
Sessions and Separation

Jonas Kastberg Hinrichsen
PhD Dissertation

IT University of Copenhagen

March 2021

Abstract

Session types and separation logic are two formalisms used to obtain strong guarantees
about concurrent programs, each with their own benefits. Session types provide an
intuitive protocol mechanism for specifying sequences of value exchanges, where each
exchange is constrained to a specific type. In contrast, separation logic is often used
for more involved specifications and proofs about shared-memory concurrency.

This thesis combines the two efforts by introducing dependent separation proto-
cols—a session-type based reasoning mechanism in separation logic—and a semantic
session type system—a session type system that combines the expressivity of separa-
tion logic with the simplicity of type checking.

Dependent separation protocols mimic the intuition behind session types, by de-
scribing sequences of value exchanges constrained by separation-logic propositions.
The dependent separation protocols are formalised for a representative language with
fine-grained concurrency, mutable state, and higher-order functions. This formalisa-
tion, which we call Actris, is built on top of the higher-order concurrent separation
logic Iris. The use of Iris provides the ability to reason about recursion, substructural
properties, and integration with existing concurrency models, such as shared-memory
and lock-based concurrency. We demonstrate the expressivity of Actris by proving
the correctness of several variants of a distributed merge sort algorithm, a distributed
load-balancing mapper, and a variant of the map-reduce algorithm.

The semantic session type system is achieved using semantic typing and logical re-
lations, where the types and judgements of the type system are defined in terms of Ac-
tris. The type system supports term- and session-type polymorphism, equi-recursion,
and subtyping, as well as copyable types, shared and mutable reference types, and
mutex types. The type system additionally supports manual typing proofs, where
typing judgements that cannot be derived from the typing rules of the type system
can instead be proven in the logic. This technique effectively lets us combine the
full expressivity of the logic, with the simplicity of the syntax-directed type checking
of the type system. We demonstrate this feature by manually proving the typing
judgement of a program, where two threads operate on a single session-typed channel
endpoint in parallel.

All of the results of the thesis have been mechanised in the interactive proof
assistant Coq, on top of the existing mechanisation of Iris, along with tactic support
for resolving proof obligations related to message passing in a style similar to working
with session types.

Resumé

Sessionstyper og separationslogik er to metoder der benyttes til at opn̊a stærke ga-
rantier om samtidige programmer, med hver deres fordele. Sessionstyper giver en in-
tuitiv protokolmekanisme til at specificere sekvesner af værdiudvekslinger, hvor hver
udveksling er begrænset til en specifik type. Separationslogik er derimod ofte brugt i
forbindelse med mere komplicerede specifikationer og beviser vedrørende delt hukom-
melse og samtidighed.

Denne afhandling kombinerer de to metoder ved at introducere afhængige separa-
tionsprotokoller—en sessionstype-baseret ræsonneringsmekanisme i separationslogik—
og et semantisk sessionstypesystem—et sessionstypesystem der kombinerer ekspressi-
viteten af separationslogik med enkeltheden af type bestemmelse.

Afhængige separationsprotokoller efterligner intuitionen bag sessionstyper, da de
beskriver sekvenser af værdiudvekslinger som er begrænset via separationslogikprædi-
kater. De afhængige separationsprotokoller er formaliseret for et repræsentativt sprog
med finkornet samtidighed, muterbar tilstand, og højere-ordens-funktioner. Denne
formalisering, som vi kalder Actris, er bygget oven p̊a den højere-ordens samtidige
separationslogik Iris. Med brugen af Iris kan man ræsonnere om rekursion, substruk-
turelt ejerskab, og integration med eksisterende modeller om samtidighed, s̊asom delt
hukommelse og l̊ase-baseret samtidighed. Vi demonstrerer Actris ved at bevise kor-
rektheden af flere varianter af en distribueret “merge sort”-algoritme, en distribueret
belastnings-balanceret “mapper”, og en variant af “map-reduce” algoritmen.

Det semantiske sessionstypesystem opn̊as via semantisk typning og logiske rela-
tioner, hvor typerne og typebedømmelsesmekanismen af typesystemet er defineret
via Actris. Typesystemet understøtter term- og sessionstype polymorfi, rekursion, og
subtyper, s̊avel som kopierbare typer, delte og muterbare referencetyper og mutex-
typer. Typesystemet understøtter derudover manuelle typningsbeviser, hvor type-
bedømmelser, der ikke kan udledes af type systemets typeregler, i stedet kan bevises i
logikken. Denne metode lader os effektivt set kombinere logikkens fulde ekspressivitet
med enkeltheden af typesystemets syntaksorienterede typebestemmelse. Vi demon-
strerer denne funktionalitet ved manuelt at bevise typebedømmelsen af et program,
hvor to tr̊ade opererer p̊a et enkelt sessionstypet kanal-slutpunkt i parallel.

Alle afhandlingens resultater er blevet mekaniseret i den interaktive bevisassistent
Coq, oven p̊a den eksisterende mekanisering af Iris, sammen med understøttelsen af
taktikker til at løse bevisforpligtelser relateret til kommunikation, i en stil der minder
om at arbejde med sessionstyper.

Acknowledgements

I would first and foremost like to thank Jesper Bengtson and Robbert Krebbers,
for their tutelage as my supervisors, their collaboration as my co-authors, and their
companionship as my friends. Of all the good memories that I have had during my
time as a PhD student, I will treasure our intensive co-authoring sessions before a
deadline the most, and our celebratory beer sessions only second to that.

I would then like to thank everyone at the IT University of Copenhagen, for
creating a welcoming atmosphere. Especially so Frederik Madsen, my office mate for
the longest time, with whom I shared the good times and endured the bad times. I
would also like to thank the biking team, primarily spearheaded by Marco Carbone
and Alessandro Bruni, who helped me achieve a better work life balance.

I extend my gratitude to the members of the committee, Derek Dreyer, Nobuko
Yoshida, and Marco Carbone, for taking their time to review the thesis.

I would like to thank the hosts of my research stays abroad. First, Gregory
Malecha of Bedrock Systems, who let me stay with his family until I found a tempo-
rary place to live in Boston, and to navigate the US infrastructure. A special thanks
goes to my subsequent landlords Jordan and Nathan, and to my roommate Ben, who
all made me feel at home. Secondly, Robbert Krebbers who hosted me twice at Delft
University of Technology. Between chess matches, bouldering, and enjoying Belgian
beer, it suffices to say that I had a great time staying in Delft, both during and
outside of working hours. I can list many negative impacts that the corona pandemic
had on my life, but cutting my time in Delft short is one of the worst offenders.

I would like to thank all of my friends. From the ones that I had before I started
the degree, to the ones that I met during it, at the IT University of Copenhagen, the
Oregon Programming Languages Summer School, the DeepSpec Summer School, and
the Midlands Graduate School. Saying that I would not have been able to finish this
thesis without them feels like an understatement.

A special thanks goes to Julie, who helped me through the most stressful time of
my life, and who gave me the encouragement to seek the help that I needed.

Finally, I would like to thank my family. My sister and brother-in-law, who were
the first to support my decision of pursuing a career in academia by “studying for
three more years”. Lastly, my parents, who always urged me to “do my best”, while
assuring that nothing more could be expected by anyone. These words always helped
me push myself to improve my strengths, and occasionally to accept my weaknesses.
I dedicate this thesis to them, my father Bjarne and my mother Susan.

Contents

1 Introduction 1
1.1 Message Passing . 2
1.2 Safety and Session Types . 3
1.3 Functional Correctness and Concurrent Separation Logic 4
1.4 Challenges . 5
1.5 Problem Statement and Contributions 8
1.6 List of Publications and Manuscripts 10

2 Background 13
2.1 Operational Semantics . 14
2.2 Safety, Functional Correctness, and Semantic Typing 21
2.3 The Iris Logic . 26

3 Actris: Session-Type Based Reasoning in Separation Logic 39
3.1 Introduction . 39
3.2 A Tour of Actris . 48
3.3 Subprotocols . 60
3.4 Manifest Sharing via Locks . 69
3.5 Case Study: Map-Reduce . 74
3.6 The Model of Actris . 77
3.7 Coq Mechanisation . 86
3.8 Related Work . 95
3.9 Conclusion and Future Work . 99

4 Semantic Session Typing 101
4.1 Introduction . 101
4.2 A Tour of Semantic Session Typing . 103
4.3 Extending the Type System . 110
4.4 Manual Typing Proofs . 118
4.5 Mechanisation in Coq . 122
4.6 Related Work . 125
4.7 Conclusion . 127
4.A The Complete Type System . 127

Bibliography 139

Chapter 1

Introduction

The world is continuously moving towards concurrently executed programs, as we
are reaching the physical limits of how fast a single chip can conduct computations.
However, writing correct concurrent software is notoriously hard, and is therefore
commonly approached using principled paradigms, such as message passing.

Even so, message-passing programs are prone to errors [Bagherzadeh et al. 2020],
warranting increased correctness guarantees. A step in this direction is program test-
ing, but as Dijkstra puts it “Program testing can be used to show the presence of
bugs, but never to show their absence!”. This is especially true for concurrent pro-
grams, that are often non-deterministic, where only one of many possible executions
may lead to an error. We therefore seek to verify such message-passing programs
by proving their safety, i.e., no execution of the program has bad behaviour (such
as calling a function with incorrect arguments), and functional correctness, i.e., any
execution of the program outputs the correct result (based on some specification).

A prominent approach to showing safety of message-passing programs is that
of session types, a type system originally invented for process calculi [Honda 1993]
that is still an active research topic today, featuring extensions such as shared chan-
nels [Balzer et al. 2019], dependent protocols [Thiemann and Vasconcelos 2020], and
protocol weakening [Bravetti et al. 2021]. Orthogonally, showing safety and func-
tional correctness of concurrent programs has been achieved with concurrent separa-
tion logic [O’Hearn 2004; Brookes 2004], a school of logics for reasoning about safe
distribution of resources in a concurrent setting, from which descendants have been
used to verify e.g., C programs [Appel 2011] and Rust programs [Jung et al. 2018a].

In this thesis we combine session types and concurrent separation logic to estab-
lish a new reasoning mechanism, dependent separation protocols, for showing safety
and functional correctness of programs that use message passing along with other
concurrency models, such as lock-based synchronisation. We additionally combine
the simplicity of type checking with the expressivity of logic proofs, by defining a
semantic type system [Ahmed 2004] for session types. Finally, we mechanise all our
results on top of the Iris framework [Iris Development Team 2021] in the Coq inter-
active proof assistant [Coq Development Team 2021], which includes the verification
of a map-reduce algorithm, and a message-passing-based producer-consumer.

1

1. Introduction

In this chapter we provide an overview of the field of session types and separation logic,
and present the problem that the thesis seek to address. In particular, we first pro-
vide a brief overview of message passing (Section 1.1), safety and session types (Sec-
tion 1.2), functional correctness and concurrent separation logic (Section 1.3), and an
outline of some of the existing challenges in the field (Section 1.4). We then present
the problem statement, the key idea to addressing the problem, and the contribu-
tions of the thesis (Section 1.5). Finally, we provide an insight to the contents of the
included papers, and my role in conducting the work (Section 1.6).

1.1 Message Passing

Message passing is a concurrency paradigm in which threads are treated as actors
in a network that synchronise via messages, rather than having shared access to
mutable data [Hewitt et al. 1973]. The paradigm has been integrated as a first-
class primitive of state-of-the-art languages, such as Go [The Go Team 2021] and
Erlang [The Erlang Team 2021], while other languages, e.g., Java and C#, support
message passing through libraries [Akka 2021; Akka.NET 2021]. In such high-level
languages messages are often guaranteed to arrive and be delivered in order. For this
thesis we therefore consider binary message passing (where channels are between two
parties) with these properties.

Message passing is often realised using a means of creating channels, sending
messages and receiving messages, for which we use the following syntax:

new chan () send c v recv c

Here, new chan () is used to allocate a new channel, creating two unbounded buffers
(~v1, ~v2), while returning two channel endpoints c1 and c2. The operation send ci v is
used to send a value v over the channel, by enqueueing it in the corresponding buffer
~vi. Conversely recv ci receives values by dequeueing them from the other buffer, i.e.,
~v2 if i = 1 and ~v1 if i = 2. The receive operation blocks until a value is available.

While the message-passing paradigm seek to avoid shared access to mutable data,
it has been shown that developers often choose to combine the two [Tasharofi et al.
2013]. We therefore consider a representative ML-like language that supports mu-
table state, fork-based concurrency, locks, and the three message-passing primitives
described above. The operational semantics, i.e., the mathematical model, of the
language is described in Section 2.1.2.

To illustrate the combination of message passing with shared memory, we consider
the interaction between a pizza shop and a customer. To order pizzas the customer
has to hand over their credit card (a reference to an integer), from which the pizza
shop deducts the cost of the pizzas, after which they send back a receipt (a list of
integers). This interaction is modelled by the following program:

order pizza cc c :=
send c [Margherita, Calzone];
send c cc;
let receipt := recv c in
(sum receipt , !cc)

2

1.2. Safety and Session Types

More precisely, the customer first sends the order of a margherita and a calzone pizza
over the communication channel (send c [Margherita, Calzone]), and then send their
credit card (send c cc). They then await a response from the pizza shop (recv c),
expected to be the receipt (receipt). Finally the customer inspects (returns) the sum
of the receipt (sum receipt) and the dereferenced value of the credit card (!cc).1

1.2 Safety and Session Types

We initially want to show safety of message-passing programs. However, safety is
a general term informally described as “something [bad] will not happen” [Lamport
1977], and depends on the operational semantics of the language and what you want to
prove about the programs. The safety that we consider is then whether the programs
are type-safe, e.g., that functions are applied to the right types of arguments, and that
literal values are not used as functions. Safety of the order pizza program presented
in Section 1.1 then depends on a guarantee that the received message xs is a list of
integers, as the operation sum xs can otherwise fail.

Showing safety is often achieved through type checking, i.e., checking that the
program is in compliance with the rules of a type system. Safety then follows under
the condition that the type system satisfies type safety, i.e., “[..] well-typed programs
cannot ‘go wrong’ ” as coined by Milner [1978]. A state-of-the-art type system for
message passing is session types [Honda 1993], where channel endpoints are assigned
a protocol. These protocols specify obligations to (primarily) send (!A.S) or receive
(?A.S) a value of type A (e.g., List Z) and then continue as S. Session types guarantee
session fidelity, i.e., that any received message has been sent, and that it has the
denoted type. This can in turn be used to show that the received messages are used
safely. The following session type captures the interaction with the pizza shop:

pizza styp , !(List Pizza). !(ref Z). ?(List Z). pizza styp

The session type specifically states that the customer must first send (!) the order,
consisting of a list of pizzas (List Pizza), and their credit card (ref Z), after which
they can receive (?) the receipt (List Z). The protocol then loops, awaiting a new
order. The order pizza program follows the protocol, as it first sends a list of pizzas
([Margherita, Calzone] : List Pizza), then the credit card reference (cc : ref Z), and
then use the received value (receipt : List Z) in accordance with its type (sum receipt):

order pizza cc c :=
// c : !(List Pizza). !(ref Z). ?(List Z). pizza styp

send c [Margherita, Calzone];
// c : !(ref Z). ?(List Z). pizza styp

send c cc;
// c : ?(List Z). pizza styp

let receipt := recv c in
// c : pizza styp, receipt : List Z

(sum receipt , !cc)
1The hungry reader might notice that the ordered pizzas are never received. Sadly, pizzas cannot

yet be sent digitally, and are thus not included in the protocol.

3

1. Introduction

We can thus guarantee that the received receipt has the expected type, under the
assumption that the pizza shop has similarly been type checked (thus complying with
the protocol), and thereby guarantee that the program is type-safe.

However, the astute reader might have noticed that there is no guarantee that the
credit card has not been charged more than the cost of the pizzas. To guarantee such
a property we would instead need a proof of functional correctness.

1.3 Functional Correctness and Concurrent Separation Logic

Proving functional correctness can be achieved with Hoare logic [Hoare 1969], in which
programs are ascribed with logical assertions, that specify propositions which hold
before and after the execution of a program. These specifications are then proven by
applying the rules of the logic, which capture how the assertions change throughout
the evaluation of the program.

Extending the approach of Hoare logic to reason about stateful programs, i.e.,
programs with mutable state, such as references, was later achieved with separation
logic [Reynolds 2002; Ishtiaq and O’Hearn 2001]. Separation logic supports modular
proofs of sub-programs, i.e., proving the specifications of sub-programs in isolation.
This is achieved by virtue of the separation property, which guarantees that the
memory footprint of a sub-program is disjoint from the remaining program, thereby
guaranteeing that they do not interfere with each other.

A later extension, concurrent separation logic [O’Hearn 2004; Brookes 2004], re-
purposed the separation property to implicitly capture the safe interleaving of con-
currently executed threads, by guaranteeing that their executions are independent of
each other. Concurrent separation logic additionally employ techniques for reason-
ing about the safe interleaving of threads with overlapping memory footprint. This
direction has since spawned multiple descendants, for example VST [Appel 2011],
FCSL [Nanevski et al. 2014], and Iris [Jung et al. 2015, 2018b]. Iris, in particu-
lar, is a higher-order concurrent separation logic, which supports the construction of
high-level abstractions, such as locks and barriers, integrating them like first-class
primitives, using higher-order ghost state [Jung et al. 2016].

Proving functional correctness of message-passing programs in the context of sep-
aration logic has been pursued in multiple efforts [Francalanza et al. 2011; Lozes and
Villard 2012; Craciun et al. 2015; Oortwijn et al. 2016]. One particular effort is the
work by Craciun et al. [2015], who combine separation logic with session types. They
do so by replacing the message types with separation logic propositions, to specify
additional details about the exchanged values, e.g., to reason about exchanges of
references and other channel endpoints.

The work by Craciun et al. [2015] is similar in spirit to prior work carried out
by Bocchi et al. [2010]. They replace the message types with dependent first-order
propositions, to specify additional details about the exchanged values, where the
propositions can refer to previously exchanged values.

To prove that the program presented in Section 1.1 is correct, we use a technique
similar to Bocchi et al. [2010] and Craciun et al. [2015], by extending session types
with Iris propositions.

4

1.4. Challenges

In particular, our protocols describe obligations to send (! ~x :~τ 〈v〉{P}. prot) or receive
(?~x : ~τ 〈v〉{P}. prot) a value v constrained by a proposition P in the context of the
logical binders ~x :~τ , after which the protocol continues as prot . We can then use the
following protocol, to prove that the credit card is charged according to the receipt:

pizza prot ,
! (v1 : Val)(~x1 : List Pizza) 〈v1〉{is pizza list v1 ~x1 ∗ 0 < |~x1|}.
! (` : Loc)(x : Z) 〈`〉{` 7→ x}.

?(v2 : Val), (~x2 : List Z) 〈v2〉
{
is int list v2 ~x2 ∗ |~x1| = |~x2| ∗
` 7→ (x− (sum ~x2))

}
.

pizza prot

The protocol states that the customer must first send a value v1, which is an encoding
of the list of pizzas ~x1, as captured by the proposition is pizza list v1 ~x1. The
side-condition 0 < |~x1| captures that the list must be non-empty (to avoid prank
calls). The side-condition holds alongside the list proposition, denoted by the sep-
aration conjunction (∗), which for now can be thought of as regular propositional
conjunction (∧). The customer must then send a location `, representing their credit
card, while noting that the original amount is x, captured by the separation logic
points-to connective ` 7→ x. The pizza shop then returns the receipt v2, which is a
list of the cost of each pizza ~x2, captured by is int list v2 ~x2. The side-condition
|~x1| = |~x2| states that the number of deductions must correspond to the number of
ordered pizzas. Finally, the received proposition ` 7→ (x− (sum ~x2)) captures that the
new value stored in the credit card corresponds to the cost of the pizzas.

We can thus prove that the deducted amount is in accordance with the sum of the
receipt, under the assumption that the pizza shop is in compliance with the protocol.

1.4 Challenges

This section presents some of the challenges related to reasoning about safety and
functional correctness of message-passing programs. We first cover the importance of
being able to reason about message passing in the context of other concurrency mod-
els, such as lock-based synchronisation (Section 1.4.1). We then illustrate the benefits
of being able to combine the simplicity of safety checking via type systems, with the
expressivity of interactive proofs in concurrent separation logic (Section 1.4.2). We
finally discuss how mechanisation can be used to improve the reliability of type sys-
tems, logical systems, and the proofs carried out in them (Section 1.4.3).

1.4.1 Message Passing and other Concurrency Models

Message passing is often combined with mutable state and other concurrency models,
such as lock-based synchronisation [Tasharofi et al. 2013]. To illustrate the benefits of
combining message passing with locks consider two concurrent customers of the pizza
shop, Jesper and Robbert. Jesper and Robbert are each having individual parties,
and may want to order pizzas at some point during the evening, over the same channel
endpoint. Sharing of channel endpoints is non-trivial as they are typically treated

5

1. Introduction

as exclusive resources in the context of session types, meaning that they can only be
accessed by one thread at a time. However, this exclusivity of channel endpoints is
crucial to establish the guarantees of session types, as they rely on the fact that two
threads do not operate on the same channel endpoint simultaneously.

To share channel endpoints between multiple threads we use locks, which guar-
antee safe shared access to a locked exclusive resource through mutual exclusion. In
particular, a locked resource is guaranteed to remain unchanged outside of any crit-
ical section, i.e., the sections where the shared exclusive resource is accessed. To
access and momentarily modify the resources a threads must enter the critical sec-
tion by acquiring the lock lk , using acquire lk , and afterwards release the lock, using
release lk , to exit the critical section. The following program illustrates how the
channel endpoint to the pizza shop is safely shared between both parties using a lock:

lock example jesper cc robbert cc c :=
let lk := new lock () in

// Jesper’s party
acquire lk ;
send c [Margherita];
send c jesper cc;
let jesper receipt := recv c in

release lk ;
// Jesper’s party cont.
(sum jesper receipt , ! jesper cc)


∥∥∥∥∥



// Robbert’s party
acquire lk ;
send c [Calzone];
send c robbert cc;
let robbert receipt := recv c in

release lk ;
// Robbert’s party cont.
(sum robbert receipt , ! robbert cc)


The program executes the parties in parallel, which then race for the lock. Once the
lock is acquired by either party, they can safely order pizzas, while the other party
waits for the lock to be released.

Proving safety of programs which combine session types and lock-based synchro-
nisation have been studied by Balzer and Pfenning [2017]; Balzer et al. [2019]. They
add synchronisation primitives to their version of session types to guarantee mutual
exclusion of channels during critical sections. However, this is different from having
two separate mechanisms, one for locks and one for channels, that compose seamlessly.
Additionally, their solution specifically address the combination of message passing
and locks, and is not equipped to be extended with other concurrency models.

In regards to functional correctness, existing solutions for session-type based rea-
soning in separation logic [Craciun et al. 2015] do not integrate with other concurrency
models, such as lock-based synchronisation. This is a result of building on top of more
a traditional separation logic, as opposed to a logic which readily supports other con-
currency models as first-class notions, e.g., lock-based synchronisation, such as the
higher-order concurrent separation logic Iris.

1.4.2 Safety via Functional Correctness

Proving safety of programs using type checking is often straightforward, and can in
some cases even be done automatically using a decidable type checker. However, type
checking is inherently not expressive enough to capture safety of some classes of racy
yet safe programs, i.e., programs which safely access exclusive resources concurrently.

6

1.4. Challenges

Imagine that the pizza shop is having their annual pizza-palooza, in which a finite
amount of people can get vouchers for free pizzas. Consider the following program
and type, modelling two people concurrently requesting one of the last two pizzas:

(λc. (recv c) || (recv c)) : chan (?Pizza. ?Pizza. end)→ Pizza× Pizza

The program receives twice in parallel on the channel endpoint c, and returns the
resulting pizzas as a pair. The program is safe, as any order of execution of the receive
instructions results in a pair of some pizzas, as expected by the type annotation.
However, as the channel endpoint is considered exclusive in conventional session type
systems, they are incapable of showing safety of this program. This remains the case
in the context of locks, since they would require the locked protocol to remain the
same outside of the critical sections, which is not the case here, as each access strips
one, and only one, receive step from the protocol, i.e.:2

?Pizza. ?Pizza. end ?Pizza. end or ?Pizza. end end

As it is imperative that the pizza shop can safely continue the pizza-palooza tradition,
we want to prove safety of the program, which is possible with concurrent separation
logic, since its functional correctness proofs support reasoning about safe distributions
of exclusive resources. However, proofs in a logic are almost always more time-
consuming than type checking. We therefore wish to be able to type check the
majority of a given program, and only prove safety of sub-programs in the logic when
the expressivity of type checking is insufficient.

Achieving such a composition of type checking and manual typing proofs has been
done by the RustBelt project [Jung et al. 2018a], which combines manual proofs of
typing judgements for unsafe Rust code, with the syntactically typeable part of the
language. They do so by employing the technique of semantic typing [Milner 1978;
Ahmed 2004; Ahmed et al. 2010], in which types are given a logical interpretation, and
the typing judgement is defined in a way that captures safety. Specifically, Jung et al.
[2018a] define their type system in terms of the higher-order concurrent separation
logic Iris, to capture resourceful types, such as Rust lifetimes.

1.4.3 Mechanisation

Proving properties such as safety and functional correctness using a meta-theory, e.g.,
a session type system or a concurrent separation logic, is a means of increasing the
reliability of software. However, this begs the question of how reliable these meta-
theories are themselves. A meta-theory can similarly be prone to errors, as 1) proofs in
the meta-theory might not actually guarantee the expected properties, and 2) proofs
of individual programs in the meta-theory might have been carried out incorrectly.

Addressing these concerns can be done using mechanisation, where manual proofs
are automatically checked by a machine, e.g., via an interactive proof assistant
such as Coq [Coq Development Team 2021], Isabelle/HOL [Nipkow et al. 2002], or

2The charitable reader may have noticed that the program could in fact be typed given a recursive
type, however handing out infinite free pizzas is arguably a dubious business model.

7

1. Introduction

Lean [de Moura et al. 2015]. Mechanisation has become popular over the years, and
has been used for verification of cornerstone systems such as compilers [Leroy 2006;
Kumar et al. 2014], operating systems [Klein et al. 2009; Gu et al. 2011], security
protocols [Beringer et al. 2015], type systems [Jung et al. 2018a], and is even seeing
use in industry [Bedrock Systems A/S 2021; The CertiK Team 2021].

We thus seek to mechanise the work carried out in this thesis, to strengthen
the claim that our results are correct. In particular, we want to mechanise the meta-
theory behind the proposed protocol mechanism, i.e., that a proof in the meta-theory
in fact guarantees functional correctness.

Doing so requires mechanising the operational semantics of the language, the
meta-theory, and the connection between them. This mechanisation effort grows in-
creasingly non-trivial for each feature of the meta-theory, e.g., exclusive ownership,
concurrency, and recursion. However, the mechanisation effort can be alleviated by
building on top of an existing framework. Such an existing framework is the higher-
order concurrent separation logic Iris in Coq [Iris Development Team 2021; Coq De-
velopment Team 2021]. Iris is parametric on an operational semantics, and includes a
concrete instantiation with the operational semantics for an untyped functional lan-
guage with higher-order functions, garbage collected higher-order mutable references,
and fork-based concurrency, called HeapLang.

Additionally, we seek to carry out concrete proofs using the meta-theory, as ev-
idence of its expressivity and usability, i.e., that it is feasible to carry out proofs of
larger and more realistic programs using the meta-theory.

To do so it is imperative to have a scalable method for carrying out proofs at the
level of the meta-theory and its abstractions. This is the case as interactive proof
assistants, such as Coq, are typically designed towards reasoning in their own logic.
As a result, proofs in an embedded logic, such as Iris in Coq, often require manual
handling of details that would be considered implicit in the embedded logic, e.g., the
distribution of substructural propositions in separation logic. A scalable method is
the MoSeL framework (formerly called the Iris Proof Mode) [Krebbers et al. 2017b,
2018], which allows for reasoning at the level of concurrent separation logic in Coq,
as well as being extensible with custom language- and abstraction-specific tactics.

Finally, following the trend of it becoming more common practice for researchers
to mechanise their work, some mechanisation efforts have been conducted within the
field of session types [Tassarotti et al. 2017; Thiemann 2019; Rouvoet et al. 2020; Gay
et al. 2020; Castro et al. 2020]. However, there is a lack of mechanisations for more
expressive session type systems, that combine multiple session type features such as
recursion, polymorphism, and subtyping, along with types of other concurrent models
such as mutex types for lock-based synchronisation.

1.5 Problem Statement and Contributions

This thesis concretely seeks to address the following three problems:

1. Session types provide an intuitive foundation for proving functional correctness
of message-passing programs, however, existing session-type-based mechanisms
do not compose with existing solutions for other concurrency models.

