculating F#, we can guess a definition for F#, then verify

property 1: soundness (mandatory!)

possibly property 2: optimality (optional sanity check).

These proofs only need the concretization relation γ, which is
unproblematic.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 22 / 48

Soundness first!

Having made optimality entirely optional, we can further simplify the
analyzer and its soundness proof, while increasing its algorithmic efficiency:

Abstract operators that return over-approximations (or just >) in
difficult / costly cases.

Join operators t that return an upper bound for their arguments but
not necessarily the least upper bound.

“Fixpoint” iterations that return a post-fixpoint but not necessarily
the smallest (widening + return > when running out of fuel).

Validation a posteriori of algorithmically-complex operations,
performed by an untrusted external oracle. (Next slide.)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 23 / 48

Validation a posteriori

Some abstract operations can be implemented by unverified code if it is
easy to validate the results a posteriori by a validator. Only the validator
needs to be proved correct.

Example: the join operator t over polyhedra.

Computing the join vs. Inclusion test
(convex hull) (Presburger formula)

The inclusion test can itself use validation a posteriori (Farkas certificate).

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 24 / 48

Plan

1 An overview of static analysis

2 The abstract interpretation approach

3 Scaling up: the Verasco project

4 Technical zoom: the abstract interpreter and its proof

5 Conclusions and perspectives

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 25 / 48

The Verasco project
Inria Celtique, Gallium, Abstraction, Toccata + Verimag + Airbus

Goal: develop and verify in Coq a realistic static analyzer by abstract
interpretation:

Language analyzed: the CompCert subset of C.

Nontrivial abstract domains, including relational domains.

Modular architecture inspired from Astrée’s.

Decent alarm reporting.

Slogan: if “CompCert = 1/10th of GCC but formally verified”,
likewise “Verasco = 1/10th of Astrée but formally verified”.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 26 / 48

Architecture

source → C → Clight → C#minor → Cminor → · · ·
CompCert compiler

Abstract interpreter

Memory & pointers abstraction

Z→ int

Channel-based combination of domains

NR→ R NR→ R

Integer & F.P.

intervals

Integer
congruences

Symbolic
equalities

Convex
polyhedra

Octagons

OK / AlarmsControl

State

Numbers

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 27 / 48

Upper layer: the abstract interpreter

CompCert C → Clight → C#minor → Cminor → RTL → . . .

Abstract
interp 1

Abstract
interp 2

Connected to the intermediate languages of the CompCert compiler.

Parameterized by a relational abstract domain for execution states
(environment + memory state + call stack).

1 Abstract interpreter for RTL (Blazy, Maronèze, Pichardie)

Unstructured control + all functions inlined
→ one global fixpoint (Bourdoncle).

2 Abstract interpreter for C#minor (Jourdan)

Local fixpoints for each loop + per-function fixpoint for goto +
unrolling of functions at call point.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 28 / 48

Lower layer: numerical domains

Non-relational:

Integer intervals (over Z).

Floating-point intervals (on top of the Flocq library).

Integer congruences (over Z).

Relational:

Symbolic equalities var = expr and facts expr = true or false.

The VPL library (Fouilhé, Monniaux, Périn, SAS 2013):
polyhedra with rational coefficients, implemented in OCaml,
producing certificates verifiable in Coq.

Octagons (direct Coq implementation).

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 29 / 48

What is a generic interface for a numerical domain?

For a non-relational domain:

A semilattice (A,v) of abstract values.

A concretization relation γ : A→ ℘(Z)

“Forward” abstract operators such as +#, satisfying

v1 ∈ γ(a1) v2 ∈ γ(a2)

v1 + v2 ∈ γ(a1 +# a2)

“Backward” abstract operators (to refine abstractions based on the
results of conditionals) such as <−1

#

v1 ∈ γ(a1) v2 ∈ γ(a2) v1 < v2 (a′1, a
′
2) = (a1 <

−1
a2)

v1 ∈ γ(a′1) ∧ v2 ∈ γ(a′2)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 30 / 48

What is a generic interface
for a numerical domain?

For a relational domain, the main abstract operations are:

assign var = expr

forget var = any-value

assume expr is true or expr is false

var are program variables or abstract memory locations.

expr are simple expressions (+ − × div mod . . .) over variables and
constants.

