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Voor opa Arie en oma Truus Rouvoet



Bit by bit, putting it together.
Piece by piece, only way to make a work of art.
Every moment makes a contribution
Every little detail plays a part
Having just a vision’s no solution
Everything depends on execution
Putting it together, that’s what counts!
Ounce by ounce, putting in together.
Small amounts, adding up to make a work of art
First of all you need a good foundation
Otherwise it’s risky from the start
Takes a little cocktail conversation
But without the proper preparation
Having just a vision’s no solution
Everything depends on execution
The art of making art
Is putting it together, bit by bit.
Shpiel by shpiel, doubt by doubt.
And that... is the state of the art!

— Barbara Streisand,
Putting it Together, 1985
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1 Introduction

“Computer programming is an exact science in that all the
properties of a program and all the consequences of

executing it in any given environment can, in principle, be
found out from the text of the program itself by means of

purely deductive reasoning.”

— Hoare (1969)

Implementations of typed programming languages consist of a
front-end and a back-end. The purpose of the front-end is to deter-
mine whether the textual input is indeed a meaningful program. The
parser first determines if the program is syntactically valid, produc-
ing an abstract syntax tree (AST) that represents the program. The
function of the type checker is to check if the AST is also meaningful.
Concrete tasks of type checkers are resolving identifiers, checking
that declared and actual types match, etc. Some of the accrued
information will be stored as annotations on the AST so that the
back-end has access to it.

When the type checker decides to accept the program, the pro-
gram is judged ‘meaningful’. The back-end assigns this meaning—
i.e., the dynamic semantics—by making the program executable.
An interpreter is a language back-end that directly evaluates the
program—e.g., by reducing it step by step according to the reduction
rules of the language. A compiler back-end indirectly makes the
program executable by transforming it into a program in a (usually)
low-level language such as Java Virtual Machine bytecode. The
low-level program can be executed by the actual or virtual machine.

The decision of the type checker reflects a contract between the
programmer and the programming language implementation. It
is up to the programmer to deliver a program that is well typed,
but it is up to the language implementation to execute well-typed
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1 There is some wiggle room here in the
interpretation of what amounts to an ‘un-
expected’ crash. The contract of a typed
programming language should specify
this.

2 In addition to type checker soundness,
one might desire a type checker to also
be complete, so that it only rejects pro-
grams that do not have a typing. Com-
pleteness is not a safety criterion, be-
cause programs that are unnecessarily
rejected will never be executed.

3 Dijkstra 1972. “Notes on structured pro-
gramming”

programs without crashing unexpectedly.1 This thesis is about
implementing type checkers, interpreters, and compilers in such a
way that each, by construction, fulfills their role in maintaining this
contract.

The type contract induces safety criteria for the type-checker
and the different back-ends of a language that ensure that type
errors will never occur when a program is executed. These criteria
are formulated relative to a specification of program typing. The
specification of program typing is also called a static semantics of a
programming language. The criteria are as follows:

• A type checker shall only accept programs that have a typing
according to the specification of the static semantics. A type
checker that has this property is said to be sound with respect to
the static semantics.2

• An interpreter must reduce well-typed expressions to values of
the same type. An interpreter that has this property is said to be
type safe.

• A compiler transforms well-typed source expressions to well-
typed target expressions of a corresponding type. In other words,
compilers preserve well-typing, extending the contract on the
input to the output. Compilers that satisfy this property are said
to be type correct.

These safety criteria are essential to ensure that the typing of a source
program is a meaningful contract. A type-checker that violates
soundness incorrectly assigns types to programs that are in fact ill
typed, according to the specification of the static semantics. An
interpreter that violates type-safety can reduce an expression of
some type to a value of a different type or get stuck, thus nullifying
the usefulness of checking that the source program is well typed.
Similarly, a compiler that violates type correctness can transform a
well-typed source program into an ill-typed target program, again
negating the point of checking types on the source language.

The importance of the above criteria raises the question how
a language developer can establish that these criteria are satisfied
by the implementation. Testing can famously only prove the pres-
ence of bugs.3 To prove that the language implementation satisfies
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4 Hoare 1969. “An Axiomatic Basis for
Computer Programming”

the criteria on all inputs, one must turn to formal verification—i.e.,
by specifying it unambiguously in a formal language and giving a
derivation that proves that it holds.

A formal language or system is one that operates by well-defined
rules. Programming languages are good examples of formal systems,
because their static and dynamic semantics can be specified as sets of
rules:4 static semantics is specified using typing rules, and dynamic
semantics using evaluation rules. Such rule-based specifications
lend themselves well to formal reasoning, in contrast, for example,
to specifications in natural language. To prove something in such
a formal system is to give a derivation of rule applications. For
example, we can prove that a particular program is well typed by
delivering a type derivation.

To formally verify a property about a formal system S we repeat
the trick one level higher: we write down the rules of S in a formal
meta language M. We then use the rules of the meta language M
to prove some property about, for example, all derivations in S . To
distinguish the formal system being studied from the formal system
in which we study it, we sometimes speak of an object language S .

How then should a language developer prove that their language
front-ends and back-ends satisfy the safety criteria? Conventional
proofs by language researchers consist of separate specifications,
implementations, and a manual proof. This thesis is driven by
a vision of a more integrated approach: language specifications
and/or implementations ought to be written in meta-languages that
ensure the relevant safety properties, avoiding somehow the need for
separate proofs for those properties.

There are different approaches to accomplishing this goal. We
investigate two such approaches in this thesis. For language front-
ends, we investigate an approach where the language developer
specifies the static semantics in a meta-language which automatically
delivers the implementation of a sound type checker. For language
back-ends, we investigate an approach where the language developer
implements an interpreter or compiler using a meta-language that
is intrinsically typed—i.e., if the implementation type-checks in the
meta-language, then it satisfies the type-correctness criterion.

In both cases, we develop meta-languages that accommodate
high-level specifications. That is, specifications that are precise, but
also aim to be “sufficiently simple to be understood both by the
[language developer] and by a reasonably sophisticated user of the
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5 Hoare 1969. “An Axiomatic Basis for
Computer Programming”

S
spec
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Typed AST

X
verified

derivation

6 This is analogous to how we treat pars-
ing: a language developer specifies a
grammar in a suitable meta-language,
and the parser for that grammar is sys-
tematically derived.

7 Which may well contribute to the re-
markable fact that almost none of the
programming languages have formal
specifications of the static semantics of
their surface-level features, with the no-
table exception of ML (Milner et al.
1997).

[object] language”5. Hoare (1969) states that we can only maximize
the advantage from a formal language specification if it bridges the
communication gap between language developers and users. We
pursue this idea, but also go beyond it. Formal language speci-
fications should also be instrumental in developing programming
language implementations that are correct by construction.

In sections 1.1 and 1.2, we explain the problems of existing ap-
proaches, as well as the main ingredients and challenges of the
proposed approaches. We end the introduction with an overview of
the contributions of this thesis.

1.1 Safe Language Front-Ends

How should a language developer ensure that their language’s type
checker is sound with respect to the specification of the language’s
S static semantics? The perspective that we take in part II of this
thesis, is that it is possible to systematically derive type checkers
from certain specifications of static semantics and to prove once-and-
for-all that the derivation always delivers sound type checkers.6

What then is a suitable meta-languageM in which we can write
those specifications? A specification of static semantics should be
high-level: it describes a contract between the language implemen-
tation and the programmer, so it should explain the typing of pro-
grams using concepts that programmers can understand. This in
particular precludes all of the low-level implementation details of a
type checker, such as the maintenance of symbol tables.

Although it is well understood how to specify the static semantics
of many core features of programming languages, the surface syntax
of many actual programming languages are still hard to specify for-
mally and at a high-level.7 This is a first challenge for the design of
the meta-languageM: what are high-level concepts for the specification
of static semantics for surface-level language features?

At the same time however, we want to be able to automatically
derive a type checker from the specification. This causes tension
in the design of the specification language. We need to identify
concepts that are both high-level, and that enable the recovery of
all the necessary low-level details of a sound implementation. This
is a second challenge for the design of the meta-languageM: is it
feasible to derive implementations from high-level specifications and prove
the derivation sound once-and-for-all?
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8 The definition of Standard ML (Milner
et al. 1997) uses a natural semantics to
specify static semantics with both input
and output environments. As a conse-
quence, the specification is more opera-
tional in character.

9 Neron et al. 2015. “A Theory of Name
Resolution”

10 Van Antwerpen et al. 2016. “A con-
straint language for static semantic anal-
ysis based on scope graphs”

11 Hedin 2000. “Reference Attributed
Grammars”

12 Reynolds 2002. “Separation logic: A
logic for shared mutable data structures”

13 O’Hearn et al. 2001. “Local Reasoning
about Programs that Alter Data Struc-
tures”

One particular programming language feature that is worthy
of attention with respect to that challenge, is static binding. Despite
the great variety of static binding in programming languages, only
λ- or let-binding can be concisely and precisely specified using the
context-expression-type (Γ ` e : t) presentation of static semantics
that are used almost exclusively in research papers. In contrast, even
a simple program in languages such as ML, Java, or Scala can use
identifiers in different name spaces, type-based name resolution,
(first-class) modules and imports, or other language specific scoping
and resolution mechanisms. Many of those involve scoped global
static binding, which cannot be specified using mere lexical typing
contexts.8

At the same time, the implementation of a type checker for a
language such as ML, Java, or Scala requires some scheduling of type
checking tasks: more ways to refer to other parts of the program
cause more possible dependencies between type checking tasks.
Language developers manually stratify the type checking algorithm
into various passes (e.g., Haskell, ML), or employ more dynamic
scheduling of type checking tasks (e.g., Rust). In either case, their
strategy must ensure that a name is never resolved before all relevant
definitions have been recorded, all relevant imports are resolved, and
all relevant types have been checked, in order for the type checker
to be sound.

In part II of this thesis we propose the meta-language Statix. In
Statix, a specification of static semantics is defined using a typing
relation. The main new feature of Statix is primitive premises for
the specification of static binding. In particular, it has premises for
asserting unique nodes and edges in a global scope graph9, which can
be understood as a structured symbol table. The idea to use graphs
to model binding comes from the observation that static binding in
program abstract syntax trees can be understood as additional edges
relating references to declarations, leading to graph-like descriptions
of programs. The additional structural information can be exploited
to give concise specifications of the static binding in for example
module systems and object-oriented languages.10,11

Typing rules in Statix have a declarative semantics as inference
rules of a separation logic12,13 that explains how the global symbol
table (i.e., the scope graph) is made up of individual entries coming
from declarations in the program AST. It is the separation logic
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14 Frühwirth 1998. “Theory and Practice
of Constraint Handling Rules”

15 Milner 1978. “A theory of type poly-
morphism in programming”

flavor of the rules that enables the concise rules for specifying global
structure.

To obtain a type checker from a Statix specification, we equip
Statix with a non-backtracking operational semantics, inspired by the
operational semantics of Constraint Handling Rules14. The problem
that we face is to give a general strategy that ensures that scope graph
queries modeling name resolution are only resolved after all relevant
scoping structure has been recorded. Because scoping structure may
depend on name resolution, this requires a non-trivial strategy. We
give a strategy and prove that the resulting type checkers are sound
with respect to the declarative semantics of the Statix specification.

Using the Statix meta-language we are able to specify the surface-
level static binding of, for example, class hierarchies in Java, and
the imports from objects in Scala. The operational semantics can
evaluate these specifications on a test suite of Java and Scala pro-
grams, and delivers verdicts that agree with the type checkers of
those languages.

1.2 Type-Correct Language Back-Ends

How should a language developer ensure that their interpreter is
type-safe and their compiler is type-correct? An appealing approach
is to use intrinsically typed functional definitions, because they are
executable and type-safe by construction. This section positions
this approach relative to conventional (syntactic) safety proofs and
explains the contributions of part I of this thesis.

In 1978, Milner coined the slogan “well-typed programs cannot go
wrong” characterizing (weak) type soundness.15 The subject of the the-
orem in his paper is a denotational semantics of a typed functional
language. This semantics is characterized by a meaning function
that maps into a domain that includes a denotation “wrong” which
is used to give meaning to ill-typed programs. Milner proves weak
soundness using a stronger soundness theorem, which coincides
with what we already called type safety.

Defining a denotational semantics like Milner’s can be difficult be-
cause it requires that one identifies an appropriate semantic domain.
In 1994, Wright and Felleisen published their article “A Syntactic
Approach to Type Soundness” in which they describe a simpler
proof method for type safety that has become the method of proving
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16 Wright et al. 1994. “A Syntactic Ap-
proach to Type Soundness”

17 Harper 2016. “Practical foundations
for programming languages”

18 Pierce 2002. “Types and programming
languages”

19 Harper 1994. “A Simplified Account
of Polymorphic References”

20 Semantic type safety proofs have re-
cently regained popularity. One reason
for this is the advance of techniques en-
abling abstraction over difficult techni-
cal details of a domain, such as step-
indexing of propositions (Appel et al.
2007; Dreyer et al. 2011; Jung et al. 2018b).
Another reason is that syntactic safety
proofs cannot be used to reason about
programs that are (temporarily) not syn-
tactically well-typed (Jung et al. 2018a).

type soundness that we teach.16,17,18 Their approach is based on
step-wise reduction of expressions e −→ e′ (e steps to e′). Instead of
having a reduction into “wrong”, ill-typed expressions simply do not
reduce: the reduction relation −→ gets stuck. To prove type safety,
one proves a lemma called subject reduction or (type) preservation,
which is based entirely on the typing of expressions:

If ` e : τ and e −→ e′ then ` e′ : τ.

That is, reducing a well-typed expression e of type τ to an expression
e′ preserves the type. This lemma is combined with a lemma called
progress:

If ` e : τ then either e is a value, or e −→ e′.

That is, every well-typed expression that is not a value is not stuck
and can reduce. Together these lemmas ensure type soundness. By
progress, any well-typed expression e that is not already a value can
be reduced to an expression e′. If e′ is a value, then we are done.
If not, then we argue by preservation that e′ is again well-typed,
and we repeat the process. Hence, well-typed expressions cannot go
wrong.

The syntactic approach to proving type safety works uniformly
for a surprising variety of programming languages (Pierce 2002).
For example, Harper proves polymorphic reference type safe by a
simple syntactic argument,19 whereas the denotational semantics of
polymorphic references has traditionally been difficult.

Additionally, a syntactic type safety proof can be mechanized
straightforwardly. That is, syntactic type safety can be stated and
proven in a proof assistant in the same way that it is stated on
paper, except that one cannot leave trivial cases as an exercise to
the reader. This is the case, because both the step relation and
the syntactic typing can be embedded in a proof assistant like Coq
as an inductively defined relation and the reasoning about such
relations is well understood and is amenable to automation. These
attractive properties have made the syntactic approach to type safety
the default.20

Although syntactic proofs of type safety can be conducted
well in a proof assistant for a large number of languages, there are
some drawbacks to the approach. In particular, there is a large gap
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21 Reynolds 1998a. “Definitional Inter-
preters for Higher-Order Programming
Languages”

22 Danielsson 2012. “Operational seman-
tics using the partiality monad”

23 Amin et al. 2017. “Type soundness
proofs with definitional interpreters”

24 It may even prompt us to specify the
partial behavior on well-typed terms sep-
arately as a relation and prove an ade-
quacy theorem of the interpreter, thus
separating the specification from the im-
plementation.

between a small-step operational semantics and an executable inter-
preter which does not operate by substitution. If we are primarily
interested in language implementations, then it is more sensible to
start with an executable specification of the dynamic semantics.

A definitional interpreter21,22,23 defines the operational semantics
of a language using a high-level evaluation function written in a total
functional language. A great advantage of a functional specification
is that it is readily executable, so that the language can easily be
tested by a language developer. A disadvantage of a functional
definition, is that it must explicitly address the fact that ill-typed
programs cannot be evaluated. For example, an interpreter must
eventually raise an exception when it evaluates true + 42. Similarly,
the implementation must deal with the possibility that it itself makes
type errors. For example, an interpreter that evaluates (18 + 3) + 21
by first recursively evaluating the addition 18 + 3 must account for
the possibility that this results in something other than a number!

In a proof assistant that demands functions to be total, such
possibility of failure cascades through the definition: an interpreter
must also handle errors thrown by recursive invocations. This
imposes overhead on the definition. This overhead in the definition
of the back-end is more than a mere nuisance. It obfuscates the
behavior of the back-end on well-typed terms, reducing the quality
of the specification.24

One can argue—and indeed we will—that the overhead of errors
due to ill-typed expressions in the back-end is unnecessary because
the back-end of a language implementation is only ever supposed to
encounter well-typed expressions. A proof of type-safety is evidence
that the interpreter will never raise an error (and will consequently
never have to handle an error) when executed on well-typed terms.
In other words, the definition of the semantics has overhead because
we are working in a meta-language that demands functions to be
total. Ironically, we then proceed to prove that the function is actually
total (modulo divergent evaluation) on the subset of its domain that
we are actually interested in when we prove type safety!

To remedy the irony, we can instead define an intrinsically typed
interpreter that operates only on well-typed terms and that inter-
nalizes the type-safety theorem. This involves two challenges: (1)
to find a suitable representation of well-typed expressions, and (2)
to define an interpreter for those expressions that encapsulates the
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25 Augustsson et al. 1999. “An exercise
in dependent types: A well-typed inter-
preter”

26 McKinna et al. 2006. “A type-correct,
stack-safe, provably correct, expression
compiler”

27 Norell 2008. “Dependently Typed Pro-
gramming in Agda”

28 Dybjer 1994. “Inductive Families”

type-safety proof. The main challenge in accomplishing these is to
ensure that the cure for partiality is not worse than the ailment: if
the overhead of the proof exceeds the overhead of partiality, then we
have accomplished nothing.

Encouragingly, previous work on intrinsically typed (definitional)
interpreters25 and also on intrinsically typed expression compilers26

has shown that this is possible. This is accomplished by using
a dependently typed functional programming language (DTPL)
such as Agda27 as a meta-language. Intrinsically typed terms are
represented as an inductive family28 (e.g., Exp τ) whose constructors
effectively merge grammar with typing rules. An interpreter is
represented by a function whose signature (e.g., eval : Exp τ � Val τ)
expresses the safety theorem. The structure of syntactic proofs of
type correctness is so similar to the structure of the interpreter that
we superimpose them and get rid of half the work. This is what we
call the appeal of intrinsically typed programming. Not only do we
gain the ability to make use of type invariants in the implementation,
we also eliminate most of the proof work.

Despite the appeal of intrinsically typed programming, it has
not yet been adopted as broadly as Wright & Felleisen’s syntactical
approach. A major question is whether intrinsically typed program-
ming scales beyond interpreters and compilers for simply typed
expression languages. Programming languages with more elaborate
type systems often have type invariants that are more subtle than
strict preservation of types. For example, type-safe references can-
not be typed in isolation, but must be typed relative to a runtime
store. Consequently, the traditional syntactic type-safety proof for
references requires additional arguments. It is unclear whether such
type invariants and arguments can be integrated into an intrinsi-
cally typed interpreter with the same advantages as displayed in the
simply typed cases.

Part I of this thesis investigates the application of intrinsically
typed programming to the following programs:

• An interpreter for a monomorphically typed functional language
with ML-style references (chapter 3),

• An interpreter for a linear functional language with concurrency,
and (session-) typed, cross-thread communication (chapter 4),

• A compiler targeting a bytecode language with only primitive
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29 O’Hearn et al. 2001. “Local Reasoning
about Programs that Alter Data Struc-
tures”

30 Calcagno et al. 2007. “Local action and
abstract separation logic”

31 Dockins et al. 2009. “A fresh look at
separation algebras and share account-
ing”

control flow using jumps to labeled instructions (chapter 5).

Indeed, we find that the key ideas that were sufficient for simply
typed languages do not deliver the same advantages for these pro-
grams. The straightforward integration of the extrinsic type safety
proofs results in programs that are littered with additional proof
work that exceed the overhead of implementing their untyped, par-
tial counterparts.

To address this problem, we investigate and deliver functional
abstractions that not only encapsulate computational work but also
proof work. We focus on abstractions that are in the spirit of intrinsi-
cally typed programming: the contribution of abstract operations to
the proof that they participate in, is expressed in their type. To hide
the details of the proofs alongside the details of the implementation,
we work in various logics L embedded shallowly in the dependently
typed meta-language.

In each chapter of this thesis we detail the technical contributions.
The main contributions of part I can be summarized as follows:

• In order to intrinsically type an interpreter for a functional lan-
guage with references, we construct a monotone state monad
that avoids manual reasoning about a hidden monotone resource
(e.g., a store). This yields typed programs with minimal overhead
relative to the untyped, partial definitional interpreter that does
not verify type-safety.

• In order to intrinsically type the syntax and operations of sub-
structural languages, we contribute the idea of using an em-
bedding of a novel proof-relevant separation logic, extending
conventional (abstract) separation logic29,30. The separation logic
successfully hides the tedious maintenance of both linear binding,
and the invariants that are prevalent in the type-safety proofs of
languages with typed sub-structural resources, such as session-
typed channel references.

• In order to abstract over data and operations with sub-structural
invariants we present a new algebraic structure of proof-relevant
separation algebras (PRSAs), extending conventional separation
algebras31. Every PRSA gives rise to a proof-relevant separation
logic. By defining data structures and functional abstraction
in the logic we gain reuse. Many familiar dependently typed
programming devices readily have “resourceful” counterparts in
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the logic, which hide the accounting of some notion of resource
usage.

• In order to give an intrinsically typed interpretation of linear
references, we present a PRSA that balances demand for state
(i.e., references) with the supply of state (e.g., cells in the store).
The fact that the implementation of state maintains that richer
sub-structural resource can be hidden from the clients of the
state interface. We deliver an intrinsically typed interpreter for a
linear functional language with concurrency, and (session-) typed,
cross-thread communication

• In order to define a compositional, intrinsically typed compiler,
we present a new nameless representation of labels in bytecode.
Unlike named labels, nameless labels can be hidden without
running the risk of defining it a second time, which would lead
to ambiguous references. Compositionality is surprising, because
the untyped counterpart using named labels threads state for
generating unique label names.

With these contributions and their application to the show cases
listed above, we deliver constructive evidence that intrinsically typed
programming can scale well beyond simply typed languages. We
manage not only to prove interesting invariants, but also to specify
those invariants in such a way that they align well with computa-
tional abstractions of effects. We deliver interpreters and compilers
that are total and have almost no proof overhead.

1.3 Origin of the Chapters

The contributions of both parts have previously been published in
the refereed papers listed below. Although some of the content of
the papers has been adapted for a consistent presentation in this
thesis, these publications form the backbone of this thesis.

• C. B. Poulsen, A. Rouvoet, A. P. Tolmach, R. Krebbers, and E.
Visser (2018). “Intrinsically-typed definitional interpreters for
imperative languages”. In: Proceedings of the ACM on Programming
Languages 2.POPL, 16:1–16:34. doi: 10.1145/3158104. Section 2.1
and chapter 3 are based on this paper, which was a collaborative
effort. In addition to the work on interpreting type-safe reference
that we present in chapter 3, this paper also describes an approach

https://doi.org/10.1145/3158104
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32 Poulsen et al. 2016. “Scopes Describe
Frames: A Uniform Model for Memory
Layout in Dynamic Semantics”

33 The purpose of the source code is
not entirely the same as the purpose of
this thesis, because it also aims to be a
(re)usable library. This means that the
source code is oftentimes more general
and more modular than the presented
code.

for intrinsically typed global static binding using a library based
on scope graphs. I do not present that in this thesis, because
this approach can largely be attributed to my co-authors (see also
Poulsen et al.32, and section 7.1 for more discussion of the topic).

• A. Rouvoet, C. Bach Poulsen, R. Krebbers, and E. Visser (2020c).
“Intrinsically-typed definitional interpreters for linear, session-
typed languages”. In: ACM SIGPLAN International Conference on
Certified Programs and Proofs (CPP), pp. 284–298. doi: 10.1145/

3372885.3373818. Chapter 4 is based on this paper.

• A. Rouvoet, R. Krebbers, and E. Visser (2021b). “Intrinsically-
typed compilation with nameless labels”. In: Proceedings of the
ACM on Programming Languages 5.POPL, pp. 1–28. doi: 10.1145/
3434303. Chapter 5 is based on this paper.

• A. Rouvoet, H. Van Antwerpen, C. B. Poulsen, R. Krebbers, and
E. Visser (2020b). “Knowing when to ask: sound scheduling of
name resolution in type checkers derived from declarative speci-
fications”. In: Proceedings of the ACM on Programming Languages
4.OOPSLA, 180:1–180:28. doi: 10.1145/3428248. Chapter 6 is
based on this paper, which was a collaborative effort.

During my PhD I also collaborated on the following refereed paper,
which first introduces the specification language Statix that is also
the subject of Rouvoet et al. 2020b (chapter 6).

• H. Van Antwerpen, C. B. Poulsen, A. Rouvoet, and E. Visser (2018).
“Scopes as types”. In: Proceedings of the ACM on Programming
Languages 2.OOPSLA, 114:1–114:30. doi: 10.1145/3276484

1.4 Mechanization of the Results

The contributions of part I have been implemented fully in the Agda
proof-assistant and its source code is publicly available (see below).
Although the code in this thesis is also typeset using the Agda type
checker, it has undergone minor modifications and much has been
omitted to serve the purpose of explaining the contributions of the
thesis.33 Hence, anyone who desires to replicate the work in Agda
should make use of the available source code, which contains all the
details in full, and more.

https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3434303
https://doi.org/10.1145/3434303
https://doi.org/10.1145/3428248
https://doi.org/10.1145/3276484
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34 Rouvoet et al. 2021a. “Code accompa-
nying Correct by Construction Language
Implementations”

35 Rouvoet et al. 2020a. “Virtual Machine
with Ministatix and the Scala, Java, and
LMR Case Studies”

The Statix specifications language that is the subject of part II is
implemented in Haskell and also publicly available, together with
the case studies. The proofs about Statix have not been mechanized.

The repository that aggregates the source repositories for the
various projects is available on github:

github.com/ajrouvoet/thesis-artifact

A snapshot of this source package is archived on Zenodo34, as well
as a virtual machine with the software and setup to replicate the
Statix case studies35 (section 6.5).

http://github.com/ajrouvoet/thesis-artifact
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1 The Agda name and logo are inspired
by a Swedish song about a hen and a
rooster. A rooster appears as the logo of
another well known proof assistant.

2 Norell 2008. “Dependently Typed Pro-
gramming in Agda”

3 Stump 2016. “Verified functional pro-
gramming in Agda”

4 Wadler et al. 2020. “Programming Lan-
guage Foundations in Agda”

5 The most famous unreliable type is
the type of references in languages with
null references. The type promises a
reference to an object on the heap, but
can turn out to be null at runtime.

2 Verification of Language Implementations

Using Dependent Types

“There is a tendency to see programming as a fixed notion,
essentially untyped. [. . .] This conception fails to engage

with the full potential of types to make a positive
contribution to program construction.”

— McBride (2004)

In chapter 1 we proposed the use of intrinsically typed programs
to produce formally verified language back-ends. In this section,
we present a brief introduction to dependently typed programming
using Agda1, a functional programming language in the style of
Haskell with state-of-the-art support for programming with depen-
dent types. We start with the basics of dependently typed languages
using vectors as an example. We do not attempt to give a complete
introduction to the subject2,3,4, but highlight the aspects that are
key to our approach. Readers that are familiar with dependent
types in Agda can skip over this exposition and continue reading in
section 2.2.

2.1 Dependent Types

In statically typed programming languages, types describe knowl-
edge about the shape of the data in a program. We say that a type
system of a language is strong when (a) it is feasible to express
precise knowledge in the types, and (b) when the types are reliable.
That is, the knowledge reflected in a type cannot turn out to be false
at runtime.5 A dependently typed language like Agda takes both
aspects of strong type systems very seriously.



30 correct by construction language implementations

Agdaism: Throughout, we explain Agda
notation and standard library constructs
using notes in the margin. A more com-
prehensive explanation of Agda nota-
tion and primitives can be found in ap-
pendix A. It explains, for example, im-
plicit arguments (surrounded by curly
braces) and the hierarchy of universes
starting with Set.

Agdaism: The notation {!!} denotes a
hole in an incomplete program.

Agdaism: The usual definition of the
Maybe data-type with its constructors
nothing and just can be found in ap-
pendix B.

Agdaism: The NON_TERMINATING
pragma disables Agda’s termination
checker.

6 Building on a line of pioneering lan-
guages such as Alf (L. Magnusson 1994),
Lego (Pollack 1995), Epigram (McBride
2004), Cayenne (Augustsson 1998), and
others, and competing with other de-
pendently typed languages such as
Idris (Brady 2013).

Agdaism: Agda supports mixfix names
like _::_: when applied, arguments go
where the underscores are.

First, types must be reliable. If not, then this is considered a
bug in the implementation of Agda. This has far reaching conse-
quences. For example, a function with the following type simply
does not exist in Agda:

head : {A : Set} � List A � A
head (a :: as) = a
head [] = {!!}

There is no way to reliably produce an element of the abstract type
A out of thin air in case the list turns out to be empty at runtime.
In other languages, for example, the hole can be filled by raising
an unchecked exception. In Haskell, for example, one can write
undefined, which means that the evaluation of head [] will crash.
This is considered unacceptable in Agda, because the type of the
function head does not inform the user that this function can crash.
Its type promises to always return an A, and types must be reliable.
Consequently, the type of head in the Agda standard library makes
it evident that this function is partial:

head : {A : Set} � List A � Maybe A
head [] = nothing

head (x :: _) = just x

Similarly, functions that diverge when invoked must also be rejected
by Agda’s type checker, because the type promises a value that will
never be delivered:

{-# NON_TERMINATING #-}

bad : ∀ {A : Set} � A
bad = bad

In other words: functions in Agda must be defined in such a way
that the type checker can verify that they are total, so that functions
always deliver what their type prescribes.

Second, Agda distinguishes itself with its support for dependent
types6—i.e., types that depend on values. Dependent types permit
us to reflect in types what we learn when we inspect data. To
see this, we review the canonical example of dependently typed
programming: vector functions. We define the dependent type of
vectors as follows:
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Agdaism: Arguments appearing in curly
braces (e.g., the two arguments {A n})
are called implicit and do not have to be
provided at the call site; they are inserted
by type inference.

7 Coquand 1992. “Pattern matching with
dependent types”

8 Cockx 2017. “Dependent pattern match-
ing and proof-relevant unification”

data Vec (A : Set) : N � Set where
[] : Vec A zero

_::_ : ∀ {n} � A � Vec A n � Vec A (suc n)

Vectors are lists, annotated with their length. The argument A of Vec

that appears before the colon is called a parameter of the data type.
In contrast, the argument N appearing after the colon is called an
index. The indices reveal some information about the data, as they
are forced to a specific value by the constructors. In this case, the
constructor [] forces the length index to zero and the constructor _::_
forces the index to be one greater than the length index of the tail.

Using the index to our advantage, we can reliably implement the
function head on non-empty vectors:

head : ∀ {A n} � Vec A (suc n) � A
head (a :: as) = a

Unlike for lists, we need not provide a branch for the empty vector
[]. This is dependent pattern matching7,8 at work. The constructor []

forces the index to zero. This contradicts the type signature of head,
which specifies that the index is suc n.

Dependent pattern matching also helps out when the index is not
yet known. For example:

append : ∀ {A n m} � Vec A n � Vec A m � Vec A (n + m)

append [] ys = ys
append (x :: xs) ys = x :: (append xs ys)

The type of append intrinsically expresses a property of this function
in relation to the length of the vectors. The proof of this property
is conducted in collaboration with the type checker, mediated by
dependent pattern matching. What is going on? By pattern matching
on the first argument of append, we refine our knowledge about the
index n. We can make this explicit, like so:

append : ∀ {A n m} � Vec A n � Vec A m � Vec A (n + m)

append {n = .zero} [] ys = ys
append {n = .suc k} (x :: xs) ys = x :: (append xs ys)

The dot in the pattern for the implicit argument n indicates that the
constructor is forced. Because n is forced, the type of the vector to
be returned can also be refined in both branches. In the first branch
0 + m computes to m by the (left-recursive) definition of +. Hence,
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ys is accepted by Agda as a suitable return value. In the second
branch, (suc k) + m computes to suc (k + m) and xs : Vec A k. The
types of the constructor _::_ and the recursive call to append make
everything fit.

In section 2.2–2.3, we will use dependent types to describe well-
typed expressions and their safe interpreters. Throughout this thesis
we complement our definitions with notes in the margin explaining
features and peculiarities of Agda. The basic syntax is summarized
in appendix A, including also the coloring of code. Appendix B
summarizes the standard library definitions that the presented code
relies on.

2.2 Extrinsic Verification of Language Implementations

The interplay between inspecting data and the available type infor-
mation is a key feature of dependently typed languages that enables
intrinsic verification—i.e., function definitions that express important
properties of the implementation in their type. To show this, we first
define an untyped interpreter for a small expression language and
verify type-safety extrinsically. In section 2.3, we then integrate the
type-safety theorem into the definition resulting in an intrinsically
typed interpreter.

As an example we will use an interpreter for a tiny, typed expres-
sion language with natural numbers n and booleans b:

t, u, v ::= nat | bool

e ::= n | b | plus e e | ite e e e

An inductively defined relation specifies how expressions are typed
as either nat or bool:

Figure 2.1: Typing rules of the
simply typed expression
language.

H

T-Nat

` n : nat

T-Bool

` b : bool

T-Plus

` e1 : nat ` e2 : nat

` plus e1 e2 : nat

T-Ite

` e1 : bool ` e2 : t ` e3 : t

` ite e1 e2 e3 : t
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Agdaism: The with keyword is used
for dependent pattern matching on the
result of expressions on the left-hand
side (McBride et al. 2004) in an Agda
definition. Multiple expressions are sep-
arated by a vertical bar. Ellipsis (...) on
the next line indicates that we omit the
parent pattern.

9 Reynolds 1998a. “Definitional Inter-
preters for Higher-Order Programming
Languages”

10 For example, the ill-typed terms of
form ite (num 4) e1 e2 cannot be evalu-
ated, because the condition does not re-
duce to a boolean.

The embedding Exp of the untyped language into Agda is straight-
forward. A separate data-type Val represents the canonical forms, or
values:

data Exp : Set where
num : N � Exp

bool : Bool � Exp

plus : Exp � Exp � Exp

ite : Exp � Exp � Exp � Exp

data Val : Set where
num : N � Val

bool : Bool � Val

The (definitional) interpreter eval specifies the dynamic semantics
of this expression language:9

eval : Exp � Maybe Val

eval (num n) = just (num n)

eval (bool b) = just (bool b)

eval (plus e1 e2) with eval e1 | eval e2

... | just (num n) | just (num m) = just (num (n + m))

... | _ | _ = nothing

eval (ite c e1 e2) with eval c
... | just (bool b) = if b then eval e1 else eval e2

... | just (num n) = nothing

... | nothing = nothing

The function eval only returns a value (just ...) for some expressions
and returns an error indicator (nothing) otherwise. We say that it is
a partial function, even though it is encoded as a total one using the
type constructor Maybe. It is partial for essentially two reasons.

First, because the input expression can be ill-typed, in which case
evaluation can get stuck.10 In effect we are giving a semantics for all
expressions, including ill-typed ones, even if we are only interested
in running well-typed expressions.

The second reason is more subtle: even if the input expression e
is well-typed at a type a, it is not self-evident that a value returned
by eval e is indeed a canonical form of type a. In other words,
evaluating a boolean expression may well return a number. Clearly,
if that is the case, then that is a bug in eval, because the interpreter
violates the type contract between the programmer and the language
implementation.
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11 Technically, this theorem is stronger
than mere type-safety, stating also that
eval terminates.

12 We extend the typing relation from ex-
pressions to values using the fact that
values are a subset of expressions.

Agdaism: The syntax ∃〈 P 〉 is an Agda id-
iom for (proof-relevant) existential quan-
tification over all arguments of the pa-
rameterized type P. See appendix A.

Agdaism: The type former _≡_ stands
for propositional equality, whose one con-
structor is refl. See appendix B.

Agdaism: The rewrite keyword can be
used on the left-hand side of a definition
to rewrite along a propositional equality
proof in the context for the right-hand
side. See appendix A.

Let us verify that this is not the case by proving that eval is type
safe:11

Type-Safe

` e : a

∃v.eval e ≡ just v ∧ ` v : a

The theorem says that eval is actually total on well-typed inputs: for
well-typed expressions it always returns just a value. It also says
that the value it returns is typed12 at the same type as the input
expression—i.e., evaluation is type preserving.

We can mechanically prove this property in Agda by first embed-
ding the typing relation for expressions, as follows:

data Ty : Set where nat bool : Ty

data `_∈_ : Exp � Ty � Set where
num-wt : ` num n ∈ nat

bool-wt : ` bool b ∈ bool

plus-wt : ` e1 ∈ nat � ` e2 ∈ nat � ` plus e1 e2 ∈ nat

ite-wt : ` c ∈ bool � ` e1 ∈ t � ` e2 ∈ t � ` ite c e1 e2 ∈ t

nf : Val � Exp

nf (num n) = num n
nf (bool b) = bool b

We define nf (for “normal form”) so that we can reuse the typing
relation for expressions also for values via this embedding.

The type safety property of eval is proven inductively. In Agda
this inductive proof is given as a recursive function. We show it here
in full to exemplify what we call extrinsic verification, but the details
of the proof are unimportant.

eval-safe : ` e ∈ t � ∃〈 (λ v � (eval e ≡ just v) × (` (nf v) ∈ t)) 〉
eval-safe num-wt = _ , refl , num-wt

eval-safe bool-wt = _ , refl , bool-wt

eval-safe (plus-wt p q) with eval-safe p | eval-safe q
... | num n , eq1 , num-wt | num m , eq2 , num-wt

rewrite eq1 | eq2 = _ , refl , num-wt

eval-safe (ite-wt p q r) with eval-safe p
... | bool true , eq1 , bool-wt rewrite eq1 = eval-safe q
... | bool false , eq1 , bool-wt rewrite eq1 = eval-safe r

The structure of the proof clearly follows the structure of the com-
putation. Most of the work in writing down the proof is in fact
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13 Augustsson et al. 1999. “An exercise
in dependent types: A well-typed inter-
preter”

Agdaism: Variables in signatures that are
not explicitly bound—e.g., the expres-
sion type t in the signatures of eval—
are implicitly universally quantified. See
also appendix A.

14 Wright et al. 1994 already note that the
strong type safety theorem that includes
type preservation allows a language im-
plementation to omit the representation
tags that distinguish values of different
types. The typed interpreter from Au-
gustsson makes direct use of this fact
and does not use a “tagged union” Val,
avoiding wrapping and unwrapping of
values.

15 Benton et al. 2012. “Strongly Typed
Term Representations in Coq”

16 Dybjer 1994. “Inductive Families”

just replicating the computational structure. In the next section we
exploit this similarity and define a version of the interpreter that
is both total and intrinsically proves type safety, avoiding both the
overhead of a partial definition and of an extrinsic proof.

2.3 Intrinsic Verification of Language Implementations

The extrinsic proof eval-safe is adequate as conclusive evidence that
the function eval behaves in conformance to a specification. It is a bit
long as written here, but this can be remedied using more sophis-
ticated (automation) features of modern proof assistants. What is
disappointing, is that even though this useful property holds, it does
not buy us anything while we define eval! In a language back-end,
we are only ever evaluating well-typed terms. If we can prove that
evaluation is total on exactly those terms, then arguably eval ought
not be partial at all.

We can do better if we simultaneously implement evaluation and
prove it type safe:13

Figure 2.2: Augustsson’s typed
interpreter (without variable
binding).

H

[[_]] : Ty � Set

[[ nat ]] = N

[[ bool ]] = Bool

eval : (e : Exp) � ` e ∈ t � [[ t ]]
eval (num n) num-wt = n
eval (bool b) bool-wt = b
eval (plus e1 e2) (plus-wt p q) = eval e1 p + eval e2 q
eval (ite c e1 e2) (ite-wt p q r) = if (eval c p) then eval e1 q else eval e2 r

Such remarkable simplicity on the right-hand side! Unlike the
previous eval function, this one requires evidence that its input
e is well typed. In return, we can be much more precise about
its behavior in the return type—i.e., this type of eval expresses
type preservation. It is thus evident that evaluating the condition
will return a boolean value and we avoid dealing with type errors
altogether. Finally, by simultaneously implementing the function
and doing the proof, we avoid repeating the structure that they
share.14
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17 McBride 2004. “Epigram: Practical Pro-
gramming with Dependent Types” (§5.2)

18 Reynolds 1998b. “Theories of program-
ming languages”

19 Reynolds 2000. “The meaning of types
from intrinsic to extrinsic semantics”

20 Benton et al. 2012. “Strongly Typed
Term Representations in Coq”

Now we just eliminate the middle man: instead of computing on
untyped expressions, superimposing its typing, we compute directly
on intrinsically typed terms15. That is, we define an inductive family16

Exp—in place of the untyped Exp used above—that only represents
well-typed expressions:

data Exp : Ty � Set where
num : N � Exp nat

bool : Bool � Exp bool

plus : Exp nat � Exp nat � Exp nat

ite : Exp bool � Exp t � Exp t � Exp t

This inductive family effectively merges the syntax of expressions
with the well-typing relation. Using these well-typed expressions
as the input of our interpreter simplifies the left-hand side, while
retaining all the advantages on the right-hand side:

J

Figure 2.3: Intrinsically typed
definitional interpreter.

eval : (e : Exp t) � [[ t ]]
eval (num n) = n
eval (bool b) = b
eval (plus e1 e2) = eval e1 + eval e2

eval (ite c e1 e2) = if (eval c) then eval e1 else eval e2

The function eval directly gives a denotational semantics for well-
typed terms.17 Henceforth, this is what we will refer to as ‘intrinsi-
cally typed’ programming: computing directly on well-typed terms,
whose representation contains all the evidence of the type derivation.

We must say a few more words about the terminology. Our use
of ‘intrinsic’ originates from Reynolds18,19, who explains that in
an intrinsic semantics meaning is assigned to typing judgments
rather than program phrases. Reynolds discusses intrinsic denota-
tional semantics in pen-and-paper style and relates them to extrinsic
semantics, which also assign meaning to ill-typed programs. The
approach has been employed in various proof assistants by a number
of authors since, as summarized well by Benton et al.20.

Note that an intrinsically typed representation is significantly
different from a ‘type annotated’ representation of terms, where the
type is present, but the derivation (i.e., the evidence) is external if
anywhere. Some of the work in Coq uses the terminology ‘strong
specification’, meaning a pair { x : A | P x } of a value of type a
together with a proof that x satisfies the property P : Prop (see, for



verification of language implementations using dependent types 37

21 Swierstra 2009b. “A Hoare Logic for
the State Monad”

22 Harper et al. 2000. “A type-theoretic
interpretation of standard ML”

23 See, for example, the Agda course
on programming Language foundations
(Wadler et al. 2020).

24 McBride 2004. “Epigram: Practical Pro-
gramming with Dependent Types”

25 Erik Meijer, who taught me functional
programming, instructs his students to
“reduce your brain to the size of a peanut
and follow the types”.

example, Swierstra21). If we take x to be a program term, and P the
type derivation, we obtain something similar in spirit, but technically
still different from intrinsically typed terms. The difference arises
from the fact that the type derivation may contain more structure/in-
formation than the raw term. In principle, an intrinsically typed
program can compute based on that additional structure, whereas in
Coq a property in the universe Prop has no structure. Coincidentally,
such a pair appears to be essentially what Harper et al. have in mind
when they write: “From a semantic viewpoint programs are seen as
intrinsically typed”.22 We thus admit that our interpretation of the
terminology “intrinsically typed” may be more narrow than what
one may encounter in the literature throughout the decades. That
being said, our interpretation appears consistent with the prevalent
use of the terms in the last few years.23

Dependent types give us extraordinary expressive power to spec-
ify properties of functions in their types. The example shows that
such precise types can “make a positive contribution to program
construction”24. The type preservation theorem embedded in the
type of eval not only helps us avoid partiality and prove a theorem,
but it also serves as a contract that guides the implementation. When
we enforce more invariants, we limit the number of ways in which
we can go wrong.25 Comparing different verification techniques, this
approach also appears to hit a sweet spot. We prove the type-safety
theorem without putting any work in.

2.4 Challenging Feasibility

The previous section demonstrated the potential of intrinsic verifica-
tion. In the implementation of eval (figure 2.3) everything went just
right. We proved type correctness not just for free, but also gained
from expressing the theorem intrinsically in the construction of the
program. This is the appeal that we pursue in this line of work.

The big question is whether intrinsic verification with the same
appeal remains feasible if we apply it to programming languages
with more complicated static semantics and type invariants.
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Chapters 3–5 will each challenge the claim that the approach is
feasible by adding features to the object language that cannot readily
be verified using the state of the art without losing the appeal of the
approach. The challenges of the chapters are as follows.

• Chapter 3 presents the challenge of intrinsically verifying type
safety of an interpreter for a languages with references.

• Chapter 4 presents the challenge of embedding and interpreting
sub-structural languages with linear state in a typesafe manner,
focusing on a concurrent language with asynchronous, session-
typed communication.

• Chapter 5 faces the challenge of type-correct compilation into a
low-level bytecode language where control-flow is represented
using jumps and labels. The compiler must ensure that labels are
bound exactly once.

Although it is technically possible to give intrinsically typed im-
plementations for these challenges by systematically integrating
conventional implementations with conventional extrinsic proofs,
the resulting specifications and implementations do not come close
to appeal of the interpreter in figure 2.3. Rather than a definition
where we appear to get the proof of the safety criterion for free, we
find that we need additional manual reasoning to get a definition
that the Agda type checker accepts. This defeats the purpose: in-
stead of being guided by a precise type, the language developer is
forced to convince the type checker that their definitions fit the type
by writing additional inline proofs.

To defend the thesis that it is actually feasible to give perspicu-
ous intrinsically typed implementations for the above challenges, I
propose new specification techniques using various (logical) speci-
fication languages that are shallowly embedded into Agda. Using
these embedded logics we can give more concise definitions that
avoid much of the specification effort and manual proof work. More-
over, we show that the embedded logics allow us to systematically
recover many familiar functional abstractions—e.g., monadic inter-
faces for the implementation of various effects—with stronger types.
This is important, because it enables functional abstractions that not
only hide computational boilerplate (e.g., threading state), but also
proof boilerplate (e.g., the invariant of linear state).
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In the subsequent chapters, I present these new ideas and logi-
cal languages and apply them to the listed challenges, delivering
intrinsically verified implementations that are almost entirely free of
proof work.





The technical material of this chapter
was published in a refereed paper. It has
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preters for imperative languages”. In:
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3 Monotone State

“Do you wish me a good morning, or mean that it is a good
morning whether I want it or not; or that you feel good this

morning; or that it is a morning to be good on?”

— Gandalf on semantics,
from The Hobbit, or There and Back Again.