8

1.5. Problem Statement and Contributions

2. It is not possible to combine the expressivity of concurrent separation logic,
e.g., for proving safety of racy yet safe programs, with the simplicity of type
checking in a session type system

3. It is becoming more common practice to mechanise new work, however, there
is a lack of mechanisation efforts in the field of session types

The key idea to solving problem 1 is to draw inspiration from existing session-type
based protocols for functional verification [Bocchi et al. 2010; Craciun et al. 2015].
We define a new protocol mechanism, that is both dependent, i.e., protocol steps
can rely on prior exchanges, and resourceful, i.e., protocols can describe exchanges
of exclusive resources, such as references or other channel endpoints. The protocols
additionally support recursion, higher-order quantification, and weakening.

The protocol mechanism is formalised in Iris, using its support for constructing
high-level abstractions, to integrate the protocol mechanism with Iris’s expressive
variant of concurrent separation logic, which include a first-class formalism of locks.
To connect the protocol mechanism with an operational semantics, the message-
passing primitives are then implemented on top of the HeapLang language, which
has already been connected to the Iris meta-theory.

The key idea to solving problem 2 is to use the technique of semantic typing,
drawing inspiration from the semantic type system for Rust in Iris by Jung et al.
[2018a]. In particular, how we can integrate manual proofs of untypeable programs
with the type system. Additionally, by building on top of Iris we inherit its affine
properties for defining affine types, its recursion mechanisms for recursive types, and
its lock library for mutex types. We use the proposed protocol mechanism as the
semantic interpretation of session types with recursion, polymorphism, and subtyping.

Finally, the key idea to solving problem 3 is to mechanise all of our efforts on
top of the Iris framework in Coq. In particular, we inherit the mechanisation of the
operational semantics of HeapLang, and its connection to Iris’s meta-theory. This lets
us focus on the mechanisation of our protocol mechanism, the semantic type system,
and the examples carried out in both of the systems.

Contributions The contributions made by this thesis are as follows:

1. We construct a first-class session-type based mechanism, dependent separation
protocols, for proving functional correctness of message-passing programs in the
higher-order concurrent separation logic Iris, using its support for high-level ab-
stractions. The first-class mechanism integrates with Iris’s existing concurrency
mechanisms, such as shared mutable state and locks

2. We define a semantic type system for session types–based on the dependent sep-
aration protocols–along with shared- and mutable reference types, mutex types,
term- and session subtyping, term- and session type polymorphism, recursive
types, and support for manual proofs of “racy” yet safe programs

3. We fully mechanise both of the above results on top of the Iris mechanisation
in Coq, with tooling support for proving typing judgements and functional
specifications of concrete programs, along with various examples, including a
functional proof of a map-reduce algorithm, and the manual typing proof of a
message-passing-based producer-consumer

9

1. Introduction

1.6 List of Publications and Manuscripts

Each of the contributions in Section 1.5 were achieved as a part of the work presented
in the following collection of publications and manuscripts.

• Actris: Session-Type Based Reasoning in Separation Logic, ACM SIGPLAN
Symposium on Principles of Programming Languages 2020 (POPL’20)

• Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic,
Journal of Logical Methods in Computer Science (LMCS manuscript in review)

• Machine-Checked Semantic Session Typing, Certified Programs and Proofs 2021
(CPP’21) (recipient of Distinguished Paper Award)

More specifically, the first-class reasoning mechanism for message passing (contri-
bution 1) is addressed by the POPL’20 paper and its LMCS journal version. The
semantic session type system (contribution 2) is covered by the CPP’21 paper. Fi-
nally, the mechanisations (contribution 3) are included as artifacts of their respective
papers. The LMCS manuscript and the CPP’21 paper have been reformatted and
included in the thesis as Chapter 3 and Chapter 4, respectively. The remainder of this
section is a brief overview of each paper (Sections 1.6.1 to 1.6.3), and concludes with
references to the original papers and their mechanisation artifacts (Section 1.6.4).

1.6.1 Actris: Session-Type Based Reasoning in Separation Logic.
Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers,
POPL’20

This paper presents the first-class separation logic construct of dependent separation
protocols, which can be thought of as a logical interpretation of session types.

In contrast to session types, which describe the exchanged values in terms of
types, the dependent separation protocols describe exchanges using separation logic
propositions, that can capture more precise properties than the types. An example
of a dependent separation protocol, along with its corresponding session type, is the
following, describing the protocol of a service that computes the length of a list:

Session type: Dependent separation protocol:
?(List Z). !Z. end ?(v : Val), (~x : List Z) 〈v〉{is int list v ~x}. ! 〈|~x|〉. end

The dependent separation protocol states that the channel first receives a value v,
which is an encoding of a list of integers ~x, as determined by is int list v ~x. It
then sends back the length of the list |~x|, with no propositional restriction.

The protocol construct has been integrated with the Iris concurrent separation
logic framework, allowing it to e.g., carry exclusive ownership of references and other
channel endpoints. Additionally, the integration allows combining the protocols with
lock-based reasoning, which is demonstrated in the paper, along with a case study in
which we verify a map-reduce algorithm.

Personal Contribution The publication is joint work, with close collaboration
between all co-authors on all sections. As first author I spearheaded the writing of all

10

1.6. List of Publications and Manuscripts

of the sections except the related work section (initial version by Jesper Bengtson),
and the model and mechanisation sections (initial version by Robbert Krebbers).

The publication is accompanied by an artifact consisting of the mechanisation of
the dependent separation protocols, the channel implementation, and the examples
of the paper. The mechanisation was developed in collaboration with Robbert Kreb-
bers. Krebbers particularly carried out the implementation of the recursive domain
equation of the dependent separation protocols, and the proof of the load-balancing
mapper and map-reduce examples. I did the rest under his supervision, e.g., carried
out the protocol definition, and connected it to the channel implementation.

1.6.2 Actris 2.0: Asynchronous Session-Type Based Reasoning in
Separation Logic. Jonas Kastberg Hinrichsen, Jesper Bengtson,
and Robbert Krebbers, LMCS manuscript in review

This paper extends the dependent separation protocol mechanism with a notion sim-
ilar to asynchronous session subtyping, where protocols can be weakened to allow the
composition of more programs that communicate. Subtyping achieved this by per-
mitting (1) sending more, (2) receiving less, and (3) eagerly sending before receiving.
In addition to conventional subtyping, our subprotocol mechanism is resourceful. It
allows “framing” resources that are sent in excess, which can then be re-obtained
during a subsequent receive. The mechanism also enjoys the full expressivity of Iris’s
step-indexed recursion, allowing weakening under the recursive operator. An example
of a subprotocol, along with its corresponding session type subtyping, is the following
which captures how the list length service may disregard the type of the lists elements:

Subtype: Subprotocol:
?(List Z). !Z. end

<: ?(List any). !Z. end
?(v : Val), (~x : List Z) 〈v〉{is int list v ~x}. ! 〈|~x|〉. end

v ?(v : Val), (~w : List Val) 〈v〉{is list v ~w}. ! 〈|~w|〉. end

This subprotocol relation captures that the channel endpoint can receive a list of
arbitrary values ~w, instead of a list of integers ~x. It does so formally by weakening
the received proposition is int list v ~x, and its associated binder ~x, to the strictly
weaker proposition is list v ~w, along with its binder ~w. The tail of the protocol is
suitably updated, to send back the length of the list of arbitrary values |~w|.

The manuscript additionally extends the model and mechanisation sections of the
POPL’20 publication, to provide further insight into how the Actris framework is
defined on top of Iris, and how the mechanisation made use of the Iris Proof Mode.

Personal Contribution The manuscript is joint work where I wrote the initial
draft of each of the three new/revised sections, while my co-authors provided feed-
back and revisions. The extension of the mechanisation was achieved as a collabora-
tion with Robbert Krebbers, where Krebbers solved technically challenging problems
related updating the recursive domain equation, the step-indexing of Iris, and the
tactic support for the subprotocol mechanism, while I worked on the rest under his
supervision, such as conceptualising the subprotocol definition and integrating it with
our existing protocol framework.

11

1. Introduction

1.6.3 Machine-Checked Semantic Session Typing. Jonas Kastberg
Hinrichsen, Daniël Louwrink, Jesper Bengtson, and Robbert
Krebbers, CPP’21, recipient of Distinguished Paper Award

This paper draws a formal connection between the dependent separation protocols
and session types, by defining and mechanising a semantic session type system as a
logical relation on top of Actris.

In doing so, we obtain a rich session type system, with term- and session type
subtyping, polymorphism, and equi-recursion, in addition to copyable types, mutable
and shared reference types, and mutex types. Furthermore, it integrates the expres-
siveness of the underlying logic with the simplicity of the session type system, by
enabling manually proving typing judgements, of uncheckable programs, such as the
one originally presented in Section 1.4.2:

λc. (recv c) || (recv c) : chan (?Pizza. ?Pizza. end)→ Pizza× Pizza

As previously stated, the program is safe, as the order in which it receives does not
matter, but even so, it cannot be type checked by conventional session type systems,
as the channel type cannot be distributed to both parallel threads. However, we can
manually prove the typing judgement, using the underlying logic, and then use it in
the context of type checking for compound programs.

Personal Contribution The writing was joint work with close collaboration be-
tween the co-authors. I wrote the initial draft of all sections excluding the mechanisa-
tion section (initial version by Robbert Krebbers) and the related work section (initial
version by Jesper Bengtson). The mechanisation was developed in collaboration with
Daniël Louwrink, who laid the ground work inspired by the RustBelt project, and
Robbert Krebbers, who assisted with technical Coq challenges e.g., related to ap-
plying polymorphic typing rules. I did the rest, such as extending the system with
subtyping and carrying out the mechanisation of the examples in the paper.

1.6.4 Mechanisations and Artifacts

The Coq mechanisation for the three paper share the same code base and thus repos-
itory, for which the newest version is found at https://gitlab.mpi-sws.org/iris/actris.
Additionally, each of the published papers have an associated self-contained per-
sistently archived virtual machine, along with a repo branch of the repository
reflecting the source code at their time of publication:

• POPL’20: https://dl.acm.org/doi/10.1145/3371074

– archive: https://dl.acm.org/do/10.1145/3373096/full/

– repo branch: https://gitlab.mpi-sws.org/iris/actris/-/tree/popl20

• LMCS: https://iris-project.org/pdfs/2020-actris2-submission.pdf (pre-print)

– repo branch: https://gitlab.mpi-sws.org/iris/actris/-/tree/lmcs

• CPP’21: https://doi.org/10.1145/3437992.3439914

– archive: https://zenodo.org/record/4322752

– repo branch: https://gitlab.mpi-sws.org/iris/actris/-/tree/cpp21

12

https://gitlab.mpi-sws.org/iris/actris
https://dl.acm.org/doi/10.1145/3371074
https://dl.acm.org/do/10.1145/3373096/full/
https://gitlab.mpi-sws.org/iris/actris/-/tree/popl20
https://iris-project.org/pdfs/2020-actris2-submission.pdf
https://gitlab.mpi-sws.org/iris/actris/-/tree/lmcs
https://doi.org/10.1145/3437992.3439914
https://zenodo.org/record/4322752
https://gitlab.mpi-sws.org/iris/actris/-/tree/cpp21

Chapter 2

Background

The work of this thesis is carried out on top of the higher-order concurrent separa-
tion logic Iris in Coq [Jung et al. 2015, 2018b; Iris Development Team 2021]. Iris is
language independent, i.e., it is parametric on an operational semantics. For the pur-
pose of this thesis we consider the instantiation with an untyped functional language
with higher-order functions, garbage collected higher-order mutable references, and
fork-based concurrency, called HeapLang.

In this chapter we provide a technical background for the remaining chapters. In
particular, we first present the operational semantics of HeapLang, along with existing
implementations of parallel composition and locks, as well as our own implementations
of linked lists and binary channels for message passing (Section 2.1). We specifically
consider the problem of capturing all of the possible interleavings of a concurrent
program, and how this is modelled semantically.

We then provide a precise definition of the safety and functional correctness
properties, based on the operational semantics of HeapLang, that we consider (Sec-
tion 2.2). We additionally show how these properties can be established using a type
system or Hoare logic, and how the benefits of these techniques can be combined
using the method of semantic typing. In doing so, we precisely capture the functional
correctness property that we obtain with the Actris framework presented in Chap-
ter 3, and the safety property that we obtain with the semantic type system built on
top of Actris presented in Chapter 4.

We finally give an overview of the Iris framework, and demonstrate how it can
be used to prove specifications of concurrent programs that share exclusive resources
using locks (Section 2.3). That is to give an intuition for how we may later use Iris as
the foundation for constructing our session-type based protocols, and for how we prove
the specifications of our binary channels for message passing in the Actris framework
in Chapter 3. We additionally present some of the features of Iris that we use to
model various types in our semantic session type system presented in Chapter 4.

The remaining chapters of the thesis are self-contained in regards to session types,
and thus we do not cover them in this chapter.

13

2. Background

(a)

(
let x := ! ` in
`← x+ 2

∣∣∣∣∣∣∣∣ let x := ! ` in
`← x+ 2

)
(b)

(
let x := ! ` in
`← x+ 2

∣∣∣∣∣∣∣∣ let x := ! ` in
`← x+ 2

)

(c)

(
let x := ! ` in
`← x+ 2

∣∣∣∣∣∣∣∣ let x := ! ` in
`← x+ 2

)
(d)

(
let x := ! ` in
`← x+ 2

∣∣∣∣∣∣∣∣ let x := ! ` in
`← x+ 2

)

(e)

(
let x := ! ` in
`← x+ 2

∣∣∣∣∣∣∣∣ let x := ! ` in
`← x+ 2

)
(f)

(
let x := ! ` in
`← x+ 2

∣∣∣∣∣∣∣∣ let x := ! ` in
`← x+ 2

)

Figure 2.1: The possible interleavings of interleaving example. The interleavings
(a) and (b) yield the correct result, in contrast to (c), (d), (e), and (f) which yields
an incorrect result. Arrows indicate the flow of time.

2.1 Operational Semantics

In this section we cover the operational semantics of HeapLang and the abstrac-
tions, that we use in the remaining chapters, built on top of it. In particular, we
first give a brief account of the intricacies associated with concurrent operational se-
mantics (Section 2.1.1). We then present the concrete operational semantics of the
HeapLang language (Section 2.1.2). We then cover the existing implementations of
locks and parallel composition (Section 2.1.3). Finally, we cover our own implemen-
tations of mutable linked lists (Section 2.1.4), and bidirectional channels for message
passing (Section 2.1.5).1

2.1.1 Interleavings in Concurrent Operational Semantics

Reasoning about concurrent software is notoriously hard, since the program instruc-
tions of individual threads are sporadically interleaved. As a consequence of this,
even though some possible execution orders might produce the intended result, there
can still exist interleavings that result in faulty behaviour. The following program
illustrates this problem:

interleaving example ` :=(
let x := ! ` in
`← x+ 2

∣∣∣∣∣∣∣∣ let x := ! ` in
`← x+ 2

)
The program concurrently updates a value x stored in the reference ` twice. It does
so by executing two threads in parallel, that reads the value from the reference, adds
2 to the value, and stores the updated value back in the reference.

The problem is that four of its six possible interleavings result in an incorrect
result, as shown in Figure 2.1.2 The program correctly adds 4 to the referenced value

1The content of (Section 2.1.5) is primarily replicated from the corresponding section on channel
semantics in (Section 3.6.5), in order to give a complete overview of the language semantics.

2We assume that the language has a sequentially-consistent memory model.

14

2.1. Operational Semantics

in the first two cases (a) and (b), as the reference is both read and updated by one
thread, before the other thread reads the updated value. However, in the remaining
cases (c), (d), (e), and (f), both threads read the original value (x), update their
local view of the value (to x + 2), and then store that in the reference. As a result
only one update is effectively applied, resulting in the reference now containing x+2,
as opposed to x + 4. We fix this bug by protecting the critical sections with a lock
in Section 2.1.3, and prove that the program is both safe and correct in Section 2.3.

To obtain proper guarantees about our concurrent programs, we want our proofs
of safety and functional correctness to account for any possible interleaving. This is
achieved by reflecting the interleaving behaviour in the operational semantics.

2.1.2 The Semantics of HeapLang

HeapLang is an untyped functional language with higher-order functions, garbage
collected higher-order mutable references, and fork-based concurrency, for which the
syntax is as follows:3

v ∈ Val ::= () | i | b | ` | rec f x := e | (i ∈ Z, b ∈ B, ` ∈ Loc)

(v1, v2) | inj1 v | inj2 v | . . .
e ∈ Expr ::= v | x | e1 e2 | (e1, e2) | fst e | snd e |

if e1 then e2 else e3 | inj1 e | inj2 e |
(match e1 with (inj1 x)⇒ e2 | (inj2 x)⇒ e3 end) |
ref e | ! e | e1 ← e2 | (Mutable state)

fork {e} | CAS e1 e2 e3 | . . . (Concurrency)

We omit the the standard unary and binary operations such as equality, addition, and
subtraction. The language includes the standard operations for heap manipulation.
New references are created using ref e, dereferenced using ! e, and assigned to using
e1 ← e2. Concurrency is supported via fork {e}, which spawns a new thread, that
executes the expression e in the background. The language also supports the atomic
compare-and-set (CAS) operation, which is used to implement the lock in Section 2.1.3.

Derived Notions We derive various notions as syntactic sugar, i.e., definitions
in the meta-language by use of ,, such as lambda expressions (λx. e), let-bindings
(let x := e1 in e2), and options (None, Some e), from the core syntax:

λx. e , rec x := e

let x := e1 in e2 , (λx. e2) e1

e1; e2 , let := e1 in e2

None , inj1 ()

Some e , inj2 e

skip , (λ . ()) ()

We often write definitions as f x1 · · · xn := e rather than f , rec f x1 · · · xn := e.

3HeapLang has more features, e.g., arrays, but for brevity’s sake we describe a more concise
version of the operational semantics. However, the mechanisation effort of the thesis is built on top
of the full version of HeapLang.

15

2. Background

((rec f x := e)(v);σ) −→h (e[v/x][(rec f x := e)/f];σ; [])

(fst (v1, v2);σ) −→h (v1;σ; [])

(snd (v1, v2);σ) −→h (v2;σ; [])

(if true then e1 else e2;σ) −→h (e1;σ; [])

(if false then e1 else e2;σ) −→h (e2;σ; [])
match (inji v) with

(inj1 x)⇒ e1

| (inj2 x)⇒ e2

end

;σ

 −→h (ei[v/x];σ; []) if i ∈ {1, 2}

(ref v;σ) −→h (`;σ[`← v]; []) if σ(`) = ⊥
(! `;σ[`← v]) −→h (v;σ[`← v]; [])

(`← w;σ[`← v]) −→h (();σ[`←w]; [])

(fork {e};σ) −→h (();σ; [e])

(CAS ` w1 w2;σ[`← v]) −→h (true;σ[`←w2]; []) if v = w1

(CAS ` w1 w2;σ[`← v]) −→h (false;σ[`← v]; []) if v 6= w1

e1;σ1 −→h e2;σ2;~e

K[e1];σ1 −→t K[e2];σ2;~e

e1;σ1 −→t e2;σ2;~e

T · [e1] · T ′;σ1 −→tp T · [e2] · T ′ · ~e;σ2

Figure 2.2: The operational semantics of HeapLang.

Operational Semantics The small-step operational semantics of HeapLang can
be found in Figure 2.2. It consists of three layers of reductions:

• term reductions, (; −→h ; ;) ∈ (Expr×State)× ((Expr×State)× List Expr)
which capture how individual operations reduce

• thread-local reduction,(; −→t ; ;)∈(Expr×State)×((Expr×State)×List Expr)
which capture the evaluation order of sub-expressions

• threadpool reduction, (; −→tp ;) ∈ (List Expr × State) × (List Expr × State)
which capture the concurrent semantics of the language

Here σ ∈ State , Loc fin−⇀ Val, i.e., a finite partial map from allocated locations to
their stored values.

The term reduction −→h captures how the language primitives reduce. The reduc-
tion is defined as a relation from a configuration (Expr×State), to a configuration and
a range of newly spawned threads ((Expr×State)×List Expr). The individual primitive
reductions are mostly standard, and are shown in Figure 2.2. The reduction of the
fork-expression (fork {e};σ) −→h (();σ; [e]) captures how a new thread e is spawned
by adding it to the list of newly spawned threads [e].

16

2.1. Operational Semantics

The thread-local reduction −→t is used to capture the deterministic evaluation order
of sub-expressions, using the following evaluation context syntax:

K ∈ Ctx ::= • | e(K) | K(v) | (e1,K) | (K, v2) | fst (K) | snd (K) |
ifK then e1 else e2 | inj1 (K) | inj2 (K) |
(matchK with (inj1 x)⇒ e2 | (inj2 x)⇒ e3 end) |
ref (K) | !K | e← K | K ← v | (Mutable state)

CAS e1 e2 K | CAS e1 K v2 | CAS K v1 v2 | . . . (Concurrency)

In particular, expressions are represented in the form K[e], capturing that e is the
head-expression of a context K. HeapLang reduces from right-to-left, meaning that
in expressions such as e1 ← e2 the expression e2 reduces before e1. This is determined
by its corresponding context syntax, from which we initially get (e1 ← •)[e2]. If e2

reduces to a value v2 the context syntax dictates that the hole moves to e1 yielding
(• ← v2)[e1]. If e1 reduces to a value v1 we finally end up with v1 ← v2, as there is
no context syntax where both constituents are values.

Finally, the threadpool reduction −→tp captures the concurrent semantics of Heap-
Lang, being the top-level reduction of the language. The threadpool reduction
is defined as a relation over all concurrently running threads and the heap state
(List Expr×State) to a new set of threads and an updated heap state (List Expr×State).
At each step a thread is picked arbitrarily and reduced once via the thread reduction
−→t, applying the updates to the heap state, while adding any forked-off threads ~e to
the threadpool T · [e2] · T ′ · ~e.

As the reduced thread is picked arbitrarily, a program execution simulation can
result in any possible interleaving, even ones where the same thread is infinitely
picked repeatedly (assuming it loops), effectively accounting for an unfair scheduler.
However, as will be detailed in Section 2.2 we are not concerned with termination,
and thus an infinitely executing program is deemed well-behaved. As a result of the
arbitrary reduction of threads, any proof over a program execution must consider
every possible interleaving, even the unfair ones.

2.1.3 Implementation of Locks and Parallel Composition

Iris’s HeapLang library [Iris Development Team 2021, HeapLang] includes implemen-
tations of locks and the parallel composition, found in Figure 2.3.

The locks are encoded as a boolean reference, where false indicates that the
lock is free, and true indicates that the lock is taken. New locks are constructed
with new lock (), which does so by allocating a reference to false, i.e., a free lock.
Acquiring the lock is primarily done with try acquire lk , which uses a compare-and-set
(CAS) operation to atomically query whether the lock is free (false). If the lock is free,
it is taken by atomically setting the reference to true. The function returns whether
the CAS operation was successful. To make lock acquisition a blocking operation, i.e.,
one that only continues once it succeeds, we implement the actual acquire function
acquire lk by wrapping try acquire lk in a loop, which only terminates once the CAS

operation succeeds. Finally, the lock can be released with release lk which sets the
reference back to false.

17

2. Background

Implementation of locks:

new lock () := ref false

try acquire lk := CAS lk false true

acquire lk := if (try acquire lk) then () else acquire lk

release lk := lk ← false

Implementation of parallel composition:

spawn f := let cb := ref None in

fork {cb ← Some (f ())} ;
cb

join cb := match ! cb with

None ⇒ join cb
| Some x⇒ x
end

(e1 || e2) , let h := spawn (λ . e1) in
let v2 := e2 in

let v1 := join h in
(v1, v2)

Figure 2.3: Implementation of locks and parallel composition on top of HeapLang.

The parallel composition (e1 || e2) computes the results of e1 and e2 in parallel,
and returns the resulting values v1 and v2 as a tuple. The implementation depends
on two auxiliary functions spawn and join. The spawn function takes a thunk, i.e.,
a computation delayed by wrapping it in a closure, which it computes in a forked-off
thread, while returning a callback cb. The callback is a reference to an option, where
None indicates that the value has yet to be computed, and Some x means that the
result x is ready. The join function takes a callback cb, and checks if the result
is ready. If it is not, the function loops. If the result is ready, it is returned. The
parallel composition (e1 || e2) is defined in the meta-language (using ,), as opposed
to using a lambda abstraction in HeapLang, to avoid eagerly computing e1 and e2,
when passing them to the function. The function spawns a new thread for computing
the result of e1 using spawn (λ . e1), after which it computes the result of e2 locally.
When the evaluation of e2 is done, the function awaits the result of e1 using join.
Finally, the results v1 and v2 are returned as a tuple.

The Lock-Protected Interleaving Example By employing the locks we can
define a correct variant of the interleaving example example from Section 2.1.1:

locked interleaving example ` :=
let lk := new lock () in
acquire lk ;
let x := ! ` in
`← x+ 2;

release lk

∣∣∣∣∣∣∣∣
acquire lk ;
let x := ! ` in
`← x+ 2;

release lk

 ;

acquire lk

18

2.1. Operational Semantics

lnil () := ref None

lcons v l := l← Some (v, ref (! l))

lisnil l := match ! l with
None ⇒ true

| Some p⇒ false

end

lsnoc l v := match ! l with
None ⇒ l← Some (v, ref None)
| Some p⇒ lsnoc (snd p) v
end

lpop l := match ! l with
None ⇒ () ()
| Some p⇒ l← !(snd p); fst p
end

Figure 2.4: A selection of the definitions for the implementation of linked lists on
top of HeapLang. We omit the functions llength, lappend, lreverse, lmerge, and
lsplit, used in the remaining chapters.

The lock guarantees that only one thread can access the location ` at a time. As a
result, the possible interleavings of the program reduce to the correct cases (a) and
(b), thus guaranteeing that the program correctly adds 4 to the stored value x.

We acquire the lock after the parallel composition, to simulate a deallocation of
the lock. This is done to obtain a simpler proof of the functional correctness of the
program in Section 2.3, inspired by [Jourdan and Krebbers 2018, Exercise 3].

2.1.4 Implementation of a Mutable Linked List

We implement mutable linked lists on top of HeapLang, for which a selection of
definitions can be found in Figure 2.4. We take the common approach to linked lists,
encoding them as references to options. A list may then either be empty (None), or a
cell (Some (v, l)), where v is the value stored in the cell and l is a reference to the next
cell. This is made apparent by the definition of lnil (), which allocates a reference
to a new empty list ref None. Consequentially, the definition lcons v l extends a
linked list l by letting the reference point to a new cell with the new value v, and a
newly allocated reference to the original tail ref (! l).

The linked list implementation includes a small library of functions of which a
selection is shown in Figure 2.4. In particular, we use the functions lisnil, lsnoc,
and lpop, for the implementation of the binary channels for message passing in Sec-
tion 2.1.5. The lisnil l function queries whether the list l is empty, by matching on
its option constructor. The lsnoc v l function adds a value v to the end of the list l,
by traversing the entire list. Finally, the lpop l function removes the first element of
the list l and returns it. The function fails if the list is not empty, which is captured
using the illegal function application () (), i.e., an application of the unit value () to
itself, as if it were a function. As there are no valid reductions for a function applica-
tion on values that are not functions, the program gets stuck, which will be discussed
further in Section 2.2. Finally, note that we often use |l| instead of llength l.

19

2. Background

new chan () := let (l, r, lk) := (lnil (), lnil (), new lock ()) in
((l, r, lk), (r, l, lk))

send c v := let (l, r, lk) := c in
acquire lk ;
lsnoc l v; skipN |r|;

release lk

try recv c := let (l, r, lk) := c in
acquire lk ;
let ret := (if (lisnil r) then (None) else (Some (lpop l))) in

release lk ; ret

recv c := match (try recv c) with
None ⇒ recv c
| Some v ⇒ v
end

Figure 2.5: Implementation of binary channels for message passing in HeapLang.

2.1.5 Implementation of Binary Channels for Message Passing

We implement our channels on top of HeapLang, using a pair of mutable linked lists
protected by a lock, as shown in Figure 2.5. Each linked list represent a buffer of
messages sent from one endpoint to the other.

New channels are created by the new chan function, which allocates two empty
mutable linked lists l and r using lnil (), along with a lock lk using new lock (), and
returns two channel endpoints, encoded as the tuples (l, r, lk) and (r, l, lk), where the
order of the linked lists l and r determines the side of the endpoints. We refer to the
list in the left position as the endpoint’s own buffer, and the list in the right position
as the other endpoint’s buffer.

Values are sent over a channel endpoint (l, r, lk) using the send function. This
function operates in an atomic fashion by first acquiring the lock via acquire lk ,
thereby entering the critical section, after which the value is enqueued (i.e., appended
to the end) of the endpoint’s own buffer using lsnoc l v. The skipN |r| instruction is
a no-op that is inserted to aid the proof. We explain the reason why this instruction
is needed in Section 3.6.6.