To report alarms, we also need to query the domain, e.g.
“is x < y?” or “is x mod 4 = 0?”. A basic query is

get_itv expr → variation interval

(Next slide: Coq interface.)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 31 / 48

The abstract operations

Class ab_machine_env (t var: Type): Type :=

{ leb: t -> t -> bool

; top: t

; join: t -> t -> t

; widen: t -> t -> t

; forget: var -> t -> t+⊥
; assign: var -> nexpr var -> t -> t+⊥
; assume: nexpr var -> bool -> t -> t+⊥
; get_itv: nexpr var -> t -> num_val_itv+>+⊥

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 32 / 48

. . . and their specifications

; γ : t -> ℘ (var->num_val)

; gamma_monotone: forall x y,

leb x y = true -> γ x ⊆ γ y;

; gamma_top: forall x, x ∈ γ top;

; join_sound: forall x y,

γ x ∪ γ y ⊆ γ (join x y)

; forget_correct: forall x ρ n ab,

ρ ∈ γ ab -> (upd ρ x n) ∈ γ (forget x ab)

; assign_correct: forall x e ρ n ab,

ρ ∈ γ ab -> n ∈ eval_nexpr ρ e ->

(upd ρ x n) ∈ γ (assign x e ab)

; assume_correct: forall e ρ ab b,

ρ ∈ γ ab -> of_bool b ∈ eval_nexpr ρ e ->

ρ ∈ γ (assume e b ab)

; get_itv_correct: forall e ρ ab,

ρ ∈ γ ab -> (eval_nexpr ρ e) ⊆ γ (get_itv e ab)

}.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 33 / 48

The middle layer: domain transformers

Communications between numerical domains.

From mathematical integers to N-bit machine integers
(accounts for overflow and wrap-around).

Memory and pointer domain:
1 abstract memory cell = 1 variable of the numerical domains
Plus: points-to information and type information.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 34 / 48

Plan

1 An overview of static analysis

2 The abstract interpretation approach

3 Scaling up: the Verasco project

4 Technical zoom: the abstract interpreter and its proof

5 Conclusions and perspectives

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 35 / 48

Abstract interpretation of structured control

For a simple imperative language like IMP:

F (s, abstract state “before” s) = abstract state “after” s + alarm

Follows the structure of statement s.

No need to talk about program points (unlike in dataflow analysis).

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 36 / 48

Some cases of the abstract interpreter F

F ((s1; s2),A) = F (s2,F (s1,A))

F ((IF b THEN s1 ELSE s2),A) = F (s1,A ∧ b) t F (s2,A ∧ ¬b)

F ((WHILE b DO s DONE),A) = pfp (λX . A t F (X ∧ b, s)) ∧ ¬b

Note: taking a post-fixpoint pfp at every loop.

Notation: A ∧ b is A where we assert that b is true.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 37 / 48

Control flow in the C#minor language

Unlike in IMP, a C#minor statement can terminate in several different
ways, and can also be entered in several ways:

stmt
normally

searching for

substatement
labeled `

normally
early by exit(n)
early by return(v)
early by goto(`)

The abstract interpreter becomes:

F (s,Ai ,Al) = (Ao ,Ar ,Ae ,Ag) + alarm

Ai : abstract state (normal entry)
Al : label→ abstract state (incoming goto)

Ao : abstract state (normal termination)
Ar : abstract value× abstract state (early return)
Ae : exit level→ abstract state
Ag : label→ abstract state (outgoing goto)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 38 / 48

Proving the soundness of an abstract interpreter

For IMP, a simple soundness property:

If F (s,A) 6= alarm and m ∈ γ(A),
statement s, started in memory m, does not go wrong;
moreover, if it terminates with memory m′, then m′ ∈ γ(F (s,A)).