Intrinsically typed definitional interpreters for simply typed lan-
guages appear to be an appealing approach to specifying dynamic
semantics. They are executable, type safe by construction, and can
avoid the tedium and overhead of proving an external type safety
theorem. By intrinsically capturing type preservation, we avoid
having to deal with partiality, so that these interpreters are also
high-level and concise.

For this approach to be practical for the specification and im-
plementation of programming language back-ends, it must scale
beyond simply typed programming languages. A prevalent feature
of many programming languages is the ability to pass information
not as immutable values, but as references to shared mutable values
that exist in a global store. For example, in Standard ML (SML), the
builtin operations ref, :=, and ! are used to create, to assign to, and
to read references, respectively:

let x : int ref = ref 18;

x := 42;

(* !x == 42 *)

References enable sharing—i.e., the reference x can be given away
to a function that may modify it, and those modifications will be
visible to another function that uses x:

https://doi.org/10.1145/3158104
https://doi.org/10.1145/3158104
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1 Unlike, for example, store allocated
memory in system programming lan-
guages (e.g., C and C++).

fun increment (i : int ref) = i := (! i) + 1;

increment(x)

(* !x == 43 *)

Reference assignment cannot update the value of the reference in
arbitrary ways: updates of references must preserve the type of the
reference. In the above example, the parameter i is a reference to
a cell containing an integer. Hence, the assignment in the body of
the the cell can only update the value to an integer. The assignment
i := true would be ill typed and hence the program would be re-
jected by the type checker. Type-preserving update also precludes
deallocation of references.1 We say that such an implementation of
state is “monotone”. Restricting to monotone state is useful, because
it can then be guaranteed by the runtime that dereferencing a shared
references is type safe—e.g., !x for any reference x of type t ref will
always give a value of type t and never result in runtime memory
or type errors.

Unfortunately, we find that if we try to define the semantics of a
functional language with monotone references using an intrinsically
typed interpreter, much of the appeal of the intrinsically typed
approach is lost. The definition of the interpreter suffers from the
integration of the monotonicity invariant of typed state, requiring
explicit reasoning about store types in the interpreter. We refer to
this overhead for proving type-safety as “(manual) proof work” in
the interpreter.

In this chapter, we consider this problem and show that it can
be solved using a shallow embedding of (proof relevant) monotone
predicates over store typings. We can abstract over a typed state
implementation as an approximation of a state monad in the category
of monotone predicates, while also regaining the conciseness of the
typed interpreters for simply typed languages.

The chapter is organized as follows. In section 3.1 we first develop
an intrinsically typed definitional interpreter for a simply typed
lambda calculus, which will serve as the core functional language to
which we will add mutable references. In section 3.2 we then give
the traditional typing of the operations for mutable references that
we add to the core functional language. We also discuss the store-
threading big-step operational semantics for these operations, as well
as the typing of the source syntax and of the runtime components
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2 McBride 2004. “Epigram: Practical Pro-
gramming with Dependent Types” (§4.2)

3 The base types for natural numbers and
booleans from the expression language
in section 2.2 can be added back to STLC
without much ado.

(i.e., values and stores). We then give a fictional monadic interpreter
for the operations to explain the goal of this chapter and explain
why this interpreter is not directly attainable. In section 3.3, we
look at the traditional type-safety proof for the big-step semantics,
which informs a direct implementation of a type-safe interpreter that
does work. The clarity of this direct implementation suffers from
manual proof work. To remedy this, we develop monotone predicates
in section 3.4. In particular, we define the interface of a monotone
state monad in the category of monotone predicates. We show that
we can write type-safe programs against this interface without the
manual proof work. This leads to a complete intrinsically-typed
definitional interpreter for the functional language with mutable
references in section 3.6. We end the chapter with a discussion of
related work (section 3.7) and a conclusion (section 3.8).

3.1 Typed λ-binding, Typed Environments

A simple language with type-safe monotone state consists of a simply
typed functional core with the primitive operations on references on
top. In this section, we familiarize ourselves with the definition of the
intrinsically typed interpreter for the simply typed lambda calculus
(STLC). STLC differs significantly from the expression language in
sections 2.2–2.3 because it contains variable binding. Variable binding
is needed in the core languages in order to construct programs that
share mutable references.

The formalization and intrinsically typed interpretation of syntax
with binding requires some techniques that have become folklore.
We will present an intrinsically typed interpreter that uses typed de
Bruijn indices2. In section 3.3, we will again make use of typed de
Bruijn indices to also represent typed store locations.

The syntax of the simply typed λ-calculus (STLC) with a unit type
unit is given by the following grammar of types t and expressions e.3

t, u ::= unit | t −→ u

f , e ::= tt | x | λ (x : t).e | e e
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The meta-variable x ranges over a countably infinite set of variable
names. The static semantics of the languages is given by a typing
relation Γ ` e : t which, as usual, says that e is typed as t in typing
context. The typing context is a map from variable names to types.
Each entry is called a typing assumption. We write Γ[x 7→ t] for
updating the map Γ at x with value t, and Γ(x) for looking up the
value of x. The typing relation is defined as usual:

T-Unit

Γ ` tt : unit

T-Var

Γ(x) = t

Γ ` x : t

T-Abs

Γ[x 7→ t] ` e : u

Γ ` λ (x : t).e : t −→ u

T-App

Γ ` f : t −→ u Γ ` e : t

Γ ` f e : u

N

Figure 3.1: The typing rules of
the simply typed lambda
calculus.

The most conventional presentation of the dynamic semantics of
STLC is a small-step operational semantics, which uses substitution
to specify β-reduction of function applications. We are working
towards an interpreter, however, which is essentially a functional
version of a substitution-free big-step semantics. To give the big-step
evaluation rules in that style, we first need to define the set of values
v and environments η:

v ::= tt | closure x e η

η ::= {x 7→ v, ...}

That is, a value is either the unit value (tt) or a function closure
(closure x e η). The η is the environment captured by the closure,
giving values for all the free variables in the body e except the argu-
ment x. Environments are maps from variable names to values.

We can now define the substitution-free big-step operational
semantics e, η ⇓ v, denoting that the open expression e evaluates in
environment η to the value v:

Figure 3.2: Substitution-free
big-step semantics of STLC.

H

E-Unit

tt, η ⇓ tt
E-Var

x, η ⇓ η(x)
E-Fun

(λ (x : t).e), η ⇓ closure x e η

E-App

f , η ⇓ closure x e′ η′ e, η ⇓ v e′, (η′[x 7→ v]) ⇓ v′

( f e), η ⇓ v′
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4 De Bruijn 1972. “Lambda calculus nota-
tion with nameless dummies, a tool for
automatic formula manipulation, with
application to the Church-Rosser theo-
rem”

5 McBride 2004. “Epigram: Practical Pro-
gramming with Dependent Types”

6 Observe the similarity in the structure
of list membership and a natural num-
ber defined by constructors zero (approx-
imating here) and suc (approximating
there).

In order to embed this language in Agda we embed the syntax of
types as an algebraic data type.

data Ty : Set where
unit : Ty

_−→_ : Ty � Ty � Ty

When we embed a language with variable binding in a proof
assistant, we have to answer the usual question of how we want
to represent variables. Lambda terms have been successfully rep-
resented in a nameless manner using de Bruijn indices4. That is,
variables are referred to by their position in the context, which is
in turn determined by the nesting of their binders, thus entirely
avoiding α-equivalence and renaming.

The intrinsically typed syntax can follow suit and use bound natu-
ral numbers to represent variables, which are typed using the context.
It turns out, however, that it is a better idea to do away entirely with
untyped syntax and only work with syntax representations that also
directly give the evidence of their typing. McBride5 presents vari-
ables represented as anonymous evidence of proof-relevant context
membership t ∈ Γ:6

Ctx = List Ty

data _∈_ : A � List A � Set where
here : a ∈ (a :: as)

there : a1 ∈ as � a1 ∈ (a2 :: as)

Well-typed expressions are then type- and context-indexed sets:

data Exp : Ty � Ctx � Set where
tt : Exp unit Γ

var : t ∈ Γ � Exp t Γ

fun : Exp t (u :: Γ) � Exp (u −→ t) Γ

app : Exp (t −→ u) Γ � Exp t Γ � Exp u Γ

The types of the constructors integrate the typing rules into the
syntax.
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Agdaism: The type > is the standard li-
brary’s unit type with constructor tt.

Agdaism: Note that Agda is happy to
disambiguate constructor names for us
using the expected types. We follow
Agda standard library practice and use
the same constructor names for All as for
List.

Agdaism: The notation constr x ← f y is
known as an ‘irrefutable with pattern’
where the pattern constr x is written on
the same line as the scrutinee f y. See
appendix A.

The intrinsically typed values [[ t ]] for a type t are mutually
defined together with typed environments Env Γ. We again define
values by induction on the types.

data Closure (t u : Ty) : Set where
closure : Exp u (t :: Γ) � Env Γ � Closure t u

[[_]] : Ty � Set

[[ unit ]] = >
[[ t −→ u ]] = Closure t u

Environments carry values for each type in the context, and
are defined using the standard library type All which represents
universal quantification over a list.

data All (P : A � Set) : List A � Set where
[] : All P []

_::_ : P a � All P as � All P (a :: as)

Env : Ctx � Set

Env Γ = All [[_]] Γ

That is, environments give values [[ t ]] for all types t in the context.
We define the lookup function that finds the valuation of a variable
in an environment:

lookup : Env Γ � t ∈ Γ � [[ t ]]
lookup η x = lookup’ η x

where
lookup’ : All P as � a ∈ as � P a
lookup’ (p :: ps) here = p
lookup’ (_ :: ps) (there x) = lookup’ ps x

Now we can define the interpreter of open expressions, if we are
willing to temporarily overlook a termination issue:

{-# TERMINATING #-}

eval : Exp t Γ � Env Γ � [[ t ]]
eval tt η = tt

eval (var x) η = lookup η x
eval (fun e) η = closure e η

eval (app f e) η

with closure e’ η’← eval f η | v← eval e η =

eval e’ (v :: η’)
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7 Siek 2013. “Type Safety in Three Easy
Lemmas”

8 Amin et al. 2017. “Type soundness
proofs with definitional interpreters”

9 Capretta 2005. “General recursion via
coinductive types”

10 Danielsson 2012. “Operational seman-
tics using the partiality monad”

11 It is possible to recover general recur-
sion using a circular reference, which is
in turn possible because store locations
can contain closures. This trick is known
as Landin’s knot.

This interpreter closely resembles the substitution-free big-step rules
in figure 3.2. This is a more remarkable fact than it seems. The big-
step rules are partial, in the sense that they only explain terminating
reductions, but also because there is no guarantee that the term f in
an untyped application f e indeed reduces to a closure, as required
for the rule E-App to apply. The intrinsically typed interpreter on
the other hand is only partial in the former sense, because, by the
type of f and by type preservation, the pattern match on closure e′ η′

is exhaustive. Dependent pattern matching makes this obvious to
Agda.

It is not obvious to Agda that this function is terminating, because
it is not structurally recursive. The case for function application
ends with a recursive call on the function body which is not a sub-
expression of the function application. To define this function as a
total one in Agda, we can either use fueled interpreters7,8, or as an
interpreter in a delay monad9,10. For this particular language we
could then still show strong normalization extrinsically (Danielsson
2012), but this is besides the point here. First, because our goal
is merely to prove the type safety property of the language, and
second, because the complete language with the state operations is
no longer strongly normalizing.11 For now we will stick with the
above definition, and we will solve the issue with termination in
section 3.6 using the delay monad.

Importantly, the interpreter for a simply typed language with
lexical variables preserves the appeal of the approach that we show-
cased in section 1.2. In the next section we will show that this is not
also immediately the case when we add monotone state operations
to this functional core.

3.2 Mutable, Monotone State

We now extend the simply typed functional language from the
previous section with the operations for creating and operating on
typed references. We extend the grammar as follows:

t, u ::= ... | ref t

e ::= ... | ref e | e := e | ! e

v ::= ... | l
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12 Harper 1994. “A Simplified Account
of Polymorphic References”

13 Pierce 2002. “Types and programming
languages” (§13)

The meta-variable l ranges over a countably infinite set of store loca-
tions. The static semantics of primitives for manipulating references
is as follows:12,13

T-ref

Γ ` e : t

Γ ` ref e : ref t

T-deref

Γ ` e : ref t

Γ ` ! e : t

T-assign

Γ ` e1 : ref t Γ ` e2 : t

Γ ` e1 := e2 : tt

N

Figure 3.3: Static semantics of
store operations.

That is, references to a mutable value of type t are typed as ref t. The
rule for := ensures that updates are monotone: we can only assign a
value whose type matches the type of the reference.

The dynamic semantics of a language with monotone state threads
a store µ. A store is a map from locations l to values and we use the
same notation for these maps as for environments. We define the
big-step relation e, η, µ ⇓ v, µ′ to denote that e in environment η with
store µ evaluates to value v with store µ′. This is the substitution-free
version of the big-step semantics of Harper (1994). The rules for the
store operations are:

Figure 3.4: Big-step semantics of
store operations.

H

E-ref

e, η, µ ⇓ v, µ1 l 6∈ dom(µ1)

ref e, η, µ ⇓ l, µ1[l 7→ v]

E-deref

e1, η, µ ⇓ l, µ1

! e1, η, µ ⇓ µ1(l), µ1

E-asgn

e1, η, µ ⇓ l, µ1 e2, η, µ1 ⇓ v, µ2

e1 := e2, η, µ ⇓ tt, µ2[l 7→ v]

The expression ref e creates a fresh location in the store. Derefer-
encing ! e1 evaluates by looking up the value of the location that e1

evaluates to. And finally, assignment e1 := e2 updates the existing
location that e1 evaluates to with the value the e2 evaluates to.

The big-step rules for STLC must also be adapted to thread the
store. This is a minor modification and we omit the new rules for
brevity.

We now turn to the problem of turning the above operational
semantics into an intrinsically typed interpreter. We will briefly
look at a fictional implementation that assumes that the threading
of the store can be taken care of by a state monad. This definition
will clarify what we are after, and we will discuss why this fiction
is not directly attainable. The definitions of the intrinsically typed
expressions of only the store operations and their fictional interpreter
amount to the following:
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14 Pierce 2002. “Types and programming
languages”

data Ty : Set where
unit : Ty

ref : Ty � Ty

Ctx = List Ty

data Exp : Ty � Ctx � Set where
ref : Exp t Γ � Exp (ref t) Γ

!_ : Exp (ref t) Γ � Exp t Γ

_:=_ : Exp (ref t) Γ � Exp t Γ � Exp unit Γ

[[_]] : Ty � Set

[[ unit ]] = >
[[ ref a ]] = Loc a

eval : Exp t Γ � Env Γ � State [[ t ]]
eval (ref e) η = do

v ← eval e η

addr← mkref v
return addr

eval (! e) η = do
addr← eval e η

get addr
eval (e1 := e2) η = do

addr← eval e1 η

v ← eval e2 η

set addr v

N

Figure 3.5: Typed interpreter for
stateful language using a
fictional monad State. The
do-notation for monadic
computations is similar to
Haskell’s and explained in
appendix A.

The problems of implementing the typed interpretation of figure 3.5
are hidden in the innocuous looking state operations. We pretend
here that the following total functions can be implemented:

mkref : [[ t ]] � State (Loc t)
get : Loc t � State [[ t ]]
set : Loc t � [[ t ]] � State >

But which implementation of the types Loc and State and the state
operation can live up to that pretense? Traditional operational
semantics for stateful languages use lists of values as stores and
integer indices into the list as addresses.14 Representing addresses
by integers cannot suffice, because then one can easily construct
addresses that are not backed by cells, or backed by cells that contain
values of a different type than what the address type promises.

In a type safe implementation, such forging of addresses must
be prevented. Moreover, in an intrinsically typed implementation
such forging must be evidently impossible. To accomplish this, we
will take inspiration from the syntactic type safety proof of a big-
step operational semantics for ML references, as well as from the
representation of typed variables.

In the next section we will first focus on a direct, type-safe imple-
mentation of the individual state operations. In section 3.4, we then
abstract the implementation of the state into a monad. Finally, in
section 3.6, we put together a monadic definitional interpreter for
the entire language. There we will also deal with the problem that
the extension of STLC with state operations is not strongly (or even
weakly) normalizing.
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3.3 Typed Locations, Typed Stores

The type of intrinsically typed interpreters incorporates the type-
preservation theorem for the object-language. To prove the preserva-
tion theorem for languages with mutable references one first needs
to prove a generalized version that makes precise that state opera-
tions are invariably monotone. In this section, we review this stronger
theorem and use it to give an implementation of an intrinsically
typed interpreter that manually threads the state and its invariant.

To state type preservation, we need to define the static semantics
of the runtime components. The runtime is typed relative to a
store typing Σ that maps store locations to types. We define typing
judgments for values, environments and stores in figure 3.6. The
judgment Σ ` v : t types the value v as type t relative to store typing
Σ. Similarly, Σ ` η : Γ denotes that the environment η is typed by
the typing context Γ. Finally, Σ ` µ expresses that the store µ is
typed by the store typing Σ.

T-tt

Σ ` tt : unit

T-clos

Σ ` η : Γ Γ, (x : t) ` e : u

Σ ` closure x e η : t −→ u

T-loc

Σ(l) = t

Σ ` l : ref t

T-env

∀ (x : t) ∈ Γ. Σ ` η(x) : t

Σ ` η : Γ

T-store

∀ l ∈ dom(µ). Σ ` µ(l) : Σ(l)

Σ ` µ

N

Figure 3.6: Static semantics of
values, environments, and
stores.

That is, locations are typed by looking up the type of the associated
cell in the store typing Σ. Environments are typed by variable-wise
relating the values in the environment with types in a context. Stores
are typed by location-wise relating the values in the store µ by the
types in the store typing Σ.

The type preservation proof of the state operations depends cru-
cially on monotonicity of the state operations. Monotonicity says
that evaluation of expressions can extend the store with new, typed
cells, but not drop cells or change the type of existing cells.
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15 Note that any operations that can free
or change the type of an existing stor-
age an existing location (i.e., strong up-
date) would break this type safety argu-
ment, as the evaluation of e2 could free
or change the type of the location l. We
revisit type-safe strong updates in chap-
ter 4.

We can express this concisely using a partial order ⊇ on store types.

J

Figure 3.7: Type-preservation
theorem for type-safe monotone
state.

Preservation

Γ ` e : t Σ ` η : Γ Σ ` µ e, η, µ ⇓ v, µ′

∃ Σ′ ⊇Σ s.t. Σ′ ` µ′ Σ′ ` v : t

That is, the evaluation of an expression e preserves the type t of
the expression and only monotonically updates the store µ to a
store µ′. The monotonicity invariant is enforced by the existential
quantification over a store typing Σ′ ⊇Σ. Note that we are forced to
existentially quantify of Σ’ because the exact extension (if any) can in
general not be known without evaluating e—that is, the extension is
not statically determined. We leave the order itself abstract for now.
A sensible choice would be to let Σ′ ⊇ Σ denote that Σ is a ‘prefix’
of Σ′, so that new locations l + 1, ... in Σ′ will not affect existing
locations 0, ..., l in Σ.

The necessity of monotonicity becomes apparent when we con-
sider, for example, the case for reference assignment in the proof
of this theorem, which is carried out by induction on the typing
derivation. In that case we have the following premises and goal:

Γ ` e1 := e2 : unit Σ ` η : Γ Σ ` µ (e1 := e2), η, µ ⇓ tt, µ2

∃ Σ2 ⊇Σ s.t. Σ2 ` µ2 Σ2 ` tt : unit

The third conclusion (Σ2 ` tt : unit) is trivial regardless of Σ2.
By inversion on the typing of assignment we have Γ ` e1 : ref t

and Γ ` e2 : t for some t. By inversion of the big-step relation
we have e1, η, µ ⇓ l, µ1 and e2, η, µ1 ⇓ v, µ2. From the induction
hypothesis, we get that there exists some Σ1 ⊇Σ such that Σ1 ` µ1

and Σ1 ` l : ref t. The key observation is that value and environment
typing is preserved by store extension, so that we can prove Σ1 `
η : Γ. We then again appeal to the induction hypothesis and get
that there exists some Σ2 ⊇ Σ1 such that Σ2 ` µ2 and Σ2 ` v : t.
We again use preservation of value typing under store extension to
‘weaken’ the typing of l to Σ2 ` l : ref t. We can now conclude using
transitivity of ⊇, and using the fact that updating the store µ2[l 7→ v]
preserves the typing Σ2 of µ2 because the type ref t of l matches the
type t of v under Σ2.15

Working towards an intrinsically typed interpreter we first define
store types, typed locations, values, and environments and stores.
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16 Defined in terms of update, which is
also part of the Agda standard library.

The representation of typed values can be understood as an embed-
ding of the typing judgment for values. Hence, values are store-type
indexed. Again, it works best to do entirely away with untyped syn-
tax. As a result, we end up with a representation for locations that
coincides with the representation for variables. Because locations
are sometimes understood as the dynamic counterpart to variables
this is not unexpected.

The definition of the runtime components—i.e., locations, values,
environments, and stores—becomes as follows:

StoreTy = List Ty

Loc : Ty � StoreTy � Set

Loc a Σ = a ∈ Σ

data Closure (t u : Ty) : StoreTy � Set where
closure : Exp u (t :: Γ)

� Env Γ Σ

� Closure t u Σ

[[_]] : Ty � StoreTy � Set

[[ unit ]] Σ = >
[[ ref t ]] Σ = Loc t Σ

[[ t −→ u ]] Σ = Closure t u Σ

Env : Ctx � StoreTy � Set

Env Γ Σ = All (λ a � [[ a ]] Σ) Γ

Store : StoreTy � Set

Store Σ = All (λ a � [[ a ]] Σ) Σ

N

Figure 3.8: Intrinsically typed
runtime components.

Intrinsically typed locations are thus evidence that the store type
has a location with the given type. The evidence is proof-relevant,
specifying exactly where to find this particular location. Because
of this, a typed location l ∈ Σ can be looked up in a store Store Σ,
just like a typed variable t ∈ Γ can be looked up in an environment
Env Γ:

get : Store Σ � Loc t Σ � [[ t ]] Σ

The fact that get is total means that typed addresses cannot be forged
in the interpreter to break type safety. A typed address can always
be dereferenced safely in a store that agrees on the store type. In
addition to get, we can also define intrinsically type-preserving, total
store update set:16

set : Loc t Σ � [[ t ]] Σ � Store Σ � Store Σ

set = update

where
update : x ∈ xs � P x � All P xs � All P xs
update (here refl) px’ (px :: µ) = px’ :: µ

update (there i) px’ (py :: µ) = py :: update i px’ µ
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Agdaism: In Agda this overloading is ac-
complished using a typeclass. We define
a typeclass IsMono that accomplishes this
purpose in section 3.4.

Typed dynamic binding is represented completely analogous to
typed static binding. So far, so good!

What about the type of the intrinsically-typed interpreter? The
type must reflect that the store may get extended, mirroring the
formulation of type preservation for the big-step semantics in fig-
ure 3.7:

J

Figure 3.9: Type of an
interpreter for the state
operations.

eval : Exp t Γ

� Env Γ Σ � Store Σ

� ∃〈 (λ Σ’ � Σ’ ⊇ Σ × Store Σ’ × [[ t ]] Σ’) 〉

A direct implementation of the interpreter at this type is possible,
but tedious. The case for assignment to a reference is illustrative:

J

Figure 3.10: Direct
implementation of reference
assignment.

eval (e1 := e2) η µ1 =

case eval e1 η µ1 of λ

(_ , ext1 , µ2 , loc) �
case eval e2 (weaken ext1 η) µ2 of λ

(_ , ext2 , µ3 , v) �
let

ext = ⊇-trans ext2 ext1

µ4 = set (weaken ext2 loc) v µ3

in _ , ext , µ4 , tt

This implementation has exactly the same structure as the preserva-
tion proof at the beginning of this section. The recursive invocations
of eval with, for example, the store µ1, results in some updated store
µ2. Importantly, this store is not unrelated to the store µ1: we also
receive evidence ext1 that it is an extension of µ1. Mirroring the type
preservation proof, this enables us to argue that the environment
η that was intrinsically typed with respect to the type of µ1 is also
well-typed with respect to the type of µ2. We make that argument
using the function weaken, mirroring the lemmas that environment
typing is preserved by store extension. We use an overloaded func-
tion weaken function that weakens store-type indexed types P using
an extension fact:

weaken : Σ2 ⊇ Σ1 � P Σ1 � P Σ2

Zooming out, we see that the existential quantification in the
return type of eval forces us to universally quantify over any extension
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of a present store of type Σ in the continuation of any recursive call.
These continuations κ that appear as the body of case analyses on
recursive invocations to eval have types of the following form, for
some result type X and given Σ:

κ : ∃〈 (λ Σ’ � Σ’ ⊇ Σ × Store Σ’ × [[ t ]] Σ’) 〉 � X

If we curry this type a little bit, the universal quantification becomes
more readily apparent:

κ : ∀ Σ’ � Σ’ ⊇ Σ � Store Σ’ × [[ t ]] Σ’ � X

Hence, the Σ is used as a lowerbound on the type of the store.

There are two problems with the direct definition of the inter-
preter in figure 3.10.

Compare the direct implementation with the fictional monadic
computation from section 3.2 in figure 3.5, or the typed expression
interpreter from figure 2.3. The present interpreter is much less
attractive to write or read than those prior definitions. In part, this
is the case because of the explicit threading of the store. In part
it is due to the explicit manipulation of store extensions and the
explicit weakening of locations, values, environments, and stores
that may be required. This proof work is comparable to the pen-
and-paper argument for type-safety of reference assignment that
we gave in section 3.2. The remainder of this chapter will be about
systematically eliminating this manual proof work, in order to obtain
a more perspicuous definitional interpreter.

An intrinsically typed definitional interpreter for a stateful lan-
guage store also ought to be able to abstract over the exact imple-
mentation of the store operations. This includes the threading of
the store, as well as the necessary weakening of semantic compo-
nents and values as a result of possible store extension. Monadic
interfaces—e.g., MonadStore—have traditionally fulfilled the purpose
of abstracting over the exact implementation of effects.17,18 Unfor-
tunately, neither regular monads for Set/Type (as used in many
functional languages), nor parameterized/indexed monads19 or
monads over indexed sets20 suffice for intrinsically typed, monotone
state.

In the next section, we propose a novel solution for solving these
problems by systematically developing a shallow embedding of
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constructions in the category of monotone predicates. Like the con-
tinuations of the presented interpreter, functions in the category
of monotone predicates universally quantify over store extensions.
This enables us to develop a familiar looking monadic interface
that abstracts the implementation of mutable store operations. In
section 3.6 we then show that the store threading of figure 3.9 indeed
implements this abstract monadic interface.

3.4 Proof Relevant, Monotone Predicates

We define proof-relevant monotone predicates and show that a strong
monad in this category can be used to abstract the interface of mono-
tone state. We also show that we can write monadic interpreters in
Agda using this abstraction that regain the appeal that we lost in the
direct implementation of the interpreter of the previous section.

We will work abstractly with (proof-relevant) predicates on some
set R with a partial order _≥_. We will later instantiate R to StoreTy.

We take monotone predicates to be predicates in Set that are then
proven monotone in an ad-hoc manner using a typeclass IsMono:

Pred : Set � Set1
Pred R = R � Set

record IsMono (P : R � Set) : Set where
field

weaken : j ≥ i � P i � P j

As in the previous section, we will use weaken as a overloaded func-
tion, whose implementation is given by instance definitions of this
IsMono typeclass (not shown). Locations, values and environments
are all monotone predicates.

We adopt the notation of the Agda standard library for predicates:

_⇒_ : Pred R � Pred R � Pred R
P⇒ Q = λ r � P r � Q r

_∩_ : Pred R � Pred R � Pred R
P ∩ Q = λ r � P r × Q r

∀[_] : Pred R � Set

∀[ P ] = ∀ {r} � P r

That is, we write ⇒ (respectively ∩) for the pointwise lifting of
functions (respectively products) from Set to Pred R. We can embed
predicates into Set again using the universal closure ∀[_].
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A special role is reserved for functions that quantify over all
extensions of some given lowerbound. We define a record of such
functions PVQ that denote such Kripke functions21,22:

record _V_ (P Q : Pred R) (i : R) : Set where
constructor kripke

field
apply : ∀ {j} � j ≥ i � P j � Q j

Because we use a record, Kripke functions are introduced using the
constructor kripke of the record with the fields as its parameters (i.e.,
kripke : (∀j � j ≥ i � P j � Q j)� (P V Q) i). Unlike pointwise
lifted functions P ⇒ Q, Kripke functions are themselves monotone
predicates:

instance
V-mono : IsMono (PV Q)

IsMono.weakenV-mono ext1 f =

kripke (λ ext2 px � apply f (≥-trans ext1 ext2) px)

To a category theorist, monotone predicates are an approx-
imation of (contravariant) functors from a partial ordered set R
to Set. Such functors commonly go by the name presheaves. The
functorial action of such functors on morphisms in R corresponds
to the operation weaken of the IsMono typeclass. The morphisms
of a category of functors are natural transformations. An Agda
function f : ∀[ P ⇒ Q ] between two monotone predicates P and
Q should morally correspond to the component of such a natural
transformation. This is the case when the application of f commutes
with weakening, as follows:

Figure 3.11: Naturality of the
function f between two
monotone predicates P and Q.

H

i

j

ext : j ≥ i

P i

P j

Q i

Q j

f

weaken ext weaken ext

f
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Kripke functions approximate the exponents of this category. We
only approximate the categorical notions, because we do not en-
force that the functor laws are satisfied, nor that morphisms are
natural. This approximation suffices for proving type safety of in-
terpreters. The laws become relevant if one wants to reason about
typed interpreters.

In the category of sets, computations that yield values of type
B in the presence of computational effects are conventionally rep-
resented as computations M B in some monad M.23,24 Such com-
putations can be constructed by sequential composition of effectful
primitives using the monadic bind m >>= f , where m : M A, and f is
a potentially effectful continuation A� M B. In order to abstract ef-
fectful computations such as monotone state, we define the interface
of (an approximation of) a monad in the category of monotone pred-
icates. We use Kripke functions as continuations, inspired by our
observation about the continuations of the direct implementation in
figure 3.10.

record IsMPMonad (M : Pred R � Pred R) : Set1 where
field

return : ∀[ P⇒ M P ]

_≥=_ : ∀[ M P⇒ (PV M Q)⇒ M Q ]

To abstract from the specific implementation of monotone state,
we define the interface MonadStore L V M of a monad M that imple-
ments the primitive operations of monotone state locations L, and
values V, both intrinsically typed by types T.

Figure 3.12: The interface of a
monad that implements the
primitives for references.

H

record MonadStore {T} (L : T � Pred R) (V : T � Pred R) M : Set1 where
field

{{monad}} : IsMPMonad M
mkref : ∀[ V t⇒ M (L t) ]

get : ∀[ L t⇒ M (V t) ]

set : ∀[ L t⇒ V t⇒ M (λ _ � >) ]
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In section 3.6 we will show that the threading of the store of the
interpreter in figure 3.9 can be encapsulated by this interface, but
let us first examine the status of a simpler example inspired by the
thesis of Swierstra25:

data T : Set where
NAT : T

Nums : T � R � Set

Nums NAT Σ = N

copy-inc : ∀ {M} {{_ : MonadStore L Nums M}}

� ∀[ L NAT⇒ M (λ _ � >) ]

copy-inc r =

get r ≥= kripke λ ext1 n �
(if (n ≤? 10)

then (mkref n ≥= kripke λ _ _ � return tt)

else (return tt)) ≥= kripke λ ext2 m �
set (weaken (≥-trans ext1 ext2) r) (n + 1)

N

Figure 3.13: A simple program
with statically unknown effects
on the type of the store and
explicit weakening.

We define the function copy-inc for any monad M that implements the
interface MonadStore, using any monotone predicate L denoting T-
indexed references to T-indexed Nums. The function takes a location
r : L Nat and gets its value n. It then checks if the value is less than
or equal to 10, and if that is the case it allocates another reference,
forgets about it and yields tt. If n is greater than 10, it just yields tt

immediately. Finally, it increments the value behind the location l.
This function is a simple example of a type-safe, stateful function,

whose effect on the shape of the store is not statically determined.
We see that we can write such functions in a type-safe manner
against a monotone predicate monad because each continuation of a
bind universally quantifies over extended stores. At the same time,
by enforcing store extension, we can safely use the location l after
computations whose precise effect is not statically known, provided
that we weaken the location using the extension facts passed to the
continuations.

In the next section we show that we can systematically avoid
manual weakening by using a slightly different monad interface that
is equivalent in terms of expressive power.

3.5 Programming with a Strong Monad for State

The monotone predicate monad bind ≥= is not arbitrary. It approx-
imates the internal bind of a monad in the category of monotone
predicates.
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That is, a bind morphism:

bind : ∀[ (PV M Q)⇒ (M PV M Q) ]

When we unfold the definition of the Kripke function, we obtain:

bind : ∀ {i j} � j ≥ i
� (∀ {k} � k ≥ j � P k � M Q k)

� M P j � M Q j

McBride26 explains how the two universal quantifiers of such a bind
are of different ‘polarity’. While we (i.e., the player) choose i and j, it
is the monad (i.e., the opponent) who picks k. Because we are free to
choose both i and j—and because the choice of i is inconsequential—
we can be pragmatic and choose i = j, so that by reflexivity of the
order the bind can be simplified to _≥=_ without loss of generality.

The internal bind is characteristic for a strong monad. In the se-
mantics of effectful computations, the fact that a monad is strong
has been traditionally important.27 It has played a lesser role in pro-
gramming, however, because every monad is strong in the category
of sets. Because we depart from the category of sets, we have to take
special care.

Once we understand how our effectful computations can be
defined using a strong monad in the category of monotone pred-
icates,28 we can use the fact that the internal bind is known to be
equivalent to the external bind _>>=_ (mapping morphisms of the
category) and an operation _&_ called tensorial strength:

J

Figure 3.14: The external bind,
sequential composition, and
tensorial strength for a monad
M in the category of monotone
predicates.

_>>=_ : M P i � ∀[ P⇒ M Q ] � M Q i
m >>= f = m ≥= kripke λ ext p � f p

_>>_ : M P i � ∀[ M Q ] � M Q i
p >> q = p >>= λ _ � q

_&_ : {{mono : IsMono Q}} � ∀[ Q⇒ M P⇒ M (Q ∩ P) ]

q & m = m ≥= kripke λ ext p � return (weaken ext q , p)

As for monads in the category of sets, the second argument of the
external bind (∀[ P ⇒ M Q ]) is just a unary function. We define the
usual syntactic sugar _>>_ for sequential composition of an effectful
computation that ignores the result of the preceding computation.
Tensorial strength absorbs values of a monotone predicate Q from
the context into a monadic computation.
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What do we gain from this perspective? Using tensorial strength
we can write intrinsically typed program with statically unknown
effects on the typed store without manual weakening. Because the
continuation of _>>=_ (the second argument) has its usual arity,
we can even use Agda’s builtin do notation now. We show the
desugaring of the do-notation on the right.

Figure 3.15: A monadic
program using do-notation and
tensorial strength (left), and its
desugaring (right).

H

copy-inc : ∀ {M} {{_ : MonadStore L Nums M}}

� ∀[ L NAT⇒ M (λ _ � >) ]

copy-inc r1 = do
r2 , n← r1 & get r1

r3 , tt ← r2 & (if (n ≤? 10)

then (do mkref n; return tt)

else return tt)

set r3 (n + 1)

copy-inc : ∀ {M} {{_ : MonadStore L Nums M}}

� ∀[ L NAT⇒ M (λ _ � >) ]

copy-inc r1 =

(r1 & get r1) >>= λ (r2 , n) �
(r2 & if (n ≤? 10)

then (mkref n >> return tt)

else return tt) >>= λ (r3 , tt) �
set r3 (n + 1)

3.6 A Complete Monadic Definitional Interpreter for References

In this section we put all the ingredients together and define an
interpreter for the composition of the core functional language of
section 3.1 and the state operations of section 3.3. We will see that
we obtain an interpreter that very closely resembles the fictional
interpreter in figure 3.5. We begin by summarizing the typed syntax:

data Exp : Ty � Ctx � Set where
tt : Exp unit Γ

var : t ∈ Γ � Exp t Γ

fun : Exp t (u :: Γ) � Exp (u −→ t) Γ

app : Exp (t −→ u) Γ � Exp t Γ � Exp u Γ

ref : Exp t Γ � Exp (ref t) Γ

!_ : Exp (ref t) Γ � Exp t Γ

_:=_ : Exp (ref t) Γ � Exp t Γ � Exp unit Γ

We can interpret the language in a monad transformer stack
consisting of the reader monad for passing the environment, wrap-
ping the state monad for threading the state. This combination is
again a monad and threads the store in the same way as the direct
implementation in figure 3.10:
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M : Ctx � Pred StoreTy � Pred StoreTy

M Γ P = Env Γ⇒ Store

⇒ (λ Σ � ∃〈 (λ Σ’ � Σ’ ⊇ Σ × Store Σ’ × P Σ’) 〉)

The type M implements the interface of a monotone predicate
monad. We include the definition for the curious readers:

instance state-mpmonad : IsMPMonad (M Γ)

IsMPMonad.return state-mpmonad px η µ = -, ⊇-refl , µ , px
IsMPMonad._≥=_ state-mpmonad m f η µ1 =

case m η µ1 of λ

(_ , ext2 , µ2 , px) �
case apply f ext2 px (weaken ext2 η) µ2 of λ

(_ , ext3 , µ3 , qx) � _ , ⊇-trans ext2 ext3 , µ3 , qx

The monadic operations exactly encapsulate the tedious work of the
direct interpreter (figure 3.10). By also passing the environment in
the monad, the bind also takes care of weakening the environment.

We can leave the order relation abstract to clients of the monad
and to the implementation of the MPMonad interface, which only
depended on the relation being reflexive and transitive. The choice
of the order is relevant, however, to the implementation of the
MonadStore operations. We will implement mkref as appending a
new cell to the end of the store, so that existing locations are morally
unaffected29. This means that we should implement store extension
Σ′ ⊇ Σ as witnessing that Σ is a prefix of Σ′:

data _⊇_ : List A � List A � Set where
here : as ⊇ []

there : as ⊇ bs � (a :: as) ⊇ (a :: bs)

This relation is reflexive (⊇-refl) and transitive (⊇-trans).
The details of the implementation of the MonadStore interface are

not very important. Nonetheless, we give the implementation of the
state operations based on basic operations of heterogeneous lists for
the sake of completeness in figure 3.16.
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⊇-++ : xs ⊇ ys � (xs ++ zs) ⊇ ys
+++ : All P xs � All P ys

� All P (xs ++ ys)
+++r : x ∈ ys � x ∈ (xs ++ ys)
_[_]:=_ : All P xs � x ∈ xs � P x

� All P xs

mkref : ∀[ [[ t ]] ⇒ M Γ (Loc t) ]

mkref v η µ =

let ext = ⊇-++ ⊇-refl

in _ , ext , +++ (weaken ext µ) (weaken ext v :: []) , +++r (here refl)

get : ∀[ Loc t⇒ M Γ [[ t ]] ]

get ` η µ = _ , ⊇-refl , µ , lookup µ `

set : ∀[ Loc t⇒ [[ t ]] ⇒ M Γ (λ _ � >) ]

set ` v η µ = _ , ⊇-refl , µ [ ` ]:= v , tt

N

Figure 3.16: Implementation of
the MonadStore interface. The
types of auxiliary functions
(primarily from the Agda
standard library) are given on
the right.

In addition to the state interface, the type M also implements the
operations of a reader monad. In particular, we will make use of the
operation ask for retrieving the environment, and local for modifying
the environment:

ask : ∀[ M Γ (Env Γ) ]

ask η µ = _ , ⊇-refl , µ , η

local : ∀[ (Env Γ⇒ Env ∆)⇒ M ∆ P⇒ M Γ P ]

local f m η µ = m (f η) µ

The implementation of the intrinsically typed definitional inter-
preter is now straightforward, still temporarily postponing the issue
of non-termination:

Figure 3.17: Complete
intrinsically typed interpreter.

H

{-# NON_TERMINATING #-}

eval : Exp t Γ � ∀[ M Γ [[ t ]] ]

eval tt = return tt

eval (var x) = do
η ← ask

return (lookup η x)

eval (fun e) = do
η ← ask

return (closure e η)

eval (app f e) = do
closure body η’← eval f
η” , v ← η’ & eval e
local (λ _ � v :: η”) (eval body)

eval (ref e) = do
v← eval e
mkref v

eval (! e) = do
` ← eval e
get `

eval (r := e) = do
` ← eval r
`’ , v← ` & eval e
set `’ v

In this definition we only have to use tensorial strength twice: once
for every binary expression in the language. Compare this inter-
preter with the direct implementation in figure 3.10! The present
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intrinsically typed definitional interpreter is completely free of man-
ual proof work, yielding a definition which is almost identical to the
fictional definition in figure 3.5.

As promised, we can deal with the problem that the language is
not weakly normalizing using existing techniques. For example,
we can modify M to use the sized delay monad30 from the Agda
standard library, as follows:

M : Size � Ctx � Pred StoreTy � Pred StoreTy

M i Γ P = Env Γ⇒ Store

⇒ (λ Σ � Delay ∃〈 (λ Σ’ � Σ’ ⊇ Σ × Store Σ’ × P Σ’) 〉 i)

The index i is essentially a lower bound on observation depth. It is
out of the scope of this thesis to discuss in detail how the sized delay
monad works. It is discussed in detail by Abel et al.30. Incorporating
the Delay monad has very little impact on the definition of the
interpreter. The only difference is that recursive calls to eval in the
version with Delay are replaced by an auxiliary function Ieval that
is defined as a guarded call to eval. The resulting interpreter passes
Agda’s totality checker.

3.7 Related Work

In this chapter we showed that a shallow embedding of monotone
predicates can be used as a meta-language to systematically and
intrinsically explain the invariant of type-safe references. We intro-
duced monads in the category of monotone predicates to abstract
an intrinsically typed implementation of type-safe state.

We are not the first to investigate monadic abstractions for intrin-
sically typed effectful programs. In particular, we want to contrast
monotone predicate monads with predicate monads (i.e., regular
monads over indexed sets)31 and parameterized monads32 (or, in-
dexed monads over regular sets) by comparing their characterizing
binds. In figure 3.18, we unfold all type-level abstractions and are
very explicit about where the variables are quantified to make the
differences more distinct.
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Figure 3.18: Comparison of the
binds of various monads.

– Bind of a parameterized monad M
_>>=i_ : ∀ {M : R � R � Set � Set} {i j k}

� M i j A � (A � M j k B) � M i k B

– Internal bind of a predicate monad M,
– and external bind of a monotone predicate monad M.
_>>=_ : ∀ {M : Pred R � Pred R} {P Q} {i}

� M P i � (∀ {j} � P j � M Q j) � M Q i

– Internal bind of a monotone predicate monad M.
_≥=_ : ∀ {M : Pred R � Pred R} {P Q} {i}

� M P i � (∀ {j} � j ≥ i � P j � M Q j) � M Q i

The subtle differences in the placement of the indices i, j, k make
all the difference. In the bind of the parameterized monad we
universally quantify over the indices at the outside. This means
that we have to give all three upfront when we call the bind. This
is appropriate for composing state computations whose effect on
the store type is statically known. Contrast this with the bind
of a predicate monad: the quantification over the index j of the
continuation happens on the inside. This means that we do not
have to give it upfront, but after running the computation M P i
we continue in a store typed j which is statically unrelated to the
store type i. Finally, the bind of a monotone predicate monad also
quantifies over j on the inside of the continuation but relates it to
the outer index i by an extension fact j ≥ i.

McBride (2011) already showed that predicate monads generalize
parameterized monads. Monotone predicates monads again gener-
alize predicate monads. The latter can be reconstructed from the
former by instantiating the partial order with the full relation.

The differences between these monads are significant to the ap-
plication of interpreting mutable references. Swierstra33 investigates
the application of a parameterized IO monad to mutable references
in chapter 6 of his thesis. Because this monad is indexed by both
the type of the heap before and after an effectful computation, it is
only applicable to programs whose effect is statically determined.
This precludes both the example in figure 3.13 and the interpre-
tation of ML-like mutable references. Predicate monads are also
not readily suitable for these programs. Because the store type j in



monotone state 65

34 Plotkin et al. 2002. “Notions of Com-
putation Determine Monads”

35 Reynolds 1972. “Definitional inter-
preters for higher-order programming
languages”

36 Wright et al. 1994. “A Syntactic Ap-
proach to Type Soundness”

37 Milner et al. 1997. “The Definition of
Standard ML, Revised”

38 Pierce 2002. “Types and programming
languages”

39 Danielsson 2012. “Operational seman-
tics using the partiality monad”

40 Capretta 2005. “General recursion via
coinductive types”

41 Amin et al. 2017. “Type soundness
proofs with definitional interpreters”

42 Chapman et al. 2019. “System F in
Agda, for Fun and Profit”

43 Chapman 2009. “Type Theory Should
Eat Itself”

the continuation of the bind is unrelated to initial store type i, we
cannot guarantee that previously obtained store locations can still
be dereferenced safely.

Swierstra also observes the problem of requiring manual weaken-
ing in the resulting programs and proposes a partial solution based
on smart operations that take a store extension witness as an instance
argument. These arguments are filled in by a decision procedure for
⊇ whenever the store types are concrete. As he also observes, this
does not work when the store types contain variables, as in the ex-
ample in figure 3.13. Monadic programs that use tensorial strength
solve this issue with little syntactic overhead (section 3.4), even if
the exact effect of an effectful operation is not statically known.

The monotone state monad approximates a monad in the cate-
gory of contravariant presheaves over a partially ordered set. Plotkin
and Power describe a ‘local state monad’ as a construction in this
category.34 The implementation of the MonadStore interface in sec-
tion 3.6 approximates their categorical definition. They remark that
the monad is indeed a lawful strong monad.

Definitional interpreters date back to the earliest days of
computer science, and there was already a large body of literature
by the time Reynolds35 published his seminal study. Definitional
interpreters have been somewhat overshadowed, particularly when
proving type safety is a primary goal, by small-step operational se-
mantics36,37,38. However, recent years have seen a revival in interest
in functional encodings of semantics. For example, Danielsson39

shows how to prove type safety for definitional interpreters for
languages with non-termination using the partiality monad40. A
functional definition of dynamic semantics requires no separate
proof of determinism. The semantics is also readily executable, and
thus does not require a separate functional definition that then needs
an adequacy result.41

There has also been a lot of interest in using dependent types
to represent strongly typed terms for programming languages. The
approach of intrinsically typing terms and operations has been
applied to System F42, as well as dependently typed languages43.
The connection between intrinsically typed syntax and definitional
interpreters has also been made early and often. For example, early
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work on generalized algebraic datatypes44,45 often uses definitional
interpreters as a motivational example.