Values are received over a channel endpoint (l, r, lk) using the recv function. The
function performs a loop that repeatedly calls the helper function try recv. It loops
whenever try recv fails (i.e., returns None), and terminates when it succeeds (i.e.,
returns Some v), returning the value v. The helper function try recv attempts to
receive a value atomically, and fails if there is no value in the other endpoint’s buffer.
It does so by first acquiring the lock lk with acquire lk , after which it checks whether
the other endpoint’s buffer is empty using lisnil r. If the buffer is empty nothing
is returned (i.e., None). If it is non-empty the value is dequeued and returned (i.e.,
Some (lpop l)). Finally, the lock lk is released with release lk .

20

2.2. Safety, Functional Correctness, and Semantic Typing

2.2 Safety, Functional Correctness, and Semantic Typing

This section elaborates on how safety and functional correctness of a program can be
proven using type checking and Hoare logic. First, we formally define what we mean
by safety, and how it can be shown via type checking (Section 2.2.1). In doing so,
we illustrate a key limitation of conventional type systems, in that they cannot type
check programs whose safety rely on runtime behaviour, e.g., programs with unsafe
branches that are never executed. We then formally define what we mean by func-
tional correctness, how it can be shown through proofs in a program logic, and how
it can be used to prove safety of programs beyond the scope of type checking (Sec-
tion 2.2.2). Finally, we cover the technique of semantic typing, and how it can be
used to combine the benefits of type checking and interactive proofs (Section 2.2.3).

2.2.1 Safety

Safety of a program has informally been described as “something [bad] will not hap-
pen” [Lamport 1977]. We interpret this as a program always being able to reduce,
i.e., being able to take a step according to the small-step operational semantics. This
implies that the program is type-safe, as illegal (primitive) function applications can-
not reduce. An example of an illegal function application is ()(), as the literal unit
value () is used as a function. Additionally, the safety interpretation implies that
programs are memory-safe, as the reduction rule for dereferencing requires that the
location is in the heap to take a step. We capture the safety property as follows:

safe e , ∀σ, T, σ′. ([e];σ −→∗tp T ;σ′)
implies ∀e′ ∈ T. (e′ ∈ Val) or

(∃T ′, σ′′. e′;σ′ −→tp T
′;σ′′)

The property states that an expression e is safe, whenever any expression e′ ∈ T that
it reduces to is either a value or can reduce further. As infinitely looping programs
can always reduce, they are deemed safe.

Safety is often shown using a type system, which consists of types and typing rules,
capturing the set of values that the program terms can have. The types and typing
rules are most commonly defined as inductive definitions and relations, respectively.
For demonstration purposes, we consider a simple type system that has ground types
(Ag) for integers and booleans, as well as a term type (A) for function types:

Ag ::= Z | B | . . . A ::= Ag | A1 → A2 | . . .

The type system captures that an expression e has the type A with the typing judge-
ment Γ ` e : A, where Γ is a typing context capturing the types of free variables. A
selection of the typing rules for the type system is as follows:

Γ ` i : Z Γ ` b : B

Γ, x : A ` e : B

Γ ` λx. e : A→ B

Γ ` e1 : A→ B Γ ` e2 : A

Γ ` e1 e2 : B

Γ ` e1 : B Γ ` e2 : A Γ ` e3 : A

Γ ` if e1 then e2 else e3 : A

21

2. Background

Safety of a closed expression e can then be established by checking that it is well-typed
in the empty typing context (` e : A), according to the typing rules.

Indeed, safety follows from type checking under the condition that the type sys-
tem enjoys the property of type safety, stating that “well-typed programs cannot go
wrong” [Milner 1978], which is formally captured as:

` e : A implies safe e (2.1)

This property states that if a program is well-typed (` e : A) it is also safe (safe e).
Proving that a type system satisfies the type safety property is most commonly done
using using the technique of progress and preservation [Wright and Felleisen 1994].

• progress: well-typed programs are either values or they can take a step

• preservation: well-typed programs are still well-typed after taking a step

In particular, the properties are individually proven using induction, after which type
safety follows directly.

Safety via Type Checking The following are examples of the type checking of
two programs; The first being safe:

b : B ` b : B
X

b : B ` 42 : Z
X

b : B ` 0 : Z
X

b : B ` if b then 42 else 0 : Z

` λb. if b then 42 else 0 : B→ Z

And the second being unsafe:

b : B ` b : B
X

b : B ` 42 : Z
X

b : B ` ()() : Z
×

b : B ` if b then 42 else ()() : Z

` λb. if b then 42 else ()() : B→ Z

In both programs we first abstract over the argument b of the boolean type B, and
then type check the if-else-expression by checking that the conditional argument b
is of type B, and that both branches have the same type (here the integer type Z).
The check on the conditional argument b : B passes in both examples, as per the
typing context (b : B). The check on the branches pass for the first example, as both
branches are literal integers of type Z. However, the second program is ill-typed, as
the second branch ()() does not type check, since () is not a function.

Limitations of Type Checking In both of the above examples the safety of the
program corresponds directly to whether it is well-typed, but such a correspondence
is not always the case, as stated in Section 1.4.2. Consider the following program
which is safe, even though it is not well-typed:

` true : B
X

` 42 : Z
X

` ()() : Z
×

` if true then 42 else ()() : Z

22

2.2. Safety, Functional Correctness, and Semantic Typing

As before, the second branch of the program ()() is unsafe. However, the program as
a whole is safe as the unsafe branch is never executed, since the conditional argument
true holds vacuously. While conventional type systems are agnostic to such runtime
behaviour, they can be captured when proving functional correctness, which in turn
can prove that the program is in fact safe.

2.2.2 Functional Correctness

Functional correctness of a program is a property that is dependent on a given speci-
fication, which denotes the expected output of the program. Such a specification can
be thought of as a predicate ϕ ∈ Val→ Prop. We call this predicate the postcondition,
by which the correctness property can be captured formally as follows:4

correct (e, ϕ) , (safe e) and
∀σ, (v ∈ Val), T, σ′. (e;σ −→∗tp [v] · T ;σ′)

implies (ϕ v)

The definition combines safety with postcondition validity, stating that the postcon-
dition ϕ holds for any value v that the expression e reduces to. The correctness
property subsumes our safety property, meaning that we have the following:

correct (e, ϕ) implies safe e (2.2)

A formal approach to showing functional correctness is using a program logic, e.g.,
Hoare logic [Hoare 1969], where Hoare triples {P} e {Φ} are used to ascribe a program
e with a logical precondition P ∈ iProp and postcondition Φ ∈ Val → iProp. We
often write {P} e {v. Q} instead of {P} e {λv. Q}, and {P} e {Q}, when v = ().
The propositions often range over a program logic iProp, that extends a meta-logic
Prop, with connectives to describe the state of the program, e.g., the locations of
the heap. We often implicitly coerce predicates in the meta-logic ϕ into predicates
of the program logic, e.g., in {True} e {ϕ}. A common variant of a program logic is
separation logic, which is covered in Section 2.3.

Proving a Hoare triple is achieved by applying the rules of the program logic. As
an example, the following are the rules for the conditional expression:

Ht-if-true
{P} e1 {Φ}

{P} if true then e1 else e2 {Φ}

Ht-if-false
{P} e2 {Φ}

{P} if false then e1 else e2 {Φ}

Specifically, they capture that we are only concerned with the branch of the program
that corresponds to the truth value of the boolean condition.

Connecting a Hoare-style program logic to the functional correctness of a program
relies on a proof of adequacy, capturing that Hoare triples with meta-logic postcon-
ditions ϕ imply correctness up to that postcondition:

{True} e {ϕ} implies correct (e, ϕ) (2.3)

4Note that we are not concerned with whether a program terminates (namely total correctness),
but use the term correctness in place of the more apt term partial correctness, for brevity’s sake.

23

2. Background

The postcondition ϕ is restricted to the meta-logic fragment of the program logic as
functional correctness correct (e, ϕ) is a meta-logic property. This may seem restrictive
at first, but adequacy is only relevant for the specifications of the top-level expression
of a program, e.g., the main-function. As such, we are not concerned with properties
about e.g., the state of the heap, as it is soon to be deallocated.

The adequacy theorem is often obtained by modelling the Hoare triple in terms of
the operational semantics of the language under consideration, such that it captures
safety directly.

Functional Correctness via Hoare Logic An example of a (simplified) proof
of functional correctness is the following derivation, which captures that the safe yet
ill-typed program from the prior section is safe and that it results in an integer:

{True} 42 {v. v ∈ Z}
X

{True} if true then 42 else ()() {v. v ∈ Z}
Ht-if-true

The derivation follows from Ht-if-true, by which we only need to focus on the first
branch, as the conditional argument is vacuously true. After this step the program is
a value, specifically the literal integer 42, for which the postcondition holds trivially.
We can thus conclude that the program is safe by Equation (2.3) and Equation (2.2).

While more expressive than type checking, verifying whether there exists a valid
derivation for a Hoare-style logic specification is often undecidable. Showing func-
tional correctness via this technique thus often requires interactive effort, even when
we only seek to prove safety, and not full functional correctness.

2.2.3 Semantic Typing

The techniques of type checking and program logic proofs may seem orthogonal, but
they can be related through the technique of semantic typing [Milner 1978; Ahmed
2004; Ahmed et al. 2010] (contrasting syntactic typing, discussed thus far).

In a semantic type system the types and the typing judgement are given a semantic
interpretation, respectively capturing what it means for a value to belong to a type,
and that the program is safe to execute. The typing rules of a semantic type system
are consequentially proven as lemmas, instead of being defined inductively.

The type safety of a semantic type system is a direct consequence of the definition
of the typing judgement, as opposed to being proven using a technique such as progress
and preservation by Wright and Felleisen [1994]. As a result, a semantic type system
is open, where rules are abstractions capturing safety of specific term structures, in
contrast to capturing a notion of being well-typed, which may then imply safety.

This openness effectively lets us add “ad-hoc” rules, whenever we reach a typing
judgement with no corresponding typing rule, by proving it manually in the un-
derlying model. This technique was applied by Jung et al. [2018a], who created a
semantic type system for the Rust language, in which they manually prove safety of
unsafe Rust libraries, i.e., programs that deploy a complex form of sharing, such as

24

2.2. Safety, Functional Correctness, and Semantic Typing

reference-counted pointers, which are beyond the scope of the type system. Achiev-
ing a similar result with the technique of progress and preservation is infeasible, as it
would require typing rules for all mid-execution reductions.

Finally, as demonstrated by Appel et al. [2007] and Dreyer et al. [2010], building
on top of an existing system, e.g., Iris, a semantic type system can inherit the features
of the existing system, e.g., mutable references or recursion, its adequacy theorem,
and any existing mechanisation effort.

A semantic type system corresponding to the simple syntactic type system shown
in Section 2.2.1 can be obtained by building on top of the Hoare logic presented
in Section 2.2.2. In particular, we define the types as a logical interpretation of the
syntactic types [[·]] ∈ Type → Val → iProp, where e.g., the type of integers is defined
as [[Z]] , λv. v ∈ Z. Drawing inspiration from the approach taken by Krebbers et al.
[2017b], who built a semantic type system for a language similar to HeapLang, the
typing judgement can be defined in terms of the Hoare triple:

� e : A , {True} e {[[A]]} (2.4)

The semantic typing rules are then proven as lemmas. As an example, the following
is the typing rule for conditionals, which is expanded to the underlying Hoare triples:

� e1 : B � e2 : A � e3 : A

� if e1 then e2 else e3 : A

{True} e1 {v. v ∈ B} {True} e2 {[[A]]} {True} e3 {[[A]]}
{True} if e1 then e2 else e3 {[[A]]}

The proof of the underlying Hoare triple follows from case analysis on the boolean
result of evaluating e1, after which the rules Ht-if-true and Ht-if-false apply.

The connection to syntactic typing is captured by the fundamental lemma, often
being a direct consequence of the semantic type system definitions, which states that
the semantic type system subsumes the syntactic one:

` e : A implies � e : A (2.5)

From the fundamental lemma, and the implications between Hoare triples, functional
correctness, and safety, presented in Section 2.2.2, we then have the following sub-
sumption relationship for the ground types Ag:5

` e : Ag implies (2.5)
� e : Ag (2.4)
{True} e {[[Ag]]} implies (2.3)
correct (e, [[Ag]]) implies (2.2)
safe e

With these definitions and implications, we can then prove safety of syntactically
ill-typed programs via semantic typing.

5{True} e {[[Ag]]} implies correct (e, [[Ag]]) for ground types Ag, as adequacy (2.3) only hold for
meta-logic predicates, which the semantic interpretation of ground types commonly are.

25

2. Background

Safety of Syntactically Ill-Typed Programs via Semantic Typing The se-
mantic typing judgement for the safe yet ill-typed program presented in Section 2.2.1
correspond to the Hoare triple that we proved in Section 2.2.2:

� if true then 42 else ()() : Z
{True} if true then 42 else ()() {v. v ∈ Z}

The judgement can thus be used as a part of an otherwise syntactically checked typing
derivation, even though it is internally ill-typed. This demonstrates how we can add
ad-hoc rules for term structures that might otherwise not have a derivation in the
syntactic system, e.g., for the racy yet safe program presented in Section 1.4.2.

The ability to add such ad-hoc rules is how semantic typing allows for combin-
ing the simplicity of type checking with the expressivity of program logic proofs for
showing safety. In particular, one can deploy type checking for the fragment of the
program that does not rely on runtime behaviour, and manually prove the uncheck-
able remainder of the typing derivation in the underlying program logic.

The Foundational Approach In our semantic type system we take the foun-
dational approach [Ahmed 2004], as similarly done by Jung et al. [2018a] for their
semantic type system for Rust built on top of Iris. Taking the foundational ap-
proach means that we sidestep the syntactic type system, by not defining the types
as inductive definitions. Instead we define the types as standalone predicates, i.e.,
Type ∈ Val → iProp, rather than defining them as interpretations of syntactic types.
Recovering proofs similar to the type checking of a syntactic type system can then be
achieved by proving semantic typing rules (often called compatibility lemmas in the
logical relations literature), corresponding to all of the rules that would otherwise be
part of the syntactic type system.

By taking the foundational approach, we sidestep the effort of defining and mech-
anising a syntactic type system, and instead fully inherit the existing work of the
underlying logic, which in our case is the features, adequacy, and mechanisation of
the higher-order concurrent separation logic Iris.

2.3 The Iris Logic

In this section we cover the basics of the higher-order concurrent separation logic
Iris [Jung et al. 2015, 2016] instantiated with HeapLang, and how it can be used to
prove specifications of concurrent programs that safely share mutable data, such as
the locked interleaving program presented in Section 2.1.3. An overview of grammar
and inference rules of the logic can be found in Figure 2.6.

Program specifications in Iris can, alike standard Hoare and separation logics, be
captured in terms of Hoare triples {P} e {Φ}. Additionally, a proof of a Hoare triple
in Iris similarly imply functional correctness for meta-logic postconditions ϕ ∈ Val→
Prop, as formally captured by Iris’s adequacy theorem:

{True} e {ϕ} implies correct (e, ϕ)

The meta-logic of Iris is that of Coq, which is a higher-order propositional logic.

26

2.3. The Iris Logic

Grammar:

τ, σ ::= x | 0 | 1 | B | N | Z | Type | ∀x : τ. σ | Loc | Val | Expr | iProp | . . .
t, u, P,Q ::= x | λx : τ. t | t(u) | t(τ) | (Polymorphic lambda-calculus)

True | False | P ∧Q | P ∨Q | P ⇒ Q | (Propositional logic)

∀x : τ. P | ∃x : τ. P | t = u | (Higher-order logic with equality)

µx : τ. t | .P | (Guarded recursion)

P ∗Q | P −∗ Q | ` 7→ v | {P} e {v. Q} | (Separation logic)

�P | P V Q | . . . (Iris connectives)

Ordinary affine separation logic:

Affine

P ∗Q⇒ P

Adjoint
P ∗Q ` R
P ` Q −∗ R

Ht-frame
{P} e {w. Q}

{P ∗R} e {w. Q ∗R}
Ht-val

{True} v {w. w = v}

Ht-csq

�(P −∗ P ′) {P ′} e {w. Q′} �(∀w. Q′ −∗ Q)

{P} e {w. Q}

Ht-fork
{P} e {True}

{P} fork {e} {True}

Ht-bind
{P} e {v. Q} ∀v. {Q}K[v] {w. R}

{P}K[e] {w. R}

Heap manipulation:

Ht-alloc

{True} ref v {`. ` 7→ v}
Ht-load

{` 7→ v} ! ` {w. (w = v) ∗ ` 7→ v}
Ht-store

{` 7→ v} `← w {` 7→ w}

Recursion:

.-intro

P ⇒ .P
Löb

(.P ⇒ P)⇒ P
µ-unfold

(µx. t) = t[µx. t/x]

Ht-rec
{P} e[v/x][(rec f x := e)/f] {w. Q}
{.P} (rec f x := e) v {w. Q}

Ht-pers
Q⇒ {P} e {w. R}
{P ∗Q} e {w. R}

persistent(Q)

Figure 2.6: The grammar and a selection of rules of Iris for HeapLang.

27

2. Background

The derivation of the ill-typed yet safe program presented in Section 2.2.2 is valid
in Iris, as it follows from the rules Ht-if-true and Ht-val (up to some simplification):

{True} 42 {v. v ∈ Z}
Ht-val

{True} if true then 42 else ()() {v. v ∈ Z}
Ht-if-true

The expressive power of Iris comes from the logical propositions P,Q ∈ iProp used in
the Hoare triples. In this section we cover the features that are used in the remaining
chapters of the thesis.

We first cover the separation logic properties of Iris (Section 2.3.1), which inher-
ently guarantee that programs do not interfere with each other, as a result of Iris
treating propositions affinely. This treatment is fundamental to how we reason about
our programs, and is the foundation of how we model affine types in our semantic
type system in Chapter 4.

We subsequently present the notion of persistent resources (Section 2.3.2), which
captures how some propositions may be duplicated, and can thereby be distributed
to multiple sub-proofs. This allows us to share e.g., specifications of higher-order
functions multiple times, and is what lets us model copyable types in our semantic
type system in Section 4.3.2.

We then detail how Iris is a step-indexed separation logic (Section 2.3.3), which
allows us to reason about recursive programs, and construct recursive predicates.
This is essential to how we achieve the recursion of our session-type based protocols
in Section 3.6.1, and consequentially how we obtain recursive session types of our
semantic type system in Section 4.3.3.

We additionally demonstrate how Iris allows us to prove specifications of concur-
rent program, by using locks (Section 2.3.4) and ghost state (Section 2.3.5). These
are both crucial parts of how we prove the high-level specifications of our channel
implementation, which will be presented in Section 3.6.

We finally provide a more detailed overview of how we will use Iris to achieve the
contributions of the remaining chapters (Section 2.3.6).

2.3.1 Separation Logic in Iris

Iris is an affine separation logic, in which propositions can be thought of as resources,
that can be used at most once. The propositions for one range over the heap of the
program. In particular, the points-to predicate ` 7→ v asserts exclusive ownership of
a location `, while stating that it contains the value v. Meanwhile, the separating
conjunction P ∗Q captures that the propositions P and Q hold for disjoint parts of
the heap. The exclusive ownership of a location ` can thereby only ever validly exist
on one side of such a separating conjunction, and otherwise result in a contradiction:

(` 7→ v) ∗ (` 7→ w)⇒ False

Finally, the separating implication P −∗ Q is similar to regular implication P ⇒ Q,
for the separating conjunction, as captured by the Adjoint rule in Figure 2.6.

Separation logic allows for modular verification of subcomponents of a program,
as specifications inherently guarantee that programs do not interfere with each other,

28

2.3. The Iris Logic

since their heap footprints are disjoint. We call this the separation property. The
property is formally captured by the Ht-frame rule, which states that a frame of
resources described by the proposition R, that is disjoint from the resources described
by the proposition P , is preserved throughout execution of e, and thus also hold
disjoint from the resources described by the proposition Q. As a result, we obtain
small-footprint specifications, where we only describe the exact resources needed, as
we can thread the disjoint frame of resources through our proofs with Ht-frame.

Examples of such small-footprint specifications are the rules Ht-alloc, Ht-load,
and Ht-store. The Ht-alloc rule yields exclusive ownership of the newly allocated
reference ` 7→ v. The rule Ht-load states that we can obtain the value stored in
an exclusively owned reference. Finally, the rule Ht-store allows us to update the
stored value of an exclusively owned reference. The exclusivity is crucial, as the view
of the stored value could otherwise be inconsistent with other threads.

The separation property similarly ensures that concurrently running threads will
not race for exclusive resources. This is made precise by the Ht-fork rule, which
states that the subproof is modularly proven based on some disjoint part of the
precondition. Finally, Iris is affine, meaning that resources can be dropped, as is
standard for program logics over garbage collected languages. This property is made
precise by the Affine rule.

Linked List Abstraction As an example of how separation logic can be used to
implicitly capture disjointness of resources, consider the following definition, captur-
ing what it means to be a linked list up to the interpretation predicate I:

list interp (I : T → Val→ iProp) (l : Loc) (~x : List T) ,{
l 7→ None if ~x = []

∃v1 l2. I x1 v1 ∗ l 7→ Some (v1, l2) ∗ list interp I l2 ~x2 if ~x = [x1] · ~x2

Here, T is a polymorphic type that is inferred from the I argument. We often use
the notation l

list7→I ~x for list interp I l ~x.
The definition is constructed as a fixpoint over a meta-level list ~x. The definition

captures the following:

1. The number of cells correspond to the length of the list ~x

2. Separate exclusive ownership is asserted for each cell

3. The interpretation predicate I holds for each meta-value x ∈ ~x, and its corre-
sponding cell value v in the linked list

In particular, the predicate l
list7→I ~x asserts ownership of the linked list head-reference

l, using the points-to connective. In the case that the list is empty (~x = []), it
asserts that the reference points to nothing l 7→ None. If the list is non-empty (~x =
[x1] · ~x2 for some values x1 and ~x2), it asserts that the reference points to a cell
l 7→ Some (v1, l2), and that the value v1 can be interpreted as x1 via I x1 v1. Finally,
the definition recursively captures separate ownership of the rest of the linked list
list interp I l2 ~x2. The list predicate implicitly guarantees that the list does not
form a cycle, as each of the value cells are guaranteed to be disjoint.

29

2. Background

Ht-lnil
{True} lnil

{
l. l

list7→I []
} Ht-lcons{

l
list7→I ~x ∗ I x v

}
lcons v l

{
l

list7→I ([x] · ~x)
}

Ht-lisnil{
l

list7→I ~x
}
lisnil l

{
b. b = (~x = []) ∗ l list7→I ~x

}
Ht-lsnoc{
l

list7→I ~x ∗ I x v
}
lsnoc l v

{
l

list7→I (~x · [x])
}

Ht-lpop{
l

list7→I ([x] · ~x)
}
lpop l

{
w. I x w ∗ l list7→I ~x

}
Figure 2.7: Specifications of a selection of the functions for the mutable linked list
implementation presented in Section 2.1.4.

The specifications of a selection of the the linked list functions is found in Figure 2.7.
To demonstrate how we can prove such specifications of programs with multiple sub-
expression, consider the specification for lcons, which is defined as follows:

lcons v l := l← Some (v, ref (! l))

We first need to do case analysis on the meta-list ~x, to obtain the reference ownership
of l, which is present in both the empty and non-empty case. As the proof of both
cases are similar, we only consider the empty case for simplicity sake:

{l 7→ None ∗ I x v} lcons v l
{
l

list7→I [x]
}

As the program consists of multiple sub-expressions, e.g., ! l, we use the Ht-bind

rule to string the sub-proofs of each sub-expression together. We thus start at the
first sub-expression ! l, being at the head-position of the program, captured by the
surrounding evaluation context K , (l← Some (v, ref •)):

{l 7→ None ∗ I x v} (l← Some (v, ref •))[! l]
{
l

list7→I [x]
}

We use the rule Ht-load to resolve the reference deallocation ! l, which returns None.
We then continue to the next sub-expression, being the reference allocation ref None:

{l 7→ None ∗ I x v} (l← Some (v, •))[ref None]
{
l

list7→I [x]
}

Here we use the rule Ht-alloc to resolve the reference allocation ref None, which
returns a new location l′, for which we obtain l′ 7→ None. We then continue to the
final sub-expression l← Some (v, l′):

{l 7→ None ∗ l′ 7→ None ∗ I x v} • [l← Some (v, l′)]
{
l

list7→I [x]
}

We resolve the step with the Ht-store rule, which updates the reference predicate of
l to l 7→ Some (v, l′). We finally have:

{l 7→ Some (v, l′) ∗ l′ 7→ None ∗ I x v} ()
{
l

list7→I [x]
}

This final specification then follows directly from the definition of l
list7→I ~x.

30

2.3. The Iris Logic

2.3.2 Persistent Resources in Iris

As Iris propositions are treated as affine resources they can by default be used at most
once. However, some propositions, e.g., equality, do not assert any properties about
resource ownership, and are thus safe to reuse multiple times. It therefore makes
sense to differentiate such propositions from affine propositions, as we might want to
distribute them to multiple subproofs. In Iris we call these propositions persistent,
which essentially mean that they can be duplicated. This is made precise by the �
modality, which enjoys the following rules:

persistent(P) , P ⇒ �P
�-dup
�P ⇒ (�P) ∗ (�P)

�-elim
�P ⇒ P

A proposition P is considered to be persistent (persistent(P)), if it can be freely
extended with the � modality, as captured by its definition. The rule �-dup captures
that propositions under the � modality can be duplicated freely. Finally, The rule

�-elim captures that the � modality can always be eliminated, letting us obtain the
persistent proposition. A persistent proposition can then be freely extended with the
always modality �, after which it can be duplicated with �-dup and �-elim:

P ⇒ (persistent(P))

�P ⇒ (�-dup)

�P ∗�P ⇒ (�-elim)
P ∗ P

The persistent propositions presented thus far are t = u, True, False, and �P . More-
over, the persistent modality commutes with conjunctions (P ∧Q, P ∗Q), disjunction
(P ∨Q), universal and existential quantification (∀x. P , ∃x. P). The set of persistent
propositions is therefore closed under these connectives.

Weakest Precondition We have thus far presented the program logic of Iris in
terms of Hoare triples. However, in Coq the program logic of Iris is actually defined
in terms of the weakest precondition wp e {Φ}. The weakest precondition captures
that the expression e does not get stuck, and that if it reduces to a value v, then Φ v
holds. The actual adequacy statement of Iris is thus:

wp e {ϕ} implies correct (e, ϕ)

Like the Hoare triples, the weakest preconditions are first-class members of the logic,
and can thus be nested.

The Hoare triples of Iris are used as an intuitive way of defining program specifi-
cations and rules, and is defined in terms of the weakest precondition:

{P} e {Φ} , �(P −∗ wp e {Φ})

In particular, they state that under the assumption that the precondition P holds, as
captured by the separating implication −∗, the weakest precondition for the expression
e and postcondition Φ holds. The definition is wrapped in the � modality to capture

31

2. Background

that Hoare triples do not depend on external resources, beyond what is provided
in their precondition P . This in turn makes them persistent. This is crucial as
Hoare triples denote specifications of programs, which can be executed repeatedly,
and should therefore be duplicable.

We omit the definition and rules for the weakest precondition. The rules are
similar in spirit to the corresponding Hoare triple rules. For more details on the
definition of the weakest precondition of Iris we refer the interested reader to Jung
et al. [2018b, Section 7.3].

For presentation purposes, we primarily use the Hoare triples in Chapter 3, while
we instead use weakest preconditions in Chapter 4.

2.3.3 Step-Indexing in Iris

Iris is a step-indexed separation logic [Appel et al. 2007; Hobor et al. 2008; Svendsen
et al. 2010; Dreyer et al. 2010], where propositions are implicitly indexed by a natural
number called a step-index. The step-index allows us to create structurally recursive
propositions, in which the number gets smaller. Finally, the step-index is associated
with the number of steps taken by a program, to capture that propositions only hold
after a certain number of steps. As a result, we can differentiate between propositions
that hold now, and those that hold later. The step-indexing of Iris gives us:

1. A way of constructing recursive predicates, with the guarded fixpoint opera-
tor µx. t, which e.g., lets us define infinite channel protocols as demonstrated
in Section 3.6.2

2. Löb induction, which lets us reason about recursive functions and predicates,
demonstrated momentarily

3. Impredicative invariants, which lets us prove high-level specifications of concur-
rent programs that safely share exclusive resources, in terms of custom abstract
predicates, which are seemingly first-class citizens of the logic.

The step-indexing of Iris manifests with the later modality ., which is used to guard
proposition e.g., .P , capturing that they hold after one step of computation. This
property is demonstrated in the Ht-rec rule:

Ht-rec
{P} e[v/x][(rec f x := e)/f] {w. Q}
{.P} (rec f x := e) v {w. Q}

The rule states that the guarded precondition .P is stripped of its later, when the
function application has been resolved, i.e., when a step has been taken.