Can be stated formally and proved directly using big-step operational
semantics with error rules:

m ` s ⇒ m′ safe termination on state m′

m ` s ⇒ err termination by going wrong

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 39 / 48

The C#minor operational semantics

A big-step semantics for C#minor is painful to define, owing to goto

statements. Instead, we use CompCert’s small-step semantics with
continuations:

(s, k ,m)→ (s ′, k ′,m′)→ · · ·

where s statement under focus
k continuation term (what to do after s terminates)
m current memory state and environment

Representative rules:

((s1; s2), k ,m) → (s1, Kseq s2 k ,m)

(block s, k ,m) → (s, Kblock k,m)

(skip, Kseq s k ,m) → (s, k ,m)

(exit 0, Kblock k ,m) → (skip, k ,m)

(exit (n + 1), Kblock k ,m) → (exit n, k ,m)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 40 / 48

Using a Hoare logic
(Yves Bertot, 2005)

Proving the abstract interpreter sound w.r.t. the small-step semantics is
feasible but painful. Instead, we break the proof in two steps, using a weak
Hoare logic:

Step 1: “Hoare soundness” of the abstract interpreter:
If F (s,Ai ,Al) = (Ao ,Ar ,Ae ,Ag) (and not alarm),
then the weak Hoare 7-tuple

{γ(Ai), γ(Al} s {γ(Ao), γ(Ar), γ(Ae), γ(Ag)}

is derivable.

Step 2: soundness of the Hoare logic w.r.t. the operational semantics.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 41 / 48

Small-step soundness of a Hoare logic
(Andrew Appel and Sandrine Blazy, 2007)

Going back to IMP and standard Hoare triples {P} s {Q} for simplicity:

Definition

A configuration (s, k ,m) is safe for n steps if no sequence of at most n
transitions starting with (s, k ,m) reaches a “going wrong” state.

Definition

A continuation k is safe for n steps w.r.t. postcondition Q if, for all
memory states m satisfying Q, the configuration (skip, k ,m) is safe for n
steps.

Theorem

If the Hoare triple {P} s {Q} holds, then for all n, all continuations k safe
for n steps w.r.t. Q, and all memory states m satisfying P, the
configuration (s, k,m) is safe for n steps.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 42 / 48

Two ways to define the Hoare logic

Shallow embedding: (Appel and Blazy)

use the soundness theorem as the definition of {P} s {Q};
show the usual Hoare logic rules as lemmas.

Deep embedding: (what we use in CompCert)

define {P} s {Q} as a coinductive predicate, with each rule as a
constructor;

prove the soundness theorem by induction on the number n of steps.

(The coinductive definition helps to handle function calls just by unrolling
of the function definition.)

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 43 / 48

Conjunction and disjunction rules

The Verasco abstract interpreter contains some heuristics (unrolling of the
last N iterations of a loop) whose soundness proof makes use of unusual
Hoare logic rules:

{P1} s {Q} {P2} s {Q}

{P1 ∨ P2} s {Q}

{P} s {Q1} {P} s {Q2}

{P} s {Q1 ∧ Q2}

These rules are admissible in the deep embedding approach (with the
coinductive predicate), but we could not prove them in the shallow
embedding approach.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 44 / 48

Plan

1 An overview of static analysis

2 The abstract interpretation approach

3 Scaling up: the Verasco project

4 Technical zoom: the abstract interpreter and its proof

5 Conclusions and perspectives

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 45 / 48

Status of Verasco

It works!

Fully proved (30 000 lines of Coq)

Executable analyzer obtained by extraction.

Able to show absence of run-time errors in small but nontrivial C
programs.

It needs improving!

Some loops need manual unrolling
(to show that an array is fully initialized at the end of a loop).

Analysis is slow (up to one minute for 100 LOC).

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 46 / 48

Future work

Improve algorithmic efficiency, esp. sharing between representations
of abstract states (hash-consing?).

More precise and more efficient abstractions of memory states.
(Cf. Antoine Miné’s memory domain, LCTES 2006.)

More (combinations of) abstract domains, e.g. trace partitioning,
array-specific domains.

Debugging the precision of the analyses.

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 47 / 48

One step at a time. . .

. . . we get closer to the formal verification of the tools that participate in
the production and verification of critical embedded software.

C

Executable

Asm

ScadeSimulink

Handwritten

Compiler

Code gen. Code gen.

Test

Code

review

Static

analyses

Program

proof

Model

checking

X. Leroy et al (Inria) The Verasco verified analyzer 2015-12-02 48 / 48

	An overview of static analysis
	The abstract interpretation approach
	Scaling up: the Verasco project
	Technical zoom: the abstract interpreter and its proof
	Conclusions and perspectives