The relevance of ‘Kripke functions’ that close over extensions
is not surprising. Kripke semantics have seen an abundance of
applications in semantics for (manipulations of) terms over contexts
and for semantic models of type systems with references46,47 under
the umbrella of ‘possible-world semantics’. The connection with
Kripke semantics is slightly hidden, but becomes apparent if we
factorize the exponent of the category of monotone predicates as
follows:

�_ : Pred R � Pred R
� P = λ i � ∀ {j} � i ≤ j � P j

_V_ : Pred R � Pred R � Pred R
PV Q = � (P⇒ Q)

where �_ is the shallow embedding of the Kripke semantics of
the necessity modality of modal logic, upwards closing a predicate
over all ‘future worlds’ j.48 This exact embedding was used by
Allais et al.49 to define an abstract semantics for λ-terms in an
intrinsically scope-and-type safe manner in Agda. In their work,
R is instantiated to typing contexts of λ-terms, and the order on
contexts is taken to be a context ‘thinning’. Predicates that respect
thinnings are called thinnable; a notion that coincides with our
definition of ‘being monotone’. In later work this was complemented
with an embedding of a description language (i.e., a ‘universe’) for
syntaxes with lambda binding.50 This enables generic proofs of
being thinnable for interpretations of descriptions, as well as data-
type generic definitions of intrinsically typed traversals that are safe
with respect to the scope and type of λ-binding.

Our treatment of the invariants of state have been syntactic, in
the sense that safety follows from a type discipline, directly informed
by the traditional progress and preservation proof51. This is in con-
trast to work in the spirit of Ahmed47 and Appel et al.46, where
the type of references is given a semantics as a (step-indexed52,53)
predicate on the state. Similarly, there has also been work on pro-
gramming with state monads where computations are indexed with
pre- and post-conditions that are formulated as predicates on the
state.54,55 This semantic approach scales to sizable languages such
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as Rust56 and a polymorphic language with session-typed communi-
cation across concurrent processes57. The additional expressiveness
of the approach comes at the cost of demanding more powerful rea-
soning principles, which is conducted extrinsically to the definition
of the semantics. In proof assistants like Coq and F∗, some of the
costs of extrinsic proofs can be mediated by automation via tactics
or external automatic provers.

3.8 Conclusion

Augustsson et al.58 taught us how elegant a type-safe specification
of dynamic semantics can be if we define it using an intrinsically
typed definitional interpreter in a dependently typed meta-language.
A direct implementation of an intrinsically typed interpreter for a
language with type-safe references, however, results in a much less
elegant specification, obscured by manual proof work (section 3.3).
This is disappointing, because state is an effect that is prevalent in
many programming languages.

In this chapter, we showed how to regain a high-level, concise
specification using a monadic interpreter (section 3.6). Our key idea
is to use a strong monad in the category of monotone predicates
(section 3.4) to thread an intrinsically typed store.

Our intrinsically-typed monadic definition demonstrates that
intrinsically typed interpreters can scale to type-safe effectful lan-
guages. The definition of the monadic interface combines ideas
from a conventional syntactic progress-and-preservation proof for
type-safe references with ideas from the semantics of effectful lan-
guages. Exploration and experimentation is necessary to find points
in this design space that work well in current day dependently typed
programming languages. By staying close to existing functional pro-
gramming devices, we can lean on existing language support for
them (e.g., do-notation) and minimizing the need for additional
language support to deal with the remaining proof overhead.

In that vein, an interesting bit of future work would be to explore
meta-language support for programming with strong monads. It
appears, for example, that Agda could automatically insert tensorial
strength in programs that use do-notation by static analysis of the
indexed values used in the continuation of the bind. This would be
similar to the desugaring of programs written in arrow notation in
Haskell.59
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4 Linear, Session-Typed Communication

“And when that work is done, I shall join my warriors and
make the final ascension to full mechanisation!”

— Lonely cyberman, Doctor Who

Type safety of monotone state is about ensuring that a resource
(i.e., the store) is maintained and remains available to clients (i.e.,
references). Another kind of resource is one that is consumed, so that
it ceases to be available after one or multiple uses. The verification
of safety properties for languages with consumable resources differs
from the verification for monotone invariants, requiring bookkeeping
of resource consumption. This is a challenge for intrinsic verification,
because we want to avoid the manual bookkeeping.

In this chapter, we will develop a framework for concise, intrinsic
specification of typed data, abstracting over the bookkeeping of
resource consumption. To accomplish this, we rely on the ideas from
the previous chapter and use proof-relevant predicates R � Set to
systematically hide the consumption of a resource R. In order to
hide the bookkeeping, we develop a very general algebra for resource
composition. This yields a shallowly embedded separation logic on
data that may consume resources.

To demonstrate that this is useful and practical, we develop all
these abstractions in the context of concrete programming languages
with a consumable resource. In particular, we deliver an intrinsi-
cally typed interpreter for a concurrent language with session-typed
communication channels between threads. Session types describe
communication protocols that the threads must adhere to when they
operate on a channel reference. This means that channel references
as typed at any point in time will not persist, but are ‘used’ when
threads send or receive and the protocol progresses.

https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3372885.3373818
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1 Gay et al. 2010. “Linear type theory for
asynchronous session types”

2 Wadler 2014. “Propositions as sessions”

In section 4.1, we describe this language and the usual typing
of the expression language. We then explain the representation of
intrinsically, linearly typed syntax of the expression language in
Agda, as well as the typing of the linear runtime in section 4.2. In
section 4.3, we show that without appropriate abstractions, defining
typed functions over the syntax is unwieldy, and cannot attain the
appeal of intrinsically typed definitions demonstrated in chapter 2.
We introduce the separation logic in section 4.4 and show that it can
be used to give a concise interpreters for a lambda calculus with
linear variable binding in section 4.5. In section 4.6–4.9, we use the
same logic instantiated with a different resource to handle linear
(channel) references. We end the chapter with a discussion of the
related work and a conclusion.

4.1 Linear, Session-Typed Languages

As a simple session-typed language1,2 we consider a linearly-typed
lambda calculus, extended with primitives for concurrency and
communication.

α ::= t ? α | t ! α | end

t, u ::= unit | t( u | α

f , e ::= ... | fork e | mkchan α | send e e | recv e

We adopt the convention to use lowercase greek letters for session
types. The session-type t ? α denotes a communication protocol
that receives a t and continues as α. Conversely, t ! α sends a t
and continues as α. A new thread is created with the expression
fork e, where e should be a linear function with a unit argument
representing the computation that will be executed on the new
thread. The expression send e1 e2 sends the result of e1 on the
channel e2. The expression recv e receives a value from the channel
e. The following sample program (in SML inspired pseudo concrete
syntax) exchanges a constant number between two threads:

J

Figure 4.1: A program with
session-typed communication in
a fictional language.

let l , r = mkchan (nat ? end);

fork (fun _ => let x, l' = recv l in close l');

let r' = send 42 r;

close r'

The program spawns a new channel using mkchan with a communi-
cation protocol specified by the given session type. This produces
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Session fidelity: communication occurs ac-
cording to the protocol described by the
channel’s session type

3 Vasconcelos 2012. “Fundamentals of
session types”

two endpoints l and r of dual session types nat ? end and nat ! end,
respectively. The first type denotes that the endpoint expects to
receive a single nat. The second (dual) type expresses that a single
nat should be sent on it. Communication can occur because one
endpoint is captured by the closure that is executed in a new thread.

When communication occurs on an endpoint, the protocol de-
scribed by the session type progresses. This is reflected in our small
language by the fact that communication primitives return endpoint
references with an updated type. The following typing rules for
send and recv make this precise.

Γ ` e : a ? β

Γ ` recv e : a× β
T-Recv

Γ1 ` e1 : a ! β Γ1 t Γ2 ' Γ Γ2 ` e2 : a

Γ ` send e1 e2 : β
T-Send

That is, recv takes an endpoint reference with protocol a ? β and
returns a pair of an a and an updated endpoint reference with
protocol β. The send command takes an endpoint reference with
protocol a ! β and returns one with protocol β. To ensure type safety,
subsequent communication must use the updated channel reference.
For example, reusing the channel endpoint l in figure 4.1 of type
nat ! end after sending the number on it violates session fidelity and
breaks type safety. Alternatively, discarding the channel endpoint
before sending a value on it leaves the other thread waiting, thus
causing the program to be stuck. Hence, to attain type safety, one
must ensure that channel references are used linearly—i.e., exactly
once. Linearity is visible in the separation of the lexical context
Γ into two disjoint parts Γ1 and Γ2 in the rule T-send (written
Γ1 t Γ2 ' Γ), and is further enforced by limiting the shape of the
context in the rules for literals and variables:3

∅ ` n : nat
T-Nat

(x : a) ` x : a
T-Var
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Strong update: Updates to a reference that
may change the type of the reference, or
delete the underlying cell.

4 Although the linear references of
LTLCref are too strict for practical pur-
poses, it is useful for demonstrating the
problem and our solution in a simple
setting.

Agdaism: The underscores in a name de-
fined in Agda denote where the argu-
ments go. For example, the type for lin-
ear functions _(_ is used as a( b.

5 Vasconcelos 2012. “Fundamentals of
session types”

Proof-relevant relation: A relation in Set
where different witnesses have different
meaning.

A channel endpoint is an example of a reference that admits
strong update. It is well-known that strong update is incompatible
with sharing, and consequently we find linear type systems in other
languages with strong update. We will use a linearly typed lambda
calculus with linear references (LTLCref) as a case study, to demon-
strate the negative impact of a linear type system and of linear
references on the clarity of an intrinsically-typed interpreter.4

4.2 Co-de-Bruijn Syntax for LTLCref

We formalize the typed syntax of LTLCref as an inductive type
family Exp in Agda. The formalization of the typed syntax is heavily
informed by the typing rules. A crucial difference with the extrinsic
typing presented above, is that we use a nameless representation of
variable binding, as is the custom in mechanized representations of
programming languages:

data Ty : Set where
unit : Ty

ref : Ty � Ty

prod : Ty � Ty � Ty

_(_ : Ty � Ty � Ty

In nameless representations of syntax, type contexts are repre-
sented by lists of types:

Ctx = List Ty

In the typing rules, the notion of disjoint context separation5 Γ1 t
Γ2 ' Γ plays an important role. We can define context separation as
an inductive ternary proof-relevant relation:

data _t_'_ : Ctx � Ctx � Ctx � Set where
nil : [] t [] ' []

consl : Γ1 t Γ2 ' Γ � (t :: Γ1) t Γ2 ' (t :: Γ)

consr : Γ1 t Γ2 ' Γ � Γ1 t (t :: Γ2) ' (t :: Γ)
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6 Note that the elimination of unit and
pairs are omitted for brevity.

7 The operations swap and del are not
monotone (chapter 3).

8 McBride 2018. “Everybody’s got to be
somewhere”
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10 The two choices are:

σ1 = consl (consr nil)

σ2 = consr (consl nil)

corresponding to λx � λy � (y, x) and
λx � λy � (x, y) respectively.

The definition of the type family Exp then combines the grammar
of the language with its typing rules, as usual:6,7

data Exp : Ty � Ctx � Set where
unit : Exp unit []

var : Exp t [ t ]

lam : ∀ t � Exp u (t :: Γ) � Exp (t( u) Γ

app : Exp (t( u) Γ1 � (Γ1 t Γ2 ' Γ) � Exp t Γ2 � Exp u Γ

pair : Exp t Γ1 � (Γ1 t Γ2 ' Γ) � Exp u Γ2 � Exp (prod t u) Γ

ref : Exp t Γ � Exp (ref t) Γ

swap : Exp (ref t) Γ1 � (Γ1 t Γ2 ' Γ) � Exp u Γ2 � Exp (prod t (ref u)) Γ

del : Exp (ref unit) Γ � Exp unit Γ

Compare unit, var and app with the typing rules of the session-typed
language. The type of the constructor unit witnesses that the type
context is empty. The representation of variables var is nothing
more than the observation that the context is a singleton. The
representation of binders that naturally obtain, is the co-de-Bruijn
representation8,9. Whereas in a de-Bruijn representation, the choice
between variables in scope is delayed until the leaves of the syntax
tree, in a co-de-Bruijn representation, the choice is made at the
earliest opportunity. That is, variables are only kept in the context
of a subtree if they are used there.

Because variables are nameless, all information about names is
captured in context separation witnesses Γ1 t Γ2 ' Γ. To see why
this relation must be proof-relevant, consider the possible inhabitants
of the hole below. There are two, and each choice encodes different
variable usage.10

tm : Exp (unit( unit( prod unit unit) []

tm = lam unit (lam unit (pair var σ var))

where
σ : [ unit ] t [ unit ] ' (unit :: unit :: [])

σ = {!!}

At run time we have a store of values, typed by a store type StoreTy.
The cells of the store can be updated in ways that change the store
type. Indeed, they can even be deleted! These strong updates are
enabled by the key invariant of linear languages: the absence of
sharing of lexical variables implies absence of sharing of references.
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11 As in previous chapters we could de-
fine values using a function [[_]] by induc-
tion on the types, but we define it here as
an indexed data-type Val, so that we can
implicitly quantify existentially over store
types (Φ1 and Φ2) and closure contexts
Γ without defining separate records.

To intrinsically witness the absence of sharing in the runtime, we
follow the same strategy for the specification of typed references as
for lexical variables—i.e., we represent them using a co-de-Bruijn
encoding:11

StoreTy = List Ty – Φ, Φ1, Φ2, etc.

data Val : Ty � StoreTy � Set where
unit : Val unit []

ref : Val (ref t) [ t ]

pair : Val t Φ1 � (Φ1 t Φ2 ' Φ) � Val u Φ2 � Val (prod t u) Φ

clos : Exp t (u :: Γ) � Env Γ Φ � Val (t( u) Φ

The StoreTy is to references what Ctx is to variables: it represents the
consumption of the runtime context (i.e., the store type) by a value.
The disjoint separation of store types Φ1 and Φ2 in the constructor
for pairs witnesses that references are not shared between the two
projections of the pair. We represent function values syntactically, as
in section 3.6. The Env Γ Φ in the constructor clos is the environment
captured by the closure value for the type context Γ. The definition
of a typed environment is essentially the same as before, except that
environments must internally maintain separation between values
to witness linear use of the store:

data Env : Ctx � StoreTy � Set where
nil : Env [] []

cons : Val t Φ1 � (Φ1 t Φ2 ' Φ) � Env Γ Φ2 � Env (t :: Γ) Φ

Typed stores are structurally exactly like environments:

Store : StoreTy � StoreTy � Set

Store Φ1 Φ2 = Env Φ1 Φ2

where Φ1 is the typing of the entire store, whereas Φ2 is the store
type that represents which part of the store is consumed by the store
itself. A store of size 4 that stores two unit values and two pointers
to those unit values is depicted in figure 4.2.
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Agdaism: Recall that the syntax ∃〈 P 〉 is
an Agda idiom for existential quantifica-
tion over all arguments of the parameter-
ized type P. (See appendix A.)

12 The input store is typed by Ψ, which
is separated into the store consumption
of the environment Φ1 and the store con-
sumption of the store itself Φ2. The re-
sult store is typed by Ψ2, which separates
into the consumption Φ3 of the result
store, and the consumption Φ4 of the
result value.

store : Store (unit :: ref unit :: unit :: ref unit :: []) (unit :: unit :: [])

store = cons unit (consr (consr nil))

( cons ref (consl (consr nil))

( cons unit (consr nil)

( cons ref (consl nil)

nil

)))

• unit unit
• ref unit
• unit unit
• ref unit

N

Figure 4.2: An example encoded
linear store and its graphical
depiction. The first column
represents the nameless
locations, the second column
contains the values of the cells,
and the third column their
types. Reference values are
drawn as arrows.

The first index of this store types the four consecutive cells. The
second index gives the typing of the part of the store that is consumed
by the store itself—i.e., the cells that are referenced by other cells on
the store.

An astute reader may remark that the interesting bit of informa-
tion appears to be the difference between the two indices, being the
leftover store that is available to clients of the store. We will encounter
this ‘difference’ in the signatures of memory safe interpreters in the
next and subsequent sections.

4.3 Linear Interpreters

By typing the source language, the target languages, and the seman-
tic components, we can specify the type of an intrinsically-typed
interpreter:

eval : Exp t Γ �
Env Γ Φ1 � (Φ1 t Φ2 ' Ψ) � Store Ψ Φ2 �
∃〈 (λ Ψ2 Φ3 Φ4 � Store Ψ2 Φ3 × (Φ3 t Φ4 ' Ψ2) × Val t Φ4) 〉

This type expresses: (1) type preservation: the value type t matches
the expression type, (2) disjoint store consumption12, and (3) absence
of dangling references, because the total consumption equals the
complete store. The existential quantification on the right-hand side
is due to the fact that evaluation may add, remove or change cells in
the store in statically unknown ways.
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Unfortunately, while correct as a top-level specification, the type
of eval is not strong enough to evaluate effectful expressions inside
a store that contains more than what the expression itself refers to.
This occurs for example when we attempt to implement function
application app f e: we want to evaluate the function expression f
in the part of the environment that belongs to it. The remainder of
the environment (for e) becomes a frame of the computation that is
not passed to eval, but must remain separated from the values that
the recursive call does manipulate. Consequently, the consumption
of the environment Φ1 and the store Φ2 do not necessarily add
up to the complete store type Ψ. We can generalize the type to
additionally include a disjoint frame fr:

Figure 4.3: Direct formulation of
the type of a type-safe linear
interpreter and an example
input and output store that fits
the signature.

H

eval : Exp t Γ �
Env Γ Φ1 � (Φ1 t Φ2 ' Φ) � Store Ψ Φ2 �
(Φ t fr ' Ψ) �
∃〈 (λ Ψ2 Φ3 Φ4 Φ5 � Store Ψ2 Φ3 × (Φ3 t Φ4 ' Φ5) × Val t Φ4 × (Φ5 t fr ' Ψ2)) 〉

The key point is that the frame fr is preserved by the computation,
such that pointers in the frame are not invalidated by eval. The frame
preservation is observed by the separation Φ5 t fr ' Ψ2).

An example input environment and store, together with an output
store and value pair are displayed in figure 4.4. The fragmented
consumption of the store typing, as well as the frame, are marked
with color. Some cells in the input store are consumed by values in
the environment. All remaining cells are held by values in the store
itself, with the exception of the frame fr.

Figure 4.4: An example input
and output of eval. The legend
relates the store consumption to
the signature in figure 4.3. Only
the frame needs to be preserved.

H

• unit unit
• ref unit
• ref (t( u)

• ... unit
• t( u

• ... unit
• ... unit

Input Output

• v( w
• ref unit
• unit

• ref (v( w)

fr Φ1 Φ2 Φ fr Φ3 Φ4 Φ5
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mechanized semantics for session types”

Unlike with monotone state, the output store need not at all con-
tain the same cells as the input store (e.g., if the the input expres-
sion deletes a reference). Only the frame needs to be preserved by
evaluation. Cells of the frame can be “moved” within the store
data-structure, because the cells are not referenced by name.

The separation of the store type in the interpreter signature ob-
scures what the interpreter does computationally. Implementations
of this type are not any better: even if we look past pattern matching
on an 8-tuple, the separation witnesses of the left- and right-hand
side are not merely being passed around. For recursive calls to
eval the separation witnesses have to be reassociated. Recursive
evaluation may update the store, resulting in more separation wit-
nesses and more proof obligations. The overhead of these proof
terms obscures the computational content of the interpreter and
makes writing them a tedious exercise. This manipulation of separa-
tion proofs in intrinsically-typed semantics of linear languages has
previously been identified as a key issue of the approach13.

The presence of an excessive amount of proof work in the in-
terpreter comprises a large gap in clarity between Augustsson’s
interpreter for STLC (figure 2.2) or the interpreter for monotone
state (figure 3.17), and an interpreter for a linearly-typed language.
This chapter bridges that gap. The key idea is to use separation logic
to build monadic abstractions with which we hide the explicit sepa-
ration of the resource from types and implementations. The strong
guarantees of these monadic operations can be made precise in their
types without drowning the computational content in specifications
of separation.

4.4 Proof Relevant Separation Logic

In section 4.3 we saw that explicitly writing out all typing contexts
and the separation between them quickly becomes a tedious exercise,
which obscures the clarity of the specification and implementation.
In this section we construct a shallow embedding of a separation
logic to hide the manipulation of linear contexts. We then show that
separation logic can be used to concisely implement an intrinsically-
typed interpreter for LTLC—the linearly-typed lambda calculus
(section 4.5). In section 4.6 we will extend this interpreter to the state
operations of LTLCref, and in section 4.8 we will extend this to the
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14 O’Hearn et al. 1999. “The logic of
bunched implications”

15 This is in contrast to models of mod-
ern separation logics such as Iris, which
use predicates in the universe of propo-
sitions (Jung et al. 2018b).

Agdaism: This is valid Agda because we
use a shallow embedding. The Agda
type checker can unfold Pred, such that
these become valid data declarations.

operations for concurrency and communication of linearly typed
lambda calculus with session primitives (LTLCses). Importantly, we
are able to use the same embedded logic to hide the runtime resources
of LTLCref and LTLCref, despite the fact that the invariant of linear
references is more complicated than that of linear lambda-binding.

A well-known model of separation logic can be given in terms of
predicates over a resource14 R. We give a shallow embedding of such
a model in Agda, but using proof-relevant predicates15:

Pred : Set � Set1
Pred R = R � Set

We use proof-relevant predicates because we will cast intrinsically-
typed syntax as such predicates:

data Exp : Ty � Pred Ctx

data Val : Ty � Pred StoreTy

That is, the resource that we abstract over is a list of types. The list
represents either the type context (for source syntax) or the store
typing (for runtime objects).

Resources need to have sufficient structure so that we can de-
fine the logical connectives of separation logic. The structure of
the resource must also be lawful, so that the connectives of the
logic also obey the usual laws of separation logic. We axiomatize
resources as proof relevant separation algebras (PRSA). A PRSA is a
quadruple (R, _ _'_, _≈_, ε)—being a carrier set, a separation or
composition relation, an equivalence relation, and a unit, respec-
tively. The quadruple must obey the laws of a partial, commutative,
proof-relevant monoid. The laws of a PRSA are given with respect to
the given (proof-relevant) equivalence relation _≈_ on the carrier R:

-idl : (ε a ' a)

-id−l : (ε a ' b) � a ≈ b
-comm : (a b ' c) � (b a ' c)

-assoc : (a b ' ab) � (ab c ' abc)

� ∃〈 (λ bc � (a bc ' abc) × (b c ' bc)) 〉

In addition, the relation _ _'_ must respect the equivalence relation
_≈_ in all three positions:
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16 In this thesis, we instantiate the logic
for various concrete PRSAs. Whenever
the PRSA is unambiguously determined,
we will use the constructions from this
section in an overloaded fashion.

Agdaism: The definition of ∗ uses a
record to hide the existential quantifi-
cation over the resources r1 and r2. The
ternary constructor of the record has the
left projection, the separation witness,
and the right projection as arguments.

Agdaism: The definition of −−∗ uses a
record to accommodate type inference.

r1, r2, r : R
q : Q r1
σ : r1 r2 ' r
p : P r2

-respects-≈l : a ≈ a’ � a b ' c � a’ b ' c
-respects-≈r : a ≈ b’ � a b ' c � a b’ ' c
-respects-≈ : c ≈ c’ � a b ' c � a b ' c’

We can define the PRSA of linear typing contexts, using list
interleavings _t_'_ as the ternary composition relation, the empty
list as a unit, and propositional equality as the equivalence relation.
The laws are straightforward to prove in Agda.

We define the logical connectives of separation logic on
predicates over elements of the resource R.16 In this order, we
define the separating conjunction ∗, its unit Emp, and magic wand (or
separating implication) −−∗:

record _∗_ (P Q : Pred R) (r : R) : Set where
constructor _ 〈_〉_
field

{r1 r2} : R
px : P r1
split : r1 r2 ' r
qx : Q r2

record _−−∗_ (P Q : Pred R) (r1 : R) : Set where
field

_〈_〉_ : ∀ {r2 r} � r1 r2 ' r � P r2 � Q r

The separating conjunction ∗ concisely expresses that two predicates
are conjoined disjointly. The ∗ associates to the left, and binds more
tightly than its adjoint, the magic wand −−∗.

We encourage the reader to just think of wands as functions
with an extra parameter that separates their argument from the
‘surrounding’ resources. To accommodate that intuition we make
use of Agda’s copatterns (see appendix A) to have all arguments of
a wand on the left-hand side of a definition. For example:

mkTuple : ∀[ Q⇒ P −−∗ (Q ∗ P) ]

mkTuple q 〈 σ 〉 p = q 〈 σ 〉 p

The context for the body of this definition is depicted in the margin.
We should read this as a definition with three explicit arguments q,
σ, and p (the resources r1, r2 and r are implicitly quantified). The
arguments σ and p of this definition are the explicit arguments of
the field _〈_〉_ of the wand record. The witness σ separates p and q.
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Agdaism: Because Own and Emp are de-
fined in terms of propositional equality
≡, inhabitants of these predicates are
constructed by refl.

17 Reynolds 2002. “Separation logic: A
logic for shared mutable data structures”

Copatterns can be nested, so that this extends to nested wands as
follows:

mkTriple : ∀[ R⇒ Q −−∗ P −−∗ ((R ∗ Q) ∗ P) ]

mkTriple r 〈 σ1 〉 q 〈 σ2 〉 p = (r 〈 σ1 〉 q) 〈 σ2 〉 p

We define two predicates Own r and Emp that enable expressing
ownership of a given resource r or the unit element ε, respectively:

Own : R � Pred R
Own r1 = λ r2 � r1 ≡ r2

Emp : Pred R
Emp = Own ε

Besides the separation logic connectives, we also make use of the
ordinary (pointwise) connectives on predicates. In particular, we
use the pointwise arrow P ⇒ Q, the universal closure ∀[ P ] of a
predicate, and the empty closure ε[ P ] of a predicate:

Figure 4.5: Pointwise arrows,
universal-, and empty closure.

H

_⇒_ : (P Q : Pred R) � Pred R
P⇒ Q = λ r � P r � Q r

∀[_] : Pred R � Set

∀[ P ] = ∀ {r} � P r
ε[_] : Pred R � Set

ε[ P ] = P ε

The ∀ and ε closures are two ways to embed propositions from the
logic in Agda. The fact that we use both has to do with the fact
that a pure wand—i.e., one that does not own any resources—and a
∀-quantified pointwise arrow are equivalent:

wandit : ∀[ P⇒ Q ] � ε[ P −−∗ Q ]

unwand : ε[ P −−∗ Q ] � ∀[ P⇒ Q ]

In practice, we prefer ∀-quantified functions because they can be
constructed as normal Agda functions and have one argument fewer.
Similarly, there is an equivalence between the pointwise arrow that
takes an argument Emp and the empty closure of a predicate. In
practice we again prefer the latter, because it does not have an
argument:

force : ∀[ Emp⇒ P ] � ε[ P ]

abs : ε[ P ] � ∀[ Emp⇒ P ]

Using the ∀-closure, we can spell out the usual logical laws17,
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18 Dockins et al. 2009. “A fresh look at
separation algebras and share account-
ing”

19 Calcagno et al. 2007. “Local action and
abstract separation logic”

20 Jung et al. 2018b. “Iris from the ground
up: A modular foundation for higher-
order concurrent separation logic”

21 Paykin et al. 2017. “The linearity
Monad”

such as the adjunctive relationship between separating conjunction
and the magic wand, and the unit laws of the separating conjunction:

uncurry : ∀[ (P ∗ Q)⇒ R ] � ∀[ P⇒ (Q −−∗ R) ]

curry : ∀[ P⇒ (Q −−∗ R) ] � ∀[ (P ∗ Q)⇒ R ]

∗-idl : ∀[ P⇒ Emp ∗ P ]

∗-idr : ∀[ P⇒ P ∗ Emp ]

∗-id−r : ∀[ P ∗ Emp⇒ P ]

∗-id−l : ∀[ Emp ∗ P⇒ P ]

It is notoriously difficult to get some intuition for the magic
wand connective. Cast into this programming setting, the resources
that play a part in its definition can be understood as follows. A
value of type (P −−∗ Q) Φ1 is a function closure capturing the resources
Φ1. Applying the closure requires an argument px : P Φ2 where
the resource Φ2 is disjoint from Φ1. The application will yield a
value Q Φ such that Φ is the sum of the resources Φ1 and Φ2, so
that no resources are lost. The last point makes it a fitting tool for the
specification of the invariants of linear languages.

We previously mentioned that typing contexts form a PRSA
using list interleavings _t_'_ as the ternary composition relation.
This is in stark contrast with previous notions of separation algebras,
where lists have no natural instances. For example, separation alge-
bras (SAs)18 are a triple (R, J, ε) that is associative, commutative and
has ε as an identity of the ternary relation J, but is also cancellative
and functional:

-cancel : J a1 b c � J a2 b d � a1 ≡ a2

-func : J a b c1 � J a b c2 � c1 ≡ c2

Other prior work instead uses an axiomatization based on a triple
(R, , ε) where the monoid operation _ _ is taken to be a partial
function R×R⇀R.19,20 Both these notions of separation algebras
prohibit instances that use arbitrary list interleavings as the compo-
sition/separation relation. When instances of these algebras for lists
are defined, the lists are treated essentially as maps whose keys are
the indices of the list. Positions in the list are thus relevant, and a
“hole” at a position in the list is explicitly represented.21

All examples of PRSAs that we use in this thesis exploit proof
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22 The used technique of specifying typed
syntax using type formers of context
predicates was previously used for de
Bruijn syntaxes by Allais et al. (2017).
McBride (2018) presents a syntax for the
co-de-Bruijn encoding of simply typed
lambda calculus (STLC) that is virtually
identical in appearance to our presen-
tation of LTLC. Both directly inspired
our contributions. See related work (sec-
tion 4.10) for a discussion.

23 Note how we use the ε-closure for
the constructor nil to simplify the use of
the data-structure. An equivalent but
slightly more verbose type is:

nil : ∀[ Emp⇒ IStar P [] ]

See also the discussion of figure 4.5.

relevance and cannot be represented using one of the prior axioma-
tizations.

4.5 Typing Linear Syntax and Functions using SL

We can use the shallow embedding of our proof-relevant separation
logic as a logical framework and give a concise intrinsically-typed
syntax of the linearly typed lambda calculus (LTLC):22

data Exp : Ty � Pred Ctx where
var : ∀[ Own [ a ] ⇒ Exp a ]

lam : ∀[ ([ a ] ` Exp b) ⇒ Exp (a( b) ]

app : ∀[ Exp (a( b) ∗ Exp a⇒ Exp b ]

pair : ∀[ Exp a ∗ Exp b ⇒ Exp (prod a b) ]

Here, variables are introduced into the body of the lambda by the
following predicate transformer:

_`_ : Ctx � Pred Ctx � Pred Ctx

Γ ` P = λ ∆ � P (Γ ++ ∆)

The values of LTLC are pure and do not consume any runtime
resource (like a store). We will nonetheless define values (and conse-
quently also environments) as predicates over an abstract resource
R. This prepares us for adding references to the language, which
we will do in section 4.6. Because linear references can also be en-
coded using the co-de-Bruijn representation, we use the exact same
approach to specify the run time objects:

data Val : Ty � Pred R where
clos : Exp b (a :: Γ) � ∀[ Env Γ⇒ Val (a( b) ]

pair : ∀[ Val a ∗ Val b⇒ Val (prod a b) ]

Environments are naturally represented as indexed lists (indexed
Kleene star) in this universe:23

data IStar (P : A � Pred R) : List A � Pred R where
nil : ε[ IStar P [] ]

cons : ∀[ P a ∗ IStar P as⇒ IStar P (a :: as) ]

Env : List Ty � Pred R
Env = IStar Val
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24 Atkey 2009. “Parameterised notions of
computation”

25 We use a state monad, rather than a
reader monad. The reason for this is sim-
ply that the most natural way to model
linear use of the environment, is to re-
move a value from the environment when
it is read. State computations return the
part of the environment that is not read,
so that nothing is discarded.

This is the first of a number of familiar data structures and compu-
tational structures that we will transfer to our embedded separation
logic. We will see that the linearity invariant of the runtime is nicely
hidden by the logic, so that we obtain type signatures for interpreters
and operations of LTLC that mirror their non-linear counterparts for
STLC. The simplest example of this is how we can use a parame-
terized state monad to implement the effects of reading from (and
pushing values into) the environment.

We specify the semantics of environment operations by means
of a resource-aware parameterized24 predicate transformer.25

IState : Ctx � Ctx � Pred R � Pred R
IState Γ1 Γ2 P = Env Γ1 −−∗ Env Γ2 ∗ P

The parameters Γ1 and Γ2 of IState denote the shape of the environ-
ment before and after running the computation, respectively. The
magic wand denotes that the environment that the reader computa-
tion expects, must be separated from any value that the computation
closes over, while the separating conjunction means that the returned
environment and value in P are separated.

Using IState we can type the interpreter for LTLC expressions
analogous to a monadic interpreter for STLC:

eval : Exp a Γ � ε[ IState Γ [] (Val a) ]

The indices Γ and [] of IState denote that the computation consumes
an environment of shape Γ entirely. The fact that the type is em-
bedded with the ε-closure denotes that it does not depend on any
resources outside of the reader computation.

The effectful operations of LTLC are implemented by IState-
operations. Modulo some getting used to, primitive operations are
implemented much like normal Agda functions. As an example,
we walk through the interactive development of the primitive get,
starting with the declaration:

get : ε[ IState Γ [] (Env Γ) ]

get = {!!}
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Φ, Φp : R
σ : ε Φp ' Φ

env : Env Γ Φp

goal : (Env [] ∗ Env Γ) Φ

Agdaism: The copattern (appendix A) in-
troduces the wand record type by “pro-
jecting” the single field _〈_〉_ on the left-
hand side.

26 One way to think about this is as ex-
ploiting a morphism between the PRSA
for context separation and the PRSA for
R, as in the work of Farka et al. (2021).

When we let Agda’s interactive mode case split on the result type it
expands the left-hand side, producing the following copattern:

get 〈 σ 〉 env = {!!}

The context and the type of the hole (i.e., the goal) is depicted in the
margin. We can now let Agda refine the hole further and fill in the
remaining holes based on the types:

get 〈 σ 〉 env = nil 〈 σ 〉 env

Agda thus accommodates the use of this shallowly embedded logic
to some extent, so that the specification and implementation of
operations in the logic is similar to that of normal Agda functions.
Proofs that resources are preserved are carried out by relying heavily
on (dependent) pattern matching. We will see further examples that
also make use of the axioms of PRSAs.

Other primitive operations can be implemented similarly. By
indexing reader computations with a pre and post environment, we
can specify computations that do not consume the entire environ-
ment. Consequently, we can also specify operations that extend the
environment:

prepend : ∀[ Env Γ1 ⇒ IState Γ2 (Γ1 ++ Γ2) Emp ]

append : ∀[ Env Γ1 ⇒ IState Γ2 (Γ2 ++ Γ1) Emp ]

Furthermore, we can use the fact that context separation implies
environment separation to frame reader computations inside larger
environments:

frame : Γ1 t Γ3 ' Γ2 � ∀[ IState Γ1 [] P⇒ IState Γ2 Γ3 P ]

That is, we split the environment typed by Γ2 into two disjoint
parts of type Env Γ1 and Env Γ3, and run the state computation on
the former, returning the latter.26

In an untyped setting we would use the fact that IState is a
monad in Set to compose these operations into larger computations.
However, it is a priori unclear in what sense IState is a monad. A first
attempt is to implement the interface of a parameterized monad:

return : ∀[ P⇒ IState Γ Γ P ]

bind : ∀[ P⇒ IState Γ2 Γ3 Q ]

� ∀[ IState Γ1 Γ2 P⇒ IState Γ1 Γ3 Q ]
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27 Kock 1972. “Strong functors and
monoidal monads”

28 Moggi 1991. “Notions of computation
and monads”

Unfortunately, this bind is not strong enough by itself to implement
an interpreter for LTLC. This can be seen more easily if we recall the
equivalence between pointwise-lifted functions and magic wands,
and rewrite the bind as:

bind : ε[ P −−∗ IState Γ2 Γ3 Q ]

� ε[ IState Γ1 Γ2 P −−∗ IState Γ1 Γ3 Q ]

That is: we can only bind functions that do not close over any
resources. This is insufficient, for example, for interpreting binary
expressions (e.g., function application), where bound continuations
close over previously computed resourceful values. To remedy this,
we can internalize the bind:

bind : ∀[ (P −−∗ IState Γ2 Γ3 Q)

⇒ (IState Γ1 Γ2 P −−∗ IState Γ1 Γ3 Q) ]

This internal bind is strong enough to implement the interpreter,
but the use of magic wands also has a downside: the fact that a
magic wand takes a separation witness as an additional argument,
means that every step in the interpreter will receive a proof term
that needs to be passed around. As a side effect, we can also not
use Agda’s builtin do-notation, which expects a bind with the usual
arity. Fortunately, we can again rely on the same programming
trick that we also used to program with monads in the category of
monotone predicates in chapter 3. We use the fact that a monad
with an internal bind is equivalent to a strong monad27,28—i.e., we
use the “external” bind and tensorial strength over the separating
conjunction:

str : ∀[ Q ∗ IState Γ1 Γ2 P⇒ IState Γ1 Γ2 (Q ∗ P) ]

We abbreviate str (q 〈 σ 〉 m) as q &〈 σ 〉 p, mirroring the notation
from chapter 3 for tensorial strength in the category of monotone
predicates. Using tensorial strength, we do not have to close the
bound continuation over any outside resources. Instead, we pass
them to the continuation through bind. The result is that despite the
rich and complicated underlying structure of separation logic, we
can program with these monads as regular monads in Agda.
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f : Exp (a( b)Γ1
σ1 : Γ1 t Γ2 ' Γ

e : Exp a Γ2
b : Exp b (a :: Γ3)

env : Env Γ3 r1
σ2 : r1 r2 ' r

v : Val b r2

The following excerpt of the LTLC interpreter shows how we com-
bine reader operations to interpret linear function application:

eval : Exp a Γ � ε[ IState Γ [] (Val a) ]

eval (app (f 〈 σ1 〉 e)) = do
clos b env ← frame σ1 (eval f )

env 〈 σ2 〉 v← env &〈 -idr 〉 eval e
refl ← append (cons (v 〈 -comm σ2 〉 env))

eval b

Using frame, we first evaluate the function expression in a part of the
environment prescribed by the context separation σ1. By dependent
pattern matching we obtain the corresponding closure clos b env.
This leaves exactly the part of the environment that is required
to evaluate the argument e. To get evidence σ2 that the previously
obtained closure environment is separated from the resulting value v,
we use tensorial strength. This evidence is required to construct the
environment for the body b. The indices of the linear IState monad
ensure that we have constructed an environment that matches the
context for the body.

With minimal proof overhead we have implemented a resource-
ful version of function application and proven it type safe. Moreover,
any violation of any of the properties that we want to hold, is caught
by Agda during the development of the interpreter. For example,
appending v and env in the wrong order would be caught because
the shape of the environment would not match the context of b. Or,
if we were to forget v and put any other value in its place, Agda
would not accept the definition, because some resources were lost.

In the process we have developed reusable abstractions for re-
sourceful representations of data, and resource-aware computational
structures. Just like the usual parameterized state monad, IState can
be generalized to a (strong) monad transformer:

IStateT : (Pred R � Pred R) � Ctx � Ctx � Pred R � Pred R
IStateT M Γ1 Γ2 P = Env Γ1 −−∗ M (Env Γ2 ∗ P)

We will use this transformer in the next section to extend the inter-
preter to the state operations of LTLCref.
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Memory safety: There are no dangling
references

4.6 Intrinsically-Typed Linear References

In section 4.3 we noted that the explicit signature of a definitional in-
terpreter expresses not just type preservation and disjoint consump-
tion of resources, but also memory safety. These last two properties
were encoded together into a single observation that must hold on
both sides of the evaluation signature: the total amount consumed,
including the frame and the consumption of the store itself, must
combine exactly to what the store provides.

Recall from section 4.2 that Store Ψ Φ is a store with cells typed
by Ψ, and a combined consumption Φ. We will call Ψ the supply
of the store, and Φ its demand. The runtime invariant for linearity
is that the total demand of all consumers of the store add up to the
supply. For example, looking at the explicit type of the semantic
operation mkref—which implements the semantics of ref—we have
three consumers: a frame, a value and the input store:

mkref : Val a Φ1 � (Φ1 t Φ2 ' Φ) � Store Ψ1 Φ2

� (Φ t fr ' Ψ1)

� ∃〈 (λ Ψ2 Φ3 Φ4 Φ5 � Store Ψ2 Φ3

× Φ3 t Φ4 ' Φ5 × Val (ref a) Φ4

× Φ5 t fr ' Ψ2) 〉

The demand of the three consumers (fr, Φ1, and Φ2, respectively)
add up to the total left-hand side supply Ψ1.

The separation logic that we presented is by itself insufficient to
express this notion of memory safety. In particular, while the ∗ can
express the disjoint distribution of demand for store cells, it does not
provide a means to equate this with the supply of the actual store.
In this section we develop the abstractions to balance supply and
demand.

We also want to hide all of the separation accounting. To that
end, we need a PRSA that accounts for both supply and demand.
Although we can construct a product PRSA, this will not suffice,
because it will account for supply and demand in isolation of each
other, and not enforce the top-level equation between them. Addi-
tionally, if we account for the supply and demand separately, the
left- and right-hand side supply for an operation like mkref is not
going to balance. The key to balancing the equation is not to look at
supply and demand separately, but at their difference. The operation
mkref is memory-safe, because it increases supply and demand equally
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when it returns a pointer to the freshly allocated cell.
We will do this by using predicates not over store types StoreTy,

but over a novel resource transformer Market. We define the Market

PRSA transformer and show how it can be used for intrinsically-
typed programming with linear state that supports strong update. In
section 4.7, we then interpret the linear state operations of LTLCref.

The PRSA Market R tracks the net supply of the PRSA R. We first
define the carrier of the algebra:

data Market (R : Set) : Set where
supply : (s : R) � Market R
demand : (d : R) � Market R

The algebra accounts for multiple consumers (each representing
some demand) and at most one supplier (representing a supply) for R.
By restricting to a single supplier we can apply a simple accounting
method operating in two modes, formalized as a separation relation
_ m_'_ on Market R with three constructors:

data _ m_'_ : Market R � Market R � Market R � Set where

If no supplier is present, then we are simply adding up demand:

demands : (d1 d2 ' d)

� (demand d1) m (demand d2) ' (demand d)

Or, if a supplier is present, we subtract the demand from it, tracking
how much supply is left over:

supplyl : (s2 r ' s1) � (supply s1) m (demand r) ' (supply s2)

supplyr : (r s2 ' s1) � (demand r) m (supply s1) ' (supply s2)

Importantly, there is no constructor that permits a supplier to be
present on both sides. This ensures that if a single supplier is
present, then every reference is bound in that supplier. The quadru-
ple (Market R, _ m_'_, _≈m_, demand ε) is a PRSA for every PRSA
(R, _ _'_, _≈_, ε), where _≈m_ just lifts the equivalence on R onto
the constructors of Market R.

The predicates Store, Val, and One can be lifted into Market StoreTy,
provided that we clarify the role of these types as either suppliers
or consumers. We define two modalities ( _ and _) for lifting
suppliers and consumers, respectively:
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Compare this with the signature of mkref
in the beginning of this section!

data (P : Pred R) : Pred (Market R) where
supplier : P s � P (supply s)

data (P : Pred R) : Pred (Market R) where
consumer : P d � P (demand d)

Both and associate more tightly than arrows and wands.
We now give a better definition of a well-formed store, incorpo-

rating the idea that we are keeping track of leftover supply:

record LeftOver (P : R � R � Set) (s1 : R) : Set where
constructor subtract

field
{s2 d} : R
px : P s2 d

sub : d s2 ' s1

Store : Pred StoreTy

Store = LeftOver (IStar Val)

The type LeftOver takes a predicate indexed by both a supply s2 and
its internal demand d, and is itself indexed by the supply s1 that is
left over after subtracting that internal demand from the supply. The
internal demand cannot exceed the supply for positive resources R.
This is the gist of the internal resource accounting of the store. The
internal representation of stores (Star Val) are essentially the same
as the stores of section 4.2 and as value environments Env. indexed
list of values. We stress that the store type index of the Store then
represents the leftover supply of the store that can be referenced by
external clients of this linear state.

Using these type formers, we can now consisely express the
type- and memory-safe signature of the operation mkref:

mkref : ∀[ (Val a)⇒ Store −−∗ (Own [ a ]) ∗ Store ]

The supply and demand equation will balance: the fact that the store
is extended by a single new cell of type a, is offset by the returned
pointer (Own [ a ]).

By working in the Market-monoid, and by using the embedded
separation logic connectives, we have rid the signature of a linear
state operation of all the proof side-conditions so that it takes almost
its usual shape. We now turn to defining a State predicate trans-
former, where we will see that it can hide the entire state invariant,
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including the modalities. A client of this State monad will not have
to be aware of the underlying use of the Market PRSA transformer
to maintain memory safety. It will only be aware of the part of the
invariant that it understands: ensuring that references are never
shared.

We now define a State monad, taking special care to define it as
an endofunctor in Pred R. The straightforward definition does not
accomplish this:

State : Pred R � Pred R � Pred (Market R)

State S P = S −−∗ P ∗ S

Which is not an endofunctor at all. We can easily define it as an
endofunctor on Pred (Market R), but in that case the user must
always specify the consumer modality on the predicates in State,
and must wrap and unwrap inputs and outputs of State operations.

We remedy this by making explicit that any wand that takes a
supplier as an argument, can itself only be a consumer. That is, for any
f : ( P −−∗ Q) Φ1 it must be the case that Φ1 is equal to demand Φ2

for some Φ2. This holds, because the resources that the wand uses
must be separated from the resources used by the argument, which
is fixed to be supply by the -modality. Without loss of generality,
we can thus define the State monad as an endofunctor in Pred R as
follows:

State : Pred R � Pred R � Pred R
State S P r = ( S −−∗ P ∗ S) (demand r)

This predicate transformer is a strong monad for any notion of state
indexed by both supply and demand, and generalizes to a (strong)
monad transformer StateT. The operations mkref, read, and update

can be implemented if the state type is instantiated to Store. All
operations are parametric in the type of values, and the notion of
separation between them:

mkref : ∀[ Val a ⇒ State Store (Own [ a ]) ]

read : ∀[ Own [ a ] ⇒ State Store (Val a) ]

write : ∀[ Own [ a ]⇒ Val b −−∗ State Store (One b ∗ Val a) ]

update : ∀[ Own [ a ]

⇒ (Val a −−∗ State Store (Val b))

−−∗ State Store (Own [ b ]) ]

Note that the signature of read tells us that the cell pointed to by
the passed reference is destroyed, as the reference is not returned
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from this operation. In contrast, the write operation keeps the cell,
returning a pointer with its new type, and also the value that used
to be in it. The update operation is an example of a higher-order
operation, for which the use of a −−∗ is a necessity.