Löb Induction The step-indexing of Iris allows for reasoning about recursive pro-
grams via Löb induction, an induction principle over the steps of the program. The
induction principle manifests with the Löb rule:

(.P ⇒ P)⇒ P

The rule states that when proving a proposition P , we can assume that the proposition
holds one program step later .P .

32

2.3. The Iris Logic

To demonstrate Löb induction, consider the following infinitely looping program:

loop prog () := loop prog ()

The program repeatedly calls itself recursively, taking a single step (the application
of the function), at each iteration. We want to show that the program is safe, even
though it never terminates. This can be captured with a Hoare triple where the
postcondition is False. The proof of the program is as follows:

{True} loop prog () {False} ⇒ {True} loop prog () {False}
X

{({True} loop prog () {False})} loop prog () {False}
Ht-pers

{.({True} loop prog () {False})} loop prog () {False}
Ht-rec

{True} loop prog () {False}
Löb, Ht-pers

We first use the Löb rule, to obtain the Löb induction hypothesis, along with Ht-pers,
to move the guarded specification induction hypothesis into the Hoare triple precon-
dition. We then strip the later of the hypothesis by resolving the function application
with Ht-rec. Finally, the proof follows immediately by moving the specification out
of the precondition with Ht-pers.

2.3.4 Reasoning about Concurrent Programs in Iris

The separation property of separation logic guarantees that resources are disjoint.
This lets us reason about concurrently running threads that work on disjoint parts
of the heap, as they are guaranteed to not interfere with each other.

However, we often wish to reason about concurrent threads that safely access
overlapping memory footprints. Consider the locked interleaving example pro-
gram from Section 2.1.3, which safely share a location ` by protecting it using a lock
around the critical sections of the parallel threads in which ` is accessed:

locked interleaving example ` :=
let lk := new lock () in
acquire lk ;
let x := ! ` in
`← x+ 2;

release lk

∣∣∣∣∣∣∣∣
acquire lk ;
let x := ! ` in
`← x+ 2;

release lk

 ;

acquire lk

For starters we simply want to prove safety, specified as follows:

{` 7→ x} locked interleaving example ` {True}

To prove such a specification, we can use the high-level specifications for the lock
and parallel composition abstractions shown in Figure 2.8. These specifications are
inspired by the lock implementation by Jourdan and Krebbers [2018, Exercise 3]
and the implementation of the parallel composition by Iris Development Team [2021,
HeapLang], who also prove their respective specifications on top of Iris.

33

2. Background

Specifications of locks:

Ht-newlock

{R} new lock () {lk . is lock lk R}
Ht-acquire

{is lock lk R} acquire lk {R}

Ht-release

{is lock lk R ∗R} release lk {True}
lock-pers

persistent(is lock lk R)

Specifications of parallel composition:

Ht-par
{P1} e1 {Φ1} {P2} e2 {Φ2}

{P1 ∗ P2} e1 || e2 {w. ∃w1, w2. w = (w1, w2) ∗ Φ1 w1 ∗ Φ2 w2}

Figure 2.8: Specifications of the parallel composition and lock implementations.

The rule Ht-par for parallel composition (e1 || e2) states that we can prove the
threads e1 and e2 separately, by splitting the precondition into two disjoint sets of
resources P1 and P2. As a result we obtain the postconditions Φ1 and Φ2 for the
respective threads and their resulting values w1 and w2.

The specifications of the lock operate on the abstract predicate is lock lk R, which
conceptually captures that the value lk is a lock which governs the proposition R.
Additionally, the predicate is lock lk R is persistent, allowing us to duplicate it and
share it between multiple threads. Finally, the predicate is lock lk R is built on top of
Iris’s impredicative invariants, and can therefore be thought of as a first-class citizen
of the logic, which lets us put locks inside of locks.

The rule Ht-newlock states that we can allocate a new lock by giving up R, in
turn giving us the abstract predicate is lock lk R for the return value lk . We can then
access the locked proposition R with Ht-acquire, which waits for the lock to be free,
to then acquire it, after which we obtain R. Finally, we can release the lock with
Ht-release, under the condition that we give back the locked proposition R.

The proof of the locked interleaving example safety specification is carried out
using Ht-bind to string the sub-proofs of the individual sub-expressions together. The
individual steps are carried out as follows:

• Allocate the lock lk , protecting the exclusive reference, to get the abstract
predicate Plk , is lock lk (∃x. ` 7→ x), using Ht-newlock

• Duplicate Plk using lock-pers, �-dup, and �-elim

• Distribute Plk to the subproofs of the parallel threads with Ht-par

• For each of the parallel threads:

– Acquire the lock to obtain the exclusive reference ` 7→ x with Ht-acquire

– Deallocate and update the reference with Ht-load and Ht-store

– Release the lock by putting the updated exclusive reference ` 7→ (x + 2)
back into the lock (with x instantiated as x+ 2) with Ht-release

• Acquire the lock, and throw away Plk with Ht-acquire and Affine

34

2.3. The Iris Logic

In Plk we existentially quantify the stored value, as it must remain unchanged outside
of the critical sections. This limitation restricts us from proving a stronger functional
correctness specification, namely that the program adds exactly 4 to the stored value,
using only the lock and parallel composition specifications. However, we can achieve
such a proof with Iris’s notion of ghost state, which lets us keep track of the changes
made to resources owned by invariants.

2.3.5 Ghost State in Iris

Ghost state is similar in spirit to heap state, as it carries ownership, but instead of
describing the state of the heap it describes the state of proof-related variables, which
are not a part of the actual program [Cohen et al. 2009; Krishnaswami et al. 2012].

Ghost state manifests as ghost resources, of the form x
γ
, where γ is the resource

identifier, and x is its value. The values governed by ghost resources can take many
forms, each with an individual set of rules for constructing and updating the resources.
We call these sets of rules ghost theories. Iris comes equipped with a library of so-
called resource algebras, for constructing various kinds of ghost theories. For the
purpose of this thesis we do not cover how we construct our ghost theories, and
instead simply present their rules. We refer the interested reader to Jung et al.
[2018b, Section 3.1].

To prove functional correctness of the locked interleaving example program we

consider a ghost theory consisting of two resources • x γ
and ◦π x

γ
. The resource

• x γ
, which we call the authoritative piece, conceptually captures the global view

of x ∈ Z. The resource ◦π y
γ
, which we call the permission piece, conceptually

captures the permission to update the value recorded by the authoritative piece.
Here, y ∈ Z is a local view of the updates that has been made to the authoritative
piece in the presence of this permission piece. The fraction π ∈ (0, 1] denotes how
big a part of the full view that the local view represents. These properties are made
precise by the following rules:

Vs-csq

P VE P
′ {P ′} e {w. Q′} (∀w. Q′ VE Q)

{P} e {w. Q}
Vs-fracAuth-alloc

TrueVE ∃γ. • x
γ∗ ◦1 x

γ

Vs-fracAuth-add

• x γ∗ ◦π y
γ
VE • (x+ z)

γ∗ ◦π (y + z)
γ

fracAuth-op

◦π1+π2 (x+ y)
γ ∗−∗ ◦π1 x

γ∗ ◦π2 y
γ

fracAuth-eq

• x γ∗ ◦1 y
γ −∗ x = y

Here the rule Vs-csq states that we can always update the ghost state before or after
the execution of any program. That is by employing the viewshift VE , which for the
purpose of this thesis can be thought of as an implication for the ghost state. We
can thus always allocate an authoritative piece • x γ

and a full-fraction permission

piece ◦1 x
γ
, with some freely picked value x, and a fresh identifier γ, by using

Vs-fracAuth-alloc. The rule Vs-fracAuth-add captures that we can update the

35

2. Background

authoritative piece • x γ
in the presence of a permission piece ◦π y

γ
with any

partial fraction π. The rule fracAuth-op lets us split and rejoin the permission
pieces into and from smaller fractions, by similarly splitting the local view that they
have recorded. This lets us distribute permission pieces to multiple threads, and
later recover the complete record of the changes that they have recorded. Finally,
the fracAuth-eq rule lets us assert that the value stored in the authoritative piece
corresponds to the value recorded by a permission piece with the full fraction.

With this ghost theory in hand we can prove the following functional specification
of the locked interleaving example program:

{` 7→ x} locked interleaving example ` {` 7→ (x+ 4)}

We again string together the sub-proofs of the sub-expressions using Ht-bind, where
the individual sub-proofs are proven as follows:

• Allocate the ghost variables • 0
γ

and ◦1 0
γ

which govern the amount added
to the stored value x (initially being 0), using Vs-csq and Vs-fracAuth-alloc

• Allocate the lock lk , protecting the exclusive reference ` 7→ x along with the
authoritative piece • 0

γ
, to get the abstract predicate for the lock Plk ,

is lock lk (∃y. ` 7→ (x+ y) ∗ • y γ
), using Ht-newlock

• Duplicate Plk using lock-pers, �-dup, and �-elim

• Split the permission piece ◦1 0
γ

into ◦ 1
2

0
γ∗ ◦ 1

2
0
γ
, using fracAuth-op

• Distribute Plk and one of the permission pieces ◦ 1
2

0
γ

to each subproof of the

parallel threads with Ht-par

• For each of the parallel threads:

– Acquire the exclusive reference ` 7→ (x+ y) and authoritative piece • y γ

with Ht-acquire

– Deallocate and update the reference with Ht-load and Ht-store

– Update the ghost variables to record the value change, from • y γ ∗ ◦ 1
2

0
γ

to • (y + 2)
γ ∗ ◦ 1

2
2
γ
, with Vs-fracAuth-add

– Release the lock by putting the updated exclusive reference ` 7→ (x+y+2)

and the authoritative piece • (y + 2)
γ

(with y instantiated as y+2) back
into the lock with Ht-release

• Rejoin the permission pieces returned by Ht-par ◦ 1
2

2
γ∗ ◦ 1

2
2
γ

to ◦1 4
γ

• Acquire the exclusive reference ` 7→ (x+ y) and authoritative piece • y γ
with

Ht-acquire

• Infer that the value stored in ` is x+4 from • y γ ∗ ◦1 4
γ
, using fracAuth-eq

We treat the final acquire lk as a means of deallocating the lock, to re-obtain the
protected resources. We could circumvent the need for this step with another set of
specifications for the lock, that keep track of how many times Plk has been dupli-
cated [Hobor et al. 2008; Bizjak et al. 2019]. This would allow us to re-obtain the
protected resources by forgetting the lock, in the presence of all of the duplicated

36

2.3. The Iris Logic

fragments. However, keeping track of the lock fragments adds additional complexity
to our proofs, and would not allow us to model the mutex types in our semantic type
system Section 4.3.6.

2.3.6 Concluding Remarks

We have shown how Iris can be used to prove high-level specifications of implemented
abstractions, such as locks (Section 2.3.4). These specifications are based on abstract
predicates, e.g., is lock lk R, constructed such that we can think of them as first-class
primitives, akin to ` 7→ v. As a result, the abstractions seamlessly integrate with each
other, and can be nested.

We take a similar approach in Chapter 3, to obtain high-level specifications for
the binary channels for message passing presented in Section 2.1.5. The specifications
of the channels are based on an abstract predicate that captures exclusive ownership
of a channel endpoint, along with the channels compliance with one of our novel
dependent separation protocols. The abstract predicate is constructed such that it
can be thought of as a first-class citizen of the logic. As a result, we can nest protocols,
allowing us to describe the exchange of channels over channels, which we demonstrate
in Section 3.2. Additionally, it makes the channels seamlessly integrate with locks, as
we can put channels in locks, and vice versa, which we demonstrate in Section 3.4.

We have additionally given an account of various Iris features, such as basic
separation logic (Section 2.3.1), persistency (Section 2.3.2), and step-indexing (Sec-
tion 2.3.3). These Iris features give rise to many of the features of the semantic type
system, which we present in Chapter 4. For example, the affine properties of the
type system are a direct result of the affine separation logic of Iris, while the copyable
types are obtained based on the persistency of the type predicates.

Finally, we have shown how we can use Iris’s ghost state mechanism to prove
properties about programs that share exclusive resources via locks (Section 2.3.5).
We employ a similar approach to prove the specifications of various programs that
combine message passing with locks. In particular, we prove the functional correct-
ness of a load-balancing mapper in Section 3.4. We prove the functional correctness
of a map-reduce algorithm in Section 3.5. Finally, we do a manual typing proof
of a producer-consumer-based computation client that operates on a single channel
endpoint in parallel in Section 4.4.

37

Chapter 3

Actris: Session-Type Based
Reasoning in Separation Logic

Abstract Message passing is a useful abstraction for implementing concurrent pro-
grams. For real-world systems, however, it is often combined with other programming
and concurrency paradigms, such as higher-order functions, mutable state, shared-
memory concurrency, and locks. We present Actris: a logic for proving functional
correctness of programs that use a combination of the aforementioned features. Actris
combines the power of modern concurrent separation logics with a first-class proto-
col mechanism—based on session types—for reasoning about message passing in the
presence of other concurrency paradigms. We show that Actris provides a suitable
level of abstraction by proving functional correctness of a variety of examples, includ-
ing a distributed merge sort, a distributed load-balancing mapper, and a variant of
the map-reduce model, using concise specifications.

While Actris was already presented in a conference paper (POPL’20), this paper
expands the prior presentation significantly. Moreover, it extends Actris to Actris
2.0 with a notion of subprotocols—based on session-type subtyping—that permits
additional flexibility when composing channel endpoints, and that takes full advantage
of the asynchronous semantics of message passing in Actris. Soundness of Actris 2.0
is proved using a model of its protocol mechanism in the Iris framework. We have
mechanised the theory of Actris, together with custom tactics, as well as all examples
in the paper, in the Coq proof assistant.

3.1 Introduction

Message-passing programs are ubiquitous in modern computer systems, emphasising
the importance of their functional correctness. Programming languages, like Erlang,
Elixir, and Go, have built-in primitives that handle spawning of processes and intra-
process communication, while other mainstream languages, such as Java, Scala, F#,
and C#, have introduced an Actor model [Hewitt et al. 1973] to achieve similar func-
tionality. In both cases the goal remains the same—help design reliable systems, often

39

3. Actris: Session-Type Based Reasoning in Separation Logic

with close to constant up-time, using lightweight processes that can be spawned by
the hundreds of thousands and that communicate via asynchronous message passing.

While message passing is a useful abstraction, it is not a silver bullet of concurrent
programming. In a study of larger Scala projects Tasharofi et al. [2013] write:

We studied 15 large, mature, and actively maintained actor programs
written in Scala and found that 80% of them mix the actor model with
another concurrency model.

In this study, 12 out of 15 projects did not entirely stick to the Actor model, hinting
that even for projects that embrace message passing, low-level concurrency primi-
tives like locks (i.e., mutexes) still have their place. Tu et al. [2019] came to a similar
conclusion when studying 6 large and popular Go programs. A suitable solution for
reasoning about message-passing programs should thus integrate with other program-
ming and concurrency paradigms.

In this paper we introduce Actris—a concurrent separation logic for proving func-
tional correctness of programs that combine message passing with other programming
and concurrency paradigms. Actris can be used to reason about programs written
in a language that mimics the important features found in aforementioned languages
such as higher-order functions, higher-order references, fork-based concurrency, locks,
and primitives for asynchronous message passing over channels. The channels of our
language are first-class and can be sent as arguments to functions, be sent over other
channels (often referred to as delegation), and be stored in references.

Program specifications in Actris are written in an impredicative higher-order con-
current separation logic built on top of the Iris framework [Jung et al. 2015; Krebbers
et al. 2017a; Jung et al. 2016, 2018b]. In addition to the usual features of Iris, Actris
provides a notion of dependent separation protocols to reason about message passing
over channels, inspired by the affine variant [Mostrous and Vasconcelos 2014] of bi-
nary session types [Honda et al. 1998]. We show that dependent separation protocols
integrate seamlessly with other concurrency paradigms, allow delegation of resources,
support channel sharing over multiple concurrent threads using locks, and more.

3.1.1 Message Passing in Concurrent Separation Logic

Over the last decade, there has been much work on extensions of concurrent separation
logic with reasoning principles for message passing [Oortwijn et al. 2016; Francalanza
et al. 2011; Lozes and Villard 2012; Craciun et al. 2015]. These logics typically
include some form of mechanism for writing protocol specifications in a high-level
manner. Unfortunately, these logics have shortcomings in terms of expressivity. Most
importantly, they cannot be used to reason about programs that combine message
passing with other programming and concurrency paradigms, such as higher-order
functions, fine-grained shared-memory concurrency, and locks.

In a different line of work, researchers have developed expressive extensions of
concurrent separation logic that do support proving strong specifications of programs
involving some or all combinations of the aforementioned programming and concur-
rency paradigms. Examples of such logics are TaDA [da Rocha Pinto et al. 2014],
iCAP [Svendsen and Birkedal 2014], Iris [Jung et al. 2015], FCSL [Nanevski et al.

40

3.1. Introduction

2014], and VST [Appel 2014]. However, only a few variants and extensions of these
logics address message-passing concurrency.

First, there has been work on the use of separation logic to reason about programs
that communicate via message passing over a network. The reasoning principles in
such logics are geared towards different programming patterns than the ones used
in high-level languages like Erlang, Elixir, Go, and Scala. Namely, on networks all
data must be serialised, and packets can be lost or delivered out of order. In high-
level languages messages cannot get lost, are ensured to be delivered in order, and
are allowed to contain many types of data, including functions, references, and even
channel endpoints. Two examples of network logics are Disel by Sergey et al. [2018]
and Aneris by Krogh-Jespersen et al. [2020]. Second, there has been work on the use of
separation logic to prove compiler correctness of high-level message-passing languages.
Tassarotti et al. [2017] verified a small compiler of a session-typed language into a
language where channel buffers are modelled on the heap.

The primary reasoning principle to model the interaction between processes in the
aforementioned logics is the notion of a State Transition System (STS). As a simple
example, consider the following program, borrowed from Tassarotti et al. [2017]:

prog1 := let (c, c′) := new chan () in fork {send c′ 42} ; recv c

This program creates two channel endpoints c and c′, forks off a new thread, and
sends the number 42 over the channel c′, which is then received by the initiating
thread. Modelling the behaviour of this program in an STS requires three states:

Init Sent Received

The three states model that no message has been sent (Init), that a message has been
sent but not received (Sent), and finally that the message has been sent and received
(Received). Exactly what this STS represents is made precise by the underlying logic,
which determines what constitutes a state and a transition, and how these are related
to the channel buffers.

While STSs appear like a flexible and intuitive abstraction to reason about message-
passing concurrency, they have their problems:

• Coming up with a good STS that makes the appropriate abstractions is difficult
because the STS has to keep track of all possible states that the channel buffers
can be in, including all possible interleavings of messages in transit.

• While STSs used for the verification of different modules can be composed at
the level of the logic, there is no canonical way of composing them due to their
unrestrained structure.

• Finally, STSs are first-order meaning that their states and transitions cannot
be indexed by propositions of the underlying logic, which limits what they can
express when sending messages containing functions or other channels.

3.1.2 Actris 1.0: Dependent Separation Protocols

Instead of using STSs, Actris extends separation logic with a new notion called de-
pendent separation protocols. This notion is inspired by the session type community,

41

3. Actris: Session-Type Based Reasoning in Separation Logic

pioneered by Honda et al. [1998], where channel endpoints are given types that de-
scribe the expected exchanges. Using binary session types, the channels c and c′ in
the program prog1 in Section 3.1.1 would have the types c : ?Z.end and c′ : !Z.end,
where !T and ?T denotes that a value of type T is sent or received, respectively.
Moreover, the types of the channels c and c′ are duals—when one does a send the
other does a receive, and vice versa.

While session types provide a compact way of specifying the behaviour of channels,
they can only be used to talk about the type of data that is being passed around—
not their payloads. In this paper, we build on prior work by Bocchi et al. [2010] and
Craciun et al. [2015] to attach logical predicates to session types to say more about
the payloads, thus vastly extending the expressivity. Concretely, we port session types
into separation logic in the form of a construct c� prot , which denotes ownership of
a channel c with dependent separation protocol prot . Dependent separation protocols
prot are streams of ! ~x : ~τ 〈v〉{P}. prot and ?~x : ~τ 〈v〉{P}. prot constructors that are
either infinite or finite, where finite streams are ultimately terminated by an end
constructor. Here, v is the value that is being sent or received, P is a separation logic
proposition denoting the ownership of the resources being transferred as part of the
message, and the variables ~x :~τ bind into v, P , and prot . The dependent separation
protocols for the above example are:

c� ?〈42〉{True}. end and c′� ! 〈42〉{True}. end

These protocols state that the endpoint c expects the number 42 to be sent along it,
and that the endpoint c′ expects to send the number 42. Using this protocol, we can
show that prog1 has the specification {True} prog1 {v. v = 42}, where v is the result
of the evaluation.

Dependent separation protocols ! ~x : ~τ 〈v〉{P}. prot and ?~x : ~τ 〈v〉{P}. prot are
dependent, meaning that the tail prot can be defined in terms of the previously bound
variables ~x :~τ . A sample program showing the use of such dependency is:

prog2 := let (c, c′) := new chan () in
fork {let x := recv c′ in send c′ (x+ 2)} ;
send c 40; recv c

In this program, the main thread sends the number 40 to the forked-off thread, which
then adds 2 to it, and sends it back. This program has the same specification as
prog1, while we change the dependent separation protocol as follows (we omit the
dependent separation protocol for the dual endpoint c′):

c� ! (x : Z) 〈x〉{True}. ?〈x+ 2〉{True}. end

This protocol states that the second exchanged value is exactly the first with 2 added
to it. To do so, it makes use of a dependency on the variable x, which is used to
describe the contents of the first message, which the second message then depends on.
This variable is bound in the protocol and it is instantiated only when a message is
sent. This is different from the logic by Craciun et al. [2015], which does not support
dependent protocols. Their logic is limited to protocols analogous to ! 〈x〉{True}. ?〈x+

42

3.1. Introduction

2〉{True}. end where x is free, which means the value of x must be known when the
protocol is created.

While the prior examples could have been type-checked and verified using the
formalisms of Bocchi et al. [2010] and Craciun et al. [2015], the following stateful
example cannot:

prog3 := let (c, c′) := new chan () in
fork {let ` := recv c′ in `← ! `+ 2; send c′ ()} ;
let ` := ref 40 in send c `; recv c; ! `

Here, the main thread stores the value 40 on the heap, and sends a reference ` over the
channel c to the forked-off thread. The main thread then awaits a signal (), notifying
that the reference has been updated to 42 by the forked-off thread. This program has
the same specification as prog1 and prog2, but the dependent separation protocol is:

c� ! (` : Loc) (x : Z) 〈`〉{` 7→ x}. ?〈()〉{` 7→ (x+ 2)}. end

This protocol denotes that the endpoints first exchange a reference `, as well as a
points-to connective ` 7→ x that describes the ownership and value of the reference `.
To perform the exchange c has to give up ownership of the location, while c′ acquires
it—which is why it can then safely update the received location to 42 before sending
the ownership back along with the notification ().

The type system by Bocchi et al. [2010] cannot verify this program because it
does not support mutable state, while Actris can verify the program because it is
a separation logic. The logic by Craciun et al. [2015] cannot verify this program
because it does not support dependent protocols, which are crucial here as they make
it possible to delay picking the location ` used in the protocol until the send operation
is performed.

Dependent protocols are also useful to define recursive protocols to reason about
programs that use a channel in a loop. Consider the following variant of prog1:

prog4 := let (c, c′) := new chan () in
fork

{
let go () :=

(
send c′ (recv c′ + 2); go ()

)
in go ()

}
;

send c 18; let x := recv c in
send c 20; let y := recv c in x+ y

The forked-off thread will repeatedly interleave receiving values with sending those
values back incremented by two. The program prog4 has the same specification as
before, but now we use the following recursive dependent separation protocol:

c� µprot . ! (x : Z) 〈x〉{True}. ?〈x+ 2〉{True}. prot

This protocol expresses that it is possible to make repeated exchanges with the forked-
off thread to increment a number by 2. The fact that the variable x is bound in the
protocol is once again crucial—it allows the use of different numbers for each exchange.

43

3. Actris: Session-Type Based Reasoning in Separation Logic

Furthermore, Actris inherently captures some features of conventional session
types. One such example is delegation of channels as seen in the following program:

prog5 := let (c1, c
′
1) := new chan () in

fork {let c := recv c′1 in let y := recv c′1 in send c y; send c′1 ()} ;
let (c2, c

′
2) := new chan () in

fork {let x := recv c′2 in send c
′
2 (x+ 2)} ;

send c1 c2; send c1 40; recv c1; recv c2

This program uses the channel pair c2, c
′
2 to exchange the number 40 with the second

forked-off thread, which adds 2 to it, and sends it back. Contrary to the programs
we have seen before, it uses the additional channel pair c1, c

′
1 to delegate the end-

point c2 to the first forked-off thread, which then sends the number over c2. While
this program is intricate, the following dependent separation protocols describe the
communication concisely:

c1 � ! (c : Chan) 〈c〉{c� ! (x : Z) 〈x〉{True}. ?〈x+ 2〉{True}. end}.
! (y : Z) 〈y〉{True}. ?〈()〉{c� ?〈y + 2〉{True}. end}. end

c2 � ! (x : Z) 〈x〉{True}. ?〈x+ 2〉{True}. end

The first protocol states that the initial value sent must be a channel endpoint with
the protocol used in prog1, meaning that the main thread must give up the ownership
of the channel endpoint c2, thereby delegating it. It then expects a value y to be sent,
and finally to receive a notification (), along with ownership of the channel c2, which
has since taken one step by sending y.

Lastly, the dependencies in dependent separation protocols are not limited to
first-order data, but can also be used in combination with functions. For example:

prog6 := let (c, c′) := new chan () in
fork {let f := recv c′ in send c′ (λ(). f() + 2)} ;
let ` := ref 40 in send c (λ(). ! `); recv c ()

This program exchanges a value to which 2 is added, but postpones the evaluation
by wrapping the computation in a closure. The following protocol is used to verify
this program:

c� ! (P Q : iProp) (f : Val) 〈f〉{{P} f () {v. v ∈ Z ∗Q(v)}}.
?(g : Val) 〈g〉{{P} g () {v. ∃w. (v = w + 2) ∗Q(w)}}. end

The send constructor (!) does not just bind the function value f , but also the pre-
condition P and postcondition Q of its Hoare triple. In the second message, a Hoare
triple is returned that maintains the original pre- and postconditions, but returns an
integer of 2 higher. To send the function, the main thread would let P , ` 7→ 40 and
Q(v) , (v = 40), and prove {P} (λ(). ! `) () {Q}. This example demonstrates that
the state space of dependent separation protocols can be higher-order—it is indexed
by the precondition P and postcondition Q of f—which means that they do not have
to be agreed upon when creating the protocol, masking the internals of the function
from the forked-off thread.

44

3.1. Introduction

It is worth noting that using dependent recursive protocols it is possible to keep
track of a history of what actions have been performed, which, as is shown in Sec-
tion 3.4, is especially useful when combining channels with locks.

3.1.3 Actris 2.0: Subprotocols

While Actris 1.0’s notion of dependent separation protocols is expressive enough to
capture advanced exchanges, as indicated by the examples in the previous section,
they are more restrictive than necessary due to their dual nature. The dual nature
of dependent separation protocols requires that:

• Sends (! ~x :~τ 〈v〉{P}) match up with receives (?~x :~τ 〈v〉{P}), and vice versa,

• The logical variables ~x :~τ of matched sends and receives are the same, and,

• The propositions P of matched send and receives are the same.

With an asynchronous semantics for message passing, where messages are buffered in
both directions, the above notion of duality excludes the verification of certain safe
programs. While it is safe for sends (!) to happen before the expected receives (?),
duality does not allow that. This is demonstrated by the following safe program:

prog7 := let (c, c′) := new chan () in
fork {send c′ 20; send c′ (recv c′ + 2)} ;
send c 20;
let x := recv c in
let y := recv c in x+ y

Here, both threads first send the value 20, and then receive the value of the other
thread. After this, they follow a dual behaviour, where the forked-off thread sends
a value, which the main thread receives. With asynchronous message passing, this
interaction is safe as neither thread blocks when resolving their send, and both mes-
sages can be in transit at the same time because channels are buffered. However,
with the features of Actris 1.0 presented in the conference version of this paper [Hin-
richsen et al. 2020], this program cannot be verified as the two dependent separation
protocols of channel endpoints must be strictly dual.

Support for type checking such programs has been studied in the session type
community, namely in the context of asynchronous session subtyping [Mostrous et al.
2009; Mostrous and Yoshida 2015], in which a subtyping relation S1<: S2 is defined,
capturing that the session type S2 can be used in place of S1 when type check-
ing a program. The relation captures that sends can be swapped ahead of receives
?T.!U.S <: !U.?T.S. We refer to this as messages being sent ahead of the receives.

