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Introduction

Goal

I Program logics for modular reasoning about partial
correctness of higher-order, concurrent, imperative code
programs.
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Outline
1. Why higher-order logic + guarded recursion is useful

for expressing such modular specs
I via example of layered and recursive abstraction.

2. Why impredicative protocols to govern shared state
I via example verification of lock implementation
I invariants to enforce protocols
I monoids to express protocols (ownership)

3. How the logic is modelled and showed sound (key ideas)
I BI-hyperdoctrine over ultra-metric spaces, Kripke model

with recursively defined worlds.

4. Overview of resources to learn more
I tutorial material
I papers: iCAP [ESOP-2014] and Iris [POPL-2015]
I paper on formalization: ModuRes Library [ITP-2015]

5. Overview of features in iCAP and Iris not covered today
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Higher-Order Programming

I Programming features
I HO functions
I Interfaces in OO languages
I Function Pointers in low-level languages

I for
I Building libraries
I Returning libraries
I Parameterization

I Point:
I Features important for modularizing large programs
I Allow programming relative to unknown code

I Goal: Logics and Models that support correspondingly
modular specifications of code.
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Example: Layered and Recursive Abstractions

I Modular library specifications that supports
layering of abstractions and recursive abstractions.
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Recursive Abstractions

Reentrant Event Loop Library

delegate void h a n d l e r ( ) ;

i n t e r f a c e IEventLoop {
void l o o p ( ) ;
void s i g n a l ( ) ;
void when ( h a n d l e r f ) ;

}
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i n t e r f a c e IEventLoop {
void l o o p ( ) ;
void s i g n a l ( ) ;
void when ( h a n d l e r f ) ;

}

Event handlers are
allowed to emit events!

A library that allows us to
close Landin’s Knot / perform

recursion through the store.

Realistic examples of this form:
libevent, Node.js, Twisted, ...

C5, GUI libraries, Joins library, ...
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A Modular Lock Specification

∃isLock, locked : Val× Prop→ Prop. ∀R : Prop.

{R} new Lock() {isLock(ret,R)}
{isLock(x,R)} x.Acquire() {locked(x,R) ∗ R}

{locked(x,R) ∗ R} x.Release() {isLock(x,R)}

∀x : Val. isLock(x,R)⇔ isLock(x,R) ∗ isLock(x,R)
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Standard sep. logic lock specification
The resource invariant R describes the

resources protected by the lock.
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A Modular Lock Specification

∀R : Prop. ∃isLock, locked : Val→ Prop.

{R} new Lock() {isLock(ret)}
{isLock(x)} x.Acquire() {locked(x) ∗ R}

{locked(x) ∗ R} x.Release() {isLock(x)}

∀x : Val. isLock(x)⇔ isLock(x) ∗ isLock(x)

This specification might suffice for layering of
abstractions, but not for all recursive abstractions.
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Recursive Abstractions

Event Loop Memory Safety Specification

∃eloop : Val→ Prop.

{emp} new EventLoop() {eloop(ret)}
{eloop(x)} x.loop() {eloop(x)}
{eloop(x)} x.signal() {eloop(x)}

{eloop(x) ∗ P} x.when(f) {eloop(x)}

∀x : Val. eloop(x)⇔ eloop(x) ∗ eloop(x)

where P = f 7→ {emp}{emp}
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{eloop(x) ∗ P} x.when(f) {eloop(x)}

∀x : Val. eloop(x)⇔ eloop(x) ∗ eloop(x)

where P = f 7→ {emp}{emp}

Event handler must run without any resources but
emitting an event requires an eloop(x) resource!
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Recursive Abstractions

Reentrant Event Loop Memory Safety Specification

∃eloop : Val→ Prop.

{emp} new EventLoop() {eloop(ret)}
{eloop(x)} x.loop() {eloop(x)}
{eloop(x)} x.signal() {eloop(x)}

{eloop(x) ∗ P} x.when(f) {eloop(x)}

∀x : Val. eloop(x)⇔ eloop(x) ∗ eloop(x)

where P = f 7→ {eloop(x)}{eloop(x)}

8 / 33



Recursive Abstractions

Verifying a lock-based event loop implementation

I Since we are interested in memory safety, eloop has to
specify the memory footprint of the event loop.

I Since an event loop can call handlers, its footprint include
the footprint of its handlers.

I Since handlers can signal events, the footprint of handlers
include the footprint of their event loop.

I The footprint of an event loop is thus recursively defined.
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Recursive Abstractions

Verifying a lock-based event loop implementation

I Imagine an implementation that maintains a set of signal
handlers and a set of pending signals, protected by a lock:

c l a s s EventLoop : IEventLoop {
p r i v a t e Lock l o c k ;
p r i v a t e Set<h a n d l e r> h a n d l e r s ;
p r i v a t e Set<s i g n a l> s i g n a l s ;

. . .
}

I Tying Landin’s Knot using a reference protected by a lock.
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Recursive Abstractions

Verifying a lock-based event loop implementation

I The footprint of an event loop is thus recursively
defined and the recursion “goes through the lock”.