4.7 Interpreting LTLCref

To interpret LTLCref, we first extend the data types for expressions
and values of LTLC with the state primitives:

data Exp : Ty � Pred Ctx where
ref : ε[ Exp a⇒ Exp (ref a) ]

swaps : ∀[ Exp (ref a) ∗ Exp b⇒ Exp (prod a (ref b)) ]

del : ε[ Exp (ref a)⇒ Exp a ]

data Val : Ty � Pred StoreTy where
pair : ∀[ Val a ∗ Val b⇒ Val (prod a b) ]

ref : ∀[ Own [ a ] ⇒ Val (ref a) ]

We instantiate the linear State monad for stores over these values,
and nest it inside the linear IState monad transformer for threading
the linear environment. The state operations of LTLCref are then
implemented as follows:

eval : Exp a Γ � ε[ IStateT (State Store) Γ [] (Val a) ]

eval (ref e) = do
v← eval e
r← liftM (mkref v)

return (ref r)

eval (swaps (e1 〈 σ 〉 e2)) = do
ref ra ← frame σ (eval e1)

ra 〈 σ1 〉 vb← ra &〈 -idr 〉 eval e2

rb 〈 σ2 〉 va← liftM (write ra 〈 σ1 〉 vb)

return (pair (va 〈 -comm σ2 〉 ref rb))

eval (del e) = do
ref r← eval e
liftM (read r)

The implementation of swaps first interprets the left- and right-hand
side sub-expressions, from which we obtain a reference and a value.
We also get a witness that these are separated by using tensorial
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29 Hancock et al. 2000. “Interactive pro-
grams in dependent type theory”

strength in the second step. This witness is needed in the subsequent
evaluation step. Using liftM, we lift the write operation of the State

monad into the reader transformer. From the write, we again obtain
a reference and a value, separated according to σ2. All that remains
is to construct the pair value, which we return.

After context separation, we have now constructed a second proof-
relevant separation algebra: Market R, formalizing the accounting of
supply and demand of some underlying resource R. We have used
this to construct a monad State with the familiar semantic operations
on typed stores, transported to the linear setting. Remarkably, the
complexities of the underlying accounting is hidden from the user
entirely.

4.8 Intrinsically-Typed Sessions

We now turn to the session-typed language LTLCses, and its oper-
ations for spawning threads and conducting communication. We
stage the interpretation into two layers. The first layer interprets
the expression language into command trees29, interleaving the com-
munication and threading commands with thunked evaluation of
the expression language. The second layer interprets these com-
mand trees, thus implementing the scheduling and communication
semantics.

To implement these stages, we apply the abstractions that we
developed so far. The syntax of the language, being an extended
linearly-typed lambda calculus, again uses the list PRSA to deal
with co-de-Bruijn variables. The monad for the expression language
interpreter nests a novel free monad inside the reader transformer.
For the command semantics, we reuse the Market PRSA and the state
monad transformer StateT. We combine those with an Error monad
to handle the partiality of receiving messages, and we use a new
PRSA within Market to split channels into their endpoints.

The benefit of staging the interpretation, is that we clearly sepa-
rate the runtime (i.e., the communication and concurrency model)
from the language. The first and second stage are independent
of each other and reusable. We will only implement round-robin
scheduling and asynchronous communication, but one could swap
this semantics of command trees for other schedulers and/or a syn-
chronous communication model, without adjusting the expression
language interpreter.
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Agdaism: The fact that end −¹ ≡ end is
true definitionally, so we formulate a
more useful variation.

30 Fowler et al. 2019. “Exceptional asyn-
chronous session types: Session types
without tiers”

We embed the syntax of the concurrency and communication
primitives in Agda, starting by extending the types of LTLC with a
type for channel endpoint references, which we write endp α. We again
use greek variables to denote session types, and we write α −¹ for
the dual of a session type.

data STy : Set where
end : STy

_?_ : Ty � STy � STy

_!_ : Ty � STy � STy

data Ty : Set where
endp : (α : STy) � Ty

_−¹ : STy � STy

(a ! β) −¹ = a ? β −¹

(a ? β) −¹ = a ! β −¹

end −¹ = end

Session type constructors for sending and receiving are written in
an infix style, for example a ! β for the protocol that sends an a and
continues as β. Dual is involutive and has end as a neutral element:

dual-involutive : ∀ {α} � α −¹ −¹ ≡ α

dual-neutral : ∀ {α} � end ≡ α −¹ � α ≡ end

We then extend LTLC with the five primitive operations for
spawning threads and conducting communication. The commu-
nication primitives all act on channel endpoint references and require
the right protocol shape:

Figure 4.6: Primitives for
multi-threading and
session-typed communication.

H

data Exp : Ty � Pred Ctx where
fork : ∀[ Exp (unit( unit)⇒ Exp unit ]

mkchan : ∀ α � ε[ Exp (prod (endp α) (endp (α −¹))) ]

recv : ∀[ Exp (endp (a ? β))⇒ Exp (prod (endp β) a) ]

send : ∀[ Exp a ∗ Exp (endp (a ! β))⇒ Exp (endp β) ]

close : ∀[ Exp (endp end)⇒ Exp unit ]

We will implement a semantics for these primitive operations in
section 4.9. The runtime will maintain a collection of channels,
similar to how the runtime of LTLCref maintained a collection of
cells. Unlike cells however, open channels have two handles which
can be referenced independently: one handle for each endpoint.
Hence, we model the session (or runtime) context SCtx as a list of
runtime types30, which can be either a single endpoint, or an entire
channel consisting of two typed endpoints:
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31 Fowler et al. 2019. “Exceptional asyn-
chronous session types: Session types
without tiers”

32 We have not defined such triples for-
mally here, but their definition can be
recovered by dropping the unit and unit-
laws from the definition of a PRSA. The
Agda library does of course define it
properly.

33 It does not have a unit element and
hence is not a PRSA.

data Runtype : Set where
endpr : STy � Runtype

chanr : STy � STy � Runtype

SCtx = List Runtype

Although conceptually channel endpoints have dual types, in prac-
tice, for buffered communication, this may not be the case.31 We
explain this in more detail in section 4.9. Mere interleavings of SCtx

do not describe all the ways that session contexts can be split. In
particular, we have to account for the separation of channels into
their respective endpoints. We model the separation of individual
channels using a ternary relation Ends:

data Ends : Runtype � Runtype � Runtype � Set where
lr : Ends (endpr α) (endpr β) (chanr α β)

rl : Ends (endpr β) (endpr α) (chanr α β)

We then define a PRSA on lists of a resource type—i.e., interleavings
with an additional constructor divide for making ends meet:

Figure 4.7: Generalized list
separation. Disjoint list
separation _t_'_ can be
recovered by choosing the
element division relation _ _'_
to be the empty relation.

H

data _ l_'_ : (xs ys zs : List R) � Set where
nil : [] l [] ' []

consl : xs l ys ' zs � (z :: xs) l ys ' (z :: zs)

consr : xs l ys ' zs � xs l (z :: ys) ' (z :: zs)

divide : r1 r2 ' r � (xs l ys ' zs) � (r1 :: xs) l (r2 :: ys) ' (r :: zs)

This quadruple (List R, _ l_'_, _≈l_, []) is indeed a PRSA whenever
(R, _ _'_, _≈_) is a proof-relevant partial semigroup32, where _≈l_
extends _≈_ pointwise over lists. The type Ends is indeed such a
proof-relevant partial semigroup.33

When we instantiate the above list PRSA with the partial semi-
group Ends, then we get a relation that separates lists of Runtype

elements in more ways than just interleaving them. For example, we
can prove the following separations:

ex1 : (endpr α :: endpr β :: []) l (endpr γ :: []) ' (endpr α :: endpr γ :: endpr β :: [])

ex1 = consl (consr (consl nil))

ex2 : (endpr α :: endpr β :: []) l (endpr γ :: []) ' (chanr α γ :: endpr β :: [])

ex2 = divide lr (consl nil)

ex3 : (endpr α :: endpr β :: []) l (endpr γ :: []) ' (endpr α :: chanr γ β :: [])

ex3 = consl (divide rl nil)
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34 These session context separations co-
incide with the manual treatment of ses-
sion contexts in the typing of the runtime
in, for example, Fowler et al. (2019).

35 Hancock et al. 2000. “Interactive pro-
grams in dependent type theory”

36 Swierstra et al. 2019. “A predicate
transformer semantics for effects (func-
tional pearl)”

37 For readability we specialize Free here
for a given type of commands and re-
sponses. In the library it is parameter-
ized over those types.

Example ex1 is a mere disjoint separation of a lists of three end-
points. However, examples ex2 and ex3 each split a channel into
its two endpoints and hand them to the left and right session con-
texts respectively.34 Hence, the separation of session contexts is
more involved than the separation of typing contexts and manually
bookkeeping such environments is thus also more tedious.

In the same way that values of LTLCref are predicates over a
store type StoreTy, values and other runtime objects of the session-
typed language are predicates over SCtx. As before, references (to
endpoints) are typed in a co-de-Bruijn style:

data Val : Ty � Pred SCtx where
cref : ∀[ One (endpr α)⇒ Val (endp α) ]

Expressions are not interpreted to plain values, but to command
trees35,36 with values at the leaves. Outgoing commands may con-
tain channel endpoint references, and must therefore be separated
from their continuation. This yields the following strong monad
Free P of command trees that will yield an instance of P:

data Cmd : Pred SCtx where
fork : ∀[ Free (Val unit) ⇒ Cmd ]

mkchan : ∀ (β : STy) � ε[ Cmd ]

send : ∀ a β � ∀[ Own [ endpr (a ! β) ] ∗ Val a⇒ Cmd ]

recv : ∀ a β � ∀[ Own [ endpr (a ? β) ] ⇒ Cmd ]

close : ∀[ Own [ endpr end ] ⇒ Cmd ]

Resp : Cmd Φ � Pred SCtx

Resp (fork _) = Emp

Resp (mkchan β) = Own [ endpr β ] ∗ Own [ endpr (β −¹) ]

Resp (send _ β _) = Own [ endpr β ]

Resp (recv a β _) = Val a ∗ Own [ endpr β ]

Resp (close _) = Emp

data Free (P : Pred SCtx) : Pred SCtx where
pure : ∀[ P⇒ Free P ]

impure : ∀[ Σ[ c ∈ Cmd ]∗ (Resp c −−∗ Free P)⇒ Free P ]

Command trees Free P are trees whose nodes (impure) contain a
command and whose branches are continuations for every possible
response.37 The set of possible commands is defined using the
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38 Coincidentally, this is why the ∗ is col-
ored green in most of this thesis.

39 We have not introduced syntax for de-
pendent predicate implication, so we
write the explicated signature of give
here.

predicate Cmd. Every primitive of threading and communication is
represented by a command. Commands may contain resourceful
values—e.g., a reference to a channel endpoint. The type of possible
responses to a command c is Resp c. For example, the response
to the mkchan command are two channel endpoint references with
dual session types. Responses may again contain resourceful values.
The specification makes use of a dependent separating conjunction for
the pair of the command and the command-dependent type of the
continuation:

Figure 4.8: Dependent
separating conjunction.

H

record Conj (P : Pred R) (Q : ∀ {r} � P r � Pred R) (r : R) : Set where
field

{r1 r2} : R
px : P r1
sep : r1 r2 ' r
qx : Q px r2

We write Σ[ x ∈ P ]∗(Q x) for Conj P (λ x � Q x). The normal sepa-
rating conjunction ∗ is defined in terms of the dependent version.38

Commands and responses define the interface of the runtime.
The type of the constructor impure exactly captures the exchange
of resources that occurs between a thread and the runtime: when
a command is issued, a thread gives away some resources via the
command, and keeps the remainder enclosed in the continuation.
The magic wand in the type of the continuation denotes that the
thread may receive new resources via the response, separated from
what it already owned. A command can be lifted to a computation
in Free that will return the response:39

give : ∀ {Φ} � (c : Cmd Φ) � Free (Resp c) Φ

Because we defined the command fork to take a computation in
Free rather than an expression Exp, we can define the interpretation
of expressions and command trees entirely independently. The first
stage is straightforward and only interprets the effect of reading the
environment. By nesting Free inside the reader transformer, we can
interpret all the effects of LTLCses.
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40 In this interpreter, threads only yield
control when they send a command.
More fine-grained concurrency can be
achieved by adding a yield command and
manually inserting it where desired, or
incorporating it into the bind of the stage
1 interpreter.

We write out the evaluation of send and receive:

eval : Exp a Γ � ε[ IStateT Free Γ [] (Val a) ]

eval (recv e) = do
cref ch1 ← eval e
v 〈 σ 〉 ch2 ← liftM (give (recv _ _ ch1))

return (pair (cref ch2 〈 -comm σ 〉 v))

eval (send (e1 〈 σ 〉 e2)) = do
v1 ← frame σ (eval e1)

v1 〈 σ 〉 cref ch1 ← v1 &〈 -idr 〉 eval e2

ch2 ← liftM (give (send _ _ (ch1 〈 -comm σ 〉 v1)))

return (cref ch2)

Again, the hard work of maintaining separation is hidden. Ad-
ditionally, using the free monad construction, the concurrency is
hidden. Finally, the fact that receiving a message on a channel is
a blocking operation and may have to wait for the corresponding
sent is completely opaque. The implementation of concurrency and
communication is completely up to the second stage interpreter.40

This completes the first half of the semantics, which reduced the
language to a tree of concurrency and communication primitives
which have to be implemented by the runtime. The runtime seman-
tics is the subject of the next section. There we show how to handle
each of the runtime commands using the linear State monad from
section 4.6 to implement the channel state.

4.9 Interpreting Command Trees as Processes

By interpreting the expression language to command trees, we
have given an operational semantics for everything except the five
primitive operations for concurrency and communication. These are
the operations that operate on the runtime state of the language:
the collection of channels and the threadpool. In this section we
implement the runtime top-down, starting with a scheduler built on
top of an abstract monadic interface. We work our way towards the
implementation of the various communication primitives. We define
the channel state consisting of linked buffers and finally implement
the monadic interface using a monad transformer stack.
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41 Fowler et al. 2019. “Exceptional asyn-
chronous session types: Session types
without tiers”

Threads are simply suspended computations—represented using
the Free monad—that return values. We distinguish the main thread
(which returns a value), from forked threads (which return unit).41

data Thread : Pred SCtx where
forked : ∀[ Free (Val unit)⇒ Thread ]

main : ∀[ Free (Val a) ⇒ Thread ]

To represent the thread pool, we use a datatype akin to lists or
Kleene Star:

data Star (P : Pred A) : Pred A where
nil : ε[ Star P ]

cons : ∀[ P ∗ Star P⇒ Star P ]

Pool = Star Thread

The runtime can be understood as combining a scheduler—which
selects a thread that can make a step—with a function that actually
takes a step in a given thread.

We will interface with the scheduler a monadic operation dequeue

which either returns a thread that is not yet done (inj2 thr in sub-
sequent code) or—if no such thread exists—returns an exception
(inj1 e). Threads can be added to the pool of the scheduler by an
operation enqueue. A thread trying to make a step will also be al-
lowed to throw an exception to signal that it cannot currently make a
step—because it is blocked on a receive command while there is not
yet a value in the receiving endpoint buffer—and should be delayed.

Assuming those primitive operations we can implement the fol-
lowing abstract scheduler:

run : ε[ M Emp ]

run = do
thr? ← dequeue

case thr? of λ where
(inj1 e) � return e
(inj2 thr) � do

refl← (do
thr’← step thr
enqueue thr’) orElse (enqueue thr)

run
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For clarity we elide the use of fuel to satisfy the termination checker,
as well as the error handling for running out of fuel.

For round-robin scheduling, the monadic operations dequeue and
enqueue can be defined straightforwardly as taking the head of a Pool

and appending to the pool respectively. The Pool itself is threaded
using the State monad, but is only indexed by demand for cells
and of course does not supply any. For completeness we give their
signatures:

dequeue : ε[ M (Emp ∪ Thread) ]

enqueue : ∀[ Thread⇒ M Emp ]

We now focus on the implementation of making a single step

in a given thread. To animate a suspended thread we inspect the
command in the top-most position of the underlying command tree.
We then apply a handler which interprets a single command in a
given monad and returns a response of the right type. We then
apply the continuation with the response which will compute until
it again blocks at a command:

stepFree : (handler : ∀[ Π[ c ∈ Cmd ]⇒ M (Resp c) ]) �
∀[ Free P⇒ M (Free P) ]

stepFree handler (pure px) = return (pure px)

stepFree handler (impure (c 〈 σ 〉 κ)) = do
κ 〈 σ 〉 r← κ &〈 -comm σ 〉 handler c
return (κ 〈 σ 〉 r)

Normally this would then be used to interpret an entire command
tree using a monadic fold. In our scheduler, the thread is put back
into the pool after a single step of unfolding.

The implementation of stepFree transparently (and generically)
handles all of the resource shuffling. Consider the resources in-
volved in creating a new channel. The command send by the client
contains no resources at all, but the response consists of two channel
endpoints and thus contains some demand. The state computa-
tion returned by the handler in that case encapsulates the response;
the new demand will balance out against the new supply. Using
tensorial strength we bring the continuation κ into the monadic
context and call it with the response. When we call it we intrinsically
“transfer” the resources of the argument to the client.
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42 Fowler et al. 2019. “Exceptional asyn-
chronous session types: Session types
without tiers”

43 The earlier intrinsically typed se-
mantics by (Thiemann 2019) uses syn-
chronous communication and has to find
two threads that want to communicate
at runtime to make communication hap-
pen.

Using the definition of stepFree, we reduce the matter of taking
a step in a thread to handling each individual command. Let Runtime

be an abstract monad for now. In the remainder of this section we
focus on the implementation of the commands. These are then
dispatched by a function handle:

handle : ∀[ Π[ c ∈ Cmd ]⇒ Runtime (Resp c) ]

The implementation of step is essentially stepFree handle, lifted to
Thread.

The implementation of the command fork thr is simply to en-

queue the thread thr. Resourcewise, we are only shuffling some
demand encapsulated in the command tree thr to a new slot in
the threadpool. We will thus focus on the handling of the more
interesting communication primitives: newchan, send, and receive.

Asynchronous communication is implemented using buffered
channels, inspired by the buffer threads used by Fowler et al.42. The
asynchronous, buffered model is a good fit for executable semantics,
as it is closer to practical implementations. At the same time it
avoids the need to organize a rendezvous between two communicate
threads, as all communication is mediated by the buffer.43

Type safety of session-typed languages with asynchronous com-
munication relies on a number of invariants related to channels:

1. If a channel endpoint is sending (i.e., has a type a ! β), then its
buffer must be empty.

2. If a channel endpoint is sending then the buffer of the commu-
nicating endpoint must accept those values.

3. If one channel has been closed, then the other end cannot be
sending.

4. If a channel endpoint has been closed, its buffer must be empty.

We will represent the state in a way that makes these observations
self-evident from dependent pattern matching.

Buffers are lists of values waiting to be received at an endpoint.
We write α  β (or β  α) for a typed buffer with two ends: the
external endpoint β corresponding to the endpoint of a channel, and
an internal endpoint α. The type of the internal endpoint denotes
the type of the channel endpoint after it will have caught up with
the buffered values:
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Agdaism: We avoid using β −¹ directly for
the type of the right buffer because Agda
will then refuse to do case distinction on
this buffer unless we force β (so that β −¹
reduces). Instead we use the standard
workaround of generalizing the type and
adding an extra argument β1 ≡ (β2

−¹).
Now we can control whether Agda in-
lines this equation by pattern matching
on refl.

Agdaism: The “absurd” pattern () is used
to refute a branch using the fact that the
argument has an empty type.

data _  _ : STy � STy � Pred SCtx where
emp : (α  α) ε

cons : ∀[ Val a ∗ (β  γ)⇒ ((a ? β)  γ) ]

Channels can then be represented as two linked buffers, or, in case
either endpoint has already been closed, a single buffer. The duality
between the types of endpoints of a channel holds when both sides
are completely caught up with all communication on the channel.
Consequently, the duality is enforced at the internal endpoints of the
buffers:

data Channel : Runtype � Pred SCtx where
dual : β2 ≡ β1

−¹ � ∀[ (α  β1) ∗ (β2  γ)⇒ Channel (chanr α γ) ]

single : ∀[ end β ⇒ Channel (endpr β) ]

The typing of buffers makes the first invariant hold: we can only
have values waiting if the external end is a type a ? β. Whenever
we have a buffer whose external endpoint is sending, it is thus self-
evident that it is empty and does not contain any resources. Hence,
the following is a total definition:

sending-buffer-empty : ∀[ (a ! β)  γ ⇒ Emp ]

sending-buffer-empty emp = refl

The duality of the internal endpoints of linked buffers then also
ensures that the second invariant is satisfied:

sending-receiving : ∀[ Channel (chanr (a ! β) γ)⇒ (γ  (a ? β −¹)) ]

sending-receiving (dual refl (emp 〈 σ 〉 b)) rewrite -id−l σ = b

The third invariant holds, because the available constructors for
buffers of type end β restrict β to be either also end, or a ? γ:

singlesided-not-sending : ∀ {Φ} � Channel (endpr α) Φ � α 6≡ (b ! γ)

singlesided-not-sending (single emp) ()

singlesided-not-sending (single (cons _)) ()

And finally, the fourth invariant:

ended-empty : ∀ {Φ} � (end  α) Φ � α ≡ end

ended-empty emp = refl

These invariants drive the implementation of pushing and pulling
values to and from buffers in a type-safe manner. For example,
sending on an given channel is implemented as follows:
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push : ∀[ Val a⇒ (γ  (a ? β)) −−∗ (γ  β) ]

push v 〈 σ1 〉 emp = cons (v 〈 σ1 〉 emp)

push v 〈 σ1 〉 cons (w 〈 σ2 〉 b)

with _ , σ3 , σ4 ← -assocr σ2 ( -comm σ1)

= cons (w 〈 σ3 〉 (push v 〈 -comm σ4 〉 b))

send-into : ∀[ Val a⇒ Channel (chanr α (a ! β)) −−∗ Channel (chanr α β) ]

send-into v 〈 σ 〉 dual {β1 = x ? β1} refl (b 〈 σ’ 〉 emp) rewrite -id−r σ’ =

dual refl ((push v 〈 σ 〉 b) 〈 -idr 〉 emp)

N

Figure 4.9: Typed
implementation of sending on a
channel endpoint. Dependent
pattern matching reveals that
the linked buffer is capable of
receiving the value.

In the definition of send-into we make use of the fact that a channel
whose one external endpoint is sending implies that the buffer of
the other endpoint will accept that value in its buffer (invariant 2).

The implementation gives a decent impression of what program-
ming with resourceful values in the shallowly embedded logic is like.
When working in the logic, it is not necessary to spend time thinking
about the “right”/sufficiently general type for these functions with
respect to the global invariant that we want to keep. The separation
logic connectives encapsulate the proof state so that we can focus
primarily on the computational aspects. In the implementation we
have to unpack and repack separation witnesses. This is a little
tedious, but, importantly, is entirely type-directed and requires no
real creativity.

Now that we have an intrinsically typed representation of a chan-
nel and the operations to manipulate them, we turn to the commu-
nication primitives, which are state operations on lists of channels.
The threading of state is taken care of by mixing the State monad
that we constructed for linear references into the Runtime monad.
The state we thread through is a bunch of channels:

Channels = IStar Channel

St : Pred SCtx

St = LeftOver Channels

Note that something is slightly different now that we instantiate the
Market monoid with session contexts. The demand for two endpoints
can be met by the supply of a single channel.
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example : ( (Own [ endpr α ] ∗ Own [ endpr β ]) ∗ (Own [ chanr α β ])) (supply ε)

example = lift (refl 〈 divide lr -idl 〉 refl)

〈 supplyr -idr 〉
lift refl

The endpoints meet up in the monoid Ends to demand a full channel.
This then cancels against the supply of the full channel in the Market

monoid.
The specific operations we defined previously for creating, read-

ing, and writing cells are not useful. They each require a channel
pointer Own [ chanr α ], while in practice we will only ever have end-
point pointers Own [ endp α ]. So rather we implement the following
new operations on a monad Runtime:

newChan : ε[ Runtime (Own [ endpr α ] ∗ Own [ endpr (α −¹) ]) ]

receive? : ∀[ Own [ endpr (a ? β) ]⇒ Runtime (Val a ∗ Own [ endpr β ]) ]

send! : ∀[ Own [ endpr (a ! β) ]⇒ Val a −−∗ Runtime (Own [ endpr β ]) ]

closeChan : ∀[ Own [ endpr end ]⇒ Runtime Emp ]

The main difficulty of implementing the communication primitives
on existing channels is to find a channel in the state based on a
given endpoint reference and update it. We must update it in place
because a single endpoint reference does not allow us to take the
entire channel out of the supply. Doing so would leave the reference
to the other endpoint temporarily dangling. The type of updates
that we can then perform safely on the channel is also limited: the
endpoint to which we do not have a reference must remain typed as
is.

The binding between the endpoint reference and the underlying
buffer is established via all the separation witnesses that sit between
them. This means that in order to dereference an endpoint reference
in the list of channels we must carefully inspect these separation
witnesses. Here, we poke through the shallow embedding of our
logic to implement the primitive operations on references.

As an example, we show the complete definition of closing a
given channel endpoint denoted by a given endpoint reference in
figure 4.10. This is the primitive core of the monadic operation
closeChan.
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44 That is, our pointers take the shape of
the data that they point into. This is the
more general lesson taught by McBride
by his work on the co-de-Bruijn repre-
sentation.

close’em : (ptr : [ endpr end ] l ds ' xs) � ∀[ Channels xs⇒ Channels ds ]

close’em (consl p) (single emp :〈 σ 〉: chs)

rewrite -id−l p | -id−l σ = chs
close’em (consr p) (ch :〈 σ 〉: chs) = ch :〈 σ 〉: close’em p chs
close’em (divide lr p) (dual refl (emp 〈 τ 〉 br) :〈 σ 〉: chs)

rewrite -id−l p | -id−l τ = single br :〈 σ 〉: chs
close’em (divide rl p) (dual eq (bl 〈 τ 〉 emp) :〈 σ 〉: chs)

rewrite -id−l p | -id−r τ

rewrite dual-neutral eq = single bl :〈 σ 〉: chs

N

Figure 4.10: The implementation
of the primitive for closing a
channel endpoint. We write
x :〈 σ 〉: xs for cons (x 〈 σ 〉 xs).

The type of the operation close’em already pokes through the state
abstractions. For the representation of ptr we use the separation
witness that we obtained from a conjunction in the market monoid:

(Own [ endpr end ]) ∗ St.

In the signature of close’em we already unpacked both modalities and
‘manually’ enforce that the endpoint reference can be dereferenced
in the channel state using the index xs.

We can also see here how the dynamic binding is resolved. The
representation of the ptr is literally pointing towards the location
of the endpoint in the channels.44 The constructor consl says that
it is the head of the channel list that we are looking for. The type
of the pointer enforces that this must then be a single buffer chan-
nel without values in it. We simply discard it, which is resource
neutral by the identity law of the separation logic. If instead we
find the constructor consr we continue following the ‘remainder of
the pointer’ on the tail. The branch divide lr (respectively divide rl)
corresponds to the case where the endpoint is the left (respectively
the right) endpoint of a dual channel in the head of the channel list.

To summarize, we have defined the typed representation for a
concurrent runtime with asynchronous, buffered communication.
Although the typing of the runtime for a session-typed language
contains some subtleties, the staged interpretation of this language
required no changes at the level of the logic. The logic and monadic
abstractions that we defined scale to the functional session-typed
language LTLCses and indeed yield interpreters whose clarity is not
obscured by explicit proof terms.
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45 Takeuchi et al. 1994. “An Interaction-
based Language and its Typing System”

46 Honda et al. 1998. “Language Primi-
tives and Type Discipline for Structured
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4.10 Related Work

We discuss prior work on using dependent types to express lin-
ear and relevant scoping and typing of terms, and to prove safety
of session-typed languages45,46,47. We also discuss the work on
separation logic that was used to develop PRSAs.

Mechanized Metatheory of Session-Typed Languages. In the last few
years there has been an increase in efforts to mechanize the metathe-
ory of process calculi48 and also session-typed functional languages.
For example, recently Castro-Perez et al.49 developed tools in the
Coq proof assistant to aid in the mechanized verification of subject
reduction for the calculus originally proposed by Honda et al.50,
as well as for the revised language by Yoshida et al.51. Zalakain
et al.52 mechanize the same theorem in Agda for a resource-aware pi-
calculus using different techniques—most notably leftover typing53.

All of these approaches follows a conventional extrinsic approach
to typing and proofs. The most closely related work on mecha-
nizing session-types metatheory is an intrinsically-typed small-step
operational semantics in Agda by Thiemann54. The session-typed
functional language that he uses is a superset of ours. It includes
internal and external choice operators (with subtyping), a coinduc-
tive definition of session types, and unrestricted types. He gives a
round-robin scheduler for threads, and implements synchronous
communication. The semantics takes the form of an interruptible
abstract machine55, that operates by decomposing an expression
with its value environment and evaluation context, into a command
for the scheduler. In addition, he proves that his semantics imple-
ments the beta rule for unrestricted function application, and an eta
rule for pairs. The complete development (minus import statements)
comprises 2890 lines of Agda code. Of those lines, 1652 are used to
define the semantics.

The cited work presents a mechanized semantics of a session-
typed language in an executable, intrinsically typed style, and identi-
fies the role of both static and dynamic separation in the type-safety
proof. One of the key issues that Thiemann identifies, which di-
rectly provoked present work, is the difficulty of managing the
separation of the resources. Particularly, the pervasiveness of proof
terms related to the separation of resources make many of the def-
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initions “tedious exercise[s] in resource shuffling”. This includes
important definitions for the semantics, such as the function that
decomposes expressions. Another example is the function that
searches in the thread pool for the send command that corresponds
to a read command. This function comprises 50 lines of Agda and
its type quantifies over 7 contexts, related by 3 separation witnesses.
The interesting case of this function, which considers a send com-
mand, requires 11 lines of code, 10 of which are reorganizing the six
separation terms that appear in the arguments of function.

We address the complexity and tedium of working with separated
objects by composable abstractions. Each of the abstractions can
be understood separately, making the complexity of the composite
manageable. An important part of this is that we are able to give
recognizable types to abstractions by working in an appropriate
logic. Additionally, the abstractions help considerably to avoid
duplication. For example, we are able to prove separation rotation
lemmas for all PRSAs using just -assoc and -comm, whereas they are
proven separately for both separation of typing contexts and session
contexts by Thiemann. Another good example is his definition of
session context separation, which has 6 constructors, baking in the
separation on channels. Using our library, one can define it as the
composition of two PRSAs, reusing our instance for lists. Besides
the reuse one gets, this also simplifies the proofs.

Besides the proof terms, the styles of the semantics also differ
significantly. Whereas a small-step semantics really shines in a rela-
tional setting, it is an indirect way to define an executable semantics.
The computation steps of the language are hidden within the me-
chanics of the abstract machine—i.e., in decomposing expressions,
and plugging values back into evaluation contexts. Some of the clar-
ity is lost in these indirections that animate the small-step semantics.
In our definitional interpreter, this tension between the small-step
nature of concurrency and the functional style that we require, is
resolved by using the free monad, representing continuations not
as syntax, but as Agda functions. Additionally we avoid searching
in evaluation contexts to find two threads that are both ready to
communicate, by mediating between communicating threads using
a buffer.

Another intrinsic approach to linear metatheory is proposed by
Wood et al.56, using linear algebra over semirings. The abstrac-
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tion over an arbitrary semiring enables the generalization from
strictly linear languages to language with more lax sub-structural
constraints. Their approach yields generic definitions and properties
for substitution and renaming for this class of languages.

Co-de-Bruijn Representation of Syntax. The term co-de-Bruijn was
coined by McBride57, who exploits this representation in Agda
to ensure that variable shifts in well-scoped, non-linear lambda
terms do not require term traversals. He shows that hereditary
substitutions on these terms become structurally recursive. Rather
than working directly with objects in their relevant context, he
works with objects wrapped in “thinnings” into a larger context, and
develops the structure of these wrapped objects. He defines “relevant
pairs”, which are almost identical to our separating conjunctions for
typing contexts, but permit overlap between the consumption of the
left and right projections.

Abel et al.58 describe an encoding of the binding in the simply-
typed lambda calculus terms that is inspired by the typing of terms
in a linearly-typed lambda calculus. They adapt it to non-linear
lambda calculi and use it to avoid space leaks in interpreters that
build function closures. This is achieved by separating environments
along context separations in the interpreter, thus only capturing rel-
evant values and avoiding leaks. This separation of the environment
reappears in our linear interpreters in the generic frame operation of
the Reader monad.

Neither Abel et al.59, nor McBride60 make the connection with
separation logic, or make use of a magic wand-like connective, which
was crucial in typing our functional abstractions.

Separation Algebras. In the development of our abstractions and
interpreters we have found a lot of inspiration in existing work on
separation logic. We have already mentioned the work that con-
tributed to the formulation of PRSAs in section 4.4. For constructing
the logic on top of PRSAs we were directly inspired by the construc-
tion of separation logic in Iris61, which defines the type formers and
connectives of separation logic in terms of cameras—i.e., the variant
of separation algebras used in Iris.

Partial (commutative) semigroups and monoids make their ap-
pearances in more domains than separation logic. In type systems, a
noteworthy appearance is the formalization of row types. Morris et
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al.62 present (commutative) row algebras to generalize and abstract
languages with row types, and also point to many instances of their
algebras in other work. Commutative row algebras are similar to
separation algebras of Dockins et al. (2009), but use a partial function
to characterize the operation of a partial monoid. In prior work,
the choice of using a propositional relation versus using a partial
function for the monoidal operation mainly depends on what suits
the meta-language in which one develops the theory. In our work,
we cannot use either because monoidal operations such as _ l_'_ in
section 4.8 are non-deterministic (or, not functional). Sometimes this
can be dealt with by quotienting the carrier of the monoid by an ap-
propriate equivalence and defining a partially deterministic monoid
on the quotient.63 In our work, we not only have a non-deterministic
monoid (i.e., different compositions of the same elements: a b ' c
and a b ' d where c 6= d), but also a proof relevant monoid (i.e.,
a b ' c in multiple, essentially different ways).

The Market PRSA is inspired by Iris’s Auth camera64, which serves
a similar purpose: relating the provider of a resource to its clients.
Elements of Auth A are essentially pairs (x , y) of A’s. The left author-
itative element can either be present or not, and cannot be separated.
If it is present, then we must have the inclusion x z ' y, for some
leftover resource z. Unfortunately, because of the inclusion evidence,
the Auth construction does not transfer well to the proof-relevant set-
ting: to prove the laws of Auth A for an arbitrary PRSA A, one needs
the higher structure of A—e.g., to prove that composing -assocr

with -assocl is the identity. The Market PRSA is a generalization of
the model for counting permissions by Bornat et al.65.

Linear Types and Separation Logic. We used ideas from separation
logic to write interpreters for linear languages that are intrinsically
type safe. There has also been prior work on using separation logic
to prove type safety in an extrinsic manner. A notable development
in this direction is RustBelt66, where they used the technique of
logical relations in Iris67 to prove type safety and data race freedom
of the Rust type system and some of its standard libraries. Contrary
to our work, these developments on logical relations are based on an
untyped operational semantics instead of a well-typed interpreter.

Another line of recent work developed a separation logic for
proving functional correctness of message-passing programs called
Actris68. Actris has a notion of dependent protocols inspired by
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session types. In recent work, Actris was used to prove semantic
soundness of a small-step operational semantics for a language with
session-typed communication in conjunction with other features
such as polymorphism.69

4.11 Conclusions

We presented the development of intrinsically-typed interpreters
for LTLCref and a session-typed language LTLCses. The Agda de-
velopment consists of (1) the library for proof-relevant separation
logic and the described functional abstractions, (2) an interpreter for
LTLC and LTLCref, and (3) the syntax and semantics of LTLCses.

The interpreters that we defined for LTLCref (section 4.7) and
LTLCses (section 4.8) are executable and type-safe specifications
whose meaning is not obscured by explicit proof work. The few
proof terms that are still present in their definitions are trivial to
fulfill using the laws of PRSAs, and thus impact the clarity of the
semantics less than the partiality present in untyped interpreters.
Using tensorial strength to enable programming with the external
bind of these monads, and using a free monad to implement con-
currency and communication, we managed to preserve the familiar
look of monadic interpreters.

In the present work we focused on the typing and use of a
monadic interface for effects in the presence of separation. The
implementations of the monadic operations were of lesser concern, be-
cause they are generic and reusable. These operations have to poke
through the abstractions of its interface (i.e., the logic) and look at the
separation witnesses. It would be interesting to further investigate
if this can be improved. It seems that one could avoid some more
manipulation of the separation witnesses if one adopts a completely
point-free programming style. In current day dependently-typed lan-
guages this is not very appealing, because we cannot use the builtin
support for defining functions using dependent pattern matching.

Because the remaining proofs of separation are mechanical, using
only the axioms of the PRSAs, it seems likely that we can use
some lightweight automation to fill them in.70 We would also
like to investigate whether Agda’s rewriting71,72 could be used to
automatically eliminate separation witnesses containing ε.
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5 Typed Compilation with Nameless Labels

“If you want to go somewhere,
goto is the best way to get there.”

— Ken Thompson

In chapters 3 and 4, we looked at interpreters for different pro-
gramming languages. In this section, we look at another program-
ming language backend: compilers. Compilers are usually imple-
mented as a pipeline of transformations of a source program. Each
transformation brings the source program closer to an optimized
program in the—typically low-level—target language. In this chap-
ter we develop a compiler pipeline that transforms programs from
a small imperative language IMP 1 to programs in a subset of JVM
bytecode2. The multi-stage compiler pipeline is depicted on the right.
This chapter will mainly focus on the third stage, which does the
translation of structured control flow (e.g., if-then-else expressions
and while-loops) to bytecode with jumps to labeled instructions.

Formally, we can understand compiler transformations as transla-
tions between languages. The source, intermediate, and target lan-
guages can each be equipped with their own static and/or dynamic
semantics. Each transformation then poses verification challenges.
Compilers that go wrong turn “correct” source programs into “incor-
rect” target programs. By relating the semantics of the source and
target languages of transformations, we can make that statement
more precise: compilers that go wrong translate source programs to
target programs with an unrelated semantics. Conversely, a correct-
ness criterion for a compiler transformation states that it translates
between programs whose semantics are related.

There are different correctness criteria that we can consider, de-
pending on the type of semantics for the languages and the different
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notions of relatedness between them. Functional correctness of com-
pilers is a very strong result proving a simulation relation between
the dynamic semantics of the source and the target of compilation.
The most extensive and well-known projects in this direction are
CompCert3 and CakeML4, which provide fully functionally verified
compilers for the C and ML programming languages, respectively.
The great confidence in such compilers comes at the price of the
research and development effort that is required to state and es-
tablish their correctness. Projects like CompCert and CakeML are
the result of a decade of work into specifying the semantics of the
(intermediate) languages involved in the compiler, and specifying
and proving the simulations between these semantics. If we want
to avoid these costs of functional verification, but still want to avoid
a large class of miscompilations, we can instead verify type correct-
ness of a compiler5,6,7,8. This is a weaker property than functional
correctness, but is much easier to specify and prove, as it does not
involve the dynamic semantics of the source and target languages of
transformations. At the same time, it still rules out many bugs in
a compiler, because we are guaranteed that well-typed target code
does not “go wrong”9.

One method to verify type correctness of a compiler is by im-
plementing it in a proof assistant and proving the type correctness
property extrinsically—i.e., by writing a separate proof that reasons
about the implementation of the compiler. This approach has the
same disadvantages as extrinsically proving type-safety of inter-
preters. First, verification may be difficult if one does not implement
the compiler in way that accommodates verification. Additionally,
one only discovers bugs by failing to finish the type correctness
proof, so that feedback on the design of the compiler comes at a
late stage in the development rather than interactively during the
implementation.

As part of our mission to equip language developers with the
tools to implement typed languages safely, we believe that it should
be feasible to implement compilers in an intrinsically typed fashion
instead. That is, to define data types representing well-typed source
and target programs, and to implement the compiler as a function
from the former to the latter. We call this an intrinsically-typed10

compiler11, because it verifies the type-correctness property of the
compiler internally, as part of the definition. Typed language trans-
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formations tend to be more complicated than typed interpreters,
because the output of a transformation is an entire program, rather
than a value. The type invariants of programs tend to be more
complicated than those of values. For example, because programs
have more forms of name binding. In this chapter we extend the
state of the art of intrinsically typed compilation to compilers that
output a linear representation of bytecode—i.e., where all control-
flow is represented by means of jump instructions to labeled code.
Producing linear code is an essential step of a complete compiler.

5.1 The Problem of Intrinsically-Typed Labels and Jumps

Consider the following compilation of a conditional expression.

Compiler : Set � Set

Compiler A = Label � Label × Bytecode × A

compile : Exp � Compiler >
compile (if c then e1 else e2) = do

compile c
lthen← freshLabel

tell [ iftrue lthen ]

compile e2

lend← freshLabel

tell [ goto lend ]

attach lthen (compile e1)

attach lend (return tt)

Pre stack type Label Instruction(s) Post stack type

ψ [[ c ]] boolean :: ψ
boolean :: ψ iftrue lthen ψ

ψ [[ e2 ]] a :: ψ
a :: ψ goto lend a :: ψ

ψ lthen [[ e1 ]] a :: ψ
a :: ψ lend nop a :: ψ

N

Figure 5.1: A single case of a
monadic compiler, and a table
with the corresponding
compilation template. The
expression c is a boolean and e1

and e2 are typed a. We use [[ e ]]
to denote the compilation of e.

It is written in a declarative style that exactly mirrors the compilation
template shown on the right. Unfortunately, even if we implement
this compiler in a typed language like Haskell, the programmer can
still make mistakes that are essentially type errors. For example,
the type checker cannot enforce that the programmer attaches the
label lthen after using it as a jump target. If the programmer fails
to do this, then the output of the compiler is not well-bound (and
thus also not well-typed) bytecode. Ideally, we want to rule out all
such mistakes and guarantee that any compilation function that is
type-correct in the host language, outputs well-typed bytecode.

To rule out these mistakes, we can try to make use of an intrinsically-
typed representation of bytecode. Using dependent types, we can
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strengthen the types of the embedding of bytecode, as well as the
(monadic) operations that manipulate it, so that these express the
type constraints of bytecode. The goal of this chapter is to accomplish
exactly that. Importantly, we want to do this in such a way that
we can use these new and improved operations to define compile

without spoiling its declarative nature. Key to this is ensuring that
the formulation of bytecode typing is compositional, so that the well-
typed operations (like the monadic operations) can be composed
into a well-typed compiler with little manual proof effort.

The declarative nature of the untyped compiler above is accom-
plished by writing it as a computation in the monad Compiler, which
combines a writer monad with state. The writer part collects the
generated instructions, and the state part provides a supply of fresh
labels. The (writer-) monad operation tell is used to output a given
sequence of instructions, and the operation attach is used to label the
first instruction of the output of a compiler computation. Recursive
invocations of the compiler are used to produce the output for the
sub-expressions.

Assuming that the input expression is well-typed, we now ask
the question: is the result of the compiler well-typed? The typing of
instructions is based on their effect on the state of the machine that
executes them. For the set of instructions shown, the part of the state
that matters is the operand stack. Type correctness of the bytecode
produced by the compiler requires the stack types to match between
instructions and subsequent instructions. For most instructions this
is the next instruction in the sequence, but for (conditional) jumps
(i.e., iftrue and goto) this is an instruction marked by a label. In
addition, labels must be well-bound—i.e., they must unambiguously
reference an instruction in the output. Concretely this means that
labels must be declared exactly once.

To see that the compilation of conditional expressions in figure 5.1
is indeed type correct, we need to make use of the stack invariant of
expression compilation, which states that executing the bytecode for
an expression e of type a in an initial stack configuration typed ψ

will leave a single value of type a behind on top of the initial stack
ψ. Using this invariant we can construct the typing for the bytecode
template shown in the table in figure 5.1, and verify that it satisfies
the type-correctness criterion. For example, iftrue lthen is followed
either by the subsequent instructions for the “else” branch, or the
bytecode labeled lthen for the “then” branch. Both expect a stack
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typed ψ, matching the type of the stack after popping the condition.
In verifying this correctness argument intrinsically, we encounter

two conceptual problems:

• Many operations of the compiler are simply not well-bound in
isolation. For example, the third operation tell [ iftrue lthen ] in
the compiler in figure 5.1, which outputs the iftrue instruction,
produces a jump with a dangling label reference lthen. That is,
it is type correct only provided that the label lthen is eventually
attached to some bytecode in the output.

• Even though the compilation in figure 5.1 appears locally well-
bound, type correctness crucially depends on the generated labels
lthen and lend being fresh for the entire compilation. That is, type
correctness depends not only on which concrete labels we fill in
for the symbolic labels in the template, but also on whether those
are different from the labels used in the surrounding bytecode,
and the bytecode of the condition and branch expressions.

In other words, bytecode typing appears to be a whole-program
property, that is simply not preserved by the individual operations
of our compiler. This makes it very difficult to intrinsically type the
operations of compilation. As we show in section 5.2, attempts to
do this result in instrinsically-typed compilers that are bloated with
explicit proofs of side conditions. This puts a burden on the pro-
grammer to prove these side conditions, and spoils the declarative
nature of the compiler.

Key idea 1: Nameless co-contextual bytecode. If bytecode typing is
indeed inherently anti-compositional due to global binding, how
can we expect to obtain a type-correct compiler by mere compo-
sition of the individual operations? We identify two reasons that
make bytecode and its typing anti-compositional: (1) the contextual
formulation of traditional typing rules, and (2) the use of names
to represent global label binding in bytecode terms. To address
these issues, we propose a new nameless and co-contextual12 typing
of bytecode.

In traditional typing rules, one deals with bound names (like
labels) using contexts. Contexts are inherently non-local, as they
summarize the surroundings of a term. In bytecode, the scope of
labels is not restricted, and consequently the label context contains
all labels in the program. This forces us into taking a whole-program
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perspective. For example, concatenating two independent, contextu-
ally typed bytecode fragments requires extrinsic evidence that the
defined labels are disjoint. This requires non-local reasoning, for
example, using a supply of provably, globally fresh label names. It
also requires weakening of typed bytecode as we bring more labels
into scope.

The co-contexts that we use on the other hand, only describe
the types of the provided label exports (i.e., label binders) and the
required label imports (i.e., the label references in jumps) of a byte-
code fragment. Co-contexts are principal13, in the sense that they are
the smallest set of exports and imports that work. This means that
weakening is never required. Moreover, by using a nameless repre-
sentation, there cannot be accidental overlap between the exported
labels. This means that we can always concatenate bytecode frag-
ments, simply adding up exports and imports. Our representation
is inspired by the nameless co-de-Bruijn representation of lexical
binding by McBride14, and the nameless representation of linear
references in chapter 4.