In this paper, we show that dependent separation protocols are compatible with
the idea of asynchronous session subtyping. This gives rise to Actris 2.0 that sup-
ports so-called subprotocols. Subprotocols are formalised by a preorder prot1 v prot2,
which captures (among others) a notion of swapping sends ahead of receives (provided
that the send does not depend on the logical variables of the receive). We can then
prove that prog7 results in 42 by picking the following dependent separation protocols:

c� ! (x : Z) 〈x〉{True}. ?〈20〉{True}. ?〈x+ 2〉{True}. end and

c′� ?(x : Z) 〈x〉{True}. ! 〈20〉{True}. ! 〈x+ 2〉{True}. end

45

3. Actris: Session-Type Based Reasoning in Separation Logic

While the main thread satisfies the protocol of c immediately, the forked-off thread
does not satisfy the protocol of c′, as it sends the first value before receiving. However,
it is possible to weaken the protocol of c′ using Actris 2.0’s notion of subprotocols:

?(x : Z) 〈x〉{True}. ! 〈20〉{True}. ! 〈x+ 2〉{True}. end
v ! 〈20〉{True}. ?(x : Z) 〈x〉{True}. ! 〈x+ 2〉{True}. end

This gives c′ � ! 〈20〉{True}. ?(x : Z) 〈x〉{True}. ! 〈x+ 2〉{True}. end. Since the first
send (with value 20) is independent of the variable x bound by the receive, the
subprotocol relation follows immediately from the swapping property. Note that it is
not possible to swap the second send (with value x + 2) ahead of the receive, as it
does in fact depend on variable x bound by the receive.

In addition to allowing the verification of a larger class of programs, Actris 2.0’s
subprotocols also provide a more extensional approach to reasoning about dependent
separation protocols. This is beneficial whenever we want to reuse existing specifica-
tions that might use a syntactically different protocol, but that nonetheless logically
entail each another. For example, the ordering of logical variables can be changed
using the subprotocol relation:

! (x : Z)(y : Z) 〈(x, y)〉{True}. prot v ! (y : Z)(x : Z) 〈(x, y)〉{True}. prot

Since the subprotocol relation is a first-class logical proposition of Actris 2.0, it also
allows the manipulation of separation logic resources, such as moving in ownership.
For example, we can show the following conditional subprotocol relation:

`′1 7→ 20 −∗
! (`1, `2 : Loc) 〈(`1, `2)〉{`1 7→ 20 ∗ `2 7→ 22}. prot v ! (`2 : Loc) 〈(`′1, `2)〉{`2 7→ 22}. prot

Here, we move the ownership of `′1 7→ 20 into the protocol, to resolve the eventual
obligation of sending it, while instantiating the logical variable `1 with `′1.

In addition to the demonstrated features, in the rest of this paper we show that
Actris 2.0’s subprotocol relation is capable of moving resources from one message to
another. This gives rise to a principle similar to framing, known from conventional
separation logic, but applied to dependent separation protocols. Moreover, inspired
by the work of Brandt and Henglein [1998], the subprotocol relation is defined coin-
ductively, allowing us to use the principle of Löb induction to prove subprotocol
relations for recursive protocols.

3.1.4 Formal Correspondence to Session Types

Even though Actris’s notion of dependent separation protocols is influenced by binary
session types, this paper does not provide a formal correspondence between the two
systems. However, since Actris is built on top of Iris, it forms a suitable foundation
for building logical relation models of type systems. In related work by Hinrichsen
et al. [2021c], Actris has been used to define a logical relations model of binary session
types, with support for various forms of polymorphism and recursion, asynchronous
subtyping, references, and locks/mutexes. Similar to the RustBelt project [Jung et al.

46

3.1. Introduction

2018a], that work gives rise to an extensible approach for proving type safety, which
can be used to manually prove the typing judgements of racy, but safe, programs that
cannot be type checked using only the rules of the type system.

3.1.5 Contributions and Outline

This paper introduces Actris 2.0: a higher-order impredicative concurrent separation
logic built on top of the Iris framework for reasoning about functional correctness of
programs with asynchronous message passing that combine higher-order functions,
higher-order references, fork-based concurrency, and locks. Concretely, this paper
makes the following contributions:

• We introduce dependent separation protocols inspired by affine binary session
types to model the transfer of resources (including higher-order functions) be-
tween channel endpoints. We show that they can be used to handle choice,
recursion, and delegation (Section 3.2).

• We introduce subprotocols inspired by asynchronous session subtyping. This
notion relaxes duality, allowing channels to send messages before receiving oth-
ers, and gives rise to a more extensional approach to reasoning about dependent
separation protocols, providing more flexibility in the design and reuse of pro-
tocols. We moreover show how Löb induction is used to reason about recursive
subprotocols (Section 3.3).

• We demonstrate the benefits obtained from building Actris on top of Iris by
showing how Iris’s support for ghost state and locks can be used to prove func-
tional correctness of programs using manifest sharing, i.e., channel endpoints
shared by multiple parties (Section 3.4).

• We provide a case study on Actris and its mechanisation in Coq by proving func-
tional correctness of a variant of the map-reduce model by Dean and Ghemawat
[2004] (Section 3.5).

• We give a model of dependent separation protocols in the Iris framework to
prove safety (i.e., session fidelity) and postcondition validity of our Hoare triples
(Section 3.6).

• We provide a full mechanisation of Actris [Hinrichsen et al. 2021b] using the
interactive theorem prover Coq. On top of our Coq mechanisation, we provide
custom tactics, which we use to mechanise all examples in the paper (Sec-
tion 3.7).

3.1.6 Differences from the Conference Version

This paper is an extension of the paper “Actris: Session-type based reasoning in
separation logic” presented at the POPL’20 conference [Hinrichsen et al. 2020]. In this
paper we present Actris 2.0, which extends Actris 1.0 with the notion of subprotocols.
This extension introduces new logical connectives and proof rules, but also involves a
significant overhaul of the original model and its Coq mechanisation. We additionally
extend the model and mechanisation sections substantially, with additional details,

47

3. Actris: Session-Type Based Reasoning in Separation Logic

considerations, and examples, to give a better understanding of how Actris works and
how it can be used. Concretely, this paper includes the following extensions compared
to the conference version:

• An overview of subprotocols in the introduction (Section 3.1.3).

• A new section on Actris 2.0’s notion of subprotocols (Section 3.3).

• An updated and expanded description of the model of Actris in Iris (Section 3.6).

• An expanded section on the Coq mechanisation, with examples of mechanised
proofs using the custom tactics for Actris that we have developed (Section 3.7).

3.2 A Tour of Actris

This section demonstrates the core features of Actris. We first introduce the language
(Section 3.2.1) and the logic (Section 3.2.2). We then introduce and iteratively extend
a simple distributed merge sort algorithm to demonstrate the main features of Actris
(Section 3.2.3–Section 3.2.8). Note that as the point of the sorting algorithms is to
showcase the features of Actris, they are intentionally kept simple and no effort has
been made to make them efficient (e.g., to avoid spawning threads for small jobs).

3.2.1 The Actris Language

The language used throughout the paper is an untyped functional language with
higher-order functions, higher-order mutable references, fork-based concurrency, and
primitives for message passing over bidirectional asynchronous channels. The syntax
is as follows:

v ∈ Val ::= () | i | b | ` | c | rec f x := e | . . . (i ∈ Z, b ∈ B, ` ∈ Loc, c ∈ Chan)

e ∈ Expr ::= v | x | rec f x := e | e1 e2 | ref e | ! e | e1 ← e2 |
fork {e} | new chan () | send e1 e2 | recv e | . . .

We omit the usual operations on pairs, sums, lists, and integers, which are standard.
We introduce the following syntactic sugar: lambda abstractions λx. e are defined as
rec x := e, let-bindings let x := e1 in e2 are defined as (λx. e2) e1, and sequencing
e1; e2 is defined as let := e1 in e2. Here, the underscore is an anonymous binder,
i.e., an arbitrary variable that is fresh in the body of the binding expression.

The language includes the usual operations for heap manipulation. New references
can be created using ref e, dereferenced using ! e, and assigned to using e1 ← e2. Con-
currency is supported via fork {e}, which spawns a new thread e that is executed in
the background. The language also supports atomic operations like compare-and-set
(CAS), which can be used to implement lock-free data structures and synchronisation
primitives, but these are omitted from the syntax.

Message passing is performed over bidirectional channels, which are represented
using pairs of buffers (~v1, ~v2) of unbounded size. The new chan () operation creates
a new channel whose buffers are empty, and returns a tuple of endpoints (c1, c2).
Bidirectionality is obtained by having one endpoint receive from the others send

48

3.2. A Tour of Actris

buffer and vice versa. That means, send ci v enqueues the value v in its own buffer,
i.e., ~vi, and recv ci dequeues a value from the other buffer, i.e., from ~v2 if i = 1 and
from ~v1 if i = 2. Message passing is asynchronous, meaning that send c v will always
reduce, while recv c will block as long as the receiving buffer is empty. The exact
semantics of the channels will be detailed in Section 3.6.5.

Throughout the paper, we often use the following syntactic sugar to encapsulate
the common behaviour of starting a new process:

start e := let f := e in let (c, c′) := new chan () in fork {f c′} ; c

Here, e should evaluate to a function that takes a channel endpoint.

3.2.2 The Actris Logic

Actris is a higher-order impredicative concurrent separation logic with a new notion
called dependent separation protocols to reason about message-passing concurrency.
As we will show in Section 3.6, Actris is built as a library on top of the Iris framework
[Jung et al. 2015; Krebbers et al. 2017a; Jung et al. 2016, 2018b] and thus inherits
all features of Iris. For the purpose of this section, no prior knowledge of Iris is
expected as the majority of Iris’s features are orthogonal to Actris’s. At this point,
we are primarily concerned with Iris’s support for nested Hoare triples and guarded
recursion, which we need to transfer functions over channels (Section 3.2.4) and to
define recursive protocols (Section 3.2.6). An extensive overview of Iris can be found
in [Jung et al. 2018b], and a tutorial-style introduction can be found in [Birkedal and
Bizjak 2020].

The grammar of Actris and a selection of its rules are displayed in Figures 3.1
and 3.2. The Actris grammar includes the polymorphic lambda-calculus1 with a
number of primitive types and terms operating on these types. Most important is
the type iProp of propositions and the type iProto of dependent separation protocols.
The typing judgement is mostly standard and can be derived from the use of meta
variables—we use the meta variables P and Q for propositions, the meta variable
prot for protocols, the meta variable v for values, and the meta variables t and u for
general terms of any type. Apart from that, there is the implicit side-condition that
recursive predicates defined using the recursion operator µx : τ. t should be guarded.
That means, the variable x should appear under a contractive term construct. As is
usual in logics with guarded recursion [Nakano 2000], the later . modality is contrac-
tive and is used to define recursive predicates. But moreover, as we will demonstrate
in Section 3.2.6, the constructors ! ~x : ~τ 〈v〉{P}. prot and ?~x : ~τ 〈v〉{P}. prot of de-
pendent separation protocols are contractive in the tail argument prot to enable the
construction of recursive protocols. The rule µ-unfold says that µx : τ. t is in fact a
fixpoint of t.

To express program specifications, Actris features Hoare triples {P} e {v. Q},
where P is the precondition and Q the postcondition. The binder v can be used

1Actris and Iris, which are both formalised as a shallow embedding in Coq, have in fact a
predicative Type hierarchy, while propositions iProp are impredicative. For brevity’s sake, we omit
details about predicativity of Type, as they are standard.

49

3. Actris: Session-Type Based Reasoning in Separation Logic

Grammar:

τ, σ ::= x | 0 | 1 | B | N | Z | Type | ∀x : τ. σ |
Loc | Chan | Val | Expr | iProp | iProto | . . .

t, u, P,Q, prot ::= x | λx : τ. t | t(u) | t(τ) | (Polymorphic lambda-calculus)

True | False | P ∧Q | P ∨Q | P ⇒ Q | (Propositional logic)

∀x : τ. P | ∃x : τ. P | t = u | (Higher-order logic with equality)

µx : τ. t | .P | (Guarded recursion)

P ∗Q | P −∗ Q | ` 7→ v | {P} e {v. Q} | . . . (Separation logic)

c� prot | prot1 v prot2 | prot | prot1 · prot2 | end

! ~x :~τ 〈v〉{P}. prot | ?~x :~τ 〈v〉{P}. prot | . . . (Dep. sep. protocols)

Ordinary affine separation logic:

Affine

P ∗Q⇒ P

Ht-frame
{P} e {w. Q}

{P ∗R} e {w. Q ∗R}
Ht-val

{True} v {w. w = v}

Ht-fork
{P} e {True}

{P} fork {e} {True}

Ht-bind
{P} e {v. Q} ∀v. {Q}K[v] {w. R}

{P}K[e] {w. R}
K a call-by-value evaluation context

Recursion:

.-intro

P ⇒ .P
Löb

(.P ⇒ P)⇒ P
µ-unfold

(µx. t) = t[µx. t/x]

Ht-rec
{P} e[v/x][(rec f x := e)/f] {w. Q}
{.P} (rec f x := e) v {w. Q}

Heap manipulation:

Ht-alloc

{True} ref v {`. ` 7→ v}
Ht-load

{` 7→ v} ! `
{
w. (w = v) ∗ ` 7→ v

} Ht-store

{` 7→ v} `← w {` 7→ w}

Figure 3.1: The grammar and a selection of rules of Actris.

50

3.2. A Tour of Actris

Message passing:

{True} new chan (){w. ∃c, c′. (w = (c, c′)) ∗
c� prot ∗ c′� prot}

(Ht-new)

{P [~t/~x] ∗
c� ! ~x :~τ 〈v〉{P}. prot} send c (v[~t/~x])

{
c�prot [~t/~x]

}
(Ht-send)

{c�?~x :~τ 〈v〉{P}. prot} recv c {w. ∃~y. (w=v[~y/~x]) ∗
c�prot [~y/~x] ∗ P [~y/~x]}

(Ht-recv)

Dependent separation protocol dual and append:

! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot

?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

end = end

prot = prot

(! ~x :~τ 〈v〉{P}. prot1) · prot2 = ! ~x :~τ 〈v〉{P}. (prot1 · prot2)

(?~x :~τ 〈v〉{P}. prot1) · prot2 = ?~x :~τ 〈v〉{P}. (prot1 · prot2)

prot · end = prot

end · prot = prot

prot1 · (prot2 · prot3) = (prot1 · prot2) · prot3

prot1 · prot2 = prot1 · prot2

Figure 3.2: The rules of the Actris Dependent separation protocols.

to talk about the return value of e in the postcondition Q, but is omitted if the result
is (). Note that Hoare triples are propositions of the logic themselves (i.e., they are of
type iProp), so they can be nested to express specifications of higher-order functions.
The rules for Hoare triples are mostly standard, but it is worth pointing out the rule
Ht-rec for recursive functions. This rule has a later modality (.) in the precondition,
which when combined with the Löb rule allows reasoning about general recursive
functions. As usual, the points-to connective ` 7→ v expresses unique ownership of
a location ` with value v. Since we consider a garbage collected language, arbitrary
separation logic resources can be discarded via the rule Affine.

The novel feature of Actris is its support for dependent separation protocols to
reason about message-passing programs. This is done using the c � prot connec-
tive, which expresses unique ownership of a channel endpoint c and states that the
endpoint follows the protocol prot . Dependent separation protocols prot are streams
of ! ~x : ~τ 〈v〉{P}. prot and ?~x : ~τ 〈v〉{P}. prot constructors that are either infinite or
finite. The finite streams are ultimately terminated by an end constructor. The
value v denotes the message that is being sent (!) or received (?), the proposition
P denotes the ownership that is transferred along the message, and prot denotes

51

3. Actris: Session-Type Based Reasoning in Separation Logic

the protocol that describes the subsequent messages. The logical variables ~x :~τ can
be used to bind variables in v, P , and prot . For example, ! (b : B) (` : Loc) (i :
N) 〈(b, `)〉{` 7→ i ∗ 10 < i}. prot expresses that a pair of a boolean and an integer ref-
erence whose value is at least 10 is sent. We often omit the proposition {P}, which
simply means it is True.

Apart from the constructors for dependent separation protocols, Actris provides
two primitive operations. The prot connective denotes the dual of a protocol. As
with conventional session types, it transforms the protocol by changing all sends (!)
into receives (?), and vice versa. Taking the dual twice thus results in the original
protocol. The connective prot1 · prot2 appends the protocols prot1 and prot2, which
is achieved by substituting any end in prot1 with prot2. Finally, prot1 v prot2 states
that the protocol prot1 is a subprotocol of prot2. The subprotocol relation and its
proof rules will be described in Section 3.3.

The rule Ht-new allow ascribing any protocol to newly created channels using
new chan (), obtaining ownership of c � prot and c′ � prot for the respective
endpoints. The duality of the protocol guarantees that any receive (?) is matched
with a send (!) by the dual endpoint, which is crucial for establishing safety (i.e.,
session fidelity, see Section 3.6.7).

The rule Ht-send for send c w requires the head of the dependent separation
protocol of c to be a send (!) constructor, and the value w that is sent to match
up with the ascribed value. To send a message w, we need to give up ownership of
c � ! ~x : ~τ 〈v〉{P}. prot , pick an appropriate instantiation ~t for the variables ~x : ~τ so
that w = v[~t/~x], give up ownership of the associated resources P [~t/~x], and finally
regain ownership of the protocol tail c� prot [~t/~x].

The rule Ht-recv for recv c is essentially dual to the rule Ht-send. We need
to give up ownership of c � ?~x :~τ 〈v〉{P}. prot , and in return acquire the resources
P [~y/~x], the return value w where w = v[~y/~x], and finally the ownership of the protocol
tail c� prot [~y/~x], where ~y are instances of the variables of the protocol.

3.2.3 Basic Protocols

In order to show the basic features of dependent separation protocols, we will prove
the functional correctness of a simple distributed merge sort algorithm, whose code
is shown in Figure 3.3.

The function sort client takes a comparison function cmp and a reference to a
linked list l that will be sorted using merge sort. The bulk of the work is done by the
sort service function that is parameterised by a channel c over which it receives a
reference to the linked list to be sorted. If the list is an empty or singleton list, which
is trivially sorted, the function immediately sends back a unit value () to inform the
caller that the work has been completed, and terminates. Otherwise, the list is split
into two partitions using the split function, which updates the list in-place so that l
points to the first partition, and returns a reference l′ to the second partition. These
partitions are recursively sorted using two newly started instances of sort service.
The results of the processes are then requested and merged using the merge function,
which updates the list in-place so that l points to the merged list. Finally, the unit
value () is sent back along the original channel c.

52

3.2. A Tour of Actris

sort service cmp c :=
let l := recv c in
if |l| ≤ 1 then send c () else
let l′ := lsplit l in
let c1 := start sort service cmp in

let c2 := start sort service cmp in

send c1 l; send c2 l
′;

recv c1; recv c2;
lmerge cmp l l′; send c ()

sort client cmp l :=
let c :=
start sort service cmp in

send c l;
recv c

Figure 3.3: A distributed merge sort algorithm (the code for lmerge and lsplit is
standard and thus elided).

In order to verify the correctness of the sorting algorithm we first need a specifica-
tion for the comparison function cmp, which must satisfy the following specification:

cmp spec (I : T → Val→ iProp) (R : T → T → B) (cmp : Val) ,
(∀x1 x2. R x1 x2 ∨R x2 x1) ∧
(∀x1 x2 v1 v2. {I x1 v1 ∗ I x2 v2} cmp v1 v2 {r. r = R x1 x2 ∗ I x1 v1 ∗ I x2 v2})

Here, R is a decidable total relation on an implicit polymorphic type T , and I is an
interpretation predicate that relates language values to elements of type T . While the
relation R dictates the ordering, the interpretation predicate I allows for flexibility
about what is ordered. Setting I to e.g., λx v. v 7→ x orders references by what they
point to in memory, rather than the memory address itself. To specify how lists are
laid out in memory we use the following notation:

l
list7→I ~x ,

{
l 7→ inl () if ~x = []

∃v1 l2. l 7→ inr (v1, l2) ∗ I x1 v1 ∗ l2
list7→I ~x2 if ~x = [x1] · ~x2

The channel c adheres to the following dependent separation protocol:

sort prot (I : T → Val→ iProp) (R : T → T → B) ,
! (~x : List T) (l : Loc) 〈l〉

{
l

list7→I ~x
}
. ?~y 〈()〉

{
l

list7→I ~y ∗ sorted ofR ~y ~x
}
. end

The protocol describes the interaction of sending a list reference, and then receiving
a unit value () once the list is sorted and the reference is updated to point to the
sorted list. The predicate sorted ofR ~y ~x is true iff ~y is a sorted version of ~x with
respect to the relation R. The specification of the service and the client is as follows:{

cmp spec I R cmp ∗ c� sort prot I R · prot
}

sort service cmp c

{c� prot}

{
cmp spec I R cmp ∗ l list7→I ~x

}
sort client cmp l{
∃~y. sorted ofR ~y ~x ∗ l list7→I ~y

}
There are two important things to note about these specifications. First, the protocol
sort prot is written from the point of view of the client. As such, the precondition for

53

3. Actris: Session-Type Based Reasoning in Separation Logic

sort servicefunc c :=
let cmp := recv c in
sort service cmp c

sort clientfunc cmp l :=
let c := start sort servicefunc in

send c cmp; send c l; recv c

Figure 3.4: A version of the sort service that receives the comparison function over
the channel.

sort service requires that c follows the dual. Second, the pre- and postcondition
of sort service are generalised to have an arbitrary protocol prot appended at the
end. It is important to write specifications this way, so they can be embedded in
other protocols. We will see examples of that in Section 3.2.6 and Section 3.2.7.

The proofs of these specifications follow from symbolic execution using the rules
Ht-new, Ht-send, Ht-recv, and the standard separation logic rules.

3.2.4 Transferring Functions

The distributed sort service from the previous section (Figure 3.3) is parametric on
a comparison function. To demonstrate Actris’s support for reasoning about functions
transferred over channels, we verify the correctness of the program sort servicefunc
in Figure 3.4, which receives the comparison function over the channel instead of via
a lambda abstraction. To verify this program, we extend the protocol sort prot from
Section 3.2.3 as follows:

sort protfunc , !(T : Type) (I : T → Val→ iProp) (R : T → T → B) (cmp : Val)

〈cmp〉{cmp spec I R cmp}. sort prot I R

The new protocol captures that we first send a comparison function cmp. It includes
binders for the polymorphic type T , the interpretation predicate I, and the relation
R. The specifications are much the same as before, with the proofs being similar
besides the addition of a symbolic execution step to resolve the sending and receiving
of the comparison function:{

c� sort protfunc · prot
}

sort servicefunc c

{c� prot}

{
cmp spec I R cmp ∗ l list7→I ~x

}
sort clientfunc cmp l{
∃~y. l list7→I ~y ∗ sorted ofR ~y ~x

}
3.2.5 Choice

Branching communication is commonly modelled using the choice session types &
for branching and ⊕ for selection. We show that corresponding dependent separation
protocols can readily be encoded in Actris. At the level of the programming language,
the instructions for choice are encoded by sending and receiving a boolean value that
is matched using an if-then-else construct:

select e e′ , send e e′

branch e with left⇒ e1 | right⇒ e2 end , if recv e then e1 else e2

54

3.2. A Tour of Actris

We let left := true and right := false to be used together with select for
readability’s sake. Due to the higher-order nature of Actris, the usual protocol spec-
ifications for choice from session types can be encoded as regular logical branching
within the protocols:

prot1 {Q1}⊕{Q2} prot2 ,
! (b : B) 〈b〉{if b thenQ1 elseQ2}. if b then prot1 else prot2

prot1 {Q1}&{Q2} prot2 ,
?(b : B) 〈b〉{if b thenQ1 elseQ2}. if b then prot1 else prot2

We often omit the conditions Q1 and Q2, which simply means that they are True.
The following rules can be directly derived from the rules Ht-send and Ht-recv:

Ht-select{
c� prot1 {Q1}⊕{Q2} prot2 ∗
if b then Q1 else Q2

}
select c b {c� if b then prot1 else prot2}

Ht-branch
{P ∗Q1 ∗ c� prot1} e1 {Φ} {P ∗Q2 ∗ c� prot2} e2 {Φ}{

P ∗ c� prot1 {Q1}&{Q2} prot2

}
branch c with left⇒ e1 | right⇒ e2 end {Φ}

Apart from branching on boolean values, dependent separation protocols can be used
to encode choice on any enumeration type (e.g., lists, natural numbers, days of the
week, etc.). These encodings follow the same scheme.

3.2.6 Recursive Protocols

We will now use choice and recursion to verify the correctness of a sorting service that
supports performing multiple sorting jobs in sequence. The code of the sorting service
sort servicerec and a possible client sort clientrec are displayed in Figure 3.5. The
service sort servicerec contains a loop in which choice is used to either terminate
the service, or to sort an individual list using the distributed merge sort algorithm
sort service from Section 3.2.3. The client sort clientrec uses the service to sort
a nested linked list l of linked lists. It performs this job by starting a single instance
of the service at c, and then sequentially sends requests to sort each inner linked list
l′ in l. Finally, the client selects the terminating branch to end the communication
with the service. A protocol for interacting with the sorting service can be defined as
follows:

sort protrec (I : T → Val→ iProp) (R : T → T → B) ,
µ(rec : iProto). (sort prot I R · rec)⊕ end

The protocol uses the choice operator ⊕ to specify that the client may either request
the service to perform a sorting job, or terminate communication with the service.
After the job has been finished the protocol proceeds recursively.

It is important to point out that—as is usual in logics with guarded recursion
[Nakano 2000]—the variable x should appear under a contractive term construct in
the body t of µx : τ. t. In our protocol, the recursive variable rec appears under the

55

3. Actris: Session-Type Based Reasoning in Separation Logic

sort servicerec cmp c :=
branch c with
left ⇒ sort service cmp c;

sort servicerec cmp c
| right⇒ ()
end

sort clientrec cmp l :=
let c := start sort servicerec cmp in

liter (λl′. select c left;
send c l′; recv c) l;

select c right

Figure 3.5: A recursive version of the sort service that can perform multiple jobs in
sequence (the code for the function liter, which applies a function to each element
of the list, is standard and has been elided).

argument of ⊕, which is defined in terms of ! ~x : ~τ 〈v〉{P}. prot , which, similarly to
?~x : ~τ 〈v〉{P}. prot , is contractive in the tail protocol prot . The specifications of the
service and the client are as follows:{

cmp spec I R cmp ∗
c� sort protrec I R · prot

}
sort servicerec cmp c

{c� prot}

{
cmp spec I R cmp ∗ l list7→J

~~x
}

sort clientrec cmp l{
∃~~y. |~~y| = |~~x| ∗ l list7→J

~~y ∗ (∀i < |~~x|. sorted ofR ~~yi ~~xi)
}

We let J , λl′ ~y. l′
list7→I ~y to express that l points to a list of lists ~~x. The proof of

the service follows naturally by symbolic execution using the induction hypothesis
(obtained from Löb), the rules Ht-branch and Ht-select, and the specification of
sort service. Note that we rely on the specification of sort service having an
arbitrary protocol as its suffix.

It is worth pointing out that protocols in Actris provide a lot of flexibility. Using
just minor changes, we can extend the protocol to support transferring a comparison
function over the channel, like the extension made in sort clientfunc , or in a way
such that a different comparison function can be used for each sorting job.

3.2.7 Delegation

Delegation is a common feature within communication protocols, and particularly
the session-types community—it is the concept of transferring a channel endpoint
over a channel. Due to the impredicativity of dependent separation protocols in
Actris, reasoning about programs that make use of delegation is readily available. The
protocols ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot can simply refer to the ownership
of protocols c� prot ′ in the proposition P .

An example of a program that uses delegation is the sort servicedel variant of
the recursive sorting service in Figure 3.6, which allows multiple sorting jobs to be
performed in parallel. To enable parallelism, it delegates a new channel c′ to an inner
sorting service for each sorting job.

The client sort clientdel once again uses the sorting service to sort a nested
linked list l of linked lists. The client starts a connection c to the new service, and

56

3.2. A Tour of Actris

sort servicedel cmp c :=
branch c with
left ⇒

let c′ :=
start sort service cmp in

send c c′;
sort servicedel cmp c

| right⇒ ()
end

sort clientdel cmp l =
let c := start sort servicedel cmp in

let k := lnil () in
liter (λl′. select c left;

let c′ := recv c in
send c′ l′; lcons c′ k) l

send c right;
liter recv k

Figure 3.6: A recursive version of the sort service that uses delegation to perform
multiple jobs in parallel (the code for the function lcons, which adds an element to
the head of a list, has been elided).

for each inner list l′, it acquires a delegated channel c′, over which it sends a pointer
l′ to the inner list that should be sorted. The client keeps track of all channels to
delegated services in a linked list k so that it can wait for all of them to finish (using
iter recv).