I We define eloop using guarded recursion and the
third-order isLock representation predicate:

eloop =fix(λeloop : Val→ Prop. λx : Val.

∃l . x.lock 7→ l ∗
isLock(l , ∃y, z,A,B. set(y,A) ∗ set(z,B)

∗ x.handlers 7→ y ∗ x.signals 7→ z

∗ ∀a ∈ A. . a 7→ {eloop(x)}{eloop(x)}))
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Recursive Abstractions

Verifying a lock-based event loop implementation

I The footprint of an event loop is thus recursively
defined and the recursion “goes through the lock”.

I We define eloop using guarded recursion and the
third-order isLock representation predicate:

eloop =fix(λeloop : Val→ Prop. λx : Val.

∃l . x.lock 7→ l ∗
isLock(l , ∃y, z,A,B. set(y,A) ∗ set(z,B)

∗ x.handlers 7→ y ∗ x.signals 7→ z

∗ ∀a ∈ A. . a 7→ {eloop(x)}{eloop(x)}))

Must be non-expansive!
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Summary

I Higher-order logic + guarded recursion useful for
specifying layered and recursive abstractions.

I Next: impredicative protocols for verifying module
implementations
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A Modular Lock Specification

Verifying a spinlock implementation

I Upon allocating a lock, we introduce a protocol to govern
the sharing of the lock and through the lock.

I A lock can be in one of two abstract states:

LockedUnlocked

Unlock

Lock
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A Modular Lock Specification

Verifying a spinlock implementation

I Upon allocating a lock, we introduce a protocol to govern
the sharing of the lock and through the lock.

I A lock can be in one of two abstract states:

LockedUnlocked

Unlock

Lock

x. locked 7→ 1x. locked 7→ 0 ∗ R ∗ ...
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A Modular Lock Specification
I Protocol expressed via invariant:

I (R) = (x.locked 7→ 1)

∨ (x.locked 7→ 0 ∗ R ∗ •)

I Parameterized by R, any predicate, including one referring
to protocols, hence impredicative protocols.

I Only the owner of the lock should be able to unlock:
I Expressed via monoid: the • is an element of a partial

commutative monoid (PCM), with one non-neutral
element, which is not duplicable.

I Also uses standard PCM of heaps.
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Summary

I Monoids to express protocols on shared state

I Invariants to enforce protocol governing shared state

I Protocol parametric in R: impredicative protocols.
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Fine-Grained Concurrent Data Structures

I Modular Bag Specification (excerpt)

∃bag : RId× Val→ Prop.

{emp} new Bag(−) {ret. ∃n : RId. bag(n, ret) ∗ retcont
0.57→ ∅}

∀P ,Q : Val× Val→ Prop. ∀n : RId.

∀X : Pm(Val). ∀x , y : Val.

xcont
0.57→ X ∗ P(x , y) vRId\{n} xcont

0.57→ (X ∪ {y}) ∗ Q(x , y)) ⇒
{bag(n, x) ∗ P(x , y)} x.Push(y) {bag(n, x) ∗ Q(x , y)}

I Parameterization to allow clients to reason about what
should happen at linearization points (inspired by Jacobs
and Piessens):

16 / 33



Verification of Implementation using Helping

pendingacceptedack’ed revoked
Accept RevokeAck

I pending: an offer has been made and it is waiting for
somebody to accept it,

I accepted: the offer has been accepted,

I ack’ed: we have acknowledged that somebody has
accepted the offer,

I revoked: in case we revoke the offer (since no one
accepted it and now we will re-attempt to push).
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Interpretation of states

Ioffer(pending) = x .state 7→ 0 ∗ P(b, y) ∗
∀X : Pm(Val). ∀x , y : Val.

xcont
0.57→ X ∗ P(x , y) vRId\{n} xcont

0.57→ (X ∪ {y}) ∗ Q(x , y)

Ioffer(accepted) = x .state 7→ 1 ∗ Q(b, y)

Ioffer(revoked) = x .state 7→ 2

Ioffer(ack’ed) = x .state 7→ 1
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Summary

I Key logical tools: impredicative protocols and view shifts.
(the depicted state transition system can be encoded
using PCMs, as we indicated for locks earlier)

I iCap was the first logic to allow verification of such FCDs
against such general specs.
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Model Ideas

I Prop = W →mon P(M)
I M a PCM (a product of all the necessary monoids)
I W : worlds, keeping track of invariants

I W = N ⇀fin Prop
I names of invariants are natural numbers
I each invariant described by a predicate (recall I (R) for

the lock)

I So need something like

Prop ∼= (N ⇀fin Prop)→mon P(M)
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Model Ideas

I Our approach: solve in model of guarded type theory:

Prop ∼= I(N ⇀fin Prop)→mon P(M)

I iCAP: use topos of trees and construct model
synthetically

I Iris: more explicit using subcat U corresponding to
ultrametric spaces.
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Model in U

I Let U be category of complete bisected ultrametric
spaces and non-expansive maps.