Key idea 2: Programming with co-contexts using separation logic. The
flipside of the co-contextual and nameless typed representation of
bytecode, is that a lot of information is encapsulated in a single
co-context composition relation. This proof-relevant relation appears
everywhere and is hard to manipulate by hand. To avoid this, we
show that this relation forms a proof-relevant separation algebra
(see section 4.4). The induced shallow embedding of separation logic
abstracts over co-contexts and their compositions, enabling us to
implement an intrinsically-typed version of the compiler in figure 5.1
with little manual proof work. The key result of our separation logic
is the intrinsically-typed freshLabel operation:

freshLabel : (Binder ψ ∗ Reference ψ) ε

Because labels are nameless, there is no need for state, and thus
freshLabel is not monadic. To ensure well-boundness, we distinguish
the two roles of labels in the types: binding and reference occurrences.
The operation freshLabel constructs a pair of both a binding occur-
rence of type Binder ψ and a reference occurrence of type Reference ψ

of the same label. The stack type ψ ensures that the two occurrence
are used in type-compatible positions. The two occurrences are
paired using a separating conjunction ∗. This hides the co-contexts, as
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well as the composition of these co-contexts that binds the reference
occurrence to the binding occurrence. The ε on the outside is the
empty co-context. The fact that the pair is typed using the empty co-
context can be understood as this pair being internally well-bound:
it does not import any labels, nor export any labels for a user on the
outside (i.e., the generated label really is fresh).

The rules of co-context composition prohibit the binding occur-
rence from being duplicated or discarded. This means that to the
programmer, the binding occurrence returned by freshLabel behaves
like a linear value. It can be passed around freely, but must eventually
appear in the output of the compiler. This ensures that jumps in the
output are intrinsically well-bound.

Technical contributions In this chapter we present an approach to in-
trinsic verification of type-correctness of compilers. After discussing
the key challenges and the key ideas that we use to overcome these
challenges (section 5.2), we make the following technical contribu-
tions:

• In section 5.3 we present a new nameless and co-contextual repre-
sentation of typed global label binding. We formalize it using a
generic, proof-relevant, ternary composition relation, that charac-
terizes exports and imports and their possible interactions.

• In section 5.5 we prove that this relation forms a proof-relevant
separation algebra (PRSA)—i.e., it is commutative, associative,
and has a unit. This again yields a separation logic that abstracts
over co-contexts and their compositions. This logic provides a
high-level language for writing intrinsically-typed programs that
use nameless labels.

• In section 5.7 we present a co-contextual typing of a subset of
JVM bytecode with labels and jumps. We use our separation logic
as a framework for specifying the typing rules, without explicitly
talking about co-contexts and their compositions. We show that
our co-contextual representation can be translated into code with
absolute jumps instead of labels.

• In section 5.8 we present the compilation of a small expression
language with structured control-flow to JVM bytecode. To im-
plement the compiler at the right level of abstraction with little
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manual proof work, we develop a linear writer monad for com-
piling with labels, implemented on top of our separation logic.

• In section 5.9 we explain how the compilation pass fits in an
intrinsically-typed compiler backend that we implemented in
Agda. The backend also includes a source language transforma-
tion (local variable hoisting), a target language optimization (noop

removal), and a transformation that eliminates labels in favor of
instruction addresses.

We finish the chapter with a discussion of related work (section 5.10),
and a conclusion (section 5.11).

5.2 Intrinsically Verifying Label Well-Boundness

In this section we show the straightforward named and contextual
typing of bytecode, and why it falls short for intrinsically typed
compilation. We then explain our key ideas: nameless and co-
contextual typing of bytecode, and using separation logic to program
with typed bytecode.

Bytecode with labels can be described as a simple term language

labels `

constants k
plain instructions i := pop | push k | goto ` | ...

labeled code points c := plain i | labeled ` i
bytecode b := nil | cons c b

The plain instructions of this language can be typed using the judg-
ment I ` i : 〈ψ1 ψ2〉, where the stack types (lists of types) ψ1 and
ψ2 express a precondition on the entry stack, and a postcondition to
the next instruction in the bytecode sequence, respectively. The map
I gives the entry stack typing for labeled instructions, so that jumps
(goto) can be typed:

Figure 5.2: Contextually- and
extrinsically-typed instructions.

H

T-Pop

I ` pop : 〈a :: ψ ψ〉

T-Push

k : a

I ` push k : 〈ψ a :: ψ〉

T-Goto

I(`) = ψ1

I ` goto ` : 〈ψ1 ψ2〉

The postcondition ψ2 of goto is unconstrained because the next
instruction in the sequence will not be executed after the goto has
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performed the jump. Instead, there is a premise I(`) = ψ1 that
ensures that the labeled target instruction `—i.e., the actual next
instruction of goto at runtime—has the right entry stack type.

Unlike plain instructions, code points can define labels. The
judgments E, I ` c : 〈ψ1 ψ2〉 for code points and E, I ` b : 〈ψ1 
ψ2〉 for bytecode therefore use an additional context E, which maps
each binding occurrence of a label to its entry stack type. This
context is linear so as to enforce that every label is defined exactly
once:

Figure 5.3: Contextually- and
extrinsically-typed bytecode.

H

T-Plain

I ` i : 〈ψ1 ψ2 〉 E = ∅

E, I ` plain i : 〈ψ1 ψ2〉

T-Labeled

I ` i : 〈ψ1 ψ2 〉 E = ` 7→ ψ1

E, I ` labeled ` i : 〈ψ1 ψ2〉

T-Nil

E = ∅

E, I ` nil : 〈ψ ψ〉

T-Cons

E1, I ` c : 〈ψ1 ψ2 〉 E1 t E2 ' E E2, I ` b : 〈ψ2 ψ3〉
E, I ` cons c b : 〈ψ1 ψ3〉

The linear behavior of the context E is visible in the leaves (T-Plain,
T-Labeled, T-Nil), where we restrict E to the smallest possible
context (i.e., no weakening), and in the nodes (T-Cons), where
the condition E1 t E2 ' E separates E in disjoint fashion among
the sub-derivations (i.e., no contraction)15. We refer to the disjoint
separation of the linear context as the disjointness condition of label
well-boundness.

The typing judgment E, I ` b : 〈ψ1 ψ2〉 itself does not enforce
that every referenced label has a corresponding binder. Hence, in
addition to a proof of the typing judgment, an inclusion condition
I ⊆ E needs to be proven at the top-level for the whole bytecode
program. Equivalently, it suffices to prove a judgment E, E ` b :
〈ψ1 ψ2〉 at the top level. After all, when I⊆ E holds, we can weaken
a typing E, I ` b : 〈ψ1 ψ2〉 to E, E ` b : 〈ψ1 ψ2〉.

The first step towards proving compiler type-correctness intrinsi-
cally is to internalize the typing rules in the bytecode syntax. The
result is an inductive type family Bytecode ψ1 ψ2 E I, indexed by the
two stack types ψ1 and ψ2 of type StackTy16, and the maps E and I
of type LabelCtx:

StackTy = List Ty

LabelCtx = Map Label StackTy
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For brevity we do not specify the set of types Ty here, and we leave
the type of maps Map abstract. The typed syntax is as follows:

data Instr : StackTy � StackTy � LabelCtx � Set where
pop : Instr (a :: ψ) ψ I
push : Constant a � Instr ψ (a :: ψ) I
goto : I [ ` ]= ψ1 � Instr ψ1 ψ2 I

data Code : StackTy � StackTy � LabelCtx � LabelCtx � Set where
plain : Instr ψ1 ψ2 I � Code ψ1 ψ2 ∅ I
labeled : ∀ ` � Instr ψ1 ψ2 I � Code ψ1 ψ2 (` 7→ ψ1) I

data Bytecode : StackTy � StackTy � LabelCtx � LabelCtx � Set where
nil : Bytecode ψ1 ψ1 ∅ I
cons : Code ψ1 ψ2 E1 I � (E1 t E2 ' E) � Bytecode ψ2 ψ3 E2 I � Bytecode ψ1 ψ3 E I

N

Figure 5.4: Contextually- and
intrinsically typed bytecode

Intrinsically typed label references are treated in a traditional man-
ner: context membership I [ ` ]= ψ1 says that context I contains the
label ` of stack type ψ1. Label definitions are also treated in the
same way as in the typing rules of figure 5.3 using the linear context
E. Consequently, constructor plain sets E to be the empty map ∅,
and the constructor labeled sets E to be the singleton map ` 7→ ψ1.

Again, we point out the side conditions that one needs to prove
to ensure well-boundness. The disjointness condition E1 t E2 ' E is
intrinsic to the constructor cons of Bytecode and ensures that labels
are bound at most once. To ensure that every label that is referenced
is also bound, it is necessary to extrinsically prove the top-level
inclusion condition I ⊆ E for the whole program. We now show
that these side conditions are a key obstacle that prevent us from
implementing an intrinsically typed compiler without manual proof
work.

Let us take a look at a candidate signature for an intrinsically
typed counterpart to the untyped monadic compiler in figure 5.1:

compile : Exp a � ∀ E1

� ∃〈 (λ E2 � (E1 # E2) × Bytecode ψ (a :: ψ) E2 E2) 〉

Here, Exp a is a type family for well-typed source expressions of
type a. Similar to the untyped compiler, we thread a supply of
fresh labels, represented concretely using the label context E1 of
already defined labels. The compiler then returns the set of newly
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introduced labels E2, which must be disjoint from E1. We write
disjointness E1 # E2, which is defined as ∃〈 (λE � E1 t E2 ' E) 〉.
The returned bytecode Bytecode ψ (a :: ψ) E2 E2 binds all the labels
of E2 and thus satisfies the inclusion condition. The stack indices ψ

(for the pre stack type) and a :: ψ post stack type enforce the stack
invariant of compiled expressions.

Although it is possible to give a direct implementation of the
function compile with the given signature, such implementations do
not have the declarative appeal of the untyped compiler in figure 5.1.
Compilation of expressions like if c then e1 then e2 requires multiple
recursive invocations of the compiler, which requires threading of
the label context, as well as manual concatenation of the outputs.
The latter comes with proof obligations. In particular, we have to
weaken the imports of typed bytecode to the set of all generated
labels. We also have to prove the disjointness conditions required
for concatenation. This results in a definition that is bloated with
proof terms.

One may wonder if we can hide the threading of the label con-
text, and the concatenation of the output in a monad, as we did in
the untyped compiler. This would require us to type the monadic
operations (return, bind, freshLabel, tell, and attach) so that we can
implement the compiler compositionally with little manual proof
work. In what follows, we will argue that contextually typed byte-
code is not well-suited for that, because the two conditions for label
well-boundness are inherently anti-compositional, whole program
properties.

The first problem is that the inclusion condition of bytecode only
holds for whole programs. That is, while it holds for the output
of compile, it does not hold for the individual monadic operations
that we wish to use. For example, the output written by tell [ goto l ],
which has type Bytecode ψ ψ ∅ (` 7→ ψ), does not satisfy the inclu-
sion condition, because (` 7→ ψ)* ∅. It thus appears inevitable that
the inclusion condition is proven extrinsically in the implementation
of expression compilation, because it is something that only holds at
the level of whole programs, and not at the level of the individual
monadic operations.17

The second problem is related to the disjointness condition of well-
boundness. In the untyped compiler in figure 5.1, disjointness is
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morally ensured through principled use of freshLabel. An intrin-
sically typed version of freshLabel will thus have to provide some
evidence of freshness: a proof (` 7→ ψ) # E1 that the returned label `
is disjoint from already bound ones E1. This evidence is required
when invoking attach `. The problem, however, is that the freshness
evidence is not stable. Consider, for example, the following untyped
compilation:

do
` ← freshLabel

compile e

attach ` (return tt)

Assume it is indeed the case that before generating ` the set of
already bound labels was E1, and we get the evidence [ ` ] # E1. By
the time we want to attach `, an additional (existentially quantified)
number of labels E2 have been bound by the compilation of e. Con-
sequently, we will need evidence [ ` ] # (E1 ∪ E2) to be able to safely
attach `. Proving this requires explicit reasoning about disjointness,
combining the evidence returned by freshLabel with the evidence
returned by the recursive invocation to compile.

These problems are symptomatic of the anti-compositional nature
of typing label binding in bytecode. To some extent, this was to be
expected: label names have to be globally well-bound and unique.
Contextual bytecode typing enforces this as a whole-program prop-
erty. The monadic compiler on the other is mostly manipulating
partial bytecode programs, as it constructs its output piecewise.
Hence, we are facing the question how we can generalize whole
program typing to partial programs. The only way to do this is
via side conditions that express how individual operations contribute
to a proof that exceeds their local scope: the proof of the top-level
conditions.

Instead of further pursuing this generalization of contextual
typing, we propose a co-contextual reformulation of bytecode where
labels are nameless. Using our nameless encoding we avoid the dif-
ficulties that we sketched above. The main reason for this is that a
nameless representation rules out any sort of accidental overlap be-
tween labels. That is, unless a function gets passed a label explicitly,
it has no means to get hold of that label. As a consequence, it is
unnecessary for compile to provide evidence that it does not bind
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the labels that we intend to attach later. It could not possibly do this,
because we have not informed it about the existence of these labels.
As we will see at the end of this section, our nameless representation
makes it possible to assign strong types to the monadic operations
on bytecode that intrinsically ensure label well-boundedness.

The means by which we obtain this nameless representation is via
a co-contextual typing of bytecode with a proof-relevant notion of co-
context merging. We introduce this idea first using typing rules, so as
to make it easy to compare to the contextual typing rules in figure 5.3.
We say that a typing rule is co-contextual18,19 if instead of receiving
a context, it produces a co-context. Co-contexts must pertain to the
term at hand and contain no information that is irrelevant to the
term. This is useful in dependently typed programming, which
benefits from expressing invariants as local knowledge20.

For bytecode, co-contexts are pairs E I of an export context
E and import context I, which we call interfaces K. The roles of E
and I are analogous to the E and I in the contextual rules. However,
they are both lists of label types (rather than maps) because we have
done away with names. Additionally, I is constrained to be the
smallest possible in the same way as the linear context E which
is already naturally in a co-contextual style. For example, nil has
context ε = [] []. The resulting rules are summarized in figure 5.5,
highlighting the differences with a shaded background .

Figure 5.5:
Co-contextually-typed bytecode.

H

Co-Pop

I = []

I ` pop : 〈a :: ψ ψ〉

Co-Push

k : a I = []

I ` push k : 〈ψ a :: ψ〉

Co-Goto

I = ψ1

I ` goto : 〈ψ1 ψ2〉

Co-Plain

I ` i : 〈ψ1 ψ2 〉 E = []

E I ` plain i : 〈ψ1 ψ2〉

Co-Labeled

I ` i : 〈ψ1 ψ2 〉 E = ψ1

E I ` labeled i : 〈ψ1 ψ2〉

T-Nil

K = ε

K ` nil : 〈ψ ψ〉

Co-Cons

K1 ` c : 〈ψ1 ψ2 〉 K1 K2 ' K K2 ` b : 〈ψ2 ψ3〉
K ` cons c b : 〈ψ1 ψ3〉

How does the nameless representation work? The goto and labeled

operations no longer contain labels, so how does one know where
to jump to? The key idea—inspired by McBride’s co-de-Bruijn
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representation21—is that type derivations (which in the intrinsically
typed version will be part of the syntax) contain that information. In
particular, the ternary relation K1 K2 ' K for interface composition
(or interface separation, depending on the perspective), is proof
relevant. This means that proofs of K1 K2 ' K are values that
describe how reference occurrences appearing in I relate to binding
occurrences in E.

Why does this address the problems with the contextual typing
from figure 5.3? As we already emphasized, by going nameless
we no longer have accidental overlap between labels. This means
that unlike the linear context separation relation E1 t E2 ' E
(appearing in the contextual typing rule T-Cons), the co-contextual
counterpart K1 K2 ' K (in Co-Cons) is not a proof obligation.
Rather, it represents a choice how to relate the labels in K1 with the
labels in K2. There is one trivial proof of K1 K2 ' K: the labels in K1

and K2 are independent. This is the proof that we choose when we
append the output of two recursive calls of the compiler, for example,
and which requires no additional evidence. In other words: unlike
in the contextual formulation, avoiding accidental label binding
requires no cooperation from the compiler writer. Apart from the
trivial proof, one can construct non-trivial proofs of K1 K2 ' K that
relate references in K1 with binders in K2, and vice versa.

Another important aspect of interface composition K1 K2 ' K, is
that binding and reference occurrences cancel each other out. This
formalizes the idea that the reference occurrences are also obligations
that are fulfilled by corresponding binding occurrences. All copies of
the same reference occurrence are canceled out by a single binding
occurrence. Because of this, labels that are used and defined in a
fragment of bytecode, and are not used outside of this fragment,
do not appear in the exports of that fragment. This effectively achieves
scoping of labels, but without adding more structure to the bytecode
that is not really present in the language. This logical scoping of labels
allows us to prove the inclusion condition locally, rather than as a
whole-program property.

The question now becomes how we write programs using name-
less labels. As we will see in section 5.3, the actual definition of the
proof-relevant interface composition relation K1 K2 ' K is compli-
cated. Certainly, if we have to manually work with the definition of
that relation, then we fail to accomplish our goal of writing proof-
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free compilers. This brings us to the remaining idea: abstracting
over interfaces and their composition using an embedding of proof-
relevant separation logic, and treating binding occurrences as linear
values in a compiler.

To define the compiler, we need to define a type family Bytecode

that internalizes the co-contextual typing rules in the nameless
bytecode syntax. The definition of this type family can be found
in section 5.7, but for now, we are content with only defining the
syntax of intrinsically typed labels. We need two variations: Binder

for binding occurrences, and Reference for reference occurrences:

data Binder : StackTy � Intf � Set where
binder : Binder ψ ([ ψ ] [])

data Reference : StackTy � Intf � Set where
reference : Reference ψ ([] [ ψ ])

The stack type ψ types the occurrences: the binding occurrence must
be attached to an instruction that expects a stack typed ψ, and the
reference occurrence must be used by a jump instruction in a stack
that has type ψ. The interface of the binding occurrence consists of
the singleton export of ψ, whereas the reference occurrence consists
of the singleton import of ψ.

We can now give the type of the touchstone of our nameless
representation of labels:

Figure 5.6: A constant “fresh”
pair of a binder and a reference
to it.

H

freshLabel : ∃〈 (λ K1 K2 � Binder ψ K1 × (K1 K2 ' ε) × Reference ψ K2) 〉

That is, freshLabel is a constant pair of a binding and reference oc-
currence. It is constant, because there is no need to invent a unique
name. The binding relation is established by the glue that sits in
between: the composition of the interfaces K1 K2 ' ε. The singleton
export and import cancel each other out, so that the pair itself has
the empty interface ε. This means that this compound object is
internally well-bound: it does not import or export any labels from
the surroundings. This naturally means that the occurrences are
fresh with respect to any other label in the surroundings.

The final step is to realize that we can write this more succinctly
if we abstract everywhere over interfaces and use the ∗ connective
of separation logic22

freshLabel : (Binder ψ ∗ Reference ψ) ε
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Separation logic provides a high-level language in which we can
express the types and implementation of operations on the co-
contextually typed bytecode at a suitable level of abstraction. From
the perspective of the logic, label interfaces are a proof-relevant
resource, just like linear typing contexts (section 4.5) and session
contexts (section 4.6).

In section 5.3 we discuss how interface composition gives rise to a
proof-relevant separation algebra. This yields a well-behaved model
of separation logic on predicates over interfaces Intf (section 4.4). We
use this high-level language as a logical framework for defining the
intrinsically typed, co-contextual version of bytecode in section 5.7,
and also to type all operations on bytecode and nameless labels. As
a glimpse forward, we now give the signature of the typed compiler:

Figure 5.7: Signatures of the
compiler and compilation
operations that we define in
section 5.8.

H

Bytecode : StackTy � StackTy � Pred Intf

Compiler : StackTy � StackTy � Pred Intf � Pred Intf

Compiler ψ1 ψ2 P = Bytecode ψ1 ψ2 ∗ P

return : ∀[ P⇒ Compiler ψ ψ P ]

bind : ∀[ (P −−∗ Compiler ψ2 ψ3 Q)⇒ (Compiler ψ1 ψ2 P −−∗ Compiler ψ1 ψ3 Q) ]

tell : ∀[ Bytecode ψ1 ψ2 ⇒ Compiler ψ1 ψ2 Emp ]

attach : ∀[ Binder ψ1 ⇒ Compiler ψ1 ψ2 P −−∗ Compiler ψ1 ψ2 P ]

compile : Exp a � ε[ Compiler ψ (a :: ψ) Emp ]

If you squint your eyes so that the separating conjunction ∗ becomes
a normal product, the magic wand −−∗ becomes a normal function
arrow, and Emp becomes >, then the monad is “just” a parame-
terized23 writer monad with the usual return, bind, and tell. The
indexing with stack types ψ1 and ψ2 is used to type the bytecode
output24. The fact that attach operation takes a binding occurrence of
a label is made apparent in its type. The type of attach also expresses
that the type of the label must match the entry type φ1 of the output
that it will be attached to.

The separation logic connectives help us abstract over interfaces
and their compositions. This works uniformly for the low-level
operations of compilation and for expression compilation, despite
the fact that only expression compilation really preserves label well-
boundness. We will show that the same logic is useful to define the
typed syntax, and non-monadic functions over syntax.
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5.3 A Model of Nameless Co-contextual Binding

We present a model of nameless co-contextual global binding. Its
elements K are binding interfaces, which abstractly describe the label
binders and label references of a syntax fragment. Interfaces are
composed using a ternary proof-relevant relation K1 K2 ' K. We
first present the model using a handful of examples that demonstrate
its key features and then define it formally. Finally, we explain why
proof relevance is essential, by considering the translation from
labels to absolute addresses.

We define label interfaces K : Intf as pairs of label typing contexts
LabelCtx:

StackTy = List Ty

LabelCtx = List StackTy

record Intf : Set where
constructor _ _

field
exp : LabelCtx

imp : LabelCtx

ε : Intf

ε = [] []

The projections exp and imp describe the label binders (the exports)
and label references/jumps (the imports), respectively. We write ε

for the empty interface.

The fact that we use a nameless representation of label binding
is visible in two ways. First, label contexts LabelCtx are mere lists.25

Second, the relation K1 K2 ' K for composition of interfaces K1 and
K2 into K is proof relevant—i.e., proofs of K1 K2 ' K are values
that choose between options of relating the labels in K1 to those
in K2. Before we formally define this relation, we illustrate its key
features through a number of examples.

The simplest way to compose interfaces—which is applicable for
any choice of operand interfaces—is to take the disjoint union of the
imports and exports of the interface:

(E1 I1) (E2 I2) ' ((E1 ++ E2) (I1 ++ I2)) (1)

In this case there is no interaction between the binding of the parts,
and their label use is completely disjoint. A concrete instance of the



128 correct by construction language implementations

above composition would be to compose two interfaces that both
have an import (i.e., a label reference) of type ψ:

([] [ ψ ]) ([] [ ψ ]) ' ([] [ ψ , ψ ]) (2)

The interfaces ([] [ ψ ]) could be assigned to two bytecode sequences
that both contain a single jump instruction with target stack type ψ.
By taking the disjoint union, we express that these jump instructions
refer to disjoint label binders. If we wish to express that these jump
instructions refer to the same binder, then the composition relation
can contract them. For example:

([] [ ψ ]) ([] [ ψ ]) ' ([] [ ψ ]) (3)

Equation (1) and equation (3) show that the relation K1 K2 ' K is
not functional—there is a choice whether to contract imports in K1 or
K2, or not. Apart from not being functional, the relation K1 K2 ' K
is also proof relevant. The different proofs the relation are values
that represent the different choices of composing K1 and K2. For
example, consider a composition of two interfaces where the left has
one import of type ψ, and the right and composite interfaces have
two imports of type ψ:

([] [ ψ ]) ([] [ ψ , ψ ]) ' ([] [ ψ , ψ ]) (4)

The interface ([] [ ψ ]) on the left could be assigned to bytecode that
contains a single jump instruction with target stack type ψ, while the
interface ([] [ ψ , ψ ]) on the right could be assigned to bytecode
that contains two jump instructions with target stack type ψ. We
can now contract the import on the left in two ways—do we wish to
contract it with the first or the second import on the right? Since we
consider the composition relation to be proof relevant, there are two
proofs of equation (4) corresponding to this choice.

We have seen that the interface composition relation can be used
to contract imports in K1 and K2, which corresponds to expressing
different jump instructions refer to the same target binder. Contrac-
tion of exports is impossible, as it would not make sense to express
that two binders should become the same target. Thus, for example,
we do not have:

([ ψ ] []) ([ ψ ] []) ' ([ ψ ] []) (5)

Given the sub-structural nature of composition, we conclude that
exports are treated essentially as linear, and imports as relevant. This
agrees with the co-contextual typing style.
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We now turn to binding an import to an export. Using composi-
tion K1 K2 ' K, we may bind an import from K1 to an export from
K2 of the same type, and vice versa. For example, we can bind an
import typed φ from the left, using an export typed φ from the right:

([] [ φ , ψ ]) ([ φ ] []) ' ([ φ ] [ ψ ]) (6)

The interface ([] [ φ , ψ ]) on the left could be assigned to bytecode
that contains two jump instructions to label references of types φ

and ψ, while the interface ([ φ ] []) on the right could be assigned
to bytecode that contains no (unbound) jump instructions, but a
binding occurrence of type φ. The composition expresses that the
reference occurrence of the label of type φ on the left is bound to
the binding occurrence on the right. Because the import of φ is
fulfilled—i.e., the jump instruction to φ has been bound—φ does not
reappear in the imports of the composite.

When binding an import using an export, there is a choice
whether we want to use the export again or not. In equation (6), the
export φ remains available in the composition, which means that
another jump instruction can target it as well. Instead, we could
decide to hide the export φ:

([] [ φ , ψ ]) ([ φ ] []) ' ([] [ ψ ]) (7)

Hiding an export is only allowed if it has been bound by an import.
In other words, if we choose not to bind an import using an export,
then we cannot hide the export. This ensures that the rules are truly
co-contextual by keeping the label contexts tight (and also rules
out unused label declarations). This ensures that the model has no
mysterious compositions with the unit ε, like:

ε ([ ψ ] []) ' ε – counterexample (8)

We make the properties of identity compositions more precise in the
next section.

The hiding gives rise to logical scopes, which are not present
in the syntactical structure, but are present in the proof-relevant
binding model. Figure 5.8 shows how the various features of the
composition relation can be used to type the bytecode corresponding
to the conditional expression.
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plain (push true)

plain iftrue

plain (push 42)

plain goto

labeled (push 18)

labeled nop
[]

ε ε ' ε

([] [ lthen ]) ([ lthen ] []) ' ε

ε ([ lthen ] []) ' ([ lthen ] [])

([] [ lend ]) ([ lthen , lend ] []) ' ([ lthen ] [])

([ llthen ] []) ([ lend ] []) ' ([ lthen , lend ] [])

([ lend ] []) ε ' ([ lend ] [])

N

Figure 5.8: Interface
compositions in the result of
compilation of
if true then 42 else 18. For every
composition K1 K2 ' K, the
interfaces K1 and K2 describe
the imports and exports of the
head and tail of that node
respectively, whereas K does the
same for the entire node. Hence,
if a node is labeled with a
composition K1 K2 ' K, then
the node above it must have a
composition of the form
(...) K ' (...). The dashed blue
path and dotted red path
represent the effective binding
of lthen and lend respectively.

The tree represents the list-like bytecode abstract syntax, where
every node is annotated with the interface composition. Since we
use a nameless representation, the only way to tell which label goes
where (visualized using the blue and red arrow) is by examining the
proofs that witness the composition. The labels are only in scope
in the parts of the tree that the dotted lines traverses. Most notable,
they can be in scope in the spine of the tree, without being in scope
of some of the instructions that are attached to it.

The figure also shows how labels are hidden from instructions
higher in the sequence using export hiding: when we bind a labeled
instruction to a goto (respectively, iftrue), the corresponding export of
type int :: ψ (respectively, ψ) is hidden, because there are no further
uses elsewhere.

5.4 Interface Composition, Formally

We now present the formal definition of interface composition
K1 K2 ' K. The formal definition must clarify (1) which imports
from K1 are bound by exports of K2 and vice versa, and (2) which
imports and exports from K1 and K2 are exposed by the composite
K. We take care to specify this in a way that ensures that each bound
import resolves unambiguously to a single export. In particular, this
means that each import that is bound to an export cannot reappear
in the composite imports (see equation (6)). Conversely, each import
that is not bound must appear in the import list of the composite K.
In addition, exports are treated relevantly: if K1 (respectively, K2) ex-
ports a binder that is not used to bind an import of K2 (respectively,
K1), then it must reappear in the exports of the composite K. But, if
exports in either K1 (respectively, K2) are bound by an input in K2

(respectively, K1) then they can be hidden in K.
To define interface composition, we first define two PRSAs for

disjoint label-context separation and overlapping label-context sepa-
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27 We will use the convention that a
primed label-context E′ represents the
leftovers of the context E.

ration. The former will model linear use of label binders, and the
latter will model relevant use of label references. Disjoint- and over-
lapping context separation are both instances of a generalized PRSA
for the separation of bags of elements of some resource R. A natural
definition of this generalized notion is to take our generalized PRSA
for list separation (figure 4.7) and superimpose proof relevant list
permutations xs! ys:

Figure 5.9: Defining the
proof-relevant separation of
bags by superimposing
permutations onto
proof-relevant list separation.

H

record BagSplit (xs ys zs : List R) : Set where
field

{xs’ ys’ zs’} : List R

– superimposed permutations
ρx : xs’! xs
ρy : ys’! ys
ρz : zs’! zs

– underlying list separation
sep : xs’ l ys’ ' zs’

zs

xs ys

zs’

xs’ ys’l

It is straightforward to prove that this ternary relation is again a
PRSA for any list element division relation that is a proof-relevant
partial semigroup respecting list permutations!.

We obtain two PRSAs for disjoint (_t_'_) and overlapping (_∪
_'_) label-context separation by instantiating the bag separation
relation in two ways. For the former, we take list element division
to be the empty relation. For the latter, we pick a relation that
duplicates an element26. We effectively get:

_t_'_ : LabelCtx � LabelCtx � LabelCtx � Set

_∪_'_ : LabelCtx � LabelCtx � LabelCtx � Set

Both are PRSAs respecting list permutations.

We can now formally define interface composition (E1 I1) (E2

I2) ' (E I) using an auxiliary relation Binds E I E’ I’ that expresses
that E’ and I’ consist of the “leftover” exports and imports after
binding some of the imports I to the exports E.27
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data Binds : (E I E’ I’ : LabelCtx) � Set where
binds : (I’ t ∆ ' I)

� (E’ ∪ ∆ ' E)

� Binds E I E’ I’

data _ _'_ : Intf � Intf � Intf � Set where
comp : Binds E1 I2 E1’ I2’

� Binds E2 I1 E2’ I1’
� (E1’ t E2’ ' E) � (I1’ ∪ I2’ ' I)
� ((E1 I1) (E2 I2) ' (E I))

N

Figure 5.10: Interface
composition relation.

The composition relation expresses that the composite (E I) of
(E1 I1) and (E2 I2) is obtained by (1) binding some of the
imports I2 to exports E1, resulting in “leftovers” I2’ and E1’, and
symmetrically binding certain I1 to E2, resulting in leftovers I1’ and
E2’, (2) adding up the leftover imports and exports to obtain E and I.
Exports are combined without overlap (i.e., using t), while imports
are combined with overlap (i.e., using ∪), implementing import
contraction. The intuition behind the asymmetry between the use
of disjoint separation for imports and separation with overlap for
exports comes from the fact that labels should be bound only once,
whereas they can be referenced multiple times.

As mentioned, the relation Binds E I E’ I’ specifies that E’ and I’
consist of the “leftover” exports and imports after binding some of
the imports I to the exports E. It disjointly separates the imports I
into those to be bound ∆, and those that are leftover I’. As shown in
the definition of interface composition, the leftover imports will have
to reappear in the imports of the composite interface. The bound
imports ∆ are also subtracted from the exports E to get the leftover
exports E’.

There can be overlap between E and E’, giving the option to re-
export used exports from the composite, as shown in equation (6).
Or, conversely, we only have the choice to hide an export from an
interface if it has been bound by an import, thus precluding the
composition in equation (8).

Since our binding model uses nameless label binders and refer-
ences, it is essential that the interface composition relation is proof
relevant. That is, labels are given a meaning not by the mere fact
that there exist witnesses for interface composition in all nodes of
the typing derivation, but by the specific witnesses that have been
used to construct the typing derivation. Although cryptic in its form,
the composition relation really lays out the binding paths visualized
in figure 5.8: jumps follow the path laid out by the witnesses of
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The technical material of this section was
not earlier described in a paper, but was
part of the submitted code artifact of
Rouvoet et al. 2021b.

This is a highly technical section describ-
ing a proof structure. The details of the
proof are not required to be understood
for the remainder of this chapter.

28 Dockins et al. 2009. “A fresh look at
separation algebras and share account-
ing”

the interface composition relation. The proof relevance becomes
most apparent in the last pass of our compiler backend (section 5.9),
where our nameless representation is translated into a representation
with jumps to absolute addresses.

5.5 Interface Composition as a PRSA

To make use of the logical connectives of the proof relevant sep-
aration logic that we developed in section 4.4, we need to prove
that interface composition is a PRSA. In this section we prove this
generically. That is, we abstract interfaces, the interface composition
relation _ _'_ and the auxiliary relation Binds (figure 5.10) from
LabelCtx to an arbitrary carrier R. We also abstract over the proof
relevant separation algebras _t_'_ and _∪_'_. We then prove the
generalized interface composition to be a PRSA by requiring the t
and ∪ ternary relations to obey generalized cross-split28 properties.
This provides some insight into the type of instances that we can
expect to exist.

We have to prove the identity laws ( -idl and -id−l), commutativity
( -comm), and associativity ( -assoc). Of these laws, associativity is
the challenging one. We will focus on that law in this section.
The proof of associativity only comprises 15 lines of Agda code,
but understanding it requires some insight which we will clarify
subsequently using a graphical depiction of the proof.

The instance we have to prove is:

-assoc : (σ1 : (A a) (B b) ' (AB ab))

� (σ2 : (AB ab) (C c) ' (ABC abc))

� ∃〈 (λ bc BC � (A a ) (BC bc ) ' (ABC abc )

× (B b ) (C c ) ' (BC bc )) 〉

Where we adopt the convention to write exports in uppercase, and
imports in lowercase. Composites (e.g., AB) are given names derived
from their parts (i.e., A and B).

Each of the two premises can be deconstructed into six com-
positions of elements of R, yielding twelve compositions in total.
These can be organized into six compositions on exports, and six
compositions on imports. This yields two composition diagrams,
which can be depicted as follows:
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29 Dockins et al. 2009. “A fresh look at
separation algebras and share account-
ing”

30 The original property is generalized to
PRSAs and to two notions of separation,
rather than one.
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Figure 5.11: Initial interface
composition trees. Capitals
denote exports and lowercase
denotes imports. The notation
∆b

A says “the exports from A
being bound to imports from b”.
The boxes mark the section that
we will rewrite using cross-split.

In both diagrams, the top three compositions come from premise
σ1 and the bottom three compositions come from premise σ2. We
write X′ (respectively x′) for the leftovers of X (respectively x). The
subtracted amount we write ∆z

Y, with the understanding that some
amount of exports Y are being used to bind imports z. Note that the
export and import diagrams exchange these bound elements. Also
note that the ∪ and t relations are opposite in the two diagrams.

We remark that both diagrams are such that we can not apply
associativity of either the ∪ or t relation anywhere. Note also that
the diagram contains two compositions of AB (respectively ab). To
make use of associativity of the underlying relations, we need to
push the t-separation of AB through the ∪-separation. To this end,
we will require a generalized cross-split29 property between the
relations for t and ∪:30

cross-split :

(a ∪ b ' z) � (c t d ' z) �
∃〈 (λ ac ad bc bd � (ac t ad ' a) × (bc t bd ' b)

× (ac ∪ bc ' c) × (ad ∪ bd ' d)) 〉

z

c d
t

a b
∪

⇒ ac ad bc bd

a

t
b

t

c
∪

d
∪

The cross-split property of Dockins et al. (2009) essentially says
that if one can cut a cake in two halves in two ways, then surely
one can also cut it in four quarters, such that the quarters are made
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up from the intersections of the four halves. We can depict our
generalized cross-split property pictorially as follows:
Where the four quarters ac–bd and the witnesses of the four compo-
sitions are existentially quantified. We apply this law to the marked
sections in the initial export and import diagrams, and obtain the
following diagrams:
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Figure 5.12: Step 1: after
rewriting figure 5.11 using
cross-split. The boxed sections
are transported between
diagrams to accommodate
re-association of C and c.

Now we want to re-associate the compositions of A, B, and C
(respectively a, b, and c). For A and B (respectively a and b) this is
readily possible. For C (respectively c) we need a decomposition of
∆c

AB (respectively ∆ab
C ). We transport these decompositions from the

opposite diagram—we marked the relevant decompositions in the
diagrams above.

After applying the re-associations, we obtain the diagram in
figure 5.13. From there, we want to use the inverse of the cross-split
property to obtain the re-association of the initial diagrams. To be
able to do this we again transported some compositions from the
export to the import diagram and vice versa. More precisely, we
transport the composition of ∆a

BC from the import diagram to the
export diagram, and we transport the composition of ∆bc

A from the
export diagram to the import diagram. The transported composition
pairs are marked in figure 5.13.
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Figure 5.13: Step 2: Re-associate
ABC, A, B, and C (respectively
abc, a, b, and c). Boxed sections
are again transported between
diagrams.

The last step is then to apply the inverse of the cross-split property,
which is the second assumption about the relations _t_'_ and _∪_-

'_. The final diagram is shown in figure 5.14 below.
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∪
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∪
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B

∪

N

Figure 5.14: Step 3: apply the
inverse of cross-split.

We have now shown that the ternary relation _ _'_ on interfaces
is associative. This is the main result of proving it to be a proof
relevant separation algebra. Commutativity is straightforward, and
so are the lemmas that say that it respects the natural notion of
equivalence in all three positions of the relation. Proving the identity
laws requires two more assumptions. In particular, we need to show
that both relations on the carrier R are positive. That is, the empty
element in R can only be decomposed into two empty elements:

t-isPositive : E1 t E2 ' ε � (E1 , E2) ≡ (ε , ε)

∪-isPositive : I1 ∪ I2 ' ε � (I1 , I2) ≡ (ε , ε)
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31 Of the necessary assumptions, the
cross-split property and its inverse are
the hardest (and lengthiest) to prove.
The cross-split property for generalized
bag separation (approx. 30 lines of Agda)
follows from the fact that it holds for
the underlying list separation, provided
that it holds for the element division re-
lation. The inverse of cross-split only
holds for bag separations (approx. 45

lines of Agda).

32 These modalities and their laws also
hold up for the more abstract PRSA that
we used in the previous section.

33 Altenkirch et al. 2015. “Monads need
not be endofunctors”

The disjoint separation of label contexts and the separation of label
contexts with overlap satisfy all the assumptions.31 Noteworthy is
that the cross-split assumptions do not hold for maps of identifiers
to types. The nameless representation of labels is key to enabling
the hiding of labels. When one tries to prove the associativity laws
for maps, the proof gets stuck because the re-association may extend
the scope of a hidden label over syntax that defined the same name.

5.6 Separation Logic for Interfaces

To specify intrinsically-typed bytecode syntax (section 5.7) and to
implement our compiler (section 5.8) we instantiate our separation
logic from section 4.4 with three different PRSAs: (1) disjoint context
separation _t_'_ to abstract over exports (i.e., label binders), (2)
context separation with overlap _∪_'_ to abstract over imports (i.e.,
label references), and (3) interface composition _ _'_ to abstract over
interfaces. To convert between these three separation logic instances,
we define modalities Export and Import for lifting objects from the
logics of label contexts to the logic of interfaces:32

data Export (P : Pred LabelCtx) : Pred Intf where
exports : P E � Export P (E [])

data Import (P : Pred LabelCtx) : Pred Intf where
imports : P I � Import P ([] I)

Both modalities are monotone and commute with the separating
conjunction:

mapExport : ∀[ P⇒ Q ] � ∀[ Export P⇒ Export Q ]

mapImport : ∀[ P⇒ Q ] � ∀[ Import P⇒ Import Q ]

zipExport : ∀[ (Export P) ∗ (Export Q)⇒ Export (P ∗ Q) ]

zipImport : ∀[ (Import P) ∗ (Import Q)⇒ Import (P ∗ Q) ]

Note that the separating conjunction ∗ in Export (P ∗ Q) is using
disjoint context separation _t_'_, whereas the ∗ in Import (P ∗ Q)

is using context separation with overlap _∪_'_, and the ∗ at the
top-level is using interface composition _ _'_. The fact that these
modalities convert from one logic to another means that they are
relative33.

The intuition for these dual modalities is that they generalize the
dual roles of labels as either imports (i.e., binders) or exports (i.e.,
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34 Lindholm et al. 2020. “The Java Vir-
tual Machine specification: Java SE 14

edition”

35 JVM bytecode uses instruction indices
that are local to the class file.

references). We can thus recover the interface predicates Binder and
Reference from section 5.2 as follows:

Binder ψ = Export (Own [ ψ ])

Reference ψ = Import (Own [ ψ ])

From now on, we will use the right-hand side of these definitions
directly, highlighting the role of the modalities in the bytecode syntax
and the monadic operations.

In section 5.3 we showed how the exports and imports of inter-
faces interact. This interaction is internalized in separation logic
over interfaces by the following operation:

freshLabels : ε[ Export (Own E) ∗ Import (Own E) ]

This operation generalizes the freshLabel operation we have seen
in section 5.2 from Binder and Reference to the Export and Import

modalities, thus allowing to generate multiple labels. Like matter
and anti-matter, the operation freshLabels shows that labels can
spontaneously come into existence in pairs of binding and reference
occurrences. Binding occurrences are represented as ownership of a
linear resource E [], whereas reference occurrences are represented
as ownership of a relevant (i.e., duplicable) resources [] E. The
definition of freshLabels relies on the fact that these resources are
dual, and thus cancel each other out: (E []) ([] E) ' ε.

5.7 Intrinsically-Typed Nameless Co-Contextual Bytecode

Using the separation logic as a logical framework, we now de-
fine intrinsically-typed bytecode. We adopt the perspective that
well-typed terms are separation logic predicates on interfaces, thus
abstracting over co-contexts and their compositions.

The typed bytecode language that we define is a subset of JVM
bytecode34. Unlike JVM bytecode, we use labels as jump targets.35

Labels can be translated away later in the compiler pipeline, after
the bytecode is optimized (section 5.9). Compared to the simple
bytecode languages from section 5.2, our JVM subset contains some
additional features: local variables, and multiple labels for a single
instruction. The latter simplifies compilation, but does not change
the verification problem that we described in section 5.2.
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The intrinsically-typed bytecode syntax internalizes the co-
contextual typing judgments shown in figure 5.5. We first define
plain instructions Instr Γ ψ1 ψ2:

VarCtx = List Ty

data Instr (Γ : VarCtx) : (ψ1 ψ2 : StackTy) � Pred LabelCtx where
nop : ε[ Instr Γ ψ ψ ]

pop : ε[ Instr Γ (a :: ψ) ψ ]

swap : ε[ Instr Γ (a :: b :: ψ) (b :: a :: ψ) ]

iadd : ε[ Instr Γ (int :: int :: ψ) (int :: ψ) ]

load : a ∈ Γ � ε[ Instr Γ ψ (a :: ψ) ]

store : a ∈ Γ � ε[ Instr Γ (a :: ψ) ψ ]

goto : ∀[ Own [ ψ1 ]⇒ Instr Γ ψ1 ψ2 ]

iftrue : ∀[ Own [ ψ ] ⇒ Instr Γ (boolean :: ψ) ψ ]

Variable binding is modeled contextually using a local variable
context Γ. As is usual, variables are modeled using proof-relevant
membership of the context a ∈ Γ, pointing out a specific element
in Γ. The indices ψ1 and ψ2 again denote the pre and post stack
typing. The values of these indices for the various instructions are
identical to the stack types in the extrinsic co-contextual rules. As
before, plain instructions only import labels (i.e., only contain label
references), and are thus typed as predicates over a LabelCtx. The
jump instructions (goto and iftrue) are the only instructions that have
imports, and use the predicate Own [ ψ ] to express that.

In contrast to instructions, code points Code Γ ψ1 ψ2 are predicates
on interfaces Intf, because they import and export labels (i.e., contain
label references and binders):

Figure 5.15: Typed code points.
We choose to distinguish
between unlabeled and labeled
instructions. Another candidate
representation of code-points is
a separating conjunction of a
possibly empty labeling and an
instruction. This works, but
requires the application of the
identity lemmas to reason away
the empty labeling in functions
operating on bytecode that
happens to be plain. Making
this common case perspicuous
avoids this proof burden.

H

Labeling ψ = Plus (Own [ ψ ])

data Code (Γ : VarCtx) : (ψ1 ψ2 : StackTy) � Pred Intf where
labeled : ∀[ Export (Labeling ψ1) ∗ Import (Instr Γ ψ1 ψ2)⇒ Code Γ ψ1 ψ2 ]

plain : ∀[ Import (Instr Γ ψ1 ψ2)⇒ Code Γ ψ1 ψ2 ]

The constructors labeled and plain use the Import-modality to lift plain
instructions into the logic of predicates on interfaces. The constructor
labeled also attaches one or more binders to an instruction using the
Export modality. For this it uses the type Labeling ψ, which represents
one or more labels of the same type ψ, and is defined using a version
of the Kleene plus type Plus in separation logic:
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36 Nipkow et al. 2014. “IMP: A Simple
Imperative Language”

data Star (P : Pred A) : Pred A where
nil : ε[ Star P ]

cons : ∀[ P ∗ Star P⇒ Star P ]

Plus : Pred A � Pred A
Plus P = P ∗ Star P

Finally, bytecode Bytecode Γ ψ1 ψ2 is represented as the indexed
reflexive-transitive closure (or Kleene star) IStar of code points:

data IStar (R : I � I � Pred A) : (I � I � Pred A) where
inil : ε[ IStar R i i ]

icons : ∀[ R i1 i2 ∗ IStar R i2 i3 ⇒ IStar R i1 i3 ]

Bytecode Γ ψ1 ψ2 = IStar (Code Γ) ψ1 ψ2

It is noteworthy that the data structures Star, Plus and IStar are
defined generically over arbitrary PRSAs. This is a strength of the
approach we have taken. By casting the invariants of label binding
in the framework of proof-relevant separation logic, we have gained
reuse of common data structures and operations that we otherwise
would have had to tailor to a specific domain.

5.8 Compiling with Labels

Having defined our bytecode language in the previous section, we
now describe an intrinsically-typed compiler that translates pro-
grams in an imperative source language with structured control
into bytecode. We first define the well-typed syntax of the source
language IMP. We then define a monad Compiler, which extends the
interface of a writer monad with operations for generating bytecode,
and is used to present our compiler.