A protocol for the delegation service can be defined as follows, denoting that the
client can select whether to acquire a connection to a new delegated service or to
terminate:

sort protdel (I : T → Val→ iProp) (R : T → T → B) ,
µ(rec : iProto). (?(c : Chan) 〈c〉{c� sort prot I R}. rec)⊕ end

The specifications of the service and the client are as follows:{
cmp spec I R cmp ∗
c� sort protdel I R · prot

}
sort servicedel cmp c

{c� prot}

{
cmp spec I R cmp ∗ l list7→J

~~x
}

sort clientdel cmp l{
∃~~y. |~~y| = |~~x| ∗ l list7→J

~~y ∗ (∀i < |~~x|. sorted ofR ~~yi ~~xi)
}

As before, we let J , λl′ ~y. l′
list7→I ~y to express that l points to a list of lists ~~x. Once

again the proofs are straightforward, as they are simply a combination of recursive
reasoning combined with the application of Actris’s rules for channels.

3.2.8 Dependent Protocols

The protocols we have seen so far have only made limited use of Actris’s support
for recursion. We now demonstrate Actris’s support for dependent protocols, which
make it possible to keep track of the history of what messages have been sent and
received. We demonstrate this feature by considering a fine-grained version of the
distributed merge-sort service. This version sort servicefg , as shown in Figure 3.7,
requires the input list to be sent element by element, after which the service sends

57

3. Actris: Session-Type Based Reasoning in Separation Logic

sort servicefg cmp c :=
branch c with
right⇒ select c right
| left ⇒
let x1 := recv c in
branch c with
right⇒ select c left; send c x1;

select c right
| left ⇒
let x2 := recv c in
let c1 := start sort servicefg cmp in

let c2 := start sort servicefg cmp in

select c1 left; send c1 x1;
select c2 left; send c2 x2;
splitfg c c1 c2; mergefg cmp c c1 c2

end

end

splitfg c c1 c2 :=
branch c with
right⇒ select c1 right;

select c2 right

| left ⇒
let x := recv c in
select c1 left; send c1 x;
splitfg c c2 c1

end

mergefg cmp c c1 c2 :=
branch c1 with

right⇒ assert false

| left ⇒
let x := recv c1 in
mergeauxfg cmp c x c1 c2

end

mergeauxfg cmp c x c1 c2 :=

branch c2 with

right⇒ select c left;
send c x1;
transfer c1 c

| left ⇒
let y := recv c2 in
if cmp x y then
select c left; send c x;
mergeauxfg cmp c y c2 c1

else

select c left; send c y;
mergeauxfg cmp c x c1 c2

end

sort clientfg cmp l :=
let c :=
start sort servicefg cmp in

send all c l; recv all c l

Figure 3.7: A fine-grained version of the sort service that transfers elements one by
one (the code for the functions transfer, send all, and recv all has been elided).

the sorted list back in the same fashion. We use choice to indicate whether the whole
list has been sent (right) or another element remains to be sent (left).

The structure of sort servicefg is somewhat similar to the coarse-grained merge-
sort algorithm that we have seen before. The base cases of the empty or the singleton
list are handled initially. This is achieved by waiting for at least two values before
starting the recursive sub-services c1 and c2. In the base cases the values are sent
back immediately, as they are trivially sorted. The inductive case is handled by
starting two sub-services at c1 and c2 that are sent the two initially received elements,
respectively, after which the splitfg function is used to receive and forward the
remaining values to the sub-services alternatingly. Once the right flag is received,
the splitfg function terminates, and the algorithm moves to the second phase in
which the mergefg function merges the stream of values returned by the sub-services
and forwards them to the parent service.

58

3.2. A Tour of Actris

The mergefg function initially acquires the first value x from the first sub-service,
which it uses in the recursive call as the current largest value. The recursive function
mergeauxfg recursively requests a value y from the sub-service of which the current
largest value was not acquired from. It then compares x and y using the comparison
function cmp, and forwards the smallest element. This is repeated until the right

flag is received from either sub-service, after which the remaining values of the other
are forwarded to the parent service using the transfer function.

The interface of the client sort clientfg for this service is similar to the previous
ones. It takes a reference to a linked list, which is then sorted. It performs this
task by sending the elements of the linked list to the sort service using the send all

function (which modifies the list in-place by removing the sent elements), and puts
the received values back into the linked list using the recv all function (which also
modifies the list in-place). A suitable protocol for proving functional correctness of
the fine-grained sorting service is as follows:

sort protfg (I : T → Val→ iProp) (R : T → T → B) , sort protheadfg I R []

sort protheadfg (I : T → Val→ iProp) (R : T → T → B) , µ(rec : List T → iProto).

λ~x. (! (x : T) (v : Val) 〈v〉{I x v}. rec (~x · [x])) ⊕ sort prottailfg I R ~x []

sort prottailfg (I : T → Val→ iProp) (R : T → T → B) ,

µ(rec : List T → List T → iProto). λ~x ~y.

(?(y : T) (v : Val) 〈v〉{(∀i < |~y|. R ~yi y) ∗ I y v}. rec ~x (~y · [y])) &{~x≡p~y} end

The protocol is split into two phases sort protheadfg and sort prottailfg , mimicking the

behaviour of the program. The sort protheadfg phase is indexed by the values ~x that
have been sent so far. The protocol describes that one can either send another value
and proceed recursively, or stop, which moves the protocol to the next phase.

The sort prottailfg phase is dependent on the list of values ~x received in the first
phase, and the list of values ~y returned so far. The condition (∀i < |~y|. R ~yi y) states
that the received element is larger than any of the elements that have previously
been returned, which maintains the invariant that the stream of received elements is
sorted. When the right flag is received ~x ≡p ~y shows that the received values ~y are
a permutation of the ones ~x that were sent, making sure that all of the sent elements
have been accounted for.

The top-level specification of the service and client are similar to the specifications
of the coarse-grained version of distributed merge sort:{

cmp spec I R cmp ∗ c� sort protfg · prot
}

sort protfg c

{c� prot}

{
cmp spec I R cmp ∗ l list7→I ~x

}
sort clientfg cmp l{
∃~y. l list7→I ~y ∗ sorted ofR ~y ~x

}
Proving these specifications requires one to pick appropriate specifications for the
auxiliary functions to capture the required invariants with regard to sorting. After
having picked these specifications, the parts of the proofs that involve communication
are mostly straightforward, but require a number of trivial auxiliary results about
sorting and permutations.

59

3. Actris: Session-Type Based Reasoning in Separation Logic

3.3 Subprotocols

This section describes Actris 2.0, which extends Actris 1.0—as presented in the
conference version of this paper [Hinrichsen et al. 2020]—with subprotocols, inspired
by asynchronous subtyping of session types. Subprotocols have two key features.
First, they expose the asynchronous nature of channels in the Actris logic by relaxing
the requirements of duality, thereby making it possible to prove functional correctness
of a larger class of programs. Second, they give rise to a more extensional approach to
reasoning about dependent separation protocols, as we can work up to the subprotocol
relation and not equality, thereby providing more flexibility in the design and reuse
of protocols.

We first introduce the subprotocol relation and its proof rules (Section 3.3.1).
We then show how subprotocols can be employed to prove a mapper service, which
handles requests one at a time, while its client may send multiple requests up front
(Section 3.3.2). Next, we verify a list reversal service whose protocol involves a
minimal specification of lists, which we then reuse through subprotocols to obtain a
protocol with a more generic specification of lists (Section 3.3.3). Finally, we show
that the subprotocol relation is coinductive, and thereby when combined with Löb

induction, can be used to reason about recursive procotols (Section 3.3.4).

3.3.1 The Subprotocol Relation

The dependent separation protocol of a channel is picked upon channel creation (using
the rule Ht-new), which then determines how the channel endpoints should interact.
To ensure safe communication, Actris adapts the notion of duality from session types,
which requires every send (!) of one endpoint to be paired with a receive (?) for the
other endpoint, and vice versa. However, strictly working with a channel’s protocol
and its dual is more restrictive than necessary, as either endpoint is agnostic to some
variance from the protocol by the other endpoint. We capture the flexibility of safe
variances via a new notion—the subprotocol relation:

prot1 v prot2

This relation describes that protocol prot1 is stronger than prot2, or conversely, that
protocol prot2 is weaker than prot1. More specifically, this means that prot2 can be
used in place of prot1 whenever such a protocol is expected during the verification.
This property is captured by the following monotonicity rule for channel ownership:

c� prot1 prot1 v prot2

c� prot2

The subprotocol relation is inspired by asynchronous subtyping for session types
[Mostrous et al. 2009; Mostrous and Yoshida 2015], which allows (1) sending subtypes
(contravariance), (2) receiving supertypes (covariance), and (3) swapping sends ahead
of receives. These variations are sound, as (1) the originally expected type that is to
be sent can be derived from the subtype, (2) the originally expected type that is to
be received can be derived from the supertype, and (3) sends do not block because

60

3.3. Subprotocols

channels are buffered in both directions. These variances, along with the swapping
property, can be generalised to dependent separation protocols using the following
proof rules:

v-send-mono’
∀~x :~τ . P2 −∗ P1 ∀~x :~τ . prot1 v prot2

! ~x :~τ 〈v〉{P1}. prot1 v ! ~x :~τ 〈v〉{P2}. prot2

v-recv-mono’
∀~x :~τ . P1 −∗ P2 ∀~x :~τ . prot1 v prot2

?~x :~τ 〈v〉{P1}. prot1 v ?~x :~τ 〈v〉{P2}. prot2

v-swap’
?~x :~τ 〈v〉{P}. ! ~y :~σ 〈w〉{Q}. prot v ! ~y :~σ 〈w〉{Q}. ?~x :~τ 〈v〉{P}. prot

The rules v-send-mono’ and v-recv-mono’ use separation implication P −∗ Q—which
states that ownership of Q can be obtained by giving up ownership of P—to mimic
the contra- and covariance of session subtyping. The rule v-swap’ states that sends
can be swapped ahead of receives. To be well-formed, this rule has the implicit side
condition that ~x :~τ does not bind into w and Q, and that ~y :~σ does not bind into v
and P .

With this set of rules we can make subprotocol derivations such as the following:

?(i : Z) 〈i〉{i < 42}. ! (j : Z) 〈j〉{j > 42}. prot v-send-mono’
v ?(i : Z) 〈i〉{i < 42}. ! (j : Z) 〈j〉{j > 50}. prot v-recv-mono’
v ?(i : Z) 〈i〉{i < 40}. ! (j : Z) 〈j〉{j > 50}. prot v-swap’
v ! (j : Z) 〈j〉{j > 50}. ?(i : Z) 〈i〉{i < 40}. prot

Here, we strengthen the proposition of the send (by increasing the bound from j > 42
to j > 50), weaken the proposition of the receive (by reducing the bound from i < 42
to i < 40), while also swapping the send ahead of the receive.

While the aforementioned rules cover the intuition behind Actris’s subprotocol
relation, Actris’s actual rules for subprotocols provide a number of additional features.

1. They can manipulate the logical variables ~x :~τ that appear in protocols.

2. They can transfer ownership of resources in and out of messages.

3. They can reason about recursive protocols defined using Löb induction.

The key idea to obtain these features is to consider the subprotocol relation
prot1 v prot2 as a first-class logical connective. That is, prot1 v prot2 is an Iris
proposition that can be combined freely with the logical connectives of Iris and
Actris (e.g., separating conjunction, separating implication, higher-order quantifi-
cation). Since prot1 v prot2 is an Iris proposition, the proof rules are in fact (sepa-
rating) implications in Iris. For readability, we use inference rules to denote each rule
(P1 ∗ · · · ∗ Pn) −∗ Q as:

P1 . . . Pn

Q

61

3. Actris: Session-Type Based Reasoning in Separation Logic

Logical variable manipulation and resource transfer:

v-send-out
∀~x :~τ . P −∗

(
prot1 v ! 〈v〉. prot2

)
prot1 v ! ~x :~τ 〈v〉{P}. prot2

prot1 6= end

v-send-in
P [~t/~x]

! ~x :~τ 〈v〉{P}. prot v ! 〈v[~t/~x]〉. prot [~t/~x]

v-recv-out
∀~x :~τ . P −∗

(
?〈v〉. prot1 v prot2

)
?~x :~τ 〈v〉{P}. prot1 v prot2

prot2 6= end

v-recv-in
P [~t/~x]

?〈v[~t/~x]〉. prot [~t/~x] v ?~x :~τ 〈v〉{P}. prot

Monotonicity and swapping:

v-send-mono
.(prot1 v prot2)

! 〈v〉. prot1 v ! 〈v〉. prot2

v-recv-mono
.(prot1 v prot2)

?〈v〉. prot1 v ?〈v〉. prot2

v-swap
?〈v〉. ! 〈w〉. prot v ! 〈w〉. ?〈v〉. prot

Reflexivity and transitivity:

v-refl
prot v prot

v-trans
prot1 v prot2 prot2 v prot3

prot1 v prot3

Dual and append:

v-dual
prot2 v prot1

prot1 v prot2

v-append
prot1 v prot2 prot3 v prot4

prot1 · prot3 v prot2 · prot4

Channel ownership:

v-chan-mono
c� prot1 prot1 v prot2

c� prot2

Figure 3.8: The rules of Actris 2.0 for subprotocols.

62

3.3. Subprotocols

The full set of rules for subprotocols is shown in Figure 3.8. The first four rules
account for logical variable manipulation and resource transfer: Rules v-send-out
and v-recv-out generalise over the logical variables ~x : ~τ and transfer ownership
of P out of the weaker sending protocol ! ~x : ~τ 〈v〉{P}. prot , and stronger receiving
protocol ?~x :~τ 〈v〉{P}. prot , respectively. Rule v-send-in weakens a sending protocol
! ~x :~τ 〈v〉{P}. prot by instantiating the logical variables ~x :~τ and transferring owner-
ship of P [~t/~x] into the protocol. Dually, the rule v-recv-in strengthens a receiving
protocol ?~x :~τ 〈v〉{P}. prot by instantiating the logical variables ~x :~τ and transferring
ownership of P [~t/~x] into the protocol.

To demonstrate the intuition behind these rules consider the following proof of
the subprotocol relation presented in Section 3.1.3, where we transfer ownership of
`′1 7→ 20 into a protocol, while instantiating the logical variable `1 accordingly:

v-send-in
`′1 7→ 20 ∗ `2 7→ 22 −∗

! (`1, `2 :Loc) 〈(`1, `2)〉{`1 7→20 ∗ `2 7→22}. prot v ! 〈(`′1, `2)〉. prot v-send-out
`′1 7→ 20 −∗

! (`1, `2 :Loc) 〈(`1, `2)〉{`1 7→20 ∗ `2 7→22}. prot v
! (`2 :Loc) 〈(`′1, `2)〉{`2 7→22}. prot

We first use rule v-send-out to generalise over the logical variable `2 and transfer
ownership of `2 7→ 22 out of the weaker protocol (i.e., the send on the RHS), and then
use v-send-in to instantiate the logical variables `′1 and `2 and transfer ownership of
`′1 7→ 20 and `2 7→ 22 into the stronger protocol (i.e., the send on the LHS).

The rules for monotonicity (v-send-mono and v-recv-mono) and swapping (v-
swap) in Figure 3.8 differ in two aspects from the rules for monotonicity (v-send-
mono’ and v-recv-mono’) and swapping (v-swap’) that we have seen in the beginning
of this section. First, the actual rules only apply to protocols whose head does not
have logical variables ~x : ~τ and resources P , i.e., protocols of the shape ! 〈v〉. prot
or ?〈v〉. prot , instead of those of the shape ! ~x : ~τ 〈v〉{P}. prot or ?~x : ~τ 〈v〉{P}. prot .
While this restriction might seem to make the rules more restrictive, the more general
rules for monotonicity (v-send-mono’ and v-recv-mono’) and swapping (v-swap’)
are derivable from these simpler rules. This is done using the rules for logical variable
manipulation and resource transfer. Second, the actual rules for monotonicity have a
later modality (.) in their premise. The later modality makes these rules stronger (by
.-intro we have that P entails .P), and thereby internalizes its coinductive nature
into the Actris logic so Löb induction can be used to prove subprotocol relations for
recursive protocols (Section 3.3.4).

The remaining rules in Figure 3.8 express that the subprotocol relation is reflexive
(v-refl) and transitive (v-trans), as well as that the dual operation is anti-monotone
(v-dual) and the append operation is monotone (v-append).

Let us consider the following subprotocol relation to provide some further insight
into the expressivity of our rules, where logical variables are omitted for simplicity:

! 〈v〉{P}. ?〈w〉{Q}. prot v ! 〈v〉{P ∗R}. ?〈w〉{Q ∗R}. prot

63

3. Actris: Session-Type Based Reasoning in Separation Logic

Here we extend the protocol ! 〈v〉{P}. ?〈w〉{Q}. prot with a so-called frame R, which
describes resources that must be sent along with the originally expected resources P ,
and which are reacquired along with the resources Q that are sent back. The above
subprotocol relation mimics the frame rule of separation logic (Ht-frame), which
makes it possible to apply specifications while maintaining a frame of resources R:

{P} e {w. Q}
{P ∗R} e {w. Q ∗R}

The frame-like subprotocol relation is proven as follows:

v-recv-in
Q ∗R −∗ ?〈w〉. prot v ?〈w〉{Q ∗R}. prot v-recv-out

R −∗ ?〈w〉{Q}. prot v ?〈w〉{Q ∗R}. prot v-send-mono
R −∗ ! 〈v〉. ?〈w〉{Q}. prot v ! 〈v〉. ?〈w〉{Q ∗R}. prot v-send-in

P ∗R −∗ ! 〈v〉{P}. ?〈w〉{Q}. prot v ! 〈v〉. ?〈w〉{Q ∗R}. prot v-send-out
! 〈v〉{P}. ?〈w〉{Q}. prot v ! 〈v〉{P ∗R}. ?〈w〉{Q ∗R}. prot

We use rule v-send-out to transfer P and the frame R out of the weaker protocol (i.e.,
the send on the RHS), and then use rule v-send-in to transfer P into the stronger
protocol (i.e., the send on the LHS), leaving us with a context in which we still own
the frame R. We then use rule v-send-mono to proceed with the receiving part of the
protocol in a dual fashion—we use rule v-recv-out to transfer out Q of the stronger
protocol (i.e., the receive on the LHS), and use rule v-recv-in to transfer Q and the
frame R into the weaker protocol (i.e., the receive on the RHS).

3.3.2 Swapping

Subprotocols make it possible to verify message-passing programs whose order of
sends and receives does not match up w.r.t. duality. As an example of such a
program, let us consider the mapper service and client in Figure 3.9. The ser-
vice mapper service is a loop, which iteratively receives an element, maps a func-
tion over that element, and sends the resulting value back. Conversely, the client
mapper client sends all of the elements of the list l up front, and only requests the
mapped results back once all elements have been sent. Since the former interleaves
the sends and receives, while the latter does not, the dependent separation protocols
for the service and client cannot be dual of each other. However, the communication
between the service and client is in fact safe as messages are buffered. We now show
that using subprotocols we can prove that this is indeed the case. We define the
protocol based on the interleaved communication:

mapper prot (IT : T → Val→ iProp) (IU : U → Val→ iProp) (f : T → U) ,
µ(rec : iProto).

(! (x : T) (v : Val) 〈v〉{IT x v}. ?(w : Val) 〈w〉{IU (f x) w}. rec)⊕ end

The protocol is parameterised by representation predicates IT and IU that relate
language-level values to elements of type T and U in the Iris/Actris logic, and a

64

3.3. Subprotocols

mapper service fv c :=
branch c with
left ⇒ send (fv (recv c)) ;

mapper service fv c
| right⇒ ()
end

mapper client fv l :=
let c := start (mapper service fv) in
let n := |l| in
send all c l; recvN c l n;
select c right;

Figure 3.9: A mapper service whose verification relies on swapping (the code for the
functions send all and recvN has been elided).

function f : T → U in Iris/Actris that specifies the behaviour of the language-level
function fv. The connection between f and fv is formalised as:

f spec (IT : T → Val→ iProp) (IU : U → Val→ iProp) (f : T → U) (fv : Val) ,
∀x v. {IT x v} fv v {w. IU (f x) w}

Since mapper prot describes an interleaved sequence of transactions, mapper service

can be readily verified against the protocol mapper prot using just the symbolic exe-
cution rules from Section 3.2. However, to verify mapper client against the protocol
mapper prot, we need to weaken the protocol using Actris’s rules for subprotocols.
Given a list of n elements, the subprotocol relation (together with an intermediate
step) that describes this weakening is:

mapper prot IT IU f
v ! 〈left〉. ! (x1 : T) (v1 : Val) 〈v1〉{IT x1 v1}.

?(y1 : U) 〈y1〉{IU (f x1) y1}. · · ·
! 〈left〉. ! (xn : T) (vn : Val) 〈vn〉{IT xn vn}.
?(yn : U) 〈yn〉{IU (f xn) yn}.
mapper prot IT IU f

n times µ-unfold and
weaken ⊕ into ! 〈left〉

v ! 〈left〉. ! (x1 : T) (v1 : Val) 〈v1〉{IT x1 v1}. · · ·
! 〈left〉. ! (xn : T) (vn : Val) 〈vn〉{IT xn vn}.
?(y1 : U) 〈y1〉{IU (f x1) y1}. · · ·
?(yn : U) 〈yn〉{IU (f xn) yn}.
mapper prot IT IU f

n times v-swap’

Both steps are proven by induction on n. In the first step, we unfold the recursive
protocol n times using µ-unfold and the derived rule (prot1⊕ prot2) v ! 〈left〉. prot1

to weaken the choices. Recall from Section 3.2.5 that ⊕ is defined in terms of the send
protocol (!), allowing us to prove (prot1⊕ prot2) v ! 〈left〉. prot1 using v-send-out
and v-send-in. The second step involves swapping all sends ahead of the receives
using the rule v-swap’.

The weakened protocol that we have obtained follows the behaviour of the client,
making its verification straightforward using Actris’s rules for symbolic execution.

65

3. Actris: Session-Type Based Reasoning in Separation Logic

Concretely, we prove the following specifications for the service and the client:{
f spec IT IU f fv ∗
c� mapper prot IT IU f · prot

}
mapper service fv c

{c� prot}

{
f spec IT IU f fv ∗ l

list7→IT ~x
}

mapper client fv l{
l

list7→IU map f ~x
}

3.3.3 Minimal Protocols

An essential feature of separation logic is the ability to assign strong and minimal
specifications to libraries, so that each library can be verified once against its speci-
fication, which in turn can be used to verify as many client programs as possible. To
achieve a similar goal for message-passing programs we would like to assign strong
and minimal protocols to services, so that each service can be verified once against its
protocol, which in turn can be used to verify as many clients as possible. One of the
key ingredients of separation logic to allow for such specifications is the frame rule
(Ht-frame). In Section 3.3.1 we showed that subprotocols allow framing in protocols.
In this section we give a detailed example of framing in protocols by considering the
service list rev service in Figure 3.10, which receives a linked list, reverses it, and
sends it back.

To specify this service, we could use a protocol similar to the sorting service in
Section 3.2.3, defined in terms of the representation predicate l

list7→IT ~x for linked lists:

list rev protIT , ! (l : Loc)(~x : List T) 〈l〉
{
l

list7→IT ~x
}
. ?〈()〉

{
l

list7→IT reverse ~x
}
. end

Although it is possible to verify the service against the protocol list rev protIT , that
approach is not quite satisfactory. Unlike the sorting service, the reversal service does
not access the list elements, but only changes the structure of the list. Hence, there
is no need to keep track of the ownership of the elements through the predicate IT .
A self-contained and minimal protocol for this service would instead be the following:

list rev prot , ! (l : Loc)(~v : List Val) 〈l〉
{
l

list7→ ~v
}
. ?〈()〉

{
l

list7→ reverse ~v
}
. end

Here, l
list7→ ~v is a version of the list representation predicate that does not keep track

of the resources of the elements, but only describes the structure of the list. It is
defined as:

l
list7→ ~v ,

{
l 7→ inl () if ~v = []

∃l2. l 7→ inr (v1, l2) ∗ l2
list7→ ~v2 if ~v = [v1] · ~v2

Once we have verified the service against the minimal protocol, a client might still
want to interact with the list reversal service through the protocol list rev protIT . This
can be achieved by proving the subprotocol relation list rev prot v list rev protIT . To
do so, we first establish a relation between the two list representation predicates:

l
list7→IT ~x ∗−∗ (∃~v. l list7→ ~v ∗∗(x,v)∈(~x,~v) .IT x v) (list-rel)

66

3.3. Subprotocols

list rev service c :=
let l := recv c in lreverse l; send ()

list rev client l :=
let c := start list rev service in

send c l; recv c

Figure 3.10: A list reversing service (the code for the function lreverse has been
elided).

Here, ∗(x,v)∈(~x,~v) is the pair-wise iterated separation conjuction over two lists of
equal length, and ∗−∗ is a bi-directional separation implication. The above result thus
states that l

list7→IT ~x can be split into two parts, ownership of the links of the list
l

list7→ ~v, and a range of interpretation predicates IT for each element of the list, and
vice versa. With this result at hand, the proof of the desired subprotocol relation is
carried out as follows:

list rev prot

= ! (l : Loc)(~v : List Val) 〈l〉
{
l

list7→ ~v
}
. ?〈()〉

{
l

list7→ reverse ~v
}
. end

v ! (l : Loc)(~v : List Val)(~x : List T) 〈l〉
{
l

list7→ ~v ∗∗(x,v)∈(~x,~v) .IT x v
}
.

?〈()〉
{
l

list7→ (reverse ~v) ∗∗(x,v)∈(~x,~v) .IT x v
}
. end

v ! (l : Loc)(~x : List T) 〈l〉
{
l

list7→IT ~x
}
. ?〈()〉

{
l

list7→IT reverse ~x
}
. end

= list rev protIT

We first frame the interpretation predicates owned by the list ∗(x,v)∈(~x,~v) .IT x v,
using an approach similar to the frame example in Section 3.3.1, and then use list-rel

to combine it with l
list7→ ~v and l

list7→ reverse ~v for the sending and receiving step, to turn
them into l

list7→IT ~x and l
list7→IT reverse ~x, respectively. Note that the logical variable ~v

is changed into ~x, using the subprotocol rules for logical variable manipulation. With
this subprotocol relation at hand, it is possible to prove the following specifications
for the service and client:{

c� list rev prot · prot
}

list rev service c

{c� prot}

{
l

list7→IT ~x
}

list rev client l{
l

list7→IT reverse ~x
}

3.3.4 Subprotocols and Recursion

We conclude this section by showing how subprotocol relations involving recursive
protocols can be proved using Löb induction. Recall from Section 3.2 that the prin-
ciple of Löb induction is as follows:

(.P ⇒ P)⇒ P

By letting P to be prot1 v prot2, this means that we can prove prot1 v prot2 under
the assumption of the induction hypothesis .(prot1 v prot2). The later modality (.)

67

3. Actris: Session-Type Based Reasoning in Separation Logic

ensures that we do not immediately use the induction hypothesis, but first apply the
monotonicity rule for send (v-send-mono) or receive (v-recv-mono), which is done
typically after unfolding the recursion operator using µ-unfold. The monotonicity
rules v-send-mono or v-recv-mono contain a later modality (.) in their premise,
which makes it possible to strip off the later of the induction hypotheses (by mono-
tonicity of .).

Our approach for proving subprotocol relations using Löb induction is similar to
that of Brandt and Henglein [1998] for proving subtyping relations for recursive types
using coinduction. Brandt and Henglein [1998] however have a syntactic restriction
on proofs to ensure that the induction hypothesis is not used immediately (i.e., is
used in a contractive fashion), while we use the later modality (.) of Iris to achieve
that. To demonstrate how our approach works, we prove prot1 v prot2, where:

prot1 , µ(rec : iProto). (list rev prot · rec)⊕ end

prot2 , µ(rec : iProto). (list rev protIT · rec)⊕ end

Here, list rev prot and list rev protIT are the protocols from Section 3.3.3, for which
we already proved list rev prot v list rev protIT . The proof is as follows:

prot1 v prot2 −∗ prot1 v prot2 (∗)
prot1 v prot2 −∗ list rev prot · prot1 v list rev protIT · prot2 . mono

.(prot1 v prot2) −∗ .(list rev prot · prot1 v list rev protIT · prot2) ⊕ mono

.(prot1 v prot2) −∗ (list rev prot · prot1)⊕ end v
(list rev protIT · prot2)⊕ end

µ-unfold
.(prot1 v prot2) −∗ prot1 v prot2 Löb

prot1 v prot2

The proof starts with rule Löb and unfolding the recursive types. We then proceed
with monotonicity of ⊕, i.e., .(prot1 v prot2 ∧ prot3 v prot4) −∗ (prot1⊕ prot3) v
(prot2⊕ prot4), which itself follows from v-send-mono since selection (⊕) is defined
in terms of send (!). In step (∗), we use v-append and list rev prot v list rev protIT ,
which we proved in Section 3.3.3.