I Equivalently described as complete ordered families of
equivalence relations and non-expansive maps (cofe).

I Use uniform predicates instead of just predicates:

UPred(M) = Nop →mon P↑(M)

Two such are n-equal if they agree up to level n.

I Can model guarded predicates (the .) by “shifting a
uniform predicate to the right”.

I Solve

Prop ∼= I((N ⇀fin Prop)→mon
ne UPred(M))
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Model in U

I Theorem U( ,Prop) is a BI-hyperdoctrine, which also
I models guarded recursive predicates
I models invariants
I also models hoare triples and associated proof rules, but

omitted from presentation today

I Explicitly:
I Γ ` φ : prop is interpreted as a non-expansive function

from [[Γ]] to Prop.
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[[Γ ` M =τ N]]γw =
{

(n, r) | [[Γ ` M : τ ]]γ
n+1
= [[Γ ` N : τ ]]γ

}
[[Γ ` >]]γw = N ×M

[[Γ ` φ ∧ ψ]]γw = [[Γ ` φ]]γw ∩ [[Γ ` ψ]]γw

[[Γ ` ⊥]]γw = ∅
[[Γ ` φ ∨ ψ]]γw = [[Γ ` φ]]γw ∪ [[Γ ` ψ]]γw

[[Γ ` φ =⇒ ψ]]γw = ∀w ′ ≥ w , ∀n′ ≤ n,∀r ′ ≥ r ,

(n′, r ′) ∈ [[Γ ` φ]]γw ′ ⇒ (n′, r ′) ∈ [[Γ ` ψ]]γw ′

[[Γ ` ∀x : σ, φ]]γw =
⋂

d∈[[σ]]

[[Γ, x : σ ` φ]](γ,d)w

[[Γ ` ∃x : σ, φ]]γw =
⋃

d∈[[σ]]

[[Γ, x : σ ` φ]](γ,d)w
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[[Γ ` .φ]]γw = {(0, r) | r ∈ M}
∪ {(n + 1, r) | (n, r) ∈ [[Γ ` φ]]γw}

[[Γ ` emp]]γw = N ×M

[[Γ ` φ ? ψ]]γw = {(n, r) | ∃r1, r2, r = r1 · r2∧
(n, r1) ∈ [[Γ ` φ]]γw ∧ (n, r2) ∈ [[Γ ` ψ]]γw}

[[Γ ` φ→?ψ]]γw = {(n, r) | ∀w ′ ≥ w ,∀n′ ≤ n,∀r ′#r .

(n′, r ′) ∈ [[Γ ` φ]]γw
′ ∧ (n′, r · r ′) ∈ [[Γ ` ψ]]γw

′}

25 / 33



Recursively defined predicates

When p occurs under a . in φ, then

[[Γ ` µp.φ : propτ ]]γ = fix(λx : [[propτ ]].

[[Γ, p : propτ ` φ : propτ ]](γ,x))

Here fix yields the fixed point of the contractive function,
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Invariant predicates

[[Γ ` φ
K

]]γw = {(n, r) |

w([[Γ ` K ]]γ)
n+1
= ι([[Γ ` φ]]γ)}.
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Model in U

I Theorem U( ,Prop) is a BI-hyperdoctrine, which also
I models guarded recursive predicates
I models invariants

I Key Observation (Iris):
I By choosing monoids appropriately, we can encode many

(all ?) kinds of protocols and ownership disciplines and
derive rules for other concurrent separation logics
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Use of Interactive Theorem Proving

I Verify meta-theory (model construction and soundness of
all proof rules, relative to operational semantics of
concrete programming language).

I Tool(s) for experimenting with larger program
verification.

I Support for higher-order quantification is important.

I Earlier work: Charge! (with Bengtson, Jensen,
Sieczkowski)

I For sequential OO language, logic without invariants.
I Shallow embedding of logic, Coq tactics to automate

part of the reasoning.
I Non-trivial to reason efficiently in embedded logic.
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Use of Interactive Theorem Proving

I ModuRes Coq Library [ITP-2015]
I Implementation of U and solutions to g.r. domain eqn’s.
I Draft tutorial material online (model of ML references)
I Used to verify meta-theory of Iris

I Ongoing and Future Work (with Krebbers, Jung, Dreyer,
Bengtson, . . . )

I New tool for concurrency reasoning based on
improvement of ModuRes Coq Library

I Hope to make use of progress by Malecha and Bengtson
on reflective tactics.
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To Learn More

I Elementary tutorial notes on categorical logic (including
above theorem)

I Papers:
I ModuRes Coq Library [ITP-2015]
I iCAP [ESOP-2014]
I Iris [POPL-215]
I Cover many other aspects, e.g. advanced FCDs, logical

atomicity (definable) as in TaDa.

I http://cs.au.dk/~birke/modures/
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More Ongoing and Future Work

I Defining logical relations in Iris (a la Plokin-Abadi for
System F), to prove relational properties, e.g.,

I security properties such as non-interference
I optimizations based on type and effect systems

I Liveness properties.
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