The intrinsically-typed syntax of the imperative language
IMP (see, for example, Nipkow et al.36 for a plain definition) is
depicted in Figure 5.16. Like many imperative languages, it distin-
guishes expressions Exp Γ a and statements Stmt Γ (also known as
commands). Expressions are pure and result in a value of type a,
whereas statements are side-effecting but have no result.
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37 For simplicity we use the same set of
types for the IMP and bytecode language.
The mechanization uses different sets
of types for both languages. It shows
how one can translate almost transpar-
ently between them using Agda’s mech-
anism for type class search and rewrit-
ing (Cockx 2020).

data BinOp : (a b c : Ty) � Set where
add sub mul div xor : BinOp int int int

eq ne lt ge gt le : BinOp int int boolean

data Exp (Γ : VarCtx) : Ty � Set where
num : Z � Exp Γ int

bool : Bool � Exp Γ boolean

var : a ∈ Γ � Exp Γ a
bop : BinOp a b c � Exp Γ a � Exp Γ b � Exp Γ c
if_then_else : Exp Γ boolean � Exp Γ a � Exp Γ a � Exp Γ a

data Stmt (Γ : VarCtx) : Set where
assign : a ∈ Γ � Exp Γ a � Stmt Γ

if_then_else : Exp Γ boolean � Stmt Γ � Stmt Γ � Stmt Γ

while : Exp Γ boolean � Stmt Γ � Stmt Γ

block : List (Stmt Γ) � Stmt Γ

N

Figure 5.16: Intrinsically-typed
syntax of the imperative
language IMP.

Expressions are constants (num, and bool), reads from local vari-
ables (var), binary operations for arithmetic and comparison (bop), or
conditionals (if_then_else). Statements are assignments to local vari-
ables (assign), conditions (if_then_else, an overloaded constructor),
while loops (while), or sequenced statements (block).

The language IMP misses a statement for local variable declara-
tions. The compiler backend that we present in section 5.9 will start
with an extended source language IMP+ that includes local variable
declarations. The first pass translates IMP+ to IMP by hoisting local
variables declarations. This separate pass simplifies the compilation
to bytecode as it allows us to use the same context Γ for the source
Exp Γ a and target Bytecode Γ ψ1 ψ2 of the compiler.37

In IMP+, local variable declarations come with initializers, which
ensures that variables are initialized before use. This is, however,
not witnessed by the typing of IMP, where the first assignment is
separated from the hoisted declaration. Intrinsically capturing the
effect analysis for variable initialization is an interesting direction for
future work, orthogonal from the verification problem with labels
that we address in this chapter.

Like the untyped compiler in figure 5.1, we use a writer monad
to collect the output generated by the compiler. Compared to the
ordinary writer monad, there are two twists. First, our writer monad
is written in the category of separation logic predicates instead of
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38 Atkey 2009. “Parameterised notions of
computation”

the category of plain types, so that the handling of label binding
is encapsulated. We already saw an example of such monads in
section 4.5 and section 4.6). Second, our writer monad is parame-
terized 38 so as to keep track of the pre and post stack types of the
generated bytecode.

Before showing how our writer monad is used to generate byte-
code (section 5.8), we present it in its general form. That is, we define
it abstractly for a separation logic Pred A over any given PRSA A,
and any given type W : I � I � Pred A indexed by I that represents
the generated output. The writer monad is then defined as follows:

Writer : (I � I � Pred A) � I � I � Pred A � Pred A
Writer W i1 i2 P = W i1 i2 ∗ P

This definition resembles the usual definition of a writer monad.
However, since the monad is defined in terms of separation logic,
we use the separating conjunction ∗ instead of an ordinary product.
The indices i1 and i2 of the monad are taken to be the indices of the
output W.

To define the monadic operations of our writer monad, the type
W for the output must be an indexed monoid. That means, we need
to have operations mempty for the empty output, and mappend for
appending output:

mempty : ε[ W i i ]

mappend : ∀[ W i1 i2 ⇒ W i2 i3 −−∗ W i1 i3 ]

These operations generalize the ordinary indexed monoid opera-
tions, but instead of using functions, we use the separation logic
connectives.

Apart from return and bind, our writer monad has two additional
monadic operations: tell for generating output, and censor for trans-
forming the output of a given writer computation:

Figure 5.17: The writer monad
interface.

H

return : ∀[ P⇒ Writer W i1 i1 P ]

bind : ∀[ (P −−∗ Writer W i2 i3 Q)⇒ (Writer W i1 i2 P −−∗ Writer W i1 i3 Q) ]

tell : ∀[ W i1 i2 ⇒ Writer W i1 i2 Emp ]

censor : ∀[ (W i1 i2 −−∗ W i3 i4)⇒ Writer W i1 i2 P −−∗ Writer W i3 i4 P ]

Similar to the monoid operations, the monadic operations general-
ize the ordinary (indexed) writer monad operations by using the
separation logic connectives.
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39 The definition of Bytecode via IStar
makes it trivially an indexed monoid.

As discussed previously in section 4.5, the above internal bind

operation is hard to use in Agda. We again remedy this problem by
exploiting the fact that the internal bind is equivalent in expressive
power to the external bind (_=<<_) in combination with tensorial
strength str over the separating conjunction ∗:

Figure 5.18: The external bind
and strength for the writer
monad.

H

_=<<_ : ∀[ P⇒ Writer W i2 i3 Q ] � ∀[ Writer W i1 i2 P⇒ Writer W i1 i3 Q ]

str : ∀[ Q ∗ Writer W i1 i2 P⇒ Writer W i1 i2 (Q ∗ P) ]

Using the external bind we can again write our monadic compu-
tations using do-notation in Agda, which desugars in the usual
way.

We can now instantiate Writer with Bytecode as the output type
W, using the fact that Bytecode is an indexed monoid.39 We will call
this instantiation Compiler:

Compiler : VarCtx � StackTy � StackTy � Pred Intf � Pred Intf

Compiler Γ ψ1 ψ2 = Writer (Bytecode Γ) ψ1 ψ2

The indices of the monad keep track of the typing of this bytecode
output stream, so that we can ensure that we output type-correct
instructions. The resource is instantiated to interfaces so that we can
ensure that jumps are well-bound. By using the connectives from
separation logic, their signatures express resource constraints that
are upheld by the operations. This enables their use in computations
that need to track resource use without requiring external proofs
about their behavior.

To ease programming with Compiler, we define two derived
monadic operations. Using tell, we define the operation code, which
sends a single unlabeled instruction to the output. Using censor, we
define the operation attachTo for labeling the first instruction of the
generated output with the label ` passed as an argument:

Figure 5.19: Typed
implementation of attachTo

using the writer primitive
censor.

H

oneplus : ∀[ P⇒ Plus P ]

oneplus p = p 〈 -idr 〉 nil

oneistar : ∀[ R i1 i2 ⇒ IStar R i1 i2 ]

oneistar p = icons (p 〈 -idr 〉 inil)

code : ∀[ Import (Instr Γ ψ1 ψ2)⇒ Compiler Γ ψ1 ψ2 Emp ]

code i = tell (oneistar (plain i))

attachTo : ∀[ Export (Own [ ψ1 ])⇒ Compiler Γ ψ1 ψ2 P −−∗ Compiler Γ ψ1 ψ2 P ]

attachTo ` = censor (mappend (oneistar (labeled ((oneplus 〈$〉 `) 〈 -idr 〉 (imports nop)))))
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The first argument of censor of type:

Bytecode Γ ψ1 ψ2 −−∗ Bytecode Γ ψ1 ψ2

is a function that transforms the output of the compiler computation
and can own resources. We pass it the function mappend (..) that
prepends a singleton bytecode sequence, consisting of a nop instruc-
tion labeled with the label passed to attachTo. To convert the label
` to a Labeling, we use the functorial map 〈$〉 on Export to lift the
function oneplus that constructs a singleton labeling.

We also define the shorthand attach for outputting a label attached
to a nop instruction:

attach : ∀[ Export (Own [ ψ1 ])⇒ Compiler Γ ψ1 ψ1 Emp ]

attach ` = attachTo ` 〈 -idr 〉 code (imports nop)

The definition of attachTo shows that label binders (and references
for that matter) can be treated as first-class values using the linear
typing discipline. It is useful to consider what happens under the
surface here. Recall that binders are represented in a nameless
fashion so that references to them are only given meaning by the
relationship depicted by the interface composition witnesses. Hence,
attaching the binder ` is only a meaningful operation if the interface
compositions that occur in the output of attach, and between its
output and the surrounding bytecode, are exactly the right proof
terms. Yet, thanks to the abstraction of the logic, the programmer is
not bothered with any of this. Instead, they are only concerned with
satisfying the resource constraints that the type-checker enforces,
which in this case means that they can only use ` once.

We now put all ingredients we developed together to define
an intrinsically-typed compiler from IMP to Bytecode. We focus on
the compilation of expressions, which is done using:

compilee : Exp Γ a � ε[ Compiler Γ ψ (a :: ψ) Emp ]

This signature expresses concisely the stack invariant of expressions—
it says that the bytecode will operate in any stack ψ, and leave
behind a single value whose type a matches the expression’s type.
The compiler is defined by pattern matching on the expression. As
a warm-up exercise, let us consider the compilation of constants,
which translate to a single push instruction:
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40 Recall that this notation stands for
str (m 〈 σ 〉 q) and binds very loosely.

compilee (num x) = do
code (imports (push (num x)))

compilee (var x) = do
code (imports (load x))

The integration of the stack invariant in the type of the compiler,
prevents us from writing bytecode that is not stack safe. Agda’s type
checker ensures that we meet the stack postcondition, and do not
make any unwarranted assumptions about the input stack ψ. For
example:

compilee (num x) = do
code (imports (push {! bool true !} ))

– error boolean != int

compilee (bool b) = do
code (imports {! swap !} )

– error _a_82 :: _b_83 :: _ψ_84 != ψ

The compilation of constructs that involve control flow is a little
more involved as we have to generate labels. The compilation of
conditionals if c then e1 else e2 is as follows:

compilee (if c then e1 else e2) = do
compilee c
let (lthen- 〈 σ1 〉 lthen+) = ∗-swap freshLabels

lthen+ ← ∗-id−r 〈$〉 (lthen+ &〈 -comm σ1 〉 code (iftrue 〈$〉 lthen-))
compilee e2

let (lend- 〈 σ2 〉 labels) = ∗-rotatel (∗-assocr (freshLabels 〈 -idl 〉 lthen+))

lthen+ 〈 σ3 〉 lend+ ← ∗-id−r 〈$〉 (labels &〈 -comm σ2 〉 code (goto 〈$〉 lend-))
lend+ ← ∗-id−r 〈$〉 (lend+ &〈 -comm σ3 〉 attach lthen+)

compilee e1

attach lend+

N

Figure 5.20: Intrinsically typed
compilation of conditional
expressions.

This code consists of the same eight operations as used in the un-
typed compiler in figure 5.1. The most significant difference in ap-
pearance arises due to the need to use tensorial strength m &〈 σ 〉 q
to carry values across operations.40 Here, σ witnesses separation
between mp and q. Using strength, we build up a context of values
that own resources, represented as a big separating conjunction.
We use the laws of the separation logic (e.g., ∗-id−l and ∗-rotatel) to
simplify and reorder this context so that values appear in the right
order. When using values, we have to provide the separation witness
that relates the resource that they own to the resources owned by the
context. This witness comes from the deconstruction of the monadic
context on the left, or is trivial if the operation is resource neutral.
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(5)
Assemble
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(3)
Compile

(2)
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(1)
Hoist

Bytecode or Jasmin

42 McBride 2018. “Everybody’s got to be
somewhere”

As an example, we consider the last three lines of the compilation.
The first of these returns a context of two binding occurrences of
labels lthen+ and lend+, separated by (the interface composition) σ3.
We attach lthen+, and keep lend+ in the context, to be attached to
the end of the output. We do this with tensorial strength, using σ3

as evidence that label to be attached is indeed separated from the
context. In the last line we finally attach lend+, which leaves the
context empty, and the resources balanced. If we omit the operation
attach lthen+, and thus create a dangling reference, then Agda would
reject the definition, because the resources that lend+ owns were
dropped.

Compilation of the other expression constructs of IMP follows a
similar pattern. The same is true for the compilation of statements,
with the only significant difference being the type of the compiler,
which obeys by a different stack invariant, leaving the stack exactly
as it found it.

Because we want to use pattern matching and do-notation in
Agda, we have to resort to the trick of programming with the ex-
ternal bind and tensorial strength, rather than entirely within the
logic using the internal bind. It would be interesting to investigate
whether it is possible to extend the syntax of the host language (i.e.,
Agda or Idris) to make the latter practical41.

5.9 An Intrinsically-Typed Compiler Backend in Agda

Our intrinsically-typed compiler from IMP to bytecode (section 5.8)
is part of a typed compiler backend pipeline that can be summarized
using the figure in the margin. The compilation starts with typed
IMP+ where lexical variable binding is represented co-contextually
using the co-de-Bruijn encoding42. The co-contextual typing is use-
ful, because it allows hoisting (stage 1) declarations without weak-
ening typed IMP+ code to account for the additional binding. The
hoisting itself is implemented in a monad that collects the binders.
After hoisting, there are no more local variable declarations left, giv-
ing us co-contextually typed IMP. The contextualize transformation
(stage 2) then eliminates the co-de-Bruijn encoding to contextually-
typed IMP (whose syntax is in figure 5.16). A generic version of
transformation 2 is given by McBride (2018).

As shown in section 5.8, we then compile IMP to co-contextually
typed bytecode (stage 3). The compiler inserts some unnecessary
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guage (Morrisett et al. 1999a; Morrisett
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pal typings for stacks via stack polymor-
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nop instructions. We remove those unnecessary instructions using
a simple intrinsically-typed bytecode optimization pass (stage 4).
This transformation is pure, and implemented in 17 lines of Agda.
Like compilation it requires no lemmas about the interface PRSA
except the axioms of proof-relevant separation algebras. Bytecode
optimizations are simplified greatly by representation that use labels,
because unlike absolute or relative addresses, labels can be moved.

The final stage (stage 5) of our compiler backend is eliminating
labels altogether, replacing them by absolute addresses of instruc-
tions. We implement this transformation in an intrinsically-typed
style. The transformation works by computing an environment that
assigns an address to every label in the imported label context I.
This environment is split and recombined along the witnesses of
the interface composition in each node of the typing derivation.
Alternatively, one can use our implementation of an unverified trans-
formation to Jasmin code, which can be assembled to a Java class
file and run by the JVM.

Our compiler pipeline lacks a frontend for parsing and type-
checking IMP+ programs. To test our compiler pipeline we have
manually embedded a couple of IMP+ programs in Agda, and used
Agda’s extraction to Haskell to obtain the generated bytecode.

Most of the code passes the Agda type checker under the --safe

flag. Exceptions to this are the hoisting, contextualization, and
assembly transformations. The former two do not pass the termina-
tion checker as implemented, and the latter uses Agda’s rewriting
mechanism43 to automatically re-associate list concatenations when
necessary. The compiler pipeline and the source, target, and inter-
mediate languages are implemented in ~1700 lines of Agda.

5.10 Related Work

Co-contextual and principal typing. We faced the problem that the in-
variant of compilation to a low-level language with label binding was
not preserved by the individual compiler operations. We addressed
this problem by reformulating bytecode typing co-contextually. The
co-contextual typings are more principal44 than contextual typings,
because the encapsulated knowledge about labels is restricted to be
the minimal amount required to type the bytecode fragment. That
is, they are a principal representative for many typings that can
conceptually be obtained by weakening the context.45
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From this perspective, we can think of our nameless and co-
contextual encoding of label binding as a way to push the limits
of what properties of our bytecode languages are principal. By
going nameless, we were able to decide at the outside of a bytecode
fragment how labels defined inside of it relate to other labels. In
other words, the nameless encoding is a principal labeling, where we
assume less about labels that are used, and can use labels that are
defined in more ways.

A key point of these principal typings is the compositional nature,
which accommodates separate analysis, but can also help to define
total functions on typed terms46. Examples of work that exploit
this, knowingly or unknowingly, are plentiful. For example, there
are lines of work on incremental type checking47,48, and separate
compilation49,50. Notably, the idea of treating exports and imports
of names as opposites in order to give co-contextual accounts of
global binding, is already somewhat present in the work on (not
mechanically verified) co-contextual type checking by Kuci et al.51,
where references to globally defined names yield constraints that
are removed at the top-level by corresponding declarations.

McBride52 proposed the co-de-Bruijn encoding of lexical binding
in a lambda calculus so that hereditary substitution on well-typed
terms becomes a total function. In chapter 4, we gave a typing of
linear references inspired by that encoding, incorporating the two
roles of supply and demand in a state monad. The nameless model
for labels builds on top of both these ideas. In retrospect, both are
co-contextual reformulations of existing type-systems, resulting in
more compositional typings.

The flip side of these more principal typings is that work is moved
from the leaves of term typing to the nodes. This is visible in all the
work cited above, and is also present in our work in the premises
about interface composition. McBride53 already introduces relevant
pairs as the right notion of composition. In chapter 4, we identified
this notion as the separating conjunction and extend it to a complete
proof-relevant separation logic. In this chapter, we provided a new
example of the applicability of all this logical structure, provide new
data structures, and computational structures built on top of this
logic, and also construct the modalities Export and Import that are
specific to the instantiation of separation logic with interfaces.

Having identified this relation between co-contextual/principal
typings of terms and proof-relevant separation logic, it would be
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interesting to apply this approach to other invariants that appear
anti-compositional, and are thus hard to express intrinsically. Both to
systematize the approach, and to design a better dependently-typed
meta-language that can further simplify the definition of functions
that utilize the framework, like our compiler.

Intrinsic verification of compilers. The idea of developing type-safe
compilers in a dependently typed language is first described by
McKinna et al.54. They work in Epigram55 and show that it indeed
feasible to define an intrinsically typed compiler for a simple expres-
sion language to typed instructions. A key idea is the indexing of
bytecode by two stack types, which we successfully applied again in
our JVM bytecode language.

Their low-level code is not linear. That is, control-flow is repre-
sented using an instruction IF c1 c2, where c1 and c2 are again blocks
of instructions. Hence, their compiler does not need labels. We fo-
cused on linear bytecode because compilers must eventually output
linear code for the machine. They also prove that their intrinsically
typed compiler is functionally correct with respect to an interpreter
of the expression language. Defining the dynamic semantics and
stating and proving functional correctness will be more difficult for
our source and target languages, because neither is normalizing.

Abel56 presented a well-typed compiler that targets a typed rep-
resentation of control-flow graphs. In his intermediate language,
control-flow is reduced to two primitive constructs: join points and
looping points. Unlike bytecode this is not a flat language, which
allows labels to be treated like lexical variables in e.g., the well-typed
syntax of STLC. A second compiler pass (linearization) must then
translate control flow graphs to a flat bytecode language, but their
implementation of this pass has not been published. The author
does note that the full verification requires reasoning in the sublist
category. We have shown that we can avoid such reasoning by work-
ing with nameless binding in an embedded linear language.

McBride57 showed how to intrinsically verify functional correct-
ness of a compiler for a small arithmetic expression language by
indexing syntax by their semantics. This is extended by Pardo et al.58

with top-level variables, and sequenced and looping assignments to
those variables. They compile via an intermediate language with
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sequencing and loops, and output bytecode with relative jumps.
Although the intermediate language is indexed by a semantics, the
low-level target language is not. Instead they give this semantics
extrinsically. It is unclear whether it is possible to give a “syntax-
directed” semantics for the low-level language with jumps.

Extrinsic compiler verification. There is a lot of prior work on verify-
ing correctness results of compilers and compiler optimizations in
proof assistants. Compilers often compile via various intermediate
languages to simplify transformations and their verification59,60.
Control-flow graphs and continuation-passing style are commonly used
intermediate representations in compilers (see for example Appel61,
Morrisett et al.62, Chlipala63, Guillemette et al.64, and Bélanger et
al.65). Such intermediate languages are a more suitable level of
abstraction for expressing high-level compiler optimizations. After
applying the optimizing transformations, these higher-level repre-
sentations of control-flow are eliminated in favor of jumps and labels
in a low-level machine language. In a well-typed version of such a
multi-stage compiler, our compilation monad would only be used
for this pass, which is usually called linearization. The problem that
verifying label binding requires additional reasoning in the compiler
definition, is not an issue in these works, because all the verification
is done extrinsically. Good extrinsic proof automation can be an
alternative approach to avoiding manual proof overhead.

In extrinsic verification, two other methods have been used to
denote jump targets: instruction addresses (e.g., in the machine
language of CakeML66) and instruction offsets (e.g., in the Jinja
compiler67). Although both are candidates for intrinsically-typed
bytecode representations, they cannot be used in the compilations
in this chapter, which output forward jumps before recursively
compiling the instructions that are targeted. Both encodings require
computing the output up-to the jump target first, so as to know the
address of the target. In addition, it is difficult to write bytecode
transformations using absolute or relative addresses. Even our nop

removal transformation would require shifting jumps throughout
the program. In label-based representations this is much simpler,
because labels can be moved.

The design of more expressive type systems for assembly lan-
guages (e.g., Morrisett et al. (1999b) and Crary68) is an important, but
largely orthogonal research direction. The same is true for research
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into semantic type systems for machine languages, and verification
techniques that reduce the trusted computing base69.

Linear meta-languages. We have constructed a shallowly embedded
language that tracks resource usage. Another approach is to use
a meta language with built-in support for resources, like linear
Haskell70, Idris71 (where Idris 2 implements quantitative type theory
(QTT)72), or Granule73. To be able to use such a language instead of
our separation logic, the language needs to support not only user-
defined resources, but also proof-relevant resources. Our logic not
only hides the accounting at the time of type-checking the compiler,
but also the construction of a proof term that exists at runtime. We
implement the primitives (e.g., freshLabels) by explicitly making use
of the fact that the logic is a shallow embedding. When we eliminate
labels in the assembler, we again poke through the abstractions of
the logic, and compute directly on the proof terms. To the best
of our knowledge there exist no languages with built-in support
for resources such as our interfaces. Granule appears to come the
nearest to this, as its theory permits user-defined resources. The
current implementation, however, does not. A resource in Granule
and QTT must be a semiring with functional operations74, and thus
does not support our PRSA resources. Despite the fact that an
expressive enough language does not yet exist, these lines of work
are a promising path towards a more suitable dependently typed
meta language.

5.11 Conclusion

We presented the intrinsically-typed compilation of a small language
with structured control flow to typed bytecode, giving rise to a
compiler that is type correct by construction. The key problem
we faced was the fact that label well-boundness appeared to be an
anti-compositional, whole-program property. Our first key idea
to solve this problem is to reformulate label well-boundness using
a nameless and co-contextual representation, which turns it into a
compositional, local property. Our second key idea is to abstract over
co-contexts and their compositions using a proof-relevant separation
logic. As a result, our intrinsically-typed compiler, as well as the
operations that support it, contain little manual proof work and
mirror their untyped counterparts.
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6 Sound Type Checkers from Typing Relations

“Quis custodiet ipsos custodes?”

— Decimus Junius Juvenalis, from Satires

In chapter 1, we asked the question how a language developer
should ensure that their language’s type checker is sound with
respect to the specification of the static semantics. In an ideal world,
programming language designers should not have to deal with
accidental complexity when defining and implementing languages.
Some aspects of language design are already close to realizing this
ideal. For example, parser generators make it possible to obtain
parsers from declarative grammar specifications, thus abstracting
over the accidental complexity of implementing parsing. There
should be similar support for generating implementations of type
checkers from their declarative specifications.

The variety of language features found in real-world languages
presents many challenges in the way of this ideal. This chapter fo-
cuses on the challenges presented by name resolution, an aspect com-
mon to all programming languages. Many language features found
in actual languages interact with name resolution. Modules, imports,
classes, interfaces, inheritance, overloading, and type-dependent
member access to objects and records are a few examples that are
commonplace. Implementing type checkers for languages with such
features is complicated because the use of names in programs causes
dependencies between type-checking tasks, and requires that the
construction of symbol tables and type environments is interleaved
with querying those data structures. Evaluating a query too early may
result in an unstable answer—i.e., an answer that is invalidated by
subsequent additions to the environment or symbol table. A wrong
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answer can have far reaching consequences, either compromising
the soundness of the type checker, or later requiring backtracking
on an arbitrary amount of work that depends on the wrong answer.

Consider, for example, the following Scala program:

J

Figure 6.1: Forward reference to
a definition that shadows a
previous definition.

1object M {

2object B { ... }

3}

4import M.B;

5object A {

6import B._;

7...

8}

9object B { ... }

A type checker working its way forward through the program
would initially resolve import B._ to the imported object M.B, and
type check the remainder of the body of A under the resulting
environment. If only then it encounters the local declaration of B on
line 7, it needs to redo the type checking of the body of A because
the local definition shadows the earlier imported declaration.

To avoid this, the interleaving chosen by the type checker must
ensure that query resolution is stable—i.e., that answers to queries
that consult the symbol table are not invalidated by subsequent
additions to the environment or symbol table. This can be a non-
trivial scheduling problem because environment and symbol table
construction can also depend on answering queries.

Languages often have many features that interact with name bind-
ing and disambiguation, and as a consequence it can be difficult to
construct schedules that guarantee query stability. The following
Scala program shows for example how classes and inheritance inter-
act with name resolution:

J

Figure 6.2: Inheritance in Scala,
interacting with nested class
declarations.

1class A extends B.D {

2def g:Int = f

3}

4object B extends C {}

5class C {

6class D {

7def f:Int = 1

8}}
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In this program, the f on line 2 resolves to the def f on line 6; but
for this resolution to succeed, the qualified reference B.D on line 1

must first have been resolved to the D on line 4, to make the bindings
in class class D reachable from the body of class A. Resolving B.D in
turn depends on: (1) resolving the B in B.D to object B on line 4; and
(2) resolving the C in the extends clause for object B on line 4 to the
C declaration on line 5.

Determining these dependencies requires a good understanding
of the binding and disambiguation rules of a language. The type
checking algorithm must take all these dependencies into account,
so that names are only resolved once all information that is relevant
to their resolution is collected. If this is the case, then the result of
name resolution is stable. Type checker implementations use various
strategies for stratifying or scheduling the collection and querying
of name binding information. Every type checker must, implicitly
or explicitly, solve this scheduling problem. For example, Haskell’s
binding restrictions ensure that binding collection and resolution
can be separated into static passes over the program, whereas Scala
and Rust require type-dependent name resolution, which requires
interleaving type checking and name resolution. A key property of
sound strategies is that names are only resolved after all the relevant
information has been collected.

The concrete strategies are irrelevant for understanding and rea-
soning about the underlying type system, but crucial to a correct
implementation of the type checker. This tension between implemen-
tation and specification is felt by language designers. For example,
the Rust language developers write the following about specifying
name binding in the language:1

Whilst name resolution is sometimes considered a simple part
of the compiler, there are some details in Rust which make it
tricky to properly specify and implement.

And in reply to changes to the design and implementation of name
binding, a contributor states:2

I’m finding it hard to reason about the precise model proposed
here, I admit. I wonder if there is a way to make the write up
a bit more declarative.

A more declarative specification should allow reasoning about name
binding without having to rely on an understanding of the opera-
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tional details such as the scheduling of name and type queries. But if
we want to obtain type checkers from these declarative specifications,
we need to be able to automatically construct sound schedules. In
this chapter we give a language independent explanation of neces-
sary and sufficient conditions to guarantee stability of name and
type queries during type checking. We use this to make declara-
tive type system specifications executable as type checkers for the
specified language. Using this approach, we can guarantee that
the resulting type checkers are sound with respect to the formal
declarative semantics of the specifications, as well as confluent. These
important properties of type checkers are proven once-and-for-all for
languages specified using our formalism, rather than on a language-
by-language basis.

Problem. We start from a specification of an object language’s static
semantics in the meta-language Statix3. Language specifications
in Statix are given by typing rules, written as predicates on terms,
types, and a scope graph4. Scope graphs generalize language specific
notions of type environments and symbol tables. A distinguishing
feature of Statix are its scope graph assertions and queries, which can
be used to give high-level specifications of name resolution. These
assertions can express fine-grained name resolution rules, which
enable high-level specification of, for example, shadowing rules of
Java and Scala.

The problem we face is to derive a type-checker from a Statix
specification. Statix’s scope graph assertions and queries make it
possible to give high-level specifications of name binding, but, at the
same time, make the problem of deriving these type checkers more
difficult. In particular, we have to solve a generalized version of
the scheduling problem described above. That is, we need a general
characterization of the conditions under which it is sound to query
symbol tables and type environments during type checking. We
then need to derive a type checker from a Statix specification in such
a way that these conditions are always satisfied.

The general approach to deriving type checkers from Statix speci-
fications is already sketched by Van Antwerpen et al.5, who provide
a Java implementation. They explain the problem with unsound
name resolution when queries answers are unstable, and they claim
that their implementation implements a sound strategy. This strat-
egy, however, is only informally described, and lacks evidence of its
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soundness.
This chapter addresses both those deficiencies by formalizing the

derivation of type checkers from Statix specifications, and proving
soundness. Our formalization of the operational aspects of Statix
revealed that the Java implementation is, in fact, not confluent6,
which we address in this chapter by refining the scope graph prim-
itives. Confluence is an important property of Statix because its
implementation is non-deterministic. It ensures that the solver does
not have to backtrack on evaluation order. In order to formalize the
soundness and confluence results, we develop a theory around the
novel concept of critical edges in scope graphs. We believe that this
concept is a useful device in both the design of languages, and the
implementation of their type checkers. We also hope that the formal-
ization of the operational semantics of Statix makes it feasible to port
the novel ideas of Statix about the high-level specification of name
binding to other formalisms and type checker implementations.

Approach. To enable this formalization, we first introduce Statix-
core. This core language refines and simplifies the previous for-
mulation of the Statix meta-language. The declarative semantics
of Statix-core is similar to the declarative semantics of Statix, and
explains what are valid type derivations of a specified language.
In other words, it explains when a given object-language program,
together with a type assignment and a scope graph model of its
binding, satisfies the specified static semantics of an object language.

We equip this refined core of Statix with a novel small-step oper-
ational semantics. This operational semantics takes a specification
and an object-language program, and then computes a type assign-
ment and a scope graph, thus fulfilling the task of a type checker
for the object language. The key question of this chapter arises
when we try to define how queries in Statix compute. What are the
conditions that ensure that the answer to a scope graph query is
stable under future additions to the scope graph model of binding
in the program?

To make the condition for query answering precise, we introduce
the new idea of critical edges for a query in a scope graph exten-
sion, precisely characterizing missing dependencies of the query.
Conceptually, query answers that are computed in a partial scope
graph are stable if recomputing the answer in a complete model
of the program yields the same result. We will show that it is safe
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to answer a query in a partial graph G when the complete model
contains no critical edges for the query with respect to G.

The absence of critical edges in the complete model can in practice
not be checked by a type checker because it requires knowing the
complete model of binding upfront. We solve this by weakening
the condition to a sufficient condition that can be checked. We then
impose a well-formedness judgment on Statix-core specifications to
also make this tractable in practice. Specifically, typing rules must
have permission to extend a scope in the scope graph to be able to
make assertions on the scope graph. In practice this means that
although scopes can be queried from anywhere, they can only be
extended locally with new binding information.

We prove that the operational semantics of Statix-core using the
weaker sufficient condition is sound for well-formed specifications—
i.e., it computes a type assignment and scope graph model that
satisfy the specification. Importantly, and in contrast to the original
implementation of Statix7, the non-deterministic operational seman-
tics can also be proven confluent for the refined Statix-core language.
The confluence argument again uses critical edges to reason about
stability of query answers.

We implement, in Haskell, the operational semantics and the static
analysis that checks if all rules have sufficient permissions to extend
scopes. We give specifications of subsets of Java and Scala in Statix-
core (extended with recursive predicates). Using these specifications
we also test soundness of the reference implementation against the
Java and Scala type checker. These case studies provide evidence of
the expressiveness of Statix as a formalism, and show that the well-
formedness restriction does not prohibit specifications of complex,
real-world binding patterns.

In summary, the contributions of this chapter are:

• Statix-core (section 6.2), a constraint language with built-in sup-
port for scope graphs, which distills and refines the core aspects
of the Statix language and its declarative semantics.

• A semantic characterization of name resolution query answer
stability in terms of critical edges in an incomplete scope graph
(section 6.4).

• An operational semantics for Statix-core (section 6.3 and sec-
tion 6.4) that schedules name resolution queries such that query
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answer stability is guaranteed, thereby allowing language design-
ers to abstract from the accidental complexity of implementing
name resolution.

• A proof that the operational semantics of Statix-core is sound
with respect to the declarative semantics of Statix-core (theorem 1

and theorem 11). The key that enables this proof is a type system
for Statix-core (based on permission to extend a scope) and the
scheduling criterion that is built into the operational semantics of
Statix-core (based on an over-approximation of critical edges).

• MiniStatix, a Haskell implementation of Statix-core extended with
(recursive) predicates. The implementation infers whether specifi-
cations have sufficient permissions to extend scopes, and can type
check programs against their declarative language specification.

• Three case studies (section 6.5) of languages specified in Mini-
Statix: (1) a subset of Java that includes packages, inner classes,
type-dependent name resolution of fields and methods; (2) a sub-
set of Scala with imports and objects; and (3) an implementation
of the LMR8 module system that is similar to the one in Rust. The
case studies demonstrate the expressive power and declarative
nature of Statix-core, and test the approach against the reference
type-checkers of Java and Scala.

6.1 Specifying & Scheduling Name Resolution

Programming languages with modules or objects (e.g., ML, Java,
C], Scala, or Rust) use very different name resolution rules than
languages with only lexical static binding. For example, the static
semantics of non-lexical static binding, such as accessing a member
of an object o.m, is to resolve the name m not in the local (lexical)
scope, but in a remote scope (in this case the inner scope of the class
declaration that corresponds to the type of the reference o). Similarly,
a name in Scala or Rust is not always resolved in the lexical scope,
but sometimes in an explicitly imported module or object scope,
whose definitions may be declared in a very different part of the
program.

These richer scoping constructs lead to more subtle resolution
and disambiguation rules. Scala, for example, applies different
scoping rules for names defined in the lexical scope (which can be
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forward referenced) compared to names that are imported (which
cannot). Scala also applies different precedence rules depending
on whether an imported name is explicitly listed, or caught by a
wildcard. Precedence rules are often incomplete, in the sense that
overlapping names sometimes lead to ambiguous uses. This requires
more information to be available in environments.

These aspects make it more difficult to both specify, and implement
static semantics. In this section we discuss both specification and
implementation. We first discuss the role of name binding in the
specification of static semantics, and how Statix as a formalism en-
ables the high-level specification of the above mentioned features.
We then discuss how name binding features contribute to a schedul-
ing problem for type checkers. Finally, we show how the innovative
features of Statix impact this scheduling problem. We will argue that
there are two sides to this. On the one hand, these features make the
scheduling problem more difficult because value dependencies are
less explicit. On the other hand, the high level specification of bind-
ing in Statix provides a semantic tool to think about the scheduling
problem and recover a provably sound schedule: critical edges. We
end this section with an overview of how we use critical edges to
address the scheduling problem for Statix.

Non-lexical static binding can easily complicate a specifica-
tion of static semantics, harming conciseness, understanding, and
maintenance of the static semantics rules. Conventional typing rules
use type environments (or, typing contexts) to propagate binding in-
formation through a program. Type environments are appropriate
and easy to use in the specification of static semantics for languages
with only lexical binding because lexical binding follows the nesting
structure of the AST. This is not the case for languages with non-
lexical static scoping, where binding information may flow through
references (e.g., module imports), or against the nesting structure of
the AST (forward references).9

To demonstrate the issues that arise in language specification,
we consider a simple Scala program. The program in figure 6.3 is
a well-typed Scala program with two methods in an object o that
mutually refer to one another.
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Figure 6.3: Mutual binding in
Scala.

object o {

def f:Int = g;

def g:Int = f

}

To specify the static semantics of such a list of mutually recursive
definitions, we can follow the style of the ML specification10, which
uses rules of the form C ` e⇒ E, with C the type environment of the
phrase e, and E the context generated by the phrase e. The context
C is downward propagating, whereas E is upward propagating. We
obtain the following rules for block definitions:

T-Body

E + E′ ` bs⇒ E′

E ` { bs } ⇒ E′

T-Seq

E ` b⇒ E′ E ` bs⇒ E′′

E ` b;bs⇒ (E′ t E′′)

T-Def

E ` e : T

E ` (def f : T = e)⇒ { f : T}

N

Figure 6.4: Typing of mutual
binding using environments.

Name resolution behavior is the result of the way environments
are combined in the different rules. The mutually-recursive behav-
ior of the block is visible in rule T-Body, which updates the type
environment with the aggregated binding that has propagated up-
wards from the block. The combination operator + in the premise
of T-Body updates the environment such that it shadows bindings
in E that are also in E′. The disjoint union t in the conclusion of
T-Seq merges the environments produced by the definitions in the
sequence, and enforces that the names do not overlap. We can see
in this example that environments play two roles in these rules: to
aggregate binding information from the program, and to distribute it
throughout the program. Aggregation ties back into distribution at
the scope boundary.

The update and disjoint union of environments are examples of
bookkeeping operations that encode high-level binding concepts:
shadowing and disallowing duplicate definitions respectively. Simi-
larly, the ‘cycle’ in environment aggregation and distribution encodes
mutual recursion. Encoding this using environments is a relatively
small matter here, due to the limited number of rules and binding
features to take into account. This becomes increasingly more diffi-
cult when we add language features that interact with binding and
that require more sophisticated disambiguation.
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In particular, non-lexical static binding complicates matters sig-
nificantly: the definitions in figure 6.3 are not just locally in scope,
but can be accessed from remote use sites, either qualified with the
object o, or unqualified after importing object o. The potential for
remote use significantly increases the required effort for aggregating
and distributing binding facts. To look up the structure of modules
and classes, we may want to refer to a symbol table. Thus we have to
explain through our typing rules how declarations generate unique
entries in this symbol table. This requires aggregating all the entries
to the root of the program. For the purposes of disambiguation, we
may also need more structure in the environment. In Scala for exam-
ple, we need to look beyond the closest matching binding because
additional binders in outer scopes may make a reference ambiguous.

We argue that bookkeeping of environments is not a high-level
means for expressing name resolution concepts of languages like
Scala. Consequently, it is both unnecessarily hard to define rules
that express the right semantics, and unnecessarily difficult to under-
stand the high-level concepts from the written rules. Previous work
proposes Statix11 to address this problem. In section 6.2, we discuss
the concepts of Statix. We will show how Scala’s name resolution
rules can be understood using scope graphs, and made precise using
Statix rules.

The problem of aggregating and distributing binding in-
formation is addressed by Statix using two ideas: (1) item scopes
have independent existence and can be passed around, which allows
extending scopes without the need for explicit aggregation, and al-
lows remote access without explicit distribution; and (2) shadowing
behavior is specified at the use site, allowing definitions to simply
assert the scoping structure without having to anticipate all possible
uses. To achieve this, Statix typing rules are predicates on terms
and an ambient scope graph. Nodes in the graph represent scopes
and binders, whereas (labeled) edges are used to represent (condi-
tional) scope inclusion. Nodes contain a data term that can carry the
information of a binder.

sr 7→ ()

so 7→ ()

L

sf 7→ f : Int
D

sg 7→ g : Int

D

N

Figure 6.5: Scope graph for
figure 6.3.

The binding of the program in figure 6.3 can be summarized
as the scope graph in figure 6.5. We write s 7→ t for a node with
identity s and data term t. The nodes sR and so represent the root
scope and the object scope respectively. The latter is a lexical child
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15 The form of this typing judgment is
not enforced in Statix rules—i.e., Statix
predicates do not have to be defined ex-
clusively over AST terms and can have
multiple scope arguments.

of the former, indicated by the L-edge. The object scope contains
two declarations, indicated by the two D-edges to declaration nodes,
whose data terms f : Int and g : Int contain the usual information
about the binders.

Previous work has shown how scope graphs can be used to model
many binding structures12,13,14. The fact that this particular scope
graph models the binding of the given program, is made formal
through a number of Statix rules, together with the declarative
semantics of Statix. We give the required rules here using the Statix-
core syntax, so that we can informally discuss how Statix constraints
address the problems with declarative specification of binding using
environments explained above. We will explain the formal syntax
and declarative semantics of Statix-core in section 6.2.

The Statix-core counterparts to the ML-specification style rules
for the mutual binding in figure 6.3 are as follows:

T-Body

(∇s′ 7→ ()) ∗ (s′ L s) ∗ (s′ ` bs)

s ` { bs }

T-Seq

(s ` b) ∗ (s ` bs)

s ` b;bs

T-Def

(s ` e : T) ∗ (∇s′ 7→ ( f : T)) ∗ (s D s′) ∗ noDups(s, f , s′)

s ` (def f : T = e)

N

Figure 6.6: Typing rules using
Statix-core constraints.

The Statix specification consists of constraint rules, which define that
the typing judgment in the conclusion holds if the constraints in the
premises hold. The phrases are typed in a lexical scope s, written
suggestively as s ` t.15 Premises are separated using conjunction (∗).
The fact that a block introduces new scope is expressed in the rule
T-Body by asserting a scope s′ in the scope graph (using ∇s′ 7→ ...),
connected to the lexical parent by an L-edge (using s′ L s). The
declarations are asserted similarly in the rule T-Def using a D-edge.

The first notable difference with the ML-style rules is that the
Statix rules have no upward propagating context for aggregating
binding. This is unnecessary because of the reference semantics of
scopes in Statix rules. The rule T-Def can directly assert the struc-
ture that a definition induces in the ambient scope graph. Because
the scope graph is a global model of binding, this structure does not
need to be explicitly aggregated or distributed.
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The second difference is in the way that lexical shadowing is
specified. Rather than encoding this disambiguation rule using
environment update in T-Body, the Statix-core rule only witnesses
the structure of the scope graph model. Disambiguation is expressed
directly in the rule for typing variables. We postpone the discussion
of scope graph queries that fulfill this purpose until section 6.2.
For now it suffices to know that variable lookup works by finding
minimal paths in the scope graph. Shadowing can be expressed by
using a lexicographical path order where D < L.

The third difference is that the rule T-Seq is a completely binding-
neutral rule. The fact that definitions should be unique in their scope,
is expressed directly as a premise noDups(...) on the rule T-Def,
rather than being encoded in the way that sequencing aggregates
binders. We leave the predicate abstract, but it is specified using a
graph query in the declaration scope.

Specification of languages with rich, non-lexical name binding
features is complicated when using environment-based typing rules.
Statix provides a general formalism that allows concise specification
of these languages, by removing the concerns of aggregating and
distributing binding information from the typing rules.

We now turn to the problem of writing a type checker based
on a specification of static semantics, focusing on the difficulties sur-
rounding name binding features. We will argue that type checkers
face a scheduling problem in constructing the relevant environment
and symbol table (or scope graph) to be able to type the names used
in a program. Consider again the typing rules in figure 6.4. A type
checker arriving at the block faces the problem that the downward
propagating input environment is constructed from the upward
propagating output environment. For this reason, the type checker
needs to be staged: it first needs to aggregate the binding from the
block, before it can type check the expressions in the right environ-
ment. This simple example demonstrates how name binding induces
dependencies between tasks in a type checker. Name resolution (and
thus type checking) is only sound with respect to the typing rules
if queries are only executed after all relevant information has been
aggregated.

The binding features of a language determine how difficult it
is to find a sound schedule. A language with forward references
requires a schedule in which binding aggregation happens before
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querying. In our example, the schedule can be entirely static: one
can always collect all definitions before typing their bodies. First
class modules and type-dependent name resolution require more
dynamic scheduling. For example, the resolution of a member
name m in a Java or Scala expression e.m(...) requires the type of e.
Typing e can in turn depend on all kinds of name resolution and
type-checking, so that name resolution cannot be statically stratified.

When language developers implement a type checker for a given
language, they either implement such a statically stratified schedule
as a number of fixed type-checking passes, or implement a method
that schedules type-checking tasks dynamically (even if the schedul-
ing is simply ‘on demand’). Soundness of the implemented approach
is judged by the language developers. Our goal is to automatically
obtain sound type checkers from typing rules, and therefore we
need a systematic approach to solving the scheduling problem.

In section 6.1 we arrived at a sound schedule for the typing of
mutually recursive binding simply by lazily following the demand for
dependencies. These dependencies are explicit in the environment-
based rules of figure 6.4. In languages with more complex scope and
disambiguation rules, the dependencies of name resolution are not
as easy to determine. We have argued that environment-based rules
are difficult to specify for such languages. Ensuring that those rules
can be evaluated on demand puts additional requirements on the
rules, making it even more difficult to write the specification.16 (This
is a known problem with canonical attribute grammars. We compare
in depth to attribute grammars in section 6.6.) By decoupling scope
from binding and name resolution rules in those scopes, Statix rules
can specify complicated languages without regard for dependencies.
As a result, more work is required to reconstruct the dependencies
and a sound schedule from the rules.

We illustrate this with the following Scala program, combining
mutually recursive definitions and imports.

J

Figure 6.7: Scala example with
mutual binding and imports.
Note that the imported names
from n._ are only in scope in the
part of the block after the import
statement.

object o {

def f:Int = g;

import n._;

def g:Int = h

}

object n {

def h:Int = 42;

}
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The semantics of Scala are such that the definitions in an object are
mutually recursive, allowing the forward reference g, while imports
are sequential, only allowing references to the imported name h after
the import statement. Local definitions have precedence over names
imported in the same block, regardless of the order in which the
definitions and imports appear in the program.

The scoping structure of our example is modeled with the scope
graph shown in figure 6.8.

sR 7→ ()

so 7→ o

DL

sf 7→ f : IntD

sg 7→ g : Int
D

si 7→ ()

B

sn 7→ n

D
L

sh 7→ h : IntD

I

g

n

h

N

Figure 6.8: Scope graph
corresponding to the program
in figure 6.7. Colored nodes and
paths only illustrate references
and their resolution and are not
part of the model.

The colored dashed/dotted boxes indicate references of a name (g, n,
and h) appearing in a certain scope, with colored paths indicating
how these references are resolved. The elements in color are not
part of the scope graph, but only drawn for illustrative purposes.
The definitions f and g are declared in the object scope so. The set
of outgoing edges from a scope is not ordered. An imposed order
between outgoing edges is instead modeled by chaining scopes.
For example, because imports are treated sequentially in Scala, the
import statements induces a scope si, connected to the previous
import or object scope using a B-edge. The import makes more
declarations accessible, which is modeled in the scope graph by an
I-edge to the scope sn of object n. The forward reference g resolves
to the definition in the same scope. The reference to h reaches the
imported name via the B-edge and the outgoing I-edge.