While the protocols in the prior examples are similar in structure, our approach
scales to protocols for which that is not the case. For example, consider the subpro-
tocol relation prot1 v prot2, where:

prot1 , µ(rec : iProto). ! (x : Z) 〈x〉. ?〈x+ 2〉. rec

prot2 , µ(rec : iProto). ! (x : Z) 〈x〉. ! (y : Z) 〈y〉. ?〈x+ 2〉. ?〈y + 2〉. rec

Intuitively, these protocols are related, as we can unfold the body of prot1 twice, the
body of prot2 once, and swap the second receive over the first send.

68

3.4. Manifest Sharing via Locks

The proof is as follows:

prot1 v prot2 −∗ prot1 v prot2 v-recv-mono
prot1 v prot2 −∗ ?〈x+2〉. ?〈y+2〉. prot1 v

?〈x+2〉. ?〈y+2〉. prot2 v-send-mono’
prot1 v prot2 −∗ ! y 〈y〉. ?〈x+2〉. ?〈y+2〉. prot1 v

! y 〈y〉. ?〈x+2〉. ?〈y+2〉. prot2 v-swap’
prot1 v prot2 −∗ ?〈x+2〉. ! y 〈y〉. ?〈y+2〉. prot1 v

! y 〈y〉. ?〈x+2〉. ?〈y+2〉. prot2 .-mono
.(prot1 v prot2) −∗ .(?〈x+2〉. ! y 〈y〉. ?〈y+2〉. prot1 v

! y 〈y〉. ?〈x+2〉. ?〈y+2〉. prot2) v-send-mono’
.(prot1 v prot2) −∗ !x 〈x〉. ?〈x+2〉. ! y 〈y〉. ?〈y+2〉. prot1 v

!x 〈x〉. ! y 〈y〉. ?〈x+2〉. ?〈y+2〉. prot2 µ-unfold
.(prot1 v prot2) −∗ prot1 v prot2 Löb

prot1 v prot2

After we use v-send-mono’ for the first time, we strip off the later of the induction
hypothesis .(prot1 v prot2). Subsequently, when we use v-send-mono’ and v-recv-
mono, there are no more laters to strip. We therefore introduce the later implicitly
using .-intro after applying the appropriate monotonicity rule (not shown).

3.4 Manifest Sharing via Locks

Since dependent separation protocols and the connective c � prot for ownership
of protocols are first-class objects of the Actris logic, they can be used like any
other logical connective. This means that protocols can be combined with any other
mechanism that Actris inherits from Iris. In particular, they can be combined with
Iris’s generic invariant and ghost state mechanism, and can be used in combination
with Iris’s abstractions for reasoning about other concurrency connectives like locks,
barriers, lock-free data structures, etc.

In this section we demonstrate how dependent separation protocols can be com-
bined with lock-based concurrency. This combination allows us to prove functional
correctness of programs that make use of the notion of manifest sharing [Balzer and
Pfenning 2017; Balzer et al. 2019], where channel endpoints are shared between mul-
tiple parties. Instead of having to extend Actris, we make use of locks and ghost state
that Actris inherits from Iris. We present the basic idea with an introductory example
of sharing a channel endpoint between two parties (Section 3.4.1). We then consider
a more challenging example of a distributed load-balancing mapper (Section 3.4.2).

3.4.1 Locks and Ghost State

Using the language from Section 3.2.1 it is possible to implement locks using a spin
lock, ticket lock, or a more sophisticated implementation. For the purpose of this

69

3. Actris: Session-Type Based Reasoning in Separation Logic

{R} new lock () {lk . is lock lk R} (Ht-new-lock)

{is lock lk R} acquire lk {R} (Ht-acquire)

{is lock lk R ∗R} release lk {True} (Ht-release)

is lock lk R −∗ is lock lk R ∗ is lock lk R (Lock-dup)

Figure 3.11: The rules Actris inherits from Iris for locks.

prog lock := let c := start (λc. let lk := new lock () in
fork {acquire lk ; send c 21; release lk} ;
acquire lk ; send c 21; release lk) in

recv c+ recv c

Figure 3.12: A sample program that combines locks and channels to achieve manifest
sharing.

paper, we abstract over the concrete implementation and assume that we have op-
erations new lock, acquire and release that satisfy the common separation logic
specifications for locks as shown in Figure 3.11.

The new lock () operation creates a new lock, which can be thought of as a
mutex. The operation acquire lk will atomically take the lock or block in the case
the lock is already taken, and release lk releases the lock so that it may be acquired
by other threads. The specifications in Figure 3.11 make use of the representation
predicate is lock lk R, which expresses that a lock lk guards the resources described
by the proposition R. When creating a new lock one has to give up ownership of R,
and in turn, obtains the representation predicate is lock lk R (Ht-new-lock). The
representation predicate can then be freely duplicated so it can be shared between
multiple threads (Lock-dup). When entering a critical section using acquire lk , a
thread gets exclusive ownership of R (Ht-acquire), which has to be given up when
releasing the lock using release lk (Ht-release). The resources R that are protected
by the lock are therefore invariant in-between any of the critical sections.

To show how locks can be used, consider the program in Figure 3.12, which uses a
lock to share a channel endpoint between two threads, that each send 21 to the main
thread. The following dependent protocol, where n denotes the number of messages
that should be exchanged, captures the expected interaction from the point of view
of the main thread:

lock prot , µ(rec : N→ iProto). λn. if (n = 0) then end else ?〈21〉. rec (n− 1)

Since c� lock prot n is an exclusive resource, we need a lock to share it between
the threads that send 21. For this we will use the following lock invariant:

is lock lk (∃n. authγ n ∗ c� lock prot n)

70

3.4. Manifest Sharing via Locks

TrueV ∃γ. authγ 0 (Auth-init)

authγ nV contribγ ∗ authγ (1 + n) (Auth-alloc)

authγ (1 + n) ∗ contribγ V authγ n (Auth-dealloc)

authγ n ∗ contribγ −∗ n > 0 (Auth-contrib-pos)

Figure 3.13: The authoritative contribution ghost theory.

The natural number n is existentially quantified since it changes over time depending
on the values that are sent. To tie the number n to the number of contributions
made by the threads that share the channel endpoint, we make use of the connectives
authγ n and contribγ , which are defined using Iris’s “ghost theory” mechanism for
“user-defined” ghost state [Jung et al. 2015, 2018b].

The authγ n fragment can be thought of as an authority that keeps track of the
number of ongoing contributions n, while each contribγ is a token that witnesses that
a contribution is still in progress. These concepts are made precise by the rules in
Figure 3.13. The rule Auth-init expresses that an authority authγ 0 can always be
created, which is given some fresh ghost identifier γ. Using the rules Auth-alloc and
Auth-dealloc, one can allocate and deallocate tokens contribγ as long as the count n
of ongoing contributions in authγ n is updated accordingly. The rule Auth-contrib-

pos expresses that ownership of a token contribγ implies that the count n of authγ n
must be positive.

Most of the rules in Figure 3.13 involve the logical connective V of a so-called
view shift. The view shift connective, which Actris inherits from Iris, can be though
of as a “ghost update”, which is made precise by the structural rules Vs-csq and
Vs-frame rules, that establish the connection between V and the Hoare triples of
the logic:

Vs-csq

P V P ′ {P ′} e {v. Q′} ∀v. Q′ V Q

{P} e {v. Q}

Vs-frame
P V Q

P ∗RV Q ∗R

With the ghost state in place, we can now state suitable specifications for the program.
The specification of the top-level program is shown on the right, while the left Hoare
triple shows the auxiliary specification of both threads that send the integer 21:{

contribγ ∗ is lock lk (∃n. authγ n ∗ c� lock prot n)
}

acquire lk ; send c 21; release lk

{True}

{True}
prog lock

{v. v = 42}

To establish the initial lock invariant, we use the rules Auth-init and Auth-alloc

to create the authority authγ 2 and two contribγ tokens. The contribγ tokens play
a crucial role in the proofs of the sending threads to establish that the existentially
quantified variable n is positive (using Auth-contrib-pos). Knowing n > 0, these

71

3. Actris: Session-Type Based Reasoning in Separation Logic

par mapper worker fv lk c :=
acquire lk ; select c left;
branch c with
right⇒ release lk
| left ⇒ let x := recv c in release lk ; (* acquire work *)

let y := fv x in (* map it *)

acquire lk ;
select c right; send c y; (* send it back *)

release lk ;
par mapper worker fv lk c

end

Figure 3.14: A worker of the distributed mapper service.

threads can establish that the protocol lock prot n has not terminated yet (i.e., is
not end). This is needed to use the rule Ht-send to prove the correctness of send-
ing 21, and thereby advancing the protocol from lock prot n to lock prot (n− 1).
Subsequently, the sending threads can deallocate the token contribγ (using Auth-

dealloc) to decrement the n of authγ n accordingly to restore the lock invariant.

3.4.2 A Distributed Load-Balancing Mapper

This section demonstrates a more interesting use of manifest sharing. We show how
Actris can be used to verify functional correctness of a distributed load-balancing
mapper that maps a function fv over a list. Our distributed mapper consists of one
client that distributes the work, and a number of workers that perform the function
fv on individual elements of the list. To enable communication between the client and
the workers, we make use of a single channel. One endpoint is used by the client to
distribute the work between the workers, while the other endpoint is shared between
all workers to request and return work from the client. The implementation of the
workers, which can be found in Figure 3.14, consists of a loop over three phases:

1. The worker notifies the client that it wants to perform work (via select c left),
after which it is then notified (via branch) whether there is more work or all
elements have been mapped. If there is more work, the worker receives an
element x that needs to be mapped. Otherwise, the worker will terminate.

2. The worker maps the function fv on x.

3. The worker notifies the client that it wants to send back a result (by using
select c right), and subsequently sends back the result y of mapping fv on x.

The first and last phases are in a critical section guarded by a lock lk since they involve
interaction over a shared channel endpoint. As the sharing behaviour is encapsulated
by the worker, we omit the code of the client for brevity’s sake.2

2The entire code is present in the accompanied Coq development [Hinrichsen et al. 2021b].

72

3.4. Manifest Sharing via Locks

TrueV ∃γ. authγ 0 ∅ (AuthM-init)

authγ n X V authγ (1 + n) X ∗ contribγ ∅ (AuthM-alloc)

authγ n X ∗ contribγ ∅V authγ (n− 1) X (AuthM-dealloc)

authγ n X ∗ contribγ Y V authγ n (X] Z) ∗ contribγ (Y] Z) (AuthM-add)

Z ⊆ Y ∗
authγ n X ∗ contribγ Y V authγ n (X \ Z) ∗ contribγ (Y \ Z) (AuthM-remove)

authγ n X ∗ contribγ Y −∗ n > 0 ∗ Y ⊆ X (AuthM-contrib-agree)

authγ 1 X ∗ contribγ Y −∗ Y = X (AuthM-contrib-agree1)

Figure 3.15: The authoritative contribution ghost theory extended with multisets.

A protocol that describes the interaction from the client’s point of view is as follows:

par mapper prot (IT : T → Val→ iProp) (IU : U → Val→ iProp) (f : T → List U) ,
µ(rec : N→ MultiSet T → iProto). λn X.
if n = 0 then end else

(! (x : T) (v : Val) 〈v〉{IT x v}. rec n (X] {x}))⊕ rec (n− 1) X

{(n=1)⇒(X=∅)}&{True}

?(x : T) (` : Loc) 〈`〉
{
x ∈ X ∗ ` list7→IU (f x)

}
. rec n (X \ {x})

Similarly to mapper prot from Section 3.3.2, the protocol is parameterised by repre-
sentation predicates IT and IU , and a function f : T → List U in Iris/Actris logic,
related through the f spec specification. Similar to the protocol lock prot from
Section 3.4.1, the protocol par mapper prot is indexed by the number of remaining
workers n. On top of that, it carries a multiset X describing the values currently
being processed by all the workers. The multiset X is used to make sure that the
returned results are in fact the result of mapping the function f . The condition
(n = 1) ⇒ (X = ∅) on the branching operator (&) expresses that the last worker
may only request more work if there are no ongoing jobs.

To accommodate sharing of the channel endpoint between all workers using a lock
invariant, we extend the authoritative contribution ghost theory from Section 3.4.1.
We do this by adding multisets X and Y to the connectives authγ n X and contribγ Y .
These multisets keep track of the values held by the workers. The rules for the ghost
theory extended with multisets are shown in Figure 3.15. The rules AuthM-init,
AuthM-alloc and AuthM-dealloc are straightforward generalisations of the ones
we have seen before. The new rules AuthM-add and AuthM-remove determine that
the multiset Y of contribγ Y can be updated as long as it is done in accordance with
the multiset X of authγ n X. Finally, the AuthM-contrib-agree rule expresses that
the multiset Y of contribγ Y must be a subset of the multiset X of authγ n X, while
the stricter rule AuthM-contrib-agree1 asserts equality between X and Y when only
one contribution remains.

73

3. Actris: Session-Type Based Reasoning in Separation Logic

The specifications of par mapper worker and a top-level client par mapper client

that uses n workers to map fv over the linked list ` are as follows:
f spec IT IU f fv ∗ contribγ ∅ ∗

is lock lk

(
∃n X. authγ n X ∗
c� par mapper prot IT IU f n X

)
par mapper worker fv lk c

{True}

{
f spec IT IU f fv ∗
0 < n ∗ ` list7→IT ~x

}
par mapper client n fv `{
∃~y. ~y ≡p flatMap f ~x ∗

`
list7→IU ~y

}
The lock invariant and specification of par mapper worker are similar to those used
in the simple example in Section 3.4.1. The specification of par mapper client n fv `
simply states that the resulting linked list points to a permutation of performing
the map at the level of the logic. To specify that, we make use of flatMap : (T →
List U)→ (List T → List U), whose definition is standard.

The proof of the client involves allocating the channel with the mapper protocol
par mapper prot, with the initial number of workers n. Subsequently, we use the
rules AuthM-init and AuthM-alloc to create the authority authγ n ∅ and n tokens
contribγ ∅, which allow us to establish the lock invariant and to distribute the tokens
among the mappers. The proof of the mapper proceeds as usual. After acquiring the
lock, the mapper obtains ownership of the lock invariant. Since the worker owns the
token contribγ ∅, it knows that the number of remaining workers n is positive, which
allows it to conclude that the protocol has not terminated (i.e., is not end). After
using the rules for channels, the rules AuthM-add and AuthM-remove are used to
update the authority, which is needed to reestablish the lock invariant so the lock can
be released.

3.5 Case Study: Map-Reduce

As a means of demonstrating the use of Actris for verifying more realistic programs,
we present a proof of functional correctness of a simple distributed load-balancing
implementation of the map-reduce model by Dean and Ghemawat [2004].

Since Actris is not concerned with distributed systems over networks, we consider
a version of map-reduce that distributes the work over forked-off threads on a single
machine. This means that we do not consider mechanics like handling the failure,
restarting, and rescheduling of nodes that a version that operates on a network has
to consider.

In order to implement and verify our map-reduce version we make use of the
implementation and verification of the fine-grained distributed merge sort algorithm
(Section 3.2.8) and the distributed load-balancing mapper (Section 3.4.2). As such,
our map-reduce implementation is mostly a suitable client that glues together com-
munication with these services. The purpose of this section is to give a high-level
description of the implementation. The actual code and proofs can be found in the
accompanied Coq development [Hinrichsen et al. 2021b].

74

3.5. Case Study: Map-Reduce

3.5.1 A Functional Specification of Map-Reduce

The purpose of the map-reduce model is to transform an input set of type List T into
an output set of type List V using two functions f (often called “map”) and g (often
called “reduce”):

f : T → List (K ∗ U) g : (K ∗ List U)→ List V

An implementation of map-reduce performs the transformation in three steps:

1. First, the function f is applied to each element of the input set. This results in
lists of key/value pairs which are then flattened using a flatMap operation (an
operation that takes a list of lists and appends all nested lists):

flatMap f : List T → List (K ∗ U)

2. Second, the resulting lists of key/value pairs are grouped together by their key
(this step is often called “shuffling”):

group : List (K ∗ U)→ List (K ∗ List U)

3. Finally, the grouped key/value pairs are passed on to the g function, after which
the results are flattened to aggregate the results. This again is done using a
flatMap operation:

flatMap g : List (K ∗ List U)→ List V

The complete functionality of map-reduce is equivalent to applying the following
map reduce function on the entire data set:

map reduce : List T → List V , (flatMap g) ◦ group ◦ (flatMap f)

A standard instance of map-reduce is counting word occurrences, where we let T ,
K , String and U , N and V , String ∗ N with:

f : String→ List (String ∗ N) , λx. [(x, 1)]

g : (String ∗ List N)→ List (String ∗ N) , λ(k, ~n). [(k,Σi<|~n|. ~ni)]

3.5.2 Implementation of Map-Reduce

The general distributed model of map-reduce is achieved by distributing the phases
of mapping, shuffling, and reducing, over a number of worker nodes (e.g., nodes of
a cluster or individual CPUs). To perform the computation in a distributed way,
there is some work involved in coordinating the jobs over these worker nodes, which
is usually done as follows:

1. Split the input data into chunks and delegate these chunks to the mapper nodes,
that each apply the “map” function f to their given data in parallel.

2. Collect the complete set of mapped results and “shuffle” them, i.e., group them
by key. The grouping is often implemented with a distributed sorting algorithm.

75

3. Actris: Session-Type Based Reasoning in Separation Logic

3. Split the shuffled data into chunks and delegate these chunks to the reducer
nodes that each apply the “reduce” function g to their given data in parallel.

4. Collect and aggregate the complete set of result of the reducers.

Our variant of the map-reduce model is defined as a function map reducev n m fv gv l,
which coordinates the work for performing map-reduce on a linked list l between
n mappers performing the “map” function fv and m workers performing the “re-
duce“ function gv. To make the implementation more interesting, we prevent storing
intermediate values locally by forwarding/returning them immediately as they are
available/requested. The global structure is as follows:

1. Start n instances of the load-balancing par mapper worker from Section 3.4
with the fv function. Additionally start an instance of sort servicefg from
Section 3.2, parameterised by a concrete comparison function on the keys, cor-
responding to λ(k1,) (k2,). k1 < k2. Note that the type of keys are restricted
to be Z for brevity’s sake.

2. Perform a loop that handles communication with the mappers. If a mapper
requests work, pop a value from the input list. If a mapper returns work,
forward it to the sorting service. This process is repeated until all inputs have
been mapped and forwarded.

3. Start m instances of the par mapper worker, parameterised by gv.

4. Perform a loop that handles communication with the mappers. If a mapper
requests work, group elements returned by the sort service. If a mapper returns
work, aggregate the returned value in a the linked list. Grouped elements are
created by requesting and aggregating elements from the sorter until the key
changes.

The aggregated linked list then contains the fully mapped input set upon completion.

3.5.3 Functional Correctness of Map-Reduce

The specification of the map-reduce program is as follows:{
0 < n ∗ 0 < m ∗ f spec IT IZ∗U f fv ∗ f spec IZ∗List U IV g gv ∗ l

list7→IT ~x
}

map reducev n m fv gv l{
∃~z. ~z ≡p map reduce f g ~x ∗ l list7→IV ~z

}
The f spec predicates (as introduced in Section 3.3.2) establish a connection between
the functions f and g on the logical level and the functions fv and gv in the language.
These make use of the various interpretation predicates IT , IZ∗U , IZ∗List U , and IV
for the types in question. Lastly, the l

list7→IT ~x predicate determines that the input
is a linked list of the initial type T . The postcondition asserts that the result ~z
is a permutation of the original linked list ~x applied to the functional specification
map reduce of map-reduce from Section 3.5.1.

76

3.6. The Model of Actris

3.6 The Model of Actris

We prove the adequacy theorem of Actris—given a Hoare triple {True} e {φ} that is
derivable in Actris, we prove that e cannot get stuck (i.e., safety), and if e terminates,
the resulting value v satisfies φ (i.e., postcondition validity). To do that, we construct
a model of Actris as a shallow embedding in the Iris framework [Jung et al. 2015;
Krebbers et al. 2017a; Jung et al. 2016, 2018b]. This means that the type iProto
of dependent separation protocols, the subprotocol relation prot1 v prot2, and the
connective c� prot for the channel ownership, are definitions in Iris, and the Actris
proof rules are lemmas about these definitions in Iris. Adequacy of Actris is then
simply a consequence of Iris’s adequacy theorem.

In this section we describe the relevant aspects of the model of Actris. We model
the type iProto of dependent separation protocols as the solution of a recursive do-
main equation, and describe how the operators for dual and composition are defined
(Section 3.6.1). We then define the subprotocol relation prot1 v prot2 and prove its
proof rules as lemmas (Section 3.6.2). To connect protocols to the endpoint channel
buffers in the semantics we define the protocol consistency relation, which ensures
that a pair of protocols is consistent with the messages in their associated buffers
(Section 3.6.3). On top of the protocol consistency relation, we define the Actris
ghost theory for dependent separation protocols (Section 3.6.4), which forms the key
ingredient for defining the connective c� prot for channel ownership (Section 3.6.6)
that links protocols to the semantics of channels (Section 3.6.5). We then show how
adequacy follows from the embedding in Iris (Section 3.6.7). Finally, we show how
to solve the recursive domain equation for the type iProto of dependent separation
protocols (Section 3.6.8).

3.6.1 The Model of Dependent Separation Protocols

To construct a model of dependent separation protocols, we first need to deter-
mine what they mean semantically. The challenging part involves the constructors
! ~x : ~τ 〈v〉{P}. prot and ?~x : ~τ 〈v〉{P}. prot , whose (higher-order and impredicative)
logical variables ~x :~τ bind into the communicated value v, the transferred resources
P , and the tail protocol prot . We model these constructors as predicates over the
communicated value and the tail protocol. To describe the transferred resources P ,
we model these protocols as Iris predicates (functions to iProp) instead of meta-level
predicates (functions to Prop). This gives rise to the following recursive domain
equation:

action ::= send | recv

iProto ∼= 1 + (action× (Val→ IiProto→ iProp))

The left part of the sum type (the unit type 1) indicates that the protocol has ter-
minated, while the right part describes a message that is exchanged, expressed as an
Iris predicate. Since the recursive occurrence of iProto in the predicate appears in
negative position, we guard it using Iris’s type-level later (I) operator (whose only
constructor is next : T → I T).

77

3. Actris: Session-Type Based Reasoning in Separation Logic

The exact way the solution is constructed is detailed in Section 3.6.8. For now, we
assume a solution exists, and define the dependent separation protocols constructors
as follows:

end , inj1 ()

! ~x :~τ 〈v〉{P}. prot , inj2 (send, λw prot ′. ∃~x :~τ . (v = w) ∗ P ∗ (prot ′ = next prot))

?~x :~τ 〈v〉{P}. prot , inj2 (recv, λw prot ′. ∃~x :~τ . (v = w) ∗ P ∗ (prot ′ = next prot))

The definitions of ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot make use of the (higher-
order and impredicative) existential quantifiers of Iris to constrain the actual message
w and tail prot ′ so that they agree with the message v and tail prot prescribed by
the protocol.

Recursive Protocols Iris’s guarded recursion operator µx. t requires the recursion
variable x to appear under a contractive term construct in t. Hence, to use Iris’s
recursion operator to construct recursive protocols, it is essential that the protocols
! ~x : ~τ 〈v〉{P}. prot and ?~x : ~τ 〈v〉{P}. prot are contractive in the tail prot . To show
why this is the case, let us first define what it means for a function f : T → U to be
contractive:

∀x, y. .(x = y)⇒ f x = f y

Examples of contractive functions are the later modality . : iProp → iProp and the
constructor next : T → I T . The protocols ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot
are defined so that prot appears below a next, and hence we can prove that they are
contractive in prot .

Operations With these definitions at hand, the dual () and append (·) operations
are defined using Iris’s guarded recursion operator (µx. t):

send , recv

recv , send

() , µrec. λprot .


inj1 () if prot = inj1 ()

inj2 (a, λw prot ′. ∃prot ′′.

Φ w (next prot ′′) ∗
prot ′ = next (rec prot ′′))

if prot = inj2 (a, Φ)

(· prot2) , µrec. λprot1.


prot2 if prot1 = inj1 ()

inj2 (a, λw prot ′. ∃prot ′′.

Φ w (next prot ′′) ∗
prot ′ = next (rec prot ′′))

if prot1 = inj2 (a, Φ)

The base cases of both definitions are as expected. In the recursive cases, we construct
a new predicate, given the original predicate Φ. In these new predicates, we quantify
over an original tail protocol prot ′′ such that Φ w (next prot ′′) holds, and unify the
new tail protocol prot ′ with the result of the recursive call rec prot ′′.

78

3.6. The Model of Actris

The equational rules for dual () and append (·) from Figure 3.1 are proven as
lemmas in Iris using Löb induction. This is possible as the recursive call rec prot ′′

appears below a next constructor—since the next constructor is contractive, we can
strip-off the later from the induction hypothesis when proving the equality for the
tail.

Difference from the Conference Version In the conference version of this pa-
per [Hinrichsen et al. 2020], we described two versions of the recursive domain equa-
tion for dependent separation protocols: an “ideal” version (as used in this paper),
where iProto appears in negative position, and an “alternative” version, where iProto
appears in positive position. At that time, we were unable to construct a solution of
the “ideal” version, so we used the “alternative” version. In Section 3.6.8 we show
how we are now able to solve the “ideal” version.

In the conference version of this paper, the proposition P appeared under a later
modality in the definitions of the protocols ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot ,
making these protocols contractive in P . This choice was motivated by the ability
to construct recursive protocols like µrec. ! (c : Chan) 〈c〉{c� prot}. prot ′, where the
payload refers to the recursion variable rec. In the current version (without the later
modality) we can still construct such protocols, because c � prot is contractive
in prot . We removed the later modality because it is incompatible with the rules
v-send-out and v-recv-out for subprotocols.

3.6.2 The Model of the Subprotocol Relation

We now model the subprotocol relation prot1 v prot2 from Section 3.3. For legibility,
we present it in the style of an inference system through its constructors, whereas it
is formally defined using Iris’s guarded recursion operator (µx. t):

inj1 () v inj1 ()

∀v, prot2. Φ2 v (next prot2) −∗
∃prot1. Φ1 v (next prot1) ∗

.(prot1 v prot2)
inj2 (send, Φ1) v inj2 (send, Φ2)

∀v, prot1. Φ1 v (next prot1) −∗
∃prot2. Φ2 v (next prot2) ∗

.(prot1 v prot2)
inj2 (recv, Φ1) v inj2 (recv, Φ2)

∀v1, v2, prot1, prot2. (Φ1 v1 (next prot1) ∗ Φ2 v2 (next prot2)) −∗
∃prot . .(prot1 v ! 〈v2〉. prot) ∗ .(?〈v1〉. prot v prot2)
inj2 (recv, Φ1) v inj2 (send, Φ2)

To be a well-formed guarded recursion definition, every recursive occurrence of v
is guarded by later modality (.). Aside from the later being required for well-
formedness, these laters make it possible to reason about the subprotocol relation
using Löb induction; both to prove the subprotocol rules from Figure 3.8 as lemmas,
and for Actris users to reason about recursive protocols as shown in Section 3.3.4.
The relation is defined in a syntax-directed fashion (i.e., there are no overlapping
rules), and therefore all constructors need to be defined so that they are closed under
monotonicity and transitivity.

79

3. Actris: Session-Type Based Reasoning in Separation Logic

The first constructor states that terminating protocols (end , inj1 ()) are re-
lated. The other constructors concern the protocols ! ~x : ~τ 〈v〉{P}. prot and ?~x :
~τ 〈v〉{P}. prot , which are modelled as inj2 (send, Φ) and inj2 (recv, Φ), where Φ :
Val→ IiProto→ iProp is a predicate over the communicated value and tail protocol.
While the actual constructors are somewhat intimidating because they are defined in
terms of these predicates in the model, they essentially correspond to the following
high-level versions:

∀~y :~σ. P2 −∗ ∃~x :~τ . (v1 = v2) ∗ P1 ∗ .(prot1 v prot2)

! ~x :~τ 〈v1〉{P1}. prot1 v ! ~y :~σ 〈v2〉{P2}. prot2

∀~x :~τ . P1 −∗ ∃~y :~σ. (v1 = v2) ∗ P2 ∗ .(prot1 v prot2)

?~x :~τ 〈v1〉{P1}. prot1 v ?~y :~σ 〈v2〉{P2}. prot2

∀~x :~τ , ~y :~σ. (P1 ∗ P2) −∗ ∃prot . .(prot1 v ! 〈v2〉. prot) ∗ .(?〈v1〉. prot v prot2)

?~x :~τ 〈v1〉{P1}. prot1 v ! ~y :~σ 〈v2〉{P2}. prot2

To obtain syntax-directed rules, the first rule combines v-send-out, v-send-in, and
v-send-mono, and dually, the second rule combines v-recv-out, v-recv-in, and v-
recv-mono. The third rule combines v-recv-out, v-send-out and v-swap and bakes
in transitivity, instead of asserting that prot1 and prot2 are equal to ! 〈v2〉. prot and
?〈v1〉. prot , respectively.