Name resolution is specified in terms of queries on the scope
graph, which specify reachability and visibility of declarations in
terms of a regular expression and an order on paths, respectively
(section 6.2). In this Scala subset, a declaration is reachable if it can
be found in the scope graph via a path that matches the regular
expression B∗(LB∗)∗I?D. One can check that all the colored paths
indeed match the regular expression.
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During type checking, the scope graph is constructed from an
initial empty graph, by adding more and more scopes and edges,
until the graph is a complete model of the binding and scoping
structure in the program. Name resolution is finding least reaching
paths in the scope graph. Although conceptually simple, difficulty
arises because scope graph construction can depend on resolving
queries as well as the other way around. This is the case for imports,
where the I-edge depends on resolution of the named import. In
general, even determining whether there is an edge at all can depend
on name resolution. This means that scope graph construction must
be interleaved with query evaluation.

This raises the following concrete scheduling problem: given
a scope graph query, a partial scope graph, and a partially satisfied
type specification, is it sound to evaluate the query now or should
it be delayed? Conceptually, the answer is ‘yes, it is sound’ if the
answer to the query in the current partial model is the same as
the answer in a complete model. The answer is ‘no, delay’ if the
complete model contains additional binding information that is
relevant to the query at hand.

To specify what information is relevant, we introduce the notion
of critical edges for a query in a model with respect to a partial scope
graph. An unstable resolution answer means that a resolution path
that is valid in the model graph is not yet a valid path in the partial
graph because some part of the final graph is missing. A critical edge
of a query is an edge along a resolution path in the model that is not
present yet in the partial graph, but whose source node is present.
We can think of critical edges as the root cause of instability, as they
are the first missing step in a resolution path in the model. Whether
an edge is critical is determined based on the regular expression
that expresses reachability, which exactly demarcates the part of the
scope graph that will be searched.

Because the complete model is yet unknown, we cannot directly
identify missing critical edges. Instead, we look ahead at the re-
maining type checking problem to determine whether any critical
edges are still missing. In general, precise determination may re-
quire arbitrary type checking, which would lead to a backtracking
implementation. Instead, we approximate critical edges as weakly
critical edges, whose absence can be determined without backtrack-
ing. We show that our approximation is sound for a subset of Statix
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Scope graph: A triple G = 〈S, E, ρ〉.

specifications. Importantly, we can statically determine if a specifi-
cation is in this subset using a type analysis that we formalize as
permission-to-extend.

6.2 Statix-core: A Constraint Language

In this section we introduce Statix-core, modeling the essential ingre-
dients of Statix17: a framework for the declarative specification of
type systems. Statix specifications have a precise declarative seman-
tics that specifies which scope graphs are models of the specification.
They do not have a formal operational semantics that can be used to
find a model for a given program if it exists. Such an operational
semantics requires a sound scheduling strategy for name and type
resolution.

First, we formally introduce scope graphs together with a concise
presentation of the resolution calculus18,19. We then present the
syntax and declarative semantics of Statix-core. Subsequently, in sec-
tion 6.3 and section 6.4, we present the sound operational semantics
using a general delay mechanism for queries based on critical edges.

Statix-core is a constraint language extended with primitives
for scope graph assertions and queries. The assertions internalize scope
graph construction, whereas the queries internalize scope graph
resolution. We discuss what a scope graph comprises, and present
resolution in scope graphs as computing the answer to a visibility
query.

A scope graph G is a triple 〈S, E, ρ〉where S is a set of node identifiers,
E is a multi-set of labeled, directed edges, and ρ is a finite map from
node identifiers to terms. We will write SG , EG and ρG for projecting
the three components out of a graph G, and may omit the subscript
when it is unambiguous. We will refer to the term associated with a
node identifier as the datum of a node. The complete syntax of graphs
and terms is given in figure 6.9. We write ε for the empty graph
and G v G ′ for the extension order on graphs. On sets we use the
notation X ∪Y and X tY to denote the union and the disjoint union
of sets X and Y, respectively. We write X \Y for the set difference,
and x; X for {x} tX. We sometimes use set comprehension notation
{φ(x) | x ∈ X} to denote the set of all elements φ(x) for x in X.
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Regular paths: paths in the graph whose
labeling matches a regular expression.

Reachability query: A reachability query
s r D.

20 Brzozowski 1964. “Derivatives of Reg-
ular Expressions”

Visibility: set of least reachable paths.

Stable: A query answer is stable between
graphs, if the answer is the same in both.

Name resolution is modeled with regular paths in the graph. We
write G ` p : s w−→ sk to denote that p is a regular (acyclic) path in G,
starting in s, ending in sk, and spelling the word w along its edges.
We define the operations src (_), tgt (_) and labels (_) to act on paths
and project out the source node s, target node sk, and list of labels w
on the edges, respectively.

The answer to a reachability query s r D is a set of regular paths
s w−→ s′ such that w matches the regular expression r and the datum
of s′ inhabits the term predicate D:

Ans
(
G, s r D

)
=
{

p
∣∣∣ G ` p : s w−→ s′ and w ∈ L(r) and ρG(s′) ∈ D

}
We write L(r) for the set of words in the regular language described
by r. A useful device when we consider partial reaching paths
is the Brzozowski derivative 20 δwr of a regular expression r with
respect to a word w, whose language is L(δwr) = {w′ | ww′ ∈ L(r)}.

Often we are interested in a refinement of reachability, which we
call visibility. A datum is visible via a path p if and only if p is a least
reaching path. Given reachability answer A, the subset of visible
paths is defined as the minimum of A over a preorder R on paths:

min(A, R) = {p ∈ A | ∀q ∈ A. Rqp⇒ Rpq}

Reachability is monotone with respect to graph extension: extending
a graph with additional nodes and edges can only make more things
reachable. In contrast, visibility is non-monotonic with respect to
graph extension: extending a graph with additional nodes and
edges may obscure—or, shadow—information that was previously
visible.

We can now formally state the notion of stability of query answers
that is key to the correct implementation of static name resolution:
a query (answer) q is said to be stable between graphs G v G ′,
when the answer set for the query is identical in both graphs: i.e.
Ans (G, q) = Ans (G ′, q).
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21 O’Hearn et al. 2001. “Local Reasoning
about Programs that Alter Data Struc-
tures”

We now present the syntax of the constraint language Statix-core
for making assertions about terms and an implicit, ambient scope
graph. The syntax is generated over a signature:

Signature

l ∈ I label
f ∈ F symbol
r ∈ R regex

x ∈ X term variable
z ∈ Z set variable
s ∈ V node name

Syntax

Terms
t ∈ T ::= x variable

| f (t∗) compound term
| l | s label and node

Sets of Terms
t ::= z | ζ set variable and set literal
ζ ::= ∅ | {t} empty and singleton set

| ζ t ζ disjoint union
Graphs
G ::= 〈S ⊆ V , E ⊆ (V × I × V) , ρ ⊆ (V ⇀ T )〉
Constraints
C ::= emp | false true and false

| C ∗ C | t = t separating conjunction and term equality
| ∃x. C existential variable quantification
| single(t, t) | min(t, R, t) set singletons and minimum
| ∀x in t. C universal quantification over sets
| ∇t 7→ t | t l t node and edge assertion
| query t r D as z. C | dataOf(t, t) graph query and data retrieval

N

Figure 6.9: Syntax of Statix-core.

Terms t are either variables x, compound terms f (t∗), graph edge-
labels l, graph nodes s, or graph edges t l t. Importantly, nodes
only appear as a result of substitution in the operational semantics
and do not appear in source constraint problems. Literals for sets of
terms t̄ are used to represent query answer sets in programs and are
generated from the disjoint union of singletons and empty sets. Sets
of terms are implicitly understood to exist up to reordering.

Constraints C define assertions on terms and an underlying scope
graph. As we will see subsequently, constraint satisfaction uses a
notion of ownership, which gives the semantics a separation logic21

flavor. This is reflected in the syntax of Statix-core where we use
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Graph support: The part of the scope
graph that is asserted by a constraint

C ∗ C for separating conjunction, and emp and false for the neutral
and absorbing elements of ∗, respectively. The t1 = t2 constraint
asserts that t1 and t2 are equal. The x binder in existential quantifica-
tion ∃x. C ranges over all possible terms, whereas the x in universal
quantification ∀x in t. C ranges over members in a given finite set of
terms t.

The assertions on the ambient scope graph G come in two flavors:
node and edge assertion. The former is written ∇t1 7→ t2 and asserts
that t1 is a node s ∈ SG such that ρG(s) = t2. The node assertion
gets unique ownership of s, such that no other node assertion can
observe the same fact about the model G. Similarly, edge assertions
t1

l t2 assert unique ownership of an edge (t1, l, t2) ∈ EG . The
dataOf(t1, t2) constraint asserts that the data associated with node
t1 is t2.

Query constraints (query t r D as z. C) internalize reachability
queries: we query node t for the set of all reaching paths over the
regular expression r to nodes whose data satisfy the predicate D,
and bind the query result to z in C. Queries yield sets of paths
(embedded as terms) which motivates the need for set literals, uni-
versal quantification over the elements in the set, and the single(t, t)
constraint which asserts that t is a singleton set containing just the
element t. The constraint min(t, R, t′) asserts that the latter set of
terms is the minimum of the former over the preorder R and is used
to specify disambiguation of a set of reaching paths to the set of
visible paths. We implicitly convert between (finite) mathematical
sets and term set syntax where necessary. We assume that the set F
of term constructor symbols contains the necessary constructors to
encode paths.

The meaning of constraints is given by the inductively defined
constraint satisfaction relation G �σ C, which says that the graph G
satisfies the closed constraint C with graph support σ = 〈S, E〉, where
S ⊆ SG and E ⊆ EG . In case the satisfaction judgment holds, we
say that G is a model for the constraint C. Because the satisfaction
relation does not explain how one finds a model, we also call this
the declarative semantics of Statix-core.
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22 We lift set operations pointwise to
graph support. A particularly important
operation is the disjoint union, written
σ1 t σ2, which is defined as σ1 ∪ σ2, if
and only if σ1 ∩ σ2 is empty.

G �σ C Scope graph G satisfies constraint C with support σ

Emp

G �⊥ emp

Conj

G �σ1 C1 G �σ2 C2

G �σ1tσ2 C1 ∗ C2

Eq

t1 = t2

G �⊥ t1 = t2

Exists

G �σ C [t/x]

G �σ ∃x. C

Singleton

G �⊥ single(t, {t})

Min

t′ = min(t, R)

G �⊥ min(t, R, t′)

Forall-Empty

G �⊥ ∀x in ∅. C

Forall

G �σ1 C [t1/x] G �σ2 ∀x in t2. C

G �σ1tσ2 ∀x in ({t1} t t2). C

Node

s ∈ SG ρG(s) = t

G �〈s,∅〉 ∇s 7→ t

Edge

(s1, l, s2) ∈ EG
G �〈∅,(s1,l,s2)〉 s1

l s2

Query

G �σ C
[
Ans

(
G, s r D

)
/z
]

G �σ query s r D as z. C

Data

ρG(s) = t

G �⊥ dataOf(s, t)

N

Figure 6.10: Statix constraint
satisfiability.

The first thing to be understood is the role of the graph support,
which declaratively expresses ownership of graph structure by con-
straints. This ownership is distributed linearly: graph nodes and
edges cannot be owned twice. This is clearly visible in the rule Conj

for conjunctions C1 ∗ C2, which disjointly distributes the support
of the conjunction over the constraints C1 and C2.22 Ownership
is established by graph assertions (rules Node and Edge). Many
primitive constraints (e.g., Eq and Data) have empty support (⊥).

We are only interested in models of constraints that are supported:

G �〈SG ,EG 〉 C

G � C
Supported

Intuitively, a model G is supported by a constraint C when every
node and edge in it is asserted by C. For top-level constraints, we are
exclusively interested in supported models. Models that are not fully
supported at the top-level contain “junk”: graph structure that is not
asserted by the Statix specification. For our problem domain it does
not make sense to consider those models, as they would contain
binding structure that does not correspond to the input program.

s0 7→ d

s1

P

N

Figure 6.11: An unsupported
model of the constraint on the
left, assuming d ∈ D.

Not every constraint that has a model also has a supported one.
Consider, for example, the following constraint:

∃s.
(
query s P∗ D as z. (∃x. single(x, z))

)
The constraint existentially quantifies over an s, which is queried for
the set of regular paths, so that:

z = Ans

(
G, s P∗ D

)
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We then constrain the answer to be a singleton, containing only the
existentially quantified path x. Whenever D is inhabited, there are
clearly graphs that satisfy the constraint (e.g., figure 6.11). None
of those graphs are supported, however, because there are no node
or edge assertions in the constraint. This means that the whole
constraint has empty support and the empty graph is hence not a
supported model of the query. Because we are only interested in
supported models, a Statix constraint solver should output that this
constraint is unsatisfiable.

We use the declarative semantics to define the semantics of
constraint entailment () and equivalence (a`). This will enable us
to reason about Statix-core specifications, so that we can prove, in
particular, the desired properties of the operational semantics. We
will need to reason about open constraints as well, which motivates
us to first lift the declarative semantics to open constraints in the
usual way. That is, we write G, ϕ �σ C to denote that the open
constraint is satisfied by the model G when closed with the substitu-
tion ϕ (G �σ Cϕ). Entailment and equivalence are then defined as
follows:

Figure 6.12: Constraint
entailment and equivalence.

H

Entailment

∀G, ϕ, σ. (G, ϕ �σ C1 implies G, ϕ �σ C2)

C1  C2

Equivalence

C1  C2 C2  C1

C1 a` C2

The role of support in constraint satisfiability gives the logic
that we obtain for these entailment relations the flavor of a linear
separation logic. That is, we get equivalence rules that one would
expect for a linear separation logic. For example:

C1 ∗ C2 a` C2 ∗ C1

C1 ∗ (C2 ∗ C3) a` (C1 ∗ C2) ∗ C3

emp ∗ C a` C

false ∗ C a` false

Conjunction is commutative and associative and has emp as its
identity and false as the absorbing element. These hold because the
equivalences linearly preserve support.
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23 This leaves room for incompleteness—
i.e., type checker may get stuck and nei-
ther accept nor reject a program, but get
into an infinite loop, or report that it
could not make a decision.

On the other hand, the following equivalences fail to hold, because
the left and right hand side have different graph support:

C1 ∗ C2 a` C1 (does not hold)

C1 ∗ C2 a` C2 (does not hold)

6.3 Solving Constraints

Our goal is to derive, from the Statix specification of a type system,
an executable type checker. A sound type checker should take a
specification and an input program e and construct the ambient
scope graph G such that G and e together obey the specification. Or,
if and only if the program does not obey the specification, produce
a name- or type-error.23 Our approach to this is to equip Statix-core
with an operational semantics that reduces constraints, as generated
over a program, to a graph that satisfies the constraint according to
the declarative semantics, or rejects the constraint if and only if such a
graph does not exist. In this section we describe such an operational
semantics without queries. We show that the operational semantics
enjoys confluence and soundness with respect to the declarative
semantics. In section 6.4 we extend this semantics to queries.

The operational semantics of Statix without queries is a small-
step semantics defined as a binary relation on state tuples

〈
G | C

〉
,

where G is a graph and C is a set of constraints that is repeatedly
simplified. Semantically we treat the constraint set as a large con-
junction and we non-deterministically pick a constraint from this
set to perform a step on. The rules of the small-step semantics are
displayed in figure 6.13.

A constraint C is solved by constructing an initial state κ as〈
ε | {C}

〉
and repeatedly stepping until a final or stuck state κ′

is reached. We say that the operational semantics accepts C iff it
reaches a final state

〈
G | ∅

〉
and rejects C iff it reaches a final state〈

G | {false}
〉
. Any other states in which we cannot reduce by taking

a step are said to be stuck.
The rules for the usual logical connectives (emp, false, C1 ∗ C2, =,

∃, ∀, and single) are standard. The rule for set minimums proceeds
by computation. For ∇t1 7→ t2 there are two rules: if t1 is a variable
x, rule Op-Node-Fresh will extend the graph with a fresh node s,
claim ownership over it, and substitute s for x everywhere.
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κ → κ′ State κ steps to κ′

Op-Emp〈
G | emp; C

〉
→
〈
G | C

〉 Op-False〈
G | false; C

〉
→
〈
G | {false}

〉 Op-Conj〈
G | (C1 ∗ C2) ; C

〉
→
〈
G | C1; C2; C

〉
Op-Eq-True

t1 ϕ = t2 ϕ ϕ is most general〈
G | (t1 = t2) ; C

〉
→
〈
Gϕ | Cϕ

〉
Op-Eq-False

¬∃ϕ.t1 ϕ = t2 ϕ〈
G | (t1 = t2) ; C

〉
→
〈
G | {false}

〉
Op-Exists

y is fresh for G and C〈
G | (∃x. C) ; C

〉
→
〈
G | C [y/x] ; C

〉 Op-Singleton-True〈
G | single(t,

{
t′
}
); C
〉
→
〈
G | (t = t′); C

〉
Op-Singleton-False

¬∃t′.t =
{

t′
}〈

G | single(t, t); C
〉
→
〈
G | {false}

〉
Op-Min

ζ ′ = min(ζ, R)〈
G | min(ζ, R, x); C

〉
→
〈
G
[
ζ ′/x

]
| C
[
ζ ′/x

] 〉
Op-Forall〈
G | (∀x in ζ. C) ; C

〉
→
〈
G | {C [t/x] | t ∈ ζ} t C

〉
Op-Node-Fresh

s /∈ S〈
〈S, E, ρ〉 | (∇x 7→ t); C

〉
→
〈
〈(s; S), E, ρ[s→ t] [s/x]〉 | C [s/x]

〉
Op-Node-Stale

t2 is not a variable〈
G | (∇t2 7→ t1) ; C

〉
→
〈
G | {false}

〉
Op-Data

ρ(s) = t2〈
G | dataOf(s, t1); C

〉
→
〈
G | (t1 = t2); C

〉 Op-Edge〈
〈S, E, ρ〉 | (s1

l s2); C
〉
→
〈
〈S, (s1, l, s2) ; E, ρ〉 | C

〉

N

Figure 6.13: Operational
semantics of Statix without
queries.

If t1 is not a variable, specifically if it is a node, then it must be
owned already and the rule Op-Node-Stale rejects the constraint
by stepping to {false}. For example, both rules would be executed
once for the specification ∇x 7→ () ∗ ∇x 7→ (): one of the con-
straints gets ownership, and the other fails to get it. Edge assertions
t1

l t2 construct new edges in the graph via Op-Edge when both
endpoints have become nodes. Multiple edges with the same label
between the same endpoints can exist separately—i.e., there is no
edge counterpart to the be Op-Node-Stale rule. Data assertions
dataOf(t1, t2) compute by unification when the node t1 becomes
ground.

We will show that the operational interpretation of a Statix-core
specification is sound with respect to the declarative reading. That
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is, if the operational semantics accepts a constraint C, then the
resulting graph is a supported model for C. And additionally, if the
operational semantics rejects a constraint C, then there exists no
supported model for C. From the perspective of the object language
semantics defined in Statix-core this means that the derived type-
checker is sound by construction with respect to the typing rules of
the language.

If we extend our declarative semantics for constraints to states,
we can state the soundness criterion more concisely and uniformly.
We accomplish this via an embedding of states into constraints:

Definition 1. The embedding of a graph 〈V, E, ρ〉 and the embedding
of a state

〈
G | C

〉
are defined as follows:

J〈V, E, ρ〉K =
(
∗

s∈V
∇s 7→ ρ(s)

)
∗
(
∗

(s,l,s′)∈E

(
s l s′

))
q〈
G | C

〉y
= JGK ∗

(∗C
)

The soundness criterion can now be stated in terms of constraint
equivalence between initial and final states. Specifically, we will
show that the following theorem holds:

Theorem 1 (Soundness of Statix-core without queries). Let κ be either
an accepting or rejecting state. The operational semantics for Statix-core
without queries is sound:〈

ε | {C}
〉
→∗ κ implies C a` JκK

This is equivalent to the aforementioned informal definition of
soundness, which can be shown using the facts that top-level con-
straints are closed and that graphs are trivially a model for their
own embedding. We would like to prove this statement by induction
on the trace of steps. This requires us to show that individual steps
operate along constraint equivalences—i.e., that κ1 → κ2 implies
Jκ1K a` Jκ2K. Indeed, this is the case for many of the rules. For exam-
ple, Op-Conj and Op-Emp rewrite along commutativity, associativity,
and identity of the separating conjunction. The rules for existential
quantification and node assertion, however, cannot be justified using
logical equivalences. To this end we define a more general notion of
preserving satisfiability:

Definition 2. We write C1 |∼ C2 to denote that C2 is satisfiable when C1

is satisfiable, that is, the existence of a model G for open constraint C1,
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implies that G is also a model for C2, but modulo graph equivalence (≈):

∀G1, ϕ1. (G1, ϕ1 � C1 implies (∃G2, ϕ2. G2, ϕ2 � C2 s.t. G1 ≈ G2))

C1 |∼ C2

We also define the symmetric counterpart, which denotes equi-
satisfiability:

C1 |∼ C2 ∧ C1 ∼| C2

C1 ∼||∼ C2

For top-level (closed) constraints this notion of preserving satisfiabil-
ity coincides with constraint equivalence. Furthermore, constraint
entailment C1  C2 always implies C1 |∼ C2, allowing the use of
laws such as identity, commutativity, and associativity of the separat-
ing conjunction when we reason about preservation of satisfiability.
Steps in the operational semantics are semantically justified in that
they preserve satisfiability of the constraint problem:

Lemma 2. Steps preserve satisfiability: κ1 → κ2 implies Jκ1K∼||∼ Jκ2K

This may feel counter-intuitive, as steps construct a graph and preser-
vation of satisfiability demands equivalent graphs as the model for
the left- and right-hand-sides of the step. The key to understanding
this lies in definition 1 of the state embedding together with the rules
for graph construction Op-Node-True and Op-Edge, which show
that bits of graph (support) are merely moved between the constraint
program and the (partial) model. In the initial state the entire model
should be specified in the input constraint and in the final state the
entire model is a given.

Proof sketch. The proof is by case analysis on the constraint that is
the focus of the step. Many cases can indeed be proven using logical
equivalences. Other cases, such as the elimination of existential
quantifiers rely on the commutativity of substitutions with embed-
ding of states. The graph equivalence is trivial everywhere, except
for the step Op-Node-True. An arbitrary fresh node is chosen there,
which means that the models for the different sides of the step are
equal only up-to renaming of nodes.

As a consequence of lemma 2, the operational semantics enjoys
soundness with respect to the declarative semantics (theorem 1):
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Proof sketch for theorem 1. The embeddings of the initial and final
states reduce to C and JGK respectively. We repeatedly apply the
fact that steps preserve satisfiability and prove C∼||∼ JGK. Now we
make use of the fact that graphs are trivially a supported model for
their own embedding: G � JGK. By the above constraint equivalence,
G must then also be a supported model for C up-to renaming of
nodes. The theorem follows from the fact that constraint satisfaction
is preserved by consistent renaming of nodes in the model and the
constraint, and the fact that node renaming vanishes on top-level
constraints.

The operational semantics is non-deterministic, but confluent.
This can be shown to hold by proving the diamond property for the
reflexive closure of the step relation. We give a proof outline for
confluence using the diamond property at the end of section 6.4.

Theorem 3 (Confluence). If κ →∗ κ1 and κ →∗ κ2 then there exists κ′1
and κ′2 such that κ1 →∗ κ′1 and κ2 →∗ κ′2 where κ′1 ≈ κ′2.

6.4 Solving Queries: Knowing When to Ask

We now address the problem of extending the Statix-core operational
semantics to support queries. First we improve our understanding of
the problem, by considering a naive semantics that answers queries
unconditionally. We show that this approach yields unsound name
resolution by violating answer stability. A rule for queries needs to
ensure that query answers are stable. We develop the sound rule in
three steps:

• We characterize the scope graph extensions that causes query
answer instability and show that we can guarantee stability by
ensuring the absence of (weakly) critical edge extensions.

• We describe a fragment of well-formed constraint programs for
which it is feasible to check, without the full power of constraint
solving, that certain graph edges cannot exist in any future graph
(figure 6.17), addressing the problem that the complete scope
graph is unknown during type checking.

• We obtain an operational semantics for well-formed Statix-core
constraints with queries by guarding query simplification by the
absence of weakly critical edges in all future graphs. We prove
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that this guarded rule preserves satisfiability and thus yields a
sound, non-backtracking operational semantics (theorem 11).

Consider a naive, unconditional evaluation rule for queries:

Op-Query-Naive

t = Ans
(
G, s r D

)
〈
G |
(
query s r D as z. C

)
; C
〉
→
〈
G | C

[
t/z
]

; C
〉

It solves a query by answering the given reachability query in the
incomplete graph that is part of the solver state at that time. It then
simplifies the constraint program by substituting the answer set into
C. This rule is unsound: it results in graphs that are not models of
the input constraint.

To understand how this rule is unsound, consider the following
example constraint set C:

C = ∇x 7→ ()

; ∇y 7→ ()

; query x P+ > as z.
(
∀x′ in z. false

)
; x P y

The query in these constraints asks for any node that is reachable in
the graph after traversing at least one P-labeled edge, starting in the
node for the variable x. It then asserts (via ∀x′ in z. false) that the
answer to this query is empty. We can trace the evaluation of this
example:

Figure 6.14: Trace
demonstrating unsoundness of
a naive query simplification
rule.

H

〈
ε, ∇x 7→ () ; ∇y 7→ () ; (query x P+ > as z.

(
∀x′ in z. false

)
) ; x P y

〉
〈

s1 , ∇y 7→ () ; (query s1
P+ > as z.

(
∀x′ in z. false

)
) ; s1

P y
〉

〈
s1 s2 , (query s1

P+ > as z.
(
∀x′ in z. false

)
) ; s1

P s2

〉
〈

s1 s2 , s1
P s2

〉
〈

s1 s2P ,
〉

The final graph in figure 6.14 is not a model for the input constraint.
The answer to the query in the final graph is non-empty: there
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is a single path in the answer consisting of the only edge in the
graph. The reason for this faulty behavior can be reduced to two
observations: (1) the naive solver answers queries based on incom-
plete information, namely the partial graph that happens to be part
of its state at that point in the trace, and (2) query answers are in
general not stable under graph extensions that occur later in the con-
straint solver. This raises the question: what additional conditions
must hold in a given state such that query solving is sound—i.e.,
under what side-condition is the following rule for query answering
sound? 〈

G |
(
query s r D as z. C

)
; C
〉
→

〈
G | C

[
Ans

(
G, s r D

)
/z
]

; C
〉

In order to prove that this rule is sound, it suffices to prove that
it preserves satisfiability, as is the case for the other steps of the
operational semantics (c.f. lemma 2). Concretely, to show that this
rule preserves satisfiability, we have to prove:

JGK ∗
(
query s r D as z. C

)
∗
(∗C

)
∼||∼ JGK ∗ C

[
Ans

(
G, s1

r D
)

/z
]
∗
(∗C

)
This means that every supported model G ′ for the left constraint
must be a supported model for the right constraint as well, and
vice versa. When is this the case? It holds exactly when the query
s r D is stable for the graph extension G v G ′. Or, in the terms of
the application domain of Statix, it holds if all relevant namebinding
information that may influence resolution of the specified name
is present in G. That means, for example, that no further names
will be discovered in the remainder of the program that shadow
declarations that are reachable in the current graph G.

Ensuring Answer Stability. To guarantee query stability, we want
to prevent the solver from extending the graph with critical edges.
We argue however that the absence of critical edges is too strong a
notion for a solver to verify. To remedy this, we derive the notion of
a weakly critical edge which only considers the extension boundary.

To appoint a root cause of instability of reachability queries under
graph extensions G v G ′, we focus on paths that exist in G ′, but not
in G:

p ∈ Ans
(
G ′, s1

r D
)
\ Ans

(
G, s1

r D
)
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Because the start node of every path in the answer set of a query
is fixed (in this case to s1) they can always be partitioned into a
non-empty prefix in G and the remainder. The first edge of the
remainder can be considered the root cause for this new path in G ′.
We call such edges critical.

Definition 3. An edge (s1, l, s2) ∈ EG ′ is called critical with respect to a
graph extension G v G ′ and a query s r D if there exist paths p1 and
p2 that satisfy the following conditions:

(a) G ` p1 : s
w1−→ s1 for some word w1,

(b) G ′ ` p2 : s2
w2−→ s3 for some node s3 and word w2,

(c) (p1 · l · p2) ∈ Ans
(
G ′, s1

r D
)

, and

(d) (s1, l, s2) /∈ EG .

Figure 6.15 visualizes the critical edges for a particular graph exten-
sion and query. Critical edges for a query are interesting because
their absence in a graph extension guarantees stability of the answer
to that query:

J

Figure 6.15: Critical edges for

the query s1
LM∗ D, assuming

that t ∈ D. Double solid red
arrows depict critical edges,
whereas dashed red arrows
depict weakly critical edges.
Every critical edge is also
weakly critical.

s1

s2 s3
s4

s5 s6 7→ t

s7 7→ t

L M

M

M M

M

M ML

G1

G2

Lemma 4 (Absence of Critical Edges). A reachability query s r D is
stable under graph extension G v G ′ iff G v G ′ contains no critical edges
for s r D.

Proof. The absence of critical edges implies stability because every
path that answers a query that is in the extended graph G ′ but not
in the original graph G can be partitioned as p1 · l · p2 such that
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(tgt (p1) , l, src (p2)) is a critical edge. Consequently, the absence of
critical edges in an extension immediately implies that the extended
graph yields no new answers to the query under scrutiny. The other
direction of this lemma holds trivially.

As indicated by lemma 4, it would be sufficient for the rule for
queries to require the absence of critical edges in future graphs.
However, the problematic question is: critical with respect to which
graph extension? Indeed, the graphs G ′ that lemma 4 quantifies
over are all future graphs of a trace in the operational semantics.
Precisely knowing G ′ is as difficult as solving the constraint program.
Hence it is not feasible for a solver to guard against the absence
of critical edges with pinpoint accuracy. In the remainder of this
section we describe a two-part approach to sound operation of a
non-backtracking solver based on over-approximating the criticality
of an edge.

Because the notion of a critical edge is derived from entire new
reaching paths in graph extensions, guarding against critical edge
extensions requires looking ahead over arbitrary constraint solving.
Our approximation, a weakly critical edge, reduces the required
lookahead to just one-edge extensions of the current graph:

Definition 4. An edge (s1, l, s2) is called weakly critical with respect to
a graph G and a query s r D if there exists a path p1 that satisfies the
following conditions:

(a) G ` p1 : s
w1−→ s1 for some word w1,

(b) the word (w1l) is a prefix of some word in L(r), and

(c) (s1, l, s2) /∈ EG .

In figure 6.15 an edge is highlighted that is only weakly critical:
it shares all the features of a critical edge except that it does not
actually give rise to new paths in the answer set of the query. The
intuition behind a weakly critical edge is that it may lead to addi-
tional reaching paths. Every critical edge is also weakly critical, so
that the following corollary holds:

Corollary 5. A reachability query Q = s r D is stable under graph
extension G1 v G2 if (but not iff) the graph extension G1 v G2 contains
no edges that are weakly critical for Q.
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Proof. Every critical edge is also weakly critical because (p1 · l · p2) ∈
Ans

(
G ′, s1

r D
)

implies that (wl) is a prefix of some word in L(r),
for w = labels (p1). The conclusion then immediately follows from
lemma 4.

Because visibility is defined as the minimum of a reachability
query answer (section 6.2), the absence of weakly critical edges is
also a sufficient (but not necessary) condition for stability of visibility
query answers.

Corollary 6 (Absence of Weakly Critical Edges). A visibility query
Q = s r D is stable under graph extension G1 v G2 if the graph
extension G1 v G2 contains no edges that are weakly critical for Q.

Consequently, the absence of weakly critical edges is also sufficient
to guarantee the soundness of visibility queries with any path or-
der ≤p. However, for particular choices of the path order there
exist tractable approximations of criticality of edges for stability of
reachability that are more precise than weak criticality. For example,
the path ordering is often defined as the lexicographical extension
of a precedence ordering on edge labels. Edge extensions of the
graph with lower precedence than existing edges can in that case be
disregarded as influential to name resolution. Our results extend to
such refinements in a straightforward manner.

By means of a well-formedness judgment ` C wf on Statix-core
constraints, we define a large class of constraints for which we can
check the absence of weakly critical edges. To this end we will also
define a predicate C 6↪→ (s, l) which can be checked syntactically, but
has the semantics that C does not support any l-edges out of s if C is
well-formed. We then prove the following guarded query simplification
rule correct:

Figure 6.16: An evaluation step
for queries guarded by a
condition that prohibits
answering it if other constraints
in C may support critical edges.

H

Op-Query-Guarded

∀s2, l.
(
G ` p : s1

w−→ s2 and L(δwlr) 6= ∅ implies (C; C) 6↪→ (s2, l)
)

〈
G |
(
query s1

r D as z. C
)

; C
〉
→
〈
G | C

[
Ans

(
G, s1

r D
)

/z
]

; C
〉

Recall that the condition L(δwlr) 6= ∅ means that (wl) is a prefix
of some word in L(r). Intuitively, the precondition states that the
remainder of the constraint program does not support any weakly
critical edges for the query under scrutiny.
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We define well-formedness inductively using the rules in fig-
ure 6.17. The intuition behind well-formed constraints is that as-
serting new outgoing edges on nodes requires permission to extend
that scope. Permission is granted by a freshness assertion. The well-
formedness judgment is defined in terms of an auxiliary judgment
∆↓, ∆↑ ` C which denotes that the constraint C requires permission
for variables in ∆↓, and grants permission for those in ∆↑.

` C wf Constraint program C has sufficient permissions

∆↓, ∆↑ ` C ∆↓ ⊆ ∆↑

` C wf
Wf-Program

∆↓, ∆↑ ` C C requires permissions for variables in ∆↓ and grants them for ∆↑

Wf-True

∅, ∅ ` emp

Wf-False

∅, ∅ ` false

Wf-Conj

∆↓1 , ∆↑1 ` C1 ∆↓2 , ∆↑2 ` C2

∆↓1 ∪ ∆↓2 , ∆↑1 ∪ ∆↑2 ` C1 ∗ C2

Wf-Eq

∅, ∅ ` t1 = t2

Wf-Exists

∆↓, ∆↑ ` C
(

x ∈ ∆↓ ⇒ x ∈ ∆↑
)

∆↓ \ {x}, ∆↑ \ {x} ` ∃x. C

Wf-Singleton

∅, ∅ ` single(t, t)

Wf-Node-Var

∅, {x} ` ∇x 7→ t

Wf-Node-NoVar

t is not a variable

∅, ∅ ` ∇t 7→ t′

Wf-Forall

∆↓, ∆↑ ` C
(

x ∈ ∆↓ ⇒ x ∈ ∆↑
)

∆↓ \ ∆↑ \ {x}, ∅ ` ∀x in t. C

Wf-Edge-Var

{x} , ∅ ` x l t′

Wf-Edge-NoVar

t is not a variable

∅, ∅ ` t l t′

Wf-Query

∆↓, ∆↑ ` C

∆↓, ∆↑ ` query s r D as z. C

Wf-Data

∅, ∅ ` dataOf(t, t′)

N

Figure 6.17: Constraint
well-formedness using an
auxiliary permission relation.

The relation is easily extended to constraint sets, following the
intuition that constraint sets are conjunctions.

Let us highlight some of the rules as an explanation of what the
relation means. The rules Wf-Program asserts that a constraint is
well-formed if it has sufficient permissions for the scope extensions
that it supports. Many of the constraints neither require (↓), nor
grant (↑) any permissions. For example, Wf-True, Wf-False and
Wf-Eq each have empty requirements ∆↓ = ∅ and an empty set
of granted permissions ∆↑ = ∅. The rule for Wf-Conj just com-
bines permissions of the two operands of the separating conjunction.
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Permission is granted by the rule Wf-Node-Var on a variable x
by a node assertion ∇x 7→ t. Permission is required by the rule
Wf-Edge-Var on a variable x for the constraint x l t. Rules with
binders take care that the bound variable x has sufficient permission
using a premise x ∈ ∆↓ ⇒ x ∈ ∆↑.

We can relate permissions granted to the support of the constraint
in any model.

Lemma 7. A granted permission for a variable x in a constraint C guar-
antees that x stands for a supported scope in any model of C:

∆↓, ∆↑ ` C G, ϕ �σ C x ∈ ∆↑

xϕ = s and s ∈ σ for some s

Proof sketch. The proof of this property is by induction over the
permission derivation. Most cases are simple and follow from the
fact that most constraints have an empty ∆↑. The cases for the
quantifiers and the conjunction are a matter of bookkeeping and
invoking the induction hypothesis. In case of the rule Wf-Node-
Var we have C = ∇x 7→ t for some x and the conclusion follows
from inversion on the derivation of G, ϕ �σ ∇x 7→ t, which proves
that xϕ = s and that σ = 〈s, ∅〉.

Syntactical extends judgment. The key observation is that this lemma
makes it possible to ensure that a well-formed constraint set contains
no weakly critical edges for a given scope s by simply scanning the
constraint set for edge assertions with known source node s. We now
define a simple judgment C ↪→ (s, l) that formalizes the observation
that a constraint C certainly asserts an edge (s, l, ...) and then prove
that its negation C 6↪→ (s, l) is sufficient evidence for the absence of
weakly critical edges on s, provided that C is well-formed.

Figure 6.18: Syntactical
edge-support relation.

H

C ↪→ (s, l) Constraint program C asserts an l-edge on known node s

Ext-Conj1

C1 ↪→ (s, l)

(C1 ∗ C2) ↪→ (s, l)

Ext-Conj2

C2 ↪→ (s, l)

(C1 ∗ C2) ↪→ (s, l)

Ext-Exist

C ↪→ (s, l)

(∃x. C) ↪→ (s, l)

Ext-Edge

(s l t) ↪→ (s, l)

Ext-Forall

C ↪→ (s, l)

(∀t in z. C) ↪→ (s, l)

Ext-Query

C ↪→ (s, l)

(query t r D as z. C) ↪→ (s, l)



188 correct by construction language implementations

The key lemma is as follows:

Lemma 8. For all well-formed constraints the syntactical approximation
of absence of support implies the semantic counterpart. That is:

` C wf C 6↪→ (s, l) G, ϕ �σ C s 6∈ σ

∀s′.
(
s, l, s′

)
6∈ σ

Proof sketch. We prove a stronger property:

∆↓, ∆↑ ` C
(
∀(x ∈ ∆↓)⇒ (xϕ 6= s)

)
C 6↪→ (s, l) G, ϕ �σ C s /∈ σ

∀s′.
(
s, l, s′

)
/∈ σ

From the premise ` C wf of lemma 8 the premise ∆↓, ∆↑ ` C follows
by definition of well-formedness. The second premise ∀(x ∈ ∆↓)⇒
(xϕ 6= s) follows also from well-formedness of C. First, we observe
that x ∈ ∆↓ implies that x ∈ ∆↑. Then we apply lemma 7 and prove
that xϕ ∈ σ. Because we know that s 6∈ σ, the conclusion xϕ 6= s
follows.

The proof itself is by induction on C. The interesting case to
consider is edge assertions. In case the source of the edge is
ground, the conclusion follows from inversion of the third premise
(s′ l′ t) 6↪→ (s, l). In case the source of the edge is represented by
a variable x, the first premise guarantees that x ∈ ∆↓, such that the
conclusion follows by the second premise.

To use well-formedness like this—i.e., to guard against weakly
critical edges in the constraint set—it is equally important that
well-formedness is preserved by evaluation steps. That allows it to
be checked only once on the input program without dynamically
checking it on intermediate constraint sets.

Theorem 9. Steps preserve well-formedness of constraints:(〈
G | C1

〉
→
〈
G ′ | C2

〉
and ` C1 wf

)
imply ` C2 wf

Proof sketch. There are a number of evaluation steps that influence
permissions.

Any step that performs a substitutes in the constraint set can
have impact on the required and granted permissions. We can show,
however, that all substitutions preserve well-formedness, because
their affect on granted and required permissions is symmetric.

The interesting rules are those for freshness assertions, which
altogether remove a freshness assertion from the constraint set,
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dropping a permission on a variable x. We can prove that the
rule Op-Node-Fresh preserves well-formedness by observing that
the substitution of a new node for the variable x eliminates any
required permissions on that variable. The rule Op-Node-Stale

preserves well-formedness, because the constraint set {false} is well-
formed.

These results enable us to prove the main new result of this
section:

Theorem 10. The guarded simplification step preserves satisfiability:(
∀s2, l.G ` p : s1

w−→ s2 and L(δwlr) 6= ∅ imply (C; C) 6↪→ (s2, l)
)

JGK ∗
(
query s1

r D as z. C
)
∗
(∗C

)
∼||∼ JGK ∗ C

[
Ans

(
G, s1

r D
)

/z
]
∗
(∗C

)
Proof sketch. We prove this equi-satisfiability result in the direction
right to left. (The other direction proceeds similarly. By the definition
of equi-satisfiability we assume a graph G ′ that is a supported model
for the right-hand side:

G ′, ϕ � JGK ∗ C
[
Ans

(
G, s1

r D
)

/z
]
∗
(∗C

)
(I)

To prove that G ′ is also a model for the left-hand side, we have
to prove that the substituted answer to the query is stable for the
extension G v G ′. The conjunction distributes support in disjoint
fashion over the operands, and the embedding of G requires support
for all of its nodes and edges. Consequently:

G ′, ϕ �〈SG′\SG ,EG′\EG〉 C
[
Ans

(
G, s1

r D
)

/z
]
∗
(∗C

)
(II)

Now assume a weakly critical edge (s2, l, s3). By definition we must
have that G ` p : s1

w−→ s2 and L(δwlr) 6= ∅. From the guard
of the query simplification rule we may conclude (C; C) 6↪→ (s2, l).
This relation is preserved under the answer set substitution into
the constraint C. Lemma 8 now ensures that the remainder of the
constraint program cannot support the weakly critical edge:

∀s3.(s2, l, s3) /∈ (EG ′ \ EG)

It follows by corollary 5 that the answer set is stable for this graph
extension:

Ans
(
G, s1

r D
)
= Ans

(
G ′, s1

r D
)

(III)
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Combining (I) and (III), we have:

G ′, ϕ � JGK ∗ C
[
Ans

(
G ′, s1

r D
)

/z
]
∗
(∗C

)
The desired result follows from introducing the query in the middle
operand according to the satisfiability rule Query.

We have proven that all steps in the extended operational semantics
preserve satisfiability. Soundness follows:

Theorem 11 (Soundness of Statix-Core with Queries). If the oper-
ational semantics accepts a closed and well-formed constraint C, i.e.〈

ε | {C}
〉
→∗

〈
G | ∅

〉
, then the resulting graph is a supported model

for that constraint: G � C. If C is rejected, then no supported model
exists—i.e., there is no graph G such that G � C.

Proof. The proof is the same as the proof for soundness of the frag-
ment without queries, using theorem 10 to prove that the additional
step in the operational semantics also preserves satisfiability.

We end our discussion of the extended operational semantics
by observing that it is still confluent. We prove it by proving the
following diamond property:

Lemma 12 (Diamond Property for Reflexive Closure). If κ → κ1 and
κ → κ2 then there exists κ′1 and κ′2 such that κ1 →? κ′1 and κ2 →? κ′2
where κ′1 ≈ κ′2.

We write →? to denote the reflexive closure of →—i.e., κ →? κ′ iff
κ → κ′ or κ = κ′. Equivalence between configurations (κ1 ≈ κ2)
is taken to be up to graph equivalence and consistent renaming of
variables and node names in both the graph and the constraint set.

Proof sketch. The proof is by case analysis on all critical pairs of
possible-reductions κ → κ1 and κ → κ2. As usual, many of them
are trivial. Others require some insight, such as critical pair of two
different equality constraints, where the diamond is constructed by
making use of the fact that the computed unifiers are most general.

A worthwhile critical pair to consider is the pair of a query
simplification (Op-Query-Guarded) in one branch and an edge-
assertion simplification (Op-Edge) in the other. This case and the
construction of the diamond is summarized in figure 6.19.
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〈
G |
(
query s1

r D as z. C
)

; s2
l s3; C

〉

〈
G | C [A1/z]; s2

l s3; C
〉 〈

(s2, l, s3);G |
(
query s1

r D as z. C
)

; C
〉

〈
(s2, l, s3);G | C [A1/z]; C

〉
≡

〈
(s2, l, s3);G | C [A2/z]; C

〉

Op-Query-Guarded Op-Edge

Op-Edge Op-Query-Guarded

N

Figure 6.19: Diamond for the
critical pair of a query reduction
and an edge assertion.

The reduction steps that we have as premises are given by the solid
arrows while the dashed arrows represent reduction steps to the
existentially quantified configurations of the lemma: Where we use:

A1 = Ans
(
G, s1

r D
)

A2 = Ans
(
(s2, l, s3);G, s1

r D
)

The diamond is formed by applying the same steps in the opposite
branch, as usual. The resulting states are identical if we can prove
the following equality:

Ans
(
〈S, E, ρ〉 , s1

r D
)
= Ans

(
〈S, (s1, l, s3) ; E, ρ〉 , s1

r D
)

Here (s2, l, s3) is the newly asserted edge. The guard on query
simplification guarantees that the new edge is not weakly critical for
the query. Hence by lemma 4 we get that the equality holds.

Confluence of arbitrary reduction sequences is then provable
using the diamond property in the usual way:

Theorem 13 (Confluence). If κ →∗ κ1 and κ →∗ κ2 then there exists κ′1
and κ′2 such that κ1 →∗ κ′1 and κ2 →∗ κ′2 where κ′1 ≈ κ′2.

Proof. The property follows by rule induction on→∗ and a standard
“strip lemma” which says that for any κ, κ1, κ2, if κ →∗ κ1 and κ → κ2

then there exists a κ′1 and κ′2 such that κ1 →∗ κ′1 and κ2 →∗ κ′2 where
κ′1 ≈ κ′2.

6.5 Implementation and Case Studies

We developed the operational semantics of Statix-core and have
proven that the operational semantics computes sound name res-
olution results for well-formed specifications. However, the well-
formedness restriction and the possibility that the scheduling gets
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stuck limits the expressiveness of Statix-core. In this section we
describe an evaluation of our approach using MiniStatix: a proto-
type implementation of Statix that closely follows the operational
semantics.

MiniStatix implements the core constraint language Statix-core,
as well as (mutually) recursive predicates and (guarded) pattern
matching, in approximately 3000 lines of Haskell. The language has
a simple module system to enable the larger case study language
specifications to be organized across files. After parsing, the specifi-
cation is statically checked: names are statically resolved, after which
permissions are inferred for constraints, deriving the relations formally
stated in figure 6.17 and figure 6.18. The implementation extends
the definition of permissions and well-formedness to predicates and
pattern matching.

The solver implementation is a variation of the small-step opera-
tional semantics that uses environments rather than substitution. It
uses a round-robin, delaying scheduler for constraints, which can
detect configurations where no more progress can be made (i.e.,
stuckness). For satisfied constraints, the solver outputs a complete
scope graph and the unifier for the top-level existential quantifier if
there is any. For rejected programs, the solver will give the trace of
instantiated predicates that led to falsification, which functions as a
formal explanation of the error. Stuck configurations are output for
specification debugging purposes.

We have evaluated our approach using MiniStatix on three case
studies by implementing a subset of name resolution for Java and
Scala, and the whole of LMR24,25. The former two show that our
approach can indeed resolve challenging patterns of real languages.
By targeting subsets of real languages, we are able to directly test our
approach against the Java and Scala type checker. The test succeeds
if MiniStatix and the reference type checker agree on whether a test
program is valid. Programs that should be rejected are equipped
with specific error expectations to avoid false positives. The third
case study (LMR) is used to explain when our approach is incom-
plete, causing stuck configurations in MiniStatix. We count a test
case as a success if it does not get stuck and meets the manually set
test expectation (because LMR has no reference type checker). The
results are summarized in table 6.20 and we briefly highlight some
parts of the case studies below.
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Language LOC Spec Tests Succeed Fail Stuck

Java 1201 125 125 0 0

Scala 517 109 109 0 0

LMR 263 19 15 0 4

Total 1976 253 249 0 4

N

Figure 6.20: Test numbers and
results from our case studies.

For the Java study we selected a subset of Java with a focus on the
binding aspects of packages, imports, classes, interfaces, inheritance,
inner classes, and method and field members. Test cases are set up
so that faulty name resolutions result in type errors and focus on
interesting edge cases. The tests come in pairs that test that good
programs are accepted and ill-typed variants are rejected.

Packages in Java are an interesting test subject because at first
sight they seem to require remote extension—i.e. the very pattern
that is forbidden by our well-formedness restriction. Package names
in Java have no authoritative declaration, but exist by virtue of
use. More than one compilation unit can define members in the
same package. The well-formedness restriction indeed does not
permit modeling this by resolving the package name at the top
of a compilation unit to obtain a package scope and contributing
definitions to that scope. This would constitute remote extension of
the package scope. However, the right binding semantics can also
be modeled via a mixin-pattern: compilation units query for all
other compilation units in the same package and make their types
accessible by adding import edges. This model makes it locally very
apparent what things are in scope of the compilation unit, and also
passes the well-formedness check so that stability of query answers
can be guaranteed.

The Scala study focuses on the resolution of local definitions and
imported names. Scala not only gives different precedence levels
to local definitions, wildcard, and specific imports, but also distin-
guishes their scope. Concretely, local definitions are accessible in
the surrounding scope to accommodate mutual definitions, whereas
imported names are only accessible in subsequent scope. This en-
sures that resolving import statements cannot influence their own
resolution. This simplifies scheduling because it avoids the need to
iterate name resolution within a block. We discuss iterated name
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resolution (which Rust and LMR require) in more detail below.
The following well-typed example test case highlights the scoping

difference between declarations and imports, and also shows specific
imports, wildcard imports, and imports from imported objects.

J

Figure 6.21: Example test case
from the Scala case study. Our
simple parser only accepts
semicolon-terminated
statements.

object c {

import a._;

def g(): Unit = {

val x: Int = h();

import b.h;

};

def h(): Int = 42;

};

object a {

object b {

def h(): Unit = {};

}; };

The forward reference to the locally defined object a is well bound,
whereas the imported definition of h cannot be forward referenced.
In addition to the features shown, our Scala subset supports hiding
and renaming in imports.

In the LMR/Rust study we looked at imports that can affect
their own resolution. Although this does not appear to be a common
language feature, Rust, at least, does implement this semantics. The
difficulty arises because LMR and Rust combine features that are not
usually found together in other module systems: relative imports,
unordered imports, and glob imports. The combination of these
features make programs such as the following well-typed.

J

Figure 6.22: Well-typed Rust
example.

pub mod foo {

pub mod bar {}

}

pub mod test {

use super::*;

use bar::*;

use foo::*;

}

While Scala imports also resolve relative to their local scope, they
only open in subsequent scope—i.e., they are ordered. The direct Scala
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equivalent of the given example would not resolve the name bar.
The following example program shows how self-influencing import
can become confusingly ambiguous.

J

Figure 6.23: Ambiguous Rust
example.

pub mod foo {

pub mod foo {}

}

pub mod test {

use super::*;

use foo::*;

}

The Rust type checker judges this program to be ambiguous: because
imports do not shadow outer declarations, two declarations of foo
are visible in the block of module test.

The Rust type checker uses iterated name resolution to imple-
ment the desired behavior, re-resolving module names until the
environment stabilizes. MiniStatix on the other hand gets stuck
on Rust/LMR programs with imports—i.e., also non-ambiguous
programs. The import is specified using a query and an import edge
assertion. However, the query is delayed on the weakly critical edge
assertion that in turn is waiting on the query to resolve the target
scope of the edge.

The difference between Scala’s and Rust’s imports exactly exposes
the limits of our particular over-approximation of dependencies
using weakly critical edges: it may lead to the operational semantics
being stuck on programs that in principle have a stable model. Rust
shows that a sound fixed point algorithm exists for name resolution
in Rust programs. How to systematically derive such an algorithm
from high-level declarative specifications is a different question.
From a declarative specification of self-influencing imports some
paradoxes can arise. It is worth pondering what should be the
meaning of the program in figure 6.23 if imports were to shadow
outer declarations.

6.6 Related Work

The main novelties of the Statix specification language compared to
typical typing rules are the assertions of scope graph structure, and
the queries over the resulting graph. The fact that scopes are passed
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by reference enables the high-level specification of name binding
in two ways. First, it makes it possible to separate the assertion
that a scope exists from the description of its contents. This is
useful because scope is naturally a concept that extends over larger
parts of syntax, whereas typing rules are usually given by induction
over the syntax. Second, it makes retrieving binding information
about remote parts of the AST lightweight, because this information
is accessible via scope references. This makes it unnecessary to
propagate and construct complicated environments in typing rules.

At the same time, these features present a challenge operationally.
In order to maintain soundness with respect to the declarative se-
mantics, queries need to be delayed until all contributions to the
relevant scopes have been witnessed. This chapter addresses that
challenge. In this section, we want to relate to and compare with
other approaches to operationalizing declarative specifications of
static semantics.

Constraint Generation and Solving. Statix is a constraint language
in the tradition of Constraint Handling Rules (CHR)26. CHR has
a sound semantics of fact assertion and retraction. Fact assertion
and retraction are considered impure primitives in Prolog27. Where
CHR uses the constraint store to record assertions, Statix uses the
scope graph. Unlike constraint store facts, scope graph facts are only
asserted and never retracted. The context-sensitive effects that can
be achieved using multi-head simplification and propagation rules
in CHR can be realized using scope graph constraints in Statix.

The approach of CHR and Statix is distinctly different from ap-
proaches that separate the constraint generation and constraint solv-
ing phases in the tradition of Hindley-Milner type-inference28,29.
The constraint-generation based formalism that is closest to Statix is
its precursor NaBL2

30. Like Statix, it has built-in support for name
resolution using scope graphs31, but separates constraint generation
from constraint solving.

NaBL2 supports type-dependent name resolution, in which the
resolution of a name (such as the method name in e.m()) depends on
the resolution of a type (for the receiver expression e), which in turn
may depend on name resolution. It has to deal with the fact that
sometimes not all binding information is available when a name is
resolved. The incomplete information is represented explicitly in the
model using an incomplete scope graph, where unification variables
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can be placeholders for scopes. During constraint solving, such
unification variables must be unified before they can be traversed
as part of queries. The solver guarantees query stability by relying
on a resolution algorithm that delays when resolution encounters an
edge to a unification variable.

Unlike in Statix, scope graphs in NaBL2 can only be incomplete in
the sense that the target of an edge is yet unknown. Edges cannot be
missing entirely. This prohibits specifications where the presence of
edges is dependent on resolution in the scope graph. In Statix this
is permitted and used32. For example, imports-with-hiding in our
Scala case study is specified using a query that finds all members
of an object scope and a new scope that is a masked version of the
object scope. The number of edges of the masked scope depends on
query resolution.

On-demand Evaluation of Canonical Attribute Grammars. Another way
to operationalize a type system is to use an attribute grammar (AG),
using equations on AST nodes to define the values of attributes.
Attributes are either inherited (i.e., computed by the parent and
propagated down the AST), or synthesized (i.e., computed on the
node itself and propagated upwards). Name resolution can be speci-
fied using AGs by taking environment-based typing rules such as
in figure 6.4 and turning the downwards and upwards propagating
environments into inherited and synthesized attributes respectively.

Canonical attribute grammars were implemented by statically
computing a schedule (or plan) consisting of multiple passes over
the AST, ordered such that the input values of the attribute compu-
tations in one pass are computed in a previous pass (see Alblas33 for
a survey). Expressivity of canonical attribute grammars is limited
by this stratified evaluation. By building on the circular program-
ming techniques of Bird34, Johnsson35 shows how dependencies
between attributes can be determined dynamically, relaxing the
non-circularity requirements on specifications. Modern attribute
grammar formalisms like JastAdd36,37 and Silver38 use these tech-
niques, relying mostly on on-demand computation.

The specification problems that we describe in section 6.1 with
environment-based rules also affect canonical attribute grammars.
In particular, to gain access to binding information from somewhere
else in the tree, this information needs to be aggregated and dis-
tributed through the least common ancestor39. This leads to more
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complex, non-modular grammars for languages with complex bind-
ing rules40. This specification problem is the motivation for Reference
Attribute Grammars (RAGs), which we discuss separately below.

Boyland41 also describes how canonical AGs suffer from an im-
plementation problem: packaging multiple values into environment
attributes requires that they can be computed at the same time.
Sometimes this causes circular dependencies that disappear when
values are split across multiple environments. This means that the
specification writer has to be aware of the operational semantics.
Boyland 2005 concludes: “The decision of whether two values can
be packaged together (thus reducing complexity and increasing ef-
ficiency) relies on global scheduling information, and thus should
be left to an implementation tool, not the description writer.” This
motivates the development of Remote Attribute Grammars. The same
problem also motivated the design of Statix.

Scheduling of Reference Attributed Grammars with Collection Attributes.
Reference attributes42 are an extension of canonical AGs that allow
attributes that reference AST nodes. Attributes of the referenced AST
nodes can be read directly. This can be used to avoid the need to
propagate information using environments, and thus avoids some
of the problems with the specification and the implementation of
static semantics using environments that we described in section 6.1.
Reference attributes can be used to superimpose graphs on an AST.

By themselves, reference attributes do not solve the problems with
the aggregation of binding described in section 6.1. To additionally
avoid the specification overhead of aggregating values from an AST,
they can be combined with parameterized attributes or collection
attributes43.

Parameterized attributes are used for example to define name res-
olution for large subsets of Java in the JastAdd AG system44. This
is accomplished by defining a parameterized lookup attributes on
nodes that implement the name resolution policy. These attributes
are invoked on references, passing the name to be resolved. Shad-
owing can be implemented by deferring to the lookup of child and
parent nodes in a particular order. The effective resolution policy for
the resolution of a variable is thus determined by the combination of
all local policies implemented in the nodes that are traversed. This
differs significantly from Statix specifications, where the resolution
policy is determined more uniformly by the query parameters in the
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variable rule. The separation queries from scope graph construction
in Statix is designed to make it easy to extract an abstract model of
binding. Parameterized attributes are evaluated on-demand.

Collection attributes collect contributions that can come from dif-
ferent contributor nodes throughout the AST. A contributor uses
a reference attribute to specify to which collection it contributes.
The mutual binding example in figure 6.3 can be specified using
reference and collection attributes. A block defines a collection at-
tribute that collects the binding contributions from its immediate
children. To that end the children need a reference to the block,
which can be specified as an inherited attribute. We are not aware
of any case studies involving non-lexical static binding that make
use of collection attributes for name resolution.

There are two approaches to evaluating AGs with collection at-
tributes. The first approach is due to E. Magnusson et al.45. Before a
collection is read, all contributions must have been computed. To be
able to determine if this is the case, a pass is made over the AST and
for all contributions to any instance of the collection attribute, the
reference that is contributed to it is evaluated. Like in Statix, this is
an over-approximation of dependencies. After this, all contributions
are evaluated for the one reference whose collection is being read.
Because of the first pass, the reference attribute can never depend
on any instance of the collection attribute, or a cycle would occur (E.
Magnusson et al. 2009). This can cause evaluation to get stuck even
when sound schedules exist.

The specification of contributions differs from the specification
of edges in Statix, in that edge assertions can occur anywhere in
a specification on any scope reference. In a Statix specification
that does not enforce our permission-to-extend restriction, it is not
possible to demand the evaluation of the scope reference that the
edge is ‘contributed to’. This is the case because the scope reference
can be determined by arbitrary constraints, which can be blocked.
On the other hand, if permission-to-extend is enforced, then it is
unnecessary to evaluate all scope references that are contributed
to. This is the case because a scope that is not yet ground cannot
be instantiated to any existing scope—hence (x l t) 6↪→ (s, l) is
sound.

A Statix specification has no immediate counterpart as a RAG.
An obstacle is that Statix rules do not clearly distinguish inputs and
outputs, which is part of their declarative appeal. It also potentially
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enables them to be used to solve other language implementation
problems that involve the static semantics, such as suggesting well-
typed program completions46. Attribute grammars on the other
hand organize specifications into equations for attributes, which
have a clear direction. A benefit of this approach is that depen-
dencies are more explicitly present in the specification (even for
equations that specify contributions to collection attributes), so that
on-demand evaluation is available. Encoding Statix rules into AG
equations requires a factorization into attributes. Whether this is
always possible is an interesting open research problem.

6.7 Conclusion

We envision closing the gap between language specification and
language implementation by using meta-languages that can address
the complexity of actual programming languages and systemati-
cally deriving implementations from specifications. Importantly,
this moves the question of implementation correctness from the
concrete language to the meta-language. This approach leads to
correct-by-construction language implementations and higher-level
specifications that abstract from operational concerns.

In this chapter, we tackled one aspect of that challenge. Critical
edges represent language independent insight into a scheduling
problem that type checker implementations need to address. Because
it is a high-level concept, it can be used to think about language
design. We exploit this insight and obtain sound-by-construction
scheduling in type checkers derived from specifications.
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7 Conclusions

In this thesis we described the vision that language specifications
and/or implementations ought to be written in meta-languages
that ensure the relevant properties by construction. This vision
shifts our perspective from meta-theory as a subject of research, to
meta-theory as the means to produce a correct implementation of a
programming language. As we shift our perspective, requirements
change, bringing many new and interesting challenges to the table
for meta-languages.

We focused on the properties of type checkers, interpreters, and
compilers that ensure that the static semantics of a given language
is a meaningful contract between the programmer and the machine.
The first thing to be done is to define this contract precisely and
declaratively—i.e., abstracting as much as possible over operational
concerns. Many language features that are prevalent in deployed
programming languages, however, are difficult to specify declara-
tively using existing formal methods, even though they might be
sufficient for idealized object languages.

This is no surprise: many of the features of “surface” languages—
and especially also their co-existence, even when orthogonal—are
largely ignored in idealized or “core” languages. Hence, we cannot
expect that researching meta-theory of individual language features
is enough to accommodate formal specification and verification of
deployed, general purpose programming languages. Going from
“well-understood” to easy to specify and implement correctly by a
language developer requires dedicated attention from meta-language
designers.

With that in mind, this thesis studied three different common-
place language features (monotone state, linear references, and non-
lexical static binding) of programming languages and proposes new
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methods and means to concisely specify them. We showed that
specifications of static semantics can be greatly improved if we pick
an appropriate meta-language that abstracts over the bookkeeping
associated with various forms of binding. Not only did we apply
this to surface languages, but also to the implementations of their
back-ends, typing interpreters and compilers.

Our approach to these implementations is a mix of syntactic tech-
niques and functional programming idioms, exploiting the specifica-
tion power of a dependently typed host language like Agda. Despite
taking a syntactic perspective on type safety, our inspiration for
suitable abstractions often stems from more semantic approaches.1,2

Semantic proofs typically rely on logical abstractions to state and
prove type safety because it is unwieldy to directly work with the
semantic model.3 For this reason, the focus on constructing more
powerful logics that act as a meta-language for their specifications
is much more prevalent there than in the work on syntactic safety.
Our results suggest that there is more to be gained by blurring the
line between the two approaches.

We found that a dependently typed language is a suitable petri
dish for developing shallowly embedded logical meta-languages.
The specification power of dependent types is well suited for inte-
grating type invariants into language back ends. At the same time,
we are only beginning to understand how to leverage this power. We
must satisfy at the same time our hunger for high-level specifications
and implementations, but also the demand of the host-language’s
type checker for definitions that are evidently correct. To find def-
initions that live in the intersection of these requirements requires
much experimentation. This thesis contributes both new ideas for
delivering on these requirements and also evidence that existing
ideas can scale to programming languages with more complicated
type invariants.

The identification of co-contextual typing relations as a general-
ization of McBride’s co-de-Bruijn representation of lexical binding4

is a very promising new idea in that regard. Co-contextual typings
deliver inherently much more localized representations of invariants
than conventional contextual typings. These localized invariants
fit well with dependent pattern matching in a dependently typed
host language such as Agda: inspecting data reveals locally relevant
static information. This benefits both the language developer—who
is guided towards a correct implementation by these invariants—
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and also the type checker of the host language Agda—which can
automatically verify these local invariants more easily than global
ones. At the same time, we have seen that the bookkeeping of
co-contextual typings can be largely hidden from view using an
embedded separation logic. This delivers high-level, declarative
specifications with elegant rules, achieving one of the main goals of
this thesis.

Using separation logic as a meta-language for specifying static
semantics is not solely applicable to language back-ends in a de-
pendently typed host language, however. In part II of this thesis,
we have seen that similar ideas can be used to give meaning to a
new specification language for static semantics of languages with
non-lexical static binding—delivering Statix-core. We affirmatively
answered the question whether such high-level, declarative specifi-
cations can automatically be operationalized as type-checkers and
proven sound once-and-for-all.

Such a fully automated approach to obtaining a language imple-
mentation from a specification is a powerful prototyping tool. The
correct-by-construction prototype can be used as a low-cost refer-
ence implementation. This is more than mere convenience. If we
want programming languages with formal specifications, then we
need to give language developers a reason to invest in learning the
trade. A low-effort prototype is a direct return on this investment
that encourages verified correct implementations before unverified
manual implementations set a standard that cannot be recovered
from.

7.1 Future Work

Where do we go from here?

Bridging the gap between part I and part II. In this thesis we presented
different approaches for the implementation of safe front-ends and
back-ends of programming languages. We used a different approach
for type checkers, because we were confident that we could au-
tomatically derive type checkers from specifications, rather than
having to manually implement them in a language like Agda. As
a result, however, there is now a gap between the specification and
implementation of the front-end and that of the back-end. This gap
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consists of the need for two specification of static semantics: a Statix
specification and an intrinsically typed representation Exp. To con-
nect a Statix front-end to an intrinsically typed back-end, one would
need to implement a certifier that converts from the annotated AST
produced by Statix to a term that inhabits the typed family Exp.

It would be satisfying if we could bridge the gap between the
two parts of this thesis and eliminate the need for two separate
specifications. Not just because this would eliminate the overhead,
but also because we want to implement type-safe language back-
ends for language with non-lexical static binding.

A first attempt to achieve the second goal was described in the
conference paper edition5 of chapter 3, where we gave an account
of the global static binding of Middleweight Java (MJ) in Agda.
Middleweight Java supports classes with inheritance and access of
inherited members. Our approach was to give a contextual account
of the static binding using scope graphs as a model for structured
symbol tables. Although this proved sufficient for type-safe interpre-
tation of MJ, the resulting typed syntax cannot easily be transformed
in ways that alter the static binding in the program. This is the
case for essentially the same reason as why global label contexts
proved difficult in chapter 5: it is difficult to relate a global context
to a local view on part of a program. A co-contextual specification
of global binding may again help solve these problems. One path
towards that goal could be to give a co-contextual interpretation of
a Statix-like constraint language. Once we have a better idea of how
we should represent intrinsically typed terms with non-lexical static
binding we can certainly consider automatic delivery of such terms
by the Statix solver.

Correct-by-construction effect-sensitive languages. Many general pur-
pose programming languages (e.g., Java and Rust), but also low-level
languages (like JVM bytecode), have type invariants that rely on
data-flow. Such data-flow sensitive analyses are sometimes called
effect systems, distinguishing them from type systems. For example,
both the Java type checker and the JVM bytecode verifier statically
determine initialization of local variables and reject code that ac-
cesses local variables before initializing them. Such properties are
relevant for type-safety and type-correct compilation. A back-end
that does not observe variable initialization can fail to initialize vari-
ables even if the source code does this correctly. To address this in
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intrinsically typed language back-ends we need term representations
that capture those data-flow-sensitive properties.

Traditionally, data-flow analyses are often specified as fixed-point
analyses over graph-based representations of programs,6 rather than
inductively on the AST. Such graph-based specifications would be
difficult to integrate into an AST, and local reasoning about a global
solution to a fixed point analysis is also complicated. An initial inves-
tigation of the problem hints that it may be possible to instead give
inductive specifications of some effect analyses in a co-contextual
style. This may enable intrinsically effect-annotated expressions that
can be manipulated without the need to reason about the non-local
impact on data-flow properties. It is an open question whether we
can write elegant functions over such expressions in order to imple-
ment, for example, intrinsically typed compilers that are guaranteed
to produce bytecode that correctly initializes local variables. The
specification technique may also have individual merit.

Intrinsically Typed Interpretation of Garbage Collected References. In
chapter 3 we presented an approach using monotone predicates
for implementing an intrinsically typed interpreter for a language
with references. Hereby we followed the traditional syntactic type-
safety proof for such a language, which relies on the observation
that programs monotonically extend the store. In practice, however,
allocated memory cannot keep growing monotonically without ex-
hausting the finite memory that we own. Hence, such languages are
implemented using strategies that rely on garbage collection to collect
cells that are no longer referenced by the running program.

Using the approach that we presented, we cannot verify an im-
plementation that performs garbage collection, both because this
breaks monotonicity, and because there is no real way to determine
whether cells are still referenced. Using the insight of chapter 5,
we now recognize the traditional typing of monotone state in chap-
ter 3 as being given in a contextual style. Interestingly, it is also
possible to give a co-contextual account of type-safe references by
instantiating the state monad from chapter 4 with a non-linear store-
type proof-relevant separation algebra. Remarkably, this enables
the state monad to keep track of whether there are clients of a store
cell. This also enables the monad to collect the cell if no clients are
left, because monotonicity is not required. Whether this is a useful
specification and implementation of garbage-collected references is
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up for investigation.

Performance. Throughout this thesis we focused on developing
language implementations that satisfy their safety criteria. A whole
other dimension of what is yet to be investigated are non-functional
properties of our implementations. For example, the performance
of Statix type-checkers, as well as the performance of intrinsically
typed interpreters and compilers. This is relevant especially if we
want to use these implementations for more than just prototyping
and reference implementations.

For Statix type checkers, there is evidence that it is possible to
automatically derive concurrent type checkers. There is also hope
that the type checkers can be made incremental.7 These avenues are
being investigated by my co-authors.

For intrinsically typed programs there are two interesting open-
ended research problems related to performance. Firstly, depen-
dently typed languages that mix programs and proofs typically rely
on the compiler to erase computationally irrelevant values and proofs
in order to gain runtime performance. In this thesis, however, we
purposefully exploited the integration of programs and proofs to the
extent that perhaps all proofs have become computationally relevant.
It is unclear to what extent erasure is still applicable to our programs
and more generally what the performance characteristics are of our
intrinsically typed implementations.

Secondly, we have used rather simplistic data-structures for the
implementation of, for example, stores and bytecode sequences. In
particular, we primarily used simple list-like data types to represent
most collections, and focused our efforts entirely on the represen-
tation of invariants of this data. For more realistic interpreters and
compilers we likely need more performance-oriented data struc-
tures. It may also be necessary to adapt our implementations to use
more performant algorithms. It is an interesting research question
whether our techniques and tools for representing and abstracting
over invariants is compatible with these demands.

Accessibility. Another subject that deserves individual attention is
the accessibility of the ideas and methods delivered in this thesis.
Much of our progress towards the described vision consists of new
ideas on how to use dependently typed languages and is embodied
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by Agda libraries with new abstractions. Although we demonstrated
that these artifacts can improve specifications and implementations
of languages, we do not expect that our methods can readily be
adopted by the audience of language developers that we aim to
support. To achieve our vision we must actively look to make our
formal methods approachable for this audience.

The approach of part II with Statix does a better job in that regard.
In contrast to the shallowly embedded logics in Agda, a domain
specific specification language can hide its implementation details
well. The errors reported by a domain specific language like Statix
are more likely to be high-level and meaningful to developers. Statix
is also integrated with the grammar specification formalism SDF3

8

and the term transformation language Stratego9,10, and is supported
by a specialized development environment11. This has already
enabled its use in the classroom and in research and development
projects in industry.

A major challenge for extracting domain specific specification
languages from our Agda libraries is to determine the scope of the
language. The boundary of shallowly embedded abstractions is
soft, enabling a gradual transition from high-level interfaces to their
low-level implementations. We have made good use of this fact. It is
not yet clear where one can draw a line that could be the interface
of a domain specific language.

7.2 Parting Words

As I finish the future work section, the keys are starting to come
off of my keyboard, reminding me that adding more letters can be
subtracting. I hope that the words that do make it into the final cut
of this thesis not only explain my technical contributions in the past
few years, but also (more than any of the individual papers did)
convey the ideas that fueled the research.

Underlying all the work in the thesis is the belief that it is desirable
that programming is guided by specification. This is a long-held
belief of functional programming, but with the advent of languages
like Rust this is now spreading to domains that were previously hard
to find suitable type-systems for. Programmers are discovering that
type checkers can also be freeing, allowing them to generously use
the programming language, without fear of breaking the invariants
of the language. Dependently typed languages have the potential
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to similarly free programmers from their invariants of their own
invention that they want to impose on their data.

This thesis applies this belief to language implementations, using
static semantics as the invariant of the programs that we manipulate
as data. We saw that many familiar programming devices can
be complemented by (perhaps less familiar) logical devices at the
type-level. We used this to integrate meta-theory into language
implementations using types, closing the gap between specifications
and implementations. There are, however, many more ways to
bring formal methods out of the realm of things that are perceived
to have no use outside one’s education, and into the practice of
software engineering. Computer programming is one of the very
few engineering disciplines where the gap between specification and
implementation can be closed. Let’s make it happen.
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Agdaism: An extreme example: a,b would
be a single name, whereas a , b is a pair
of two things named a and b respectively.
As you can see, this should be apparent
also from the syntax highlighting.

A Notes on Agda Notation

We summarize the notation of the Agda language that is necessary
to read the code in this thesis.

Names in Agda can contain most characters, including unicode.
Unless separated by a space or another reserved character, two sub-
sequent characters are always part of the same name. For example
n≤m is a single name, whereas n ≤ m is a compound term consisting
of three names. The only characters that cannot be part of a name
are .;{}()@".

Arguments to Agda definitions can be supplied ’mixfix’. The
underscores in a declaration indicate where the arguments go. Un-
derscores in patterns or other binding positions indicate that we do
not care about the value and do not bother to give it a name. Most
symbols can be part of names: you may assume that unless there
is a space between two symbols, they are part of the same name.
Casing of names has no formal meaning, although we make a habit
of capitalizing types and using lowercase for values.

The name Set is a builtin of Agda and means “type”. More
precisely, it denotes the universe of types of Level zero. This thesis
contains one or two occurrences of the next universe, written Set1.

The colors of Agda code are meaningful. Green denotes a func-
tion definition, blue a data- or record-type, and pink a constructor.
Less frequently, we will see ochre for fields of records, and purple

for a module name. Some primitives (like + or Set) are colored
black. Bold black is used for keywords. Italics in code is reserved
for parameters.

Function types are written as telescopes and permit quantifica-
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1 Devriese et al. 2011. “On the bright
side of type classes: instance arguments
in Agda”

tion over elements of any particular Set (e.g., n : N), as well as
quantification over elements of a universe (e.g., A : Set). For
example:

repeat : (A : Set) � A � (n : N) � Vec A n

The function repeat has three arguments: first a type A, then an
element of that type, and finally a natural number n. It then returns
a vector consisting of n elements of A. As usual, the scope of a name
of an argument extends to the end of the type expression, mirroring
λ-binding.

When we want the type of an argument x to be inferred, we can
write ∀ x � (...). For example, we can omit the type of A in the
signature of repeat, so that Agda tries to infer it from the signature
of the type constructor Vec:

repeat : ∀ A � A � (n : N) � Vec A n

If instead we want a value to be inferred we can write:

{x : A} � (...).

We usually omit these implicit parameters from signatures, with the
understanding that any undeclared variables in a signature are uni-
versally quantified implicit arguments. For example, the signature
of append will be written:

append : Vec A n � Vec A m � Vec A (n + m)

Thus omitting the quantification over the type A and numbers n
and m. Implicitly quantified variables are inserted at the front of the
type signature in the order that they appear in the signature. Hence,
the explicated signature of append is:

append : ∀ {A : Set} {n m : N} � Vec A n � Vec A m � Vec A (n + m)

This is accommodated in the literate Agda source of this thesis using
Agda’s feature for generalizing over declared variable names.

Finally, we can write {{x : A}} � (...) if we want the argument
x to be filled in at the call site by instance search. Instance arguments1

generalize type class constraints (as present in, for example, Haskell)
and are filled in by the type checker using a search procedure over a
set of definitions marked as instances. An instance for A is written:
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instance a-T : T

a-T = {!!}

Functions are inhabited by lambdas, which can be defined inline
using the familiar notation for lambda:

f : A � B � A
f = λ a b � a

Lambdas that are defined by case-distinction on the arguments use
the keyword where, and we write the different cases on subsequent
lines:

g : N � A � A
g = λ where

zero a � a
(suc n) a � a

In named definitions, the arguments can also be bound on the
left of the equality, where pattern matching is always possible:

g : N � A � A
g zero a = a
g (suc n) a = a

We can also pattern match on auxiliary values on the left-hand side
using with-abstraction. For example:

h : (n m : N) � N

h n m with n ?
= m

h n .n | yes refl = {!!}

h n m | no proof = {!!}

Here we see also why it is relevant that pattern matching on auxiliary
values occurs on the left-hand side: in a dependently typed language,
case distinction on one value may reveal something about another
value. Here, we reveal that m is actually also n. The period indicates
that this value is forced. That is, dependent pattern matching on
auxiliary values may reveal equalities that affect the context and
goal types.

A shorter version can be used when a pattern is ‘irrefutable’:

replicate : ∀ n � A � Vec A n
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irrefutable : N

irrefutable with (n :: _)← replicate 10 1 = n

Agda can automatically dismiss the pattern [], such that only a single
candidate remains. The notation allows us to write the single pattern
on the same line as the scrutinee instead of on a new line.

A shorthand for with-abstraction using an equality and matching
on refl is to rewrite with the equality, like so:

h : (n m : N) � n ≡ m � suc n ≡ suc m
h n m eq rewrite eq = {!!}

Here, the goal has type suc m ' suc m and can be filled with refl.

Pattern matching on empty types is done using the so-called
absurd pattern (). For example:

absurdly : ∀ {A : Set} � 1 ≡ 0 � A
absurdly ()

Record types are another important feature that we will make
frequent use of. A simple record type R is declared as:

record R : Set where
constructor mkR

field
f1 : F1

f2 : F2

def : F1 ] F2

def = inj1 f1

The type R can be understood as tuple with named projections f1
and f2. We write f1 r to project the field from a value r : R. Fields
can be marked as implicit or instance fields with the usual bracketed
notation.

The body of the record may contain definitions like def that can
use the fields of the record. These definitions take a record value as
an extra first parameter on the use-site—i.e., def is used as def r.

Alternatively, record values can be used by opening them, bring-
ing the fields and definitions into scope. For example, assuming
again a value r : R in scope:
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open R r
myF1 : F1

myF1 = f1

We will not explicitly write such open statements, but will occasion-
ally assume it if it is clear from the context with which record value
we are working. For example, if we are working with a particular
monad that is defined as a record.

Record values can be created using the declared constructor. The
constructor takes the (explicit) fields of the record as arguments, and
returns a record value. For example, the constructor mkR has type
F1 � F2 � R.

Sometimes we prefer to define record values by copattern matching.
That is, we define a record value by defining values for all the
projections/fields. For example:

myR : R
f1 myR = {!!}

f2 myR = {!!}

Copatterns can be nested if we want to construct a nested record.
The above definition by copattern matching is equivalent to the
definition using the constructor.

Monadic computations are conveniently expressed using do-
notation. This notation in Agda is implemented as syntactic sugar
and is translated away before type checking. Concretely, we have
the following translation from left to right for binding statements:

m = do
x← m1

m2

m =

m1 >>= (λ a �
return e)

and the following translation for non-binding statements:

m = do
m1

m2

m =

m1 >> m2

The type checker than checks the right-hand side as usual, unbiased
towards any particular type or implementation of the operators
_>>=_ and _>>_.





B Agda Standard Library Definitions

We make frequent use of Agda’s standard library and its notations.
Throughout the thesis we stick to the names used in the standard
library. The precise version is documented with the Agda sources
accompanying the thesis.

We explain all but the most standard definitions within the thesis.
In this appendix we define these most basic types. Just like in the
rest of the thesis we slightly simplify definitions by omitting universe
polymorphism. The main purpose of this section is as a reference
for all the names of the constructors and projections of these types.

The empty type ⊥, unit type >, the disjoint sum A ] B of types
A and B, the natural numbers N, booleans Bool, lists List A, and
optional values of A Maybe A are defined as follows:

Figure B.1: Commonly used
standard library types.

H

data ⊥ : Set where
– no constructors

record > : Set where
constructor tt

– no fields

data _]_ (A : Set) (B : Set) : Set where
inj1 : (x : A) � A ] B
inj2 : (y : B) � A ] B

data N : Set where
zero : N

suc : (n : N) � N

data Bool : Set where
true false : Bool

data List (A : Set) : Set where
[] : List A
_::_ : A � List A � List A

[_] : A � List A
[ a ] = a :: []

data Maybe (A : Set) : Set where
just : A � Maybe A
nothing : Maybe A
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1 Allais 2019. “Generic level polymorphic
n-ary functions”

Dependent pairs Σ A B are defined as a record, with some syn-
tactic sugar for non-dependent pairs A × B:

record Σ (A : Set) (B : A � Set) : Set where
constructor _,_

field
proj1 : A
proj2 : B proj1

_×_ : Set � Set � Set

A × B = Σ A (λ _ � B)

Something that frequently confuses people is the notation in Agda
for (proof-relevant) existential quantification. In this thesis, we write
it as ∃〈 P 〉.1 This should be read as ∃〈_〉 existentially quantifying
over all n parameters of P : X1 � ... � Xn � Set. The value of
this type is a (n+1)-tuple represented as a right-nested dependent
product. That is, if P : A � B � Set, then ∃〈 P 〉 = Σ A (λ a �
Σ B (λb � P a b)). For non-dependent products Σ A (λ _ � B)
we write A × B. Because existential quantification is defined in
terms of dependent pairs, we destruct it by pattern matching on the
constructor _,_, or by projecting one of the fields of the type Σ.

Propositional equality _≡_ is defined in the usual way between
two values of any type A:

data _≡_ {A : Set} : A � A � Set where
refl : ∀ {a} � a ≡ a

Negation is defined as implying the empty type:

¬_ : Set � Set

¬ A = A � ⊥

_ 6≡_ : A � A � Set

a 6≡ b = ¬ (a ≡ b)
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Summary

Programming language implementations bridge the gap between
what the program developer sees and understands, and what the
computer executes. Hence, it is crucial for the reliability of software
that language implementations are correct.

Correctness of an implementation is judged with respect to a crite-
rion. In this thesis, we focus on the criterion type correctness, striking
a balance between the difficulty of the assessment of the criterion
and its usefulness to rule out errors throughout a programming
language implementation. If both the front- and the back-end fulfill
their role in maintaining the type contract between the programmer
and the language implementation, then unexpected type errors will
not occur when the program is executed.

To verify type correctness throughout a language implementa-
tion, we want to establish it formally. That is, we aim to give a
specification of program typing in a formal language, and to give a
mathematical proof that every part of the language implementation
satisfies the necessary property to make the whole implementation
type-correct.

Type checkers ought to be sound and only accept programs that
are indeed typeable according to the specification of the language.
Interpreters should be type safe, and reduce expressions to values
of the same type. Program compilers should preserve well-typing
when they transform programs. These properties are essential for
implementations of typed programming languages, ensuring that
the typing of the source program is a meaningful notion that can be
trusted by the programmer to prevent certain errors from occurring
during program execution.

A conventional formal type-correctness result consists of separate
specification, implementation, and proof. The separation makes
it difficult to construct language implementations such that their
correctness can be formally verified. It is also difficult to relate a
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specification to a given implementation if the latter is not developed
specifically for the purpose of verification. This in turn makes a
formal proof at present infeasible unless the specification, implemen-
tation, and proof are developed in tandem.

To address these issues and to make it more feasible and attractive
to develop formally verified language implementations, this thesis
pursues a more integrated vision to verification: language specifica-
tions and/or implementations ought to be written in meta-languages
that ensure type-correctness and avoid the need for a separate proof.

This thesis considers several methods to develop formally (and
mechanically) verified language implementations.

For language front-ends, this thesis investigates an approach to
automatically obtain verified type checkers from declarative specifi-
cations of type systems. This specification is given by the language
developer as typing rules in the Statix meta-language. An important
aspect of the Statix language are its primitive for specifying (global)
static binding, simplifying the specification of, for example, module
systems, and name resolution of class members in object-oriented
languages like Java. This thesis reduces Statix to a small formal
language Statix-core. We give a novel, compact declarative seman-
tics for Statix-core that gives meaning to typing rules in relation to
a given structured symboltable in the form of a scope graph. We
also give Statix-core an operational semantics that can determine
whether a given source program has a scope graph that makes it
well-typed. This effectively delivers a type checker for the specified
language.

To show that such type checkers are type-correct, we give a
formal proof of a soundness theorem for the operational semantics,
relative to the formal meaning of the typing rules given by the
declarative semantics. We also prove that the non-deterministic
operational semantics is confluent. The key contribution of this
thesis that makes the proof possible is the idea that we can reason
about Statix specifications using separation logic. While separation
logic is typically used to reason about memory usage, we use it to
reason about unique declarations in the structured symbol table—a
scope graph—belonging to a program.

For language back-ends, this thesis investigates techniques for
implementing intrinsically typed definitional interpreters and com-
pilers. The idea is to use a dependently typed functional language,
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like Agda, to integrate the specification of well-typing in the repre-
sentation of the program that is being interpreted or transformed.
This enables the integration of the type-correctness into the language
implementation. Hence, Agda fulfills both the role of the program-
ming language wherein one writes the implementation, and the role
of the meta-language wherein we specify and prove the correctness.
In previous work this technique has been applied to simply typed
languages with great success: intrinsic typing avoids all the over-
head of an external proof. It also simplifies the implementation itself,
because one avoids the need to manually handle type errors that are
prohibited by the integrate type correctness theorem.

This thesis makes several technical contributions to scale this ap-
proach from the simply typed languages to languages with mutable
references à la ML, a concurrent functional language with linear
types and session-typed communication, and a low-level bytecode
language with labels and jumps. We accomplish this by deliver-
ing functional abstractions that not only encapsulate computational
work, but also proof work. We develop these functional abstractions
on top of logical languages that we embed in Agda, inspired by
more semantic approaches to proving type-correctness. Specifically,
we develop an embedding of proof-relevant monotone predicates for
the invariant of references, and we develop proof-relevant separation
logic to abstract over the sub-structural invariants of the interpreter
for the linear functional language, and also of the compiler out-
putting bytecode. We deliver interpreters and a compiler that are
total and have almost no proof overhead. Both the logical languages
and the functional abstractions that we develop on top are reusable,
because they abstract over—among others—the algebras that specify
the invariants.
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Samenvatting

Implementaties van programmeertalen overbruggen het gat tussen
hetgeen de programmeur te zien krijgt en hetgeen de computer
uitvoert. Het is daarom cruciaal voor de betrouwbaarheid van
software dat deze implementaties juist zijn.

De juistheid van een implementatie wordt relatief aan een cri-
terium beoordeeld. In dit proefschrift focussen we op het criterium
type-juistheid. Zo balanceren we de moeilijkheidsgraad van de eval-
uatie van het criterium en de bruikbaarheid om fouten uit te sluiten
uit de gehele programmeertaal-implementatie. Als zowel de voor-
als de achterkant van de implementatie hun rol vervullen in het on-
derhouden van type-juistheid, dan kunnen onverwachte typefouten
tijdens het uitvoeren van een programma niet voorkomen.

Om type-juistheid in de gehele implementatie van een program-
meertaal te waarborgen willen we het formeel verifiëren. Dat
betekent dat we pogen om een specificatie te geven van program-
matypering in een formele taal en om een wiskundig bewijs te
geven dat elk onderdeel van de taal-implementatie de benodigde
eigenschappen bezit om het geheel type-juist te maken. Typecheck-
ers behoren aan een degelijkheidsstelling te voldoen en behoren
alleen programma’s te accepteren die typeerbaar zijn volgens de
typeregels van de taalspecificatie. Programma-interpreters moeten
type-veilig zijn en expressies reduceren naar waarden met hetzelfde
type. Programma-compilers behoren getypeerdheid te behouden
wanneer ze programma’s transformeren. Deze eigenschappen zijn
essentieel om te garanderen dat de getypeerdheid van het bronpro-
gramma een betekenisvolle notie is waar de programmeur op kan
vertrouwen om bepaalde fouten tijdens programma-evaluatie uit te
sluiten.

Een conventioneel bewijs van een type-juistheidsresultaat bestaat
uit gescheiden specificatie, implementatie, en bewijsvoering. Deze
scheiding maakt het moeilijk om taal-implementaties te ontwikkelen
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die formeel bewijsbaar juist zijn. Het is ook moeilijk om een type-
specificatie te relateren aan een implementatie als deze laatste niet
specifiek ter verificatie is ontwikkeld. Dit maakt het op zijn beurt
onmogelijk om heden ten dage een formeel bewijs van juistheid
te geven, tenzij de specificatie, de implementatie, en het bewijs
gelijktijdig worden ontwikkeld.

Om deze problemen aan te pakken en om het meer haalbaar en
aantrekkelijker te maken om formeel geverifieerde taal-implementaties
te ontwikkelen, streeft dit proefschrift een meer geïntegreerde visie
op verificatie na: taal specificaties en/of implementaties zouden
moeten worden geschreven in meta-talen die type-juistheid garan-
deren en de noodzaak tot een extern bewijs vermijden.

Dit proefschrift beschouwt verschillende methoden om formeel
(en mechanisch) geverifieerde taal-implementaties te ontwikkelen.

Voor de voorkant van de implementatie onderzoekt dit proef-
schrift een methode om automatisch geverifieerde type-checkers te
verkrijgen uit declaratieve specificaties van type-systemen. Deze
specificatie wordt door de taalontwikkelaar gegeven in de Statix
meta-taal in de vorm van typeregels. Een belangrijk aspect van
Statix wordt gevormd door de primitieven voor het specificeren
van (globale) statische binding om de specificatie van bijvoorbeeld
module systemen en de herleiding van namen op objecten in talen
zoals Java gemakkelijker te maken. Dit proefschrift reduceert Statix
tot een kleine formele taal: Statix-core. We geven een vernieuwde
compacte declaratieve semantiek voor Statix-core, die de beteke-
nis van typeregels geeft in relatie tot een gegeven gestructureerde
symbooltabel in de vorm van een scopegraaf. Vervolgens geven
we ook een operationele semantiek voor Statix-core die vaststelt of
een gegeven bronprogramma een passende scopegraaf heeft die het
programma goed getypeerd maakt. Daarmee hebben we effectief
een type-checker voor de gespecificeerde taal verkregen.

Om te laten zien dat deze type-checkers type-juist zijn, geven we
een formeel bewijs van een degelijkheidsstelling voor de operationele
semantiek, met betrekking tot de formele betekenis van de typer-
egels gegeven door de declaratieve semantiek. Ook bewijzen we dat
de non-deterministische operationele semantiek samenvloeiend (in
het Engels ‘confluent’) is. De sleutel-contributie van dit proefschrift
die de bewijsvoering mogelijk maakt, is het idee dat we kunnen
redeneren over Statix-specificaties door middel van separatie-logica.
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Terwijl separatie-logica typisch gebruikt wordt om te redeneren over
het gebruik van geheugen, gebruiken wij het om te redeneren over
unieke declaraties in een scopegraaf.

Voor de achterkant van taal-implementaties onderzoekt dit proef-
schrift technieken voor de implementatie van intrinsiek-getypeerde
definitionele interpreters en compilers. Het idee hierbij is om ge-
bruik te maken van een functionele programmeertaal met types
die waarde-afhankelijk kunnen zijn—zoals Agda—om de specifi-
catie van type-juistheid te integreren in de representatie van het
programma dat door de implementatie wordt geëvalueerd of ge-
transfomeerd. Dit maakt het mogelijk om het juistheidsbewijs te
integreren in de taalimplementatie. Hierbij vervult Agda dus zowel
de rol van de programmeertaal waarin de implementatie wordt
geschreven, als die van de meta-taal waarin de specificatie en de
bewijsvoering plaatsvinden. In voorgaand werk is deze techniek
met groot succes toegepast op talen met simpele types: intrinsiek-
getypeerde definities weten al het werk van een extern bewijs te
vermijden. De techniek vereenvoudigt ook de implementatie zelf,
omdat mogelijke typefouten die op deze manier gelijk door het
correctheidsbewijs worden uitgesloten niet langer hoeven te worden
afgehandeld.

Dit proefschrift levert een aantal technische bijdragen om de
techniek te schalen van talen met simpele types naar talen met refer-
enties à la ML, een functionele taal met lineaire types en getypeerde
communicatie tussen samenwerkende processen en een laag-niveau
instructie taal met labels en goto instructies. We maken dit mogelijk
door functionele abstracties te ontwikkelen die niet alleen compu-
tationeel werk, maar ook bewijslast omsluiten. We ontwikkelen
deze abstracties bovenop logische talen die we inbedden in Agda,
geïnspireerd door meer semantische methoden voor het bewijzen
van type-juistheid. Voor de invarianten van referenties ontwikkelen
we bewijsrelevante monotone predicaten. Voor de sub-structurele
invarianten van de interpreter voor de lineaire functionele taal en
van de compiler naar bytecode, ontwikkelen we een bewijsrelevante
separatie-logica. De resulterende interpreters en compiler zijn to-
taal en bijna vrij van bewijslast. Zowel de logische talen als de
daarbovenop ontwikkelde functionele abstracties zijn herbruikbaar,
doordat we abstraheren van—onder andere—de algebra’s die de
invarianten beschrijven.
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