The rules from the beginning of this section are defined by generalising the
high-level rules to arbitrary predicates. For example, the rule inj2 (send, Φ1) v
inj2 (send, Φ2) requires that for any value v and tail protocol prot2 that satisfy the
predicate Φ2, there is a stronger tail protocol prot1 (i.e., where prot1 v prot2), so
that the same value v and stronger tail protocol prot1 that satisfy the predicate Φ1.

The rules in Figure 3.8 on page 62 are proven as lemmas. Those for logical vari-
able and resource manipulation (v-send-out, v-send-in, v-recv-out and v-recv-in)
monotonicity (v-send-mono and v-recv-mono), and swapping (v-swap) follow al-
most immediately from the definition, whereas those for reflexivity (v-refl), tran-
sitivity (v-trans), and the dual and append operator (v-dual and v-append) are
proven using Löb induction.

3.6.3 Protocol Consistency

To connect dependent separation protocols to the semantics of channels in Sec-
tion 3.6.6, we define the protocol consistency relation prot consistent ~v1 ~v2 prot1 prot2,
which expresses that protocols prot1 and prot2 are consistent w.r.t. channel buffers
containing values ~v1 and ~v2. The consistency relation is defined as:

prot consistent ~v1 ~v2 prot1 prot2 , ∃prot .

(?〈~v2.1〉. . . . ?〈~v2.|~v2|〉. prot v prot1) ∗ (?〈~v1.1〉. . . . ?〈~v1.|~v1|〉. prot v prot2)

Intuitively, prot consistent ~v1 ~v2 prot1 prot2 ensures that for all messages ~v1 in transit
from the endpoint described by prot1 to the endpoint described by prot2, the protocol

80

3.6. The Model of Actris

prot2 is expecting to receive these message in order (and vice versa for ~v2), after which
the remaining protocols prot and prot are dual. To account for weakening we close
the relation under subprotocols (by using v instead of equality), which additionally
captures ownership of the resources associated with the messages ~v1 and ~v2.

Closure under the subprotocol relation gives us that prot consistent ~v1 ~v2 prot1 prot2

and prot1 v prot ′1 implies prot consistent ~v1 ~v2 prot ′1 prot2, and ensures that the
consistency relation enjoys the following rules corresponding to creating a channel,
sending a message, and receiving a message:

prot consistent [] [] prot prot

prot consistent ~v1 ~v2 (! ~x :~τ 〈v〉{P}. prot1) prot2 ∗ P [~t/~x] −∗
.|~v2|(prot consistent (~v1 · [v[~t/~x]]) ~v2 prot1 prot2)

prot consistent ~v1 ([w] · ~v2) (?~x :~τ 〈v〉{P}. prot1) prot2 −∗
∃~y. (w = v[~y/~x]) ∗ P [~y/~x] ∗ .(prot consistent ~v1 ~v2 prot1 prot2)

The first rule states that dual protocols are consistent w.r.t. a pair of empty buffers.
The second rule states that a protocol ! ~x :~τ 〈v〉{P}. prot1 can be advanced to prot1

by giving up ownership of P [~t/~x] and enqueueing the value v[~t/~x] in the buffer
~v1. Dually, the third rule states that given a protocol ?~x : ~τ 〈v〉{P}. prot1 and a
buffer that contains value w as its head, we learn that w is equal to v[~y/~x], and
that we can obtain ownership of P [~y/~x] by advancing the protocol to prot1 and
dequeuing the value w from the buffer. Since the relation is symmetric, i.e., if
prot consistent ~v1 ~v2 prot1 prot2 then prot consistent ~v2 ~v1 prot2 prot1, we obtain
similar rules for the protocol prot2 on the right-hand side.

The last two rules are proved by inversion on the definition of the subprotocol
relation (v). Since the subprotocol relation (v) is defined using guarded recursion,
we obtain a later modality (.) for each inversion. To prove the first rule, we need
to perform a number of inversions equal to the size of the buffer ~v2, whereas for
the second rule we need to perform just a single inversion. The later modalities
will be eliminated through physical program steps in the semantics of channels in
Section 3.6.5.

3.6.4 The Actris Ghost Theory

To provide a general interface for adopting Actris’s reasoning principles for arbitrary
message-passing languages, we employ a standard ghost theory approach to compart-
mentalise channel ownership.

We use an approach similar to the ghost theory for contributions that we used in
Section 3.4. The authority prot ctx (γ1, γ2) ~v1 ~v2 governs the global state of the buffers
~v1 and ~v2. The tokens prot ownl (γ1, γ2) prot l and prot ownr (γ1, γ2) protr provide
local views of that state, being that the protocols prot l and protr are consistent with
the buffers. As we will see in Section 3.6.6, the authority can then be shared through a
lock, while the tokens can be distributed to individual threads. The ghost connectives
are identified by the shared ghost identifiers γ1 and γ2 for the protocols prot l and
protr, respectively.

81

3. Actris: Session-Type Based Reasoning in Separation Logic

TrueV ∃γ. (γ 7→• prot) ∗ (γ 7→◦ prot) (ho-ghost-alloc)

(γ 7→• prot) ∗ (γ 7→◦ prot ′)⇒ .(prot = prot ′) (ho-ghost-agree)

(γ 7→• prot) ∗ (γ 7→◦ prot ′)V (γ 7→• prot ′′) ∗ (γ 7→◦ prot ′′) (ho-ghost-update)

Figure 3.16: Higher-order ghost variables in Iris.

To define the connectives of the Actris ghost theory we use Iris’s higher-order ghost
variables, whose rules are shown in Figure 3.16. Higher-order ghost variables come
in pairs γ 7→• prot and γ 7→◦ prot , which always hold the same protocol prot . They
can be allocated together (ho-ghost-alloc), are always required to hold the same
protocol (ho-ghost-agree), and can only be updated together (ho-ghost-update).
The subtle part of the higher-order ghost variables is that they involve ownership of
a protocol of type iProto, which is defined in terms of Iris propositions iProp. Due
to the dependency on iProp, which is covered in detail in Section 3.6.8, the rule ho-

ghost-agree only gives the equality between the protocols under a later modality
(.). The Actris ghost theory connectives are then defined as:

prot ctx (γ1, γ2) ~v1 ~v2 , ∃prot1, prot2. γ1 7→• prot1 ∗ γ2 7→• prot2 ∗
. prot consistent ~v1 ~v2 prot1 prot2

prot ownl (γ1, γ2) prot l , ∃prot ′l. γ1 7→◦ prot ′l ∗ .(prot ′l v prot l)

prot ownr (γ1, γ2) protr , ∃prot ′r. γ2 7→◦ prot ′r ∗ .(prot ′r v protr)

The authority prot ctx (γ1, γ2) ~v1 ~v2 asserts that the buffers ~v1 and ~v2 are consistent
with respect to the protocols prot1 and prot2 (via prot consistent ~v1 ~v2 prot1 prot2). It
also asserts the higher-order authoritative ownership γ1 7→• prot1 and γ2 7→• prot2 of
both protocols. The tokens assert higher-order fragmented ownership γ1 7→◦ prot ′l and
γ2 7→◦ prot ′r of protocols prot ′l and prot ′r that are weaker than the protocol arguments
prot l and protr (via prot ′l v prot l and prot ′r v protr). Explicit weakening under the
subprotocol relation may seem redundant, as weakening is already accounted for in
prot consistent. However, it allows us to weaken the protocols of the tokens without
the presence of the authority as shown by the rules proto-v-l and proto-v-r in
Figure 3.17. The later modality (.) makes sure that prot ownl (γ1, γ2) prot and
prot ownr (γ1, γ2) prot are contractive in prot . For readability we condense the ghost
state identifiers (γ1, γ2) into a single identifier γ from now on.

With these definitions at hand, we prove the rules of the ghost theory presented
in Figure 3.17. The rule proto-alloc corresponds to allocation of a buffer pair, the
rules proto-send-l and proto-send-r correspond to sending a message, and the rules
proto-recv-l and proto-recv-r correspond to receiving a message. These are proved
through a combination of the rules for higher-order ghost state from Figure 3.16, and
the rules for the protocol consistency relation prot consistent from Section 3.6.3.

82

3.6. The Model of Actris

TrueV ∃γ. prot ctx γ [] [] ∗ prot ownl γ prot ∗ prot ownr γ prot (proto-alloc)

prot ctx γ ~v1 ~v2 ∗ prot ownl γ (! ~x :~τ 〈v〉{P}. prot) ∗ P [~t/~x]V
.|~v2|

(
prot ctx γ (~v1 · [v[~t/~x]]) ~v2

)
∗ prot ownl γ (prot [~t/~x])

(proto-send-l)

prot ctx γ ~v1 ~v2 ∗ prot ownr γ (! ~x :~τ 〈v〉{P}. prot) ∗ P [~t/~x]V
.|~v1|

(
(prot ctx γ ~v1 (~v2 · [v[~t/~x]])

)
∗ prot ownr γ (prot [~t/~x])

(proto-send-r)

prot ctx γ ~v1 ([w] · ~v2) ∗ prot ownl γ (?~x :~τ 〈v〉{P}. prot)V
.∃~y. (w = v[~y/~x]) ∗ P [~y/~x] ∗ prot ctx γ ~v1 ~v2 ∗ prot ownl γ prot

(proto-recv-l)

prot ctx γ ([w] · ~v1) ~v2 ∗ prot ownr γ (?~x :~τ 〈v〉{P}. prot)V
.∃~y. (w = v[~y/~x]) ∗ P [~y/~x] ∗ prot ctx γ ~v1 ~v2 ∗ prot ownr γ prot

(proto-recv-r)

prot ownl γ prot ∗ prot v prot ′ −∗ prot ownl γ prot ′ (proto-v-l)

prot ownr γ prot ∗ prot v prot ′ −∗ prot ownr γ prot ′ (proto-v-r)

Figure 3.17: The Actris ghost theory.

3.6.5 Semantics of Channels

Since Iris is parametric in the programming language that is used, there are various
approaches to extend Iris with support for channels:

• Instantiate Iris with a language that has native support for channels. This
approach was carried out in the original Iris paper [Jung et al. 2015] and by
Tassarotti et al. [2017].

• Instantiate Iris with a language that has low-level concurrency primitives, but
no native support for channels, and implement channels as a library in that
language. This approach was carried out by Bizjak et al. [2019] for a lock-free
implementation of channels.

In this paper we take the second approach. We use HeapLang, the default language
shipped with Iris, and implement bidirectional channels using a pair of mutable linked
lists protected by a lock. Although this implementation is not efficient, contrary to
e.g., the implementation by Bizjak et al. [2019], it has the benefit that it gives a clear
declarative semantics that corresponds exactly to the intuitive semantics of channels
described in Section 3.2.1.

Our implementation of bidirectional channels in HeapLang is displayed in Fig-
ure 3.18. New channels are created by the new chan function, which allocates two
empty mutable linked lists l and r using lnil (), along with a lock lk using new lock (),
and returns the tuples (l, r, lk) and (r, l, lk), where the order of the linked lists l and
r determines the side of the endpoints. We refer to the list in the left position as
the endpoint’s own buffer, and the list in the right position as the other endpoint’s
buffer.

83

3. Actris: Session-Type Based Reasoning in Separation Logic

new chan () := let (l, r, lk) := (lnil (), lnil (), new lock ()) in
((l, r, lk), (r, l, lk))

send c v := let (l, r, lk) := c in
acquire lk ;
lsnoc l v; skipN |r|;

release lk

try recv c := let (l, r, lk) := c in
acquire lk ;
let ret := (if (lisnil r) then (inj1 ()) else (inj2 (lpop l))) in

release lk ; ret

recv c := match (try recv c) with
inj1 ()⇒ recv c
| inj2 v ⇒ v
end

Figure 3.18: Implementation of bidirectional channels in HeapLang.

Values are sent over a channel endpoint (l, r, lk) using the send function. This
function operates in an atomic fashion by first acquiring the lock via acquire lk ,
thereby entering the critical section, after which the value is enqueued (i.e., appended
to the end) of the endpoint’s own buffer using lsnoc l v. The skipN |r| instruction
is a no-op that is inserted to aid the proof. We come back to the reason why this
instruction is needed in Section 3.6.6.

Values are received over a channel endpoint (l, r, lk) using the send function,
which performs a loop that repeatedly calls the helper function try recv. This helper
function attempts to receive a value atomically, and fails if there is no value in the
other endpoint’s buffer. The function try recv acquires the lock with acquire lk ,
and then checks whether the other endpoint’s buffer is empty using lisnil r. If it is
empty, nothing is returned (i.e., inj1 ()), while otherwise the value is dequeued and
returned (i.e., inj2 (lpop l)).

3.6.6 The Model of Channel Ownership

To link the physical contents of the bidirectional channel c to the Actris ghost theory
we define the channel ownership connective as follows:

c� prot , ∃γ, l, r, lk .
(

(c = (l, r, lk) ∗ prot ownl γ prot) ∨
(c = (r, l, lk) ∗ prot ownr γ prot)

)
∗

is lock lk (∃~v1 ~v2. l
list7→ ~v1 ∗ r

list7→ ~v2 ∗ prot ctx γ ~v1 ~v2)

The predicate states that the referenced channel endpoint c is either the left (l, r, lk)
or the right (r, l, lk) side of a channel, and that we have exclusive ownership of the
ghost token prot ownl γ prot or prot ownr γ prot for the corresponding side. Iris’s lock

84

3.6. The Model of Actris

representation predicate is lock (previously presented in Section 3.4) is used to make
sharing of the buffers possible. The lock invariant is governed by lock lk , and carries
the ownership l

list7→ ~v1 and r
list7→ ~v2 of the mutable linked lists containing the channel

buffers, as well as prot ctx γ ~v1 ~v2, which asserts protocol consistency of the buffers
with respect to the protocols.

With the definition of the channel endpoint ownership along with the ghost theory
and lock rules we then prove the channel rules Ht-new, Ht-send and Ht-recv from
Figure 3.1. The proofs are carried out through symbolic execution to the point
where the critical section is entered, after which the rules of the Actris ghost theory
(Figure 3.17) are used to allocate or update the ghost state appropriately so that it
matches the physical channel buffers.

The Need for Skip Instructions The rules proto-send-l and proto-send-r from
Figure 3.17 contain a number of later modalities (.) proportional to the other end-
point’s buffer in their premise. As explained in Section 3.6.3 these later modalities
are the consequence of having to perform a number of inversions on the subprotocol
relation, which is defined using guarded recursion, and thus contains a later modality
for each recursive unfolding.

To eliminate these later modalities, we instrument the code of the send function
with the skipN |r| instruction, which performs a number of skips equal to the size of
the other endpoint’s buffer r. The skipN instruction has the following specification:

{.n P} skipN n {P}

Instrumentation with skip instructions appears more often in work on step-indexing,
see e.g., [Svendsen et al. 2016; Giarrusso et al. 2020]. It is needed due to the fact that
current step-indexed logics like Iris unify physical/program steps and logical steps,
i.e., for each physical/program step at most one later can be eliminated from the
hypotheses. Svendsen et al. [2016] proposed a more liberal version of step-indexed,
called transfinite step-indexing, to avoid this problem. However, transfinite step-
indexing is not available in Iris.

3.6.7 Adequacy of Actris

Having constructed the model of Actris in Iris, we now obtain the following main
result:

Theorem 1 (Adequacy of Actris) Let φ be a first-order predicate over values and
suppose the Hoare triple {True} e {φ} is derivable in Actris, then:

• (Safety): The program e will not get stuck.

• (Postcondition validity): If the main thread of e terminates with a value v,
then the postcondition φ v holds at the meta-level.

Since Actris is an internal logic embedded in Iris, the proof is an immediate conse-
quence of Iris’s adequacy theorem [Krebbers et al. 2017a; Jung et al. 2018b]. Finally,
note that safety implies session fidelity—any message that is received has in fact been
sent.

85

3. Actris: Session-Type Based Reasoning in Separation Logic

3.6.8 Solving the Recursive Domain Equation for Protocols

Recall the recursive domain equation for dependent separation protocols from Sec-
tion 3.6.1:

iProto ∼= 1 + (action× (Val→ IiProto→ iProp))

This recursive domain equation shows that iProto depends on the type iProp of Iris
propositions. To use types that depend on iProp as part of higher-order ghost state in
Iris, such types need to be bi-functorial in iProp. Hence, this means that to construct
iProto, in a way that it can be used in combination with the higher-order ghost
variables in Figure 3.16, we need to solve the following recursive domain equation:

iProto(X−, X+) ∼= 1 + (action× (Val→ IiProto(X+, X−)→ X+))

Since the recursive occurrence of iProto appears in negative position, the polarity
needs to be inverted for iProto to be bi-functorial.

The version of Iris’s recursive domain equation solver based on [America and
Rutten 1989; Birkedal et al. 2010] as mechanised in Iris’s Coq development is not
readily able to construct a solution of iProto(X−, X+). Concretely, the solver can
only construct solutions of non-parameterised recursive domain equations. While a
general construction for solving such recursive domain equations exists [Birkedal et al.
2012, § 7], that construction has not been mechanised in Coq. We circumvent this
shortcoming by solving the following recursive domain equation instead, in which we
unfold the recursion once by hand:

iProto2(X−, X+) ∼=
1 + (action× (Val→ I(1 + (action× (Val→ IiProto2(X−, X+)→ X−)))→ X+))

Here, the polarity in the recursive occurrence is fixed, allowing us to solve the equa-
tion iProto2(X−, X+) using Iris’s existing recursive domain equation solver. This
is sufficient because a solution of iProto2(X−, X+) is isomorphic to a solution of
iProto(X−, X+).

3.7 Coq Mechanisation

The definition of the Actris logic, its model, and the proofs of all examples in this pa-
per have been fully mechanised using the Coq proof assistant [Coq Development Team
2021]. In this section we will elaborate on the mechanisation effort (Section 3.7.1),
and go through the full proof of a message-passing program (Section 3.7.2) and a sub-
protocol relation (Section 3.7.3) showcasing the tactics for Actris. During the section
we display proofs and proof states taken directly from the Coq mechanisation, which
differs in notation from the paper as shown in Figure 3.19.

3.7.1 Mechanisation Effort

The mechanisation of Actris is built on top of the mechanisation of Iris [Krebbers
et al. 2017a; Jung et al. 2016, 2018b]. To carry out proofs in separation logic, we
use the MoSeL Proof Mode (formerly Iris Proof Mode) [Krebbers et al. 2017b, 2018],

86

3.7. Coq Mechanisation

Paper Coq Mechanisation
Send !x1 . . . xn 〈v〉{P}. prot <! x_1 .. x_n> MSG v {{ P }}; prot

Receive ?x1 . . . xn 〈v〉{P}. prot <? x_1 .. x_n> MSG v {{ P }}; prot

End end END

Dual prot iProto_dual prot

Literals (), 5, true #(), #5, #true

Logical variables x, y, z, "x", "y", "z", <>

Types 1, N, Z (), nat, Z

Figure 3.19: The difference in syntax between the paper and Coq source code.

which provides an embedded proof assistant for separation logic in Coq. Building
Actris on top of the Iris and MoSeL framework in Coq has a number of tangible
advantages:

• By defining channels on top of HeapLang, the default concurrent language
shipped with Iris, we do not have to define a full programming language seman-
tics, and can reuse all of the program libraries and Coq machinery, including
the tactics for symbolic execution of non message-passing programs.

• Since Actris is mechanised as an Iris library that provides support for the iProto
type, the subprotocol relation prot1 v prot2, the c � prot connective, the
various operations on protocols, and the proof rules as lemmas, we get all of
the features of Iris for free, such as the ghost state mechanisms for reasoning
about concurrency.

• When proving the Actris proof rules, we can make use of the MoSeL Proof
Mode to carry out proofs directly using separation logic, thus reasoning at a
high-level of abstraction.

• We can make use of the extendable nature of the MoSeL Proof Mode to define
custom tactics for symbolic execution of message-passing programs.

These advantages made it possible to mechanise Actris, along with the examples of
the paper, with a small Coq development of a total size of about 5000 lines of code
(comments and whitespace included). The line count of the different components are
shown in Figure 3.20.

3.7.2 Tactic Support for Session Type-Based Reasoning

To carry out interactive Actris’s proof using symbolic execution, we follow the method-
ology described in the original Iris Proof Mode paper [Krebbers et al. 2017b], which
in particular means that the logic in Coq is presented in weakest precondition style
rather than using Hoare triples. For handling send or recv we define the following
tactics:

wp_send (t1 .. tn) with "[H1 .. Hn]" and wp_recv (y1 .. yn) as "H".

These tactics roughly perform the following actions:

87

3. Actris: Session-Type Based Reasoning in Separation Logic

Component Sections ∼LOC

The Actris model Section 3.6.1–Section 3.6.4 1500
Channel implementation and proof rules Section 3.6.5–Section 3.6.6 350
Tactics for symbolic execution Section 3.7.2 500
Utilities (linked lists, permutations, etc.) n.a. 450
Authoritative contribution ghost theory Section 3.4 150
Recursive domain equation theory solver Section 3.6.8 100
Examples:
• Basic examples Section 3.1 and Section 3.4.1 400
• Coarse-grained distributed merge sort Section 3.2.3–Section 3.2.7 250
• Fine-grained distributed merge sort Section 3.2.8 300
• Mapper with swapping Section 3.3.2 400
• List reversal Section 3.3.3 100
• Distributed mapper Section 3.4.2 200
• Distributed map-reduce Section 3.5 300
Total 5000

Figure 3.20: Overview of the Actris Coq mechanisation.

• Find a send or recv in evaluation position of the program under consideration.

• Find a corresponding c� prot hypothesis in the separation logic context.

• Normalise the protocol prot using the rules for duals, composition, recursion,
and swapping so it has a ! ~x : ~τ 〈v〉{P}. prot or ?~x : ~τ 〈v〉{P}. prot construct in
its head position.

• In case of wp_send, instantiate the variables ~x :~τ using the terms (t1 .. tn), and
create a goal for the proposition P with the hypotheses [H1 .. Hn]. Hypotheses
prefixed with $ will automatically be consumed to resolve a subgoal of P if
possible. In case the terms (t1 .. tn) are omitted, an attempt is made to
determine these using unification.

• In case of wp_recv, introduce the variables ~x :~τ into the context by naming them
(y1 .. yn), and create a hypothesis H for P .

The implementation of these tactics follows the approach by [Krebbers et al. 2017b].
The protocol normalisation is implemented via logic programming with type classes.

As an example we will go through a proof of the following program:

prog ref swap loop := λ(). let c := start (rec go c′ := let ` := recv c′ in
`← ! `+ 2;
send c′ (); go c′) in

let `1 := ref 18 in
let `2 := ref 20 in
send c `1; send c `2;
recv c; recv c;
! `1 + ! `2

88

3.7. Coq Mechanisation

1 Lemma prog_ref_swap_loop_spec :

2 ∀ Φ, Φ #42 -∗ WP prog_ref_swap_loop #() {{ Φ }}.

3 Proof.

4 iIntros (Φ) "HΦ". wp_lam.

5 wp_apply (start_chan_spec prot_ref_loop); iIntros (c) "Hc".

6 - iLöb as "IH". wp_lam.

7 wp_recv (l x) as "Hl". wp_load. wp_store. wp_send with "[$Hl]".
8 do 2 wp_pure _. by iApply "IH".

9 - wp_alloc l1 as "Hl1". wp_alloc l2 as "Hl2".

10 wp_send with "[$Hl1]". wp_send with "[$Hl2]".
11 wp_recv as "Hl1". wp_recv as "Hl2".

12 wp_load. wp_load.

13 wp_pures. by iApply "HΦ".
14 Qed.

Figure 3.21: Proof of message-passing program

Here, the forked-off thread acts as a service that recursively receives locations, adds
2 to their stored number, and then sends back a flag indicating that the location has
been updated. The main thread, acting like a client, first allocates two new references,
to 18 and 20, respectively, which are both sent to the service after which the update
flags are received. It finally dereferences the updated locations, and adds their values
together, thus returning 42. To verify this program, we use the following recursive
protocol:

prot ref loop , µ(rec : iProto). ! (` : Loc)(x : Z) 〈`〉{` 7→ x}. ?〈()〉{` 7→ x+ 2}. rec

The service (in the forked-off thread) follows the (dual of) the protocol exactly, while
the main thread follows a weakened version, where the recursion is unfolded twice,
after which the second send has been swapped in front of the first receive, allowing
it to first send both values before receiving:

prot ref loop v ! (`1 : Loc)(x1 : Z) 〈`1〉{`1 7→ x1}.
! (`2 : Loc)(x2 : Z) 〈`2〉{`2 7→ x2}.
?〈()〉{`1 7→ (x1 + 2)}.
?〈()〉{`2 7→ (x2 + 2)}. prot ref loop

The full Coq proof of the program is shown in Figure 3.21. The proved lemma is
logically equivalent to the specification {True} prog ref swap loop () {v. v = 42},
but is presented in weakest precondition style as is common in Iris in Coq. We
start the proof on line 4 by introducing the postcondition continuation Φ, and the
hypothesis HΦ: Φ #42, and then evaluate the lambda expression with wp_lam. On line 5
we apply the specification start_chan_spec for start by picking the expected protocol
prot_ref_loop. This leaves us with two subgoals, separated by bullets -: one for the
forked-off thread, and one for the main thread.

In the proof of the recursively-defined forked-off thread, we use iLöb as "IH" for
Löb induction on line 6. This leaves us with the following intermediate proof state:

89

3. Actris: Session-Type Based Reasoning in Separation Logic

"IH" : . (c� iProto_dual prot_ref_loop -∗
WP (rec: "go" "c’" :=

let: "l" := recv "c’" in "l" <- ! "l" + #2;;

send "c’" #();; "go" "c’") c {{ _, True }})

--------------------------------------�
"Hc" : c� iProto_dual prot_ref_loop

--------------------------------------∗
WP (rec: "go" "c’" :=

let: "l" := recv "c’" in "l" <- ! "l" + #2;;

send "c’" #();; "go" "c’") c {{ _, True }}

We now resolve the application of c to the recursive function with wp_lam. This lets us
strip the later from the Löb induction hypothesis, as the program has taken a step.
For brevity’s sake we refer to the recursive program as prog_rec, in the following proof
states.

"IH" : c� iProto_dual prot_ref_loop -∗ WP prog_rec c {{ _, True }}

--------------------------------------�
"Hc" : c� iProto_dual prot_ref_loop

--------------------------------------∗
WP let: "l" := recv c in "l" <- ! "l" + #2;;

send c #();; prog_rec c {{ _, True }}

On line 7 we resolve the proof of the body of the recursive function. So far, the proof
only used Iris’s standard tactics, we now use the Actris tactic for receive wp_recv (l x)

as "Hl", to resolve the receive in evaluation position, introducing the received logical
variables l and x, along with the predicate of the protocol l 7→ #x naming it Hl. To
do so, the protocol is normalised, unfolding the recursive definition once, as well as
resolving the dualisation of the head, turning it into a receive as expected. This leads
to the following proof state:

"IH" : c� iProto_dual prot_ref_loop -∗ WP prog_rec c {{ _, True }}

--------------------------------------�
"Hl" : l 7→ #x

"Hc" : c� iProto_dual (<?> MSG #() {{ l 7→ #(x + 2) }}; prot_ref_loop)

--------------------------------------∗
WP let: "l" := #l in "l" <- ! "l" + #2;; send c #();; prog_rec c {{ _, True }}

We then use wp_load and wp_store to resolve the dereferencing and updating of the
location:

"IH" : c� iProto_dual prot_ref_loop -∗ WP prog_rec c {{ _, True }}

--------------------------------------�
"Hl" : l 7→ #(x + 2)

"Hc" : c� iProto_dual (<?> MSG #() {{ l 7→ #(x + 2) }}; prot_ref_loop)

--------------------------------------∗
WP send c #();; prog_rec c {{ _, True }}

We then use Actris’s tactic wp_send with "[$Hl]" to resolve the send operation in eval-
uation position, by giving up the ownership of "Hl". Again, the protocol is automati-
cally normalised by resolving the dualisation of the receive (?) to obtain the send (!)
as expected.

90

3.7. Coq Mechanisation

We finally close the proof of the forked-off thread on line 8. We first take two pure
evaluation steps revolving the sequencing of operations with do 2 wp_pure _ to reach
the recursive call. This results in the proof state:

"IH" : c� iProto_dual prot_ref_loop -∗ WP prog_rec c {{ _, True }}

--------------------------------------�
"Hc" : c� iProto_dual prot_ref_loop

--------------------------------------∗
WP prog_rec c {{ _, True }}

We then use by iApply "IH" to close the proof by using the Löb induction hypothesis.
The proof of the main thread follows similarly. On line 9 we use wp_alloc l1 as "

Hl1" and wp_alloc l2 as "Hl2", to resolve the allocations of the new locations, binding
the logical variables of the locations to l1 and l2, and adding hypotheses "Hl1" and
"Hl2" for ownership of these locations to the separation logic proof context. The proof
state is then:

"HΦ" : Φ #42

"Hc" : c� prot_ref_loop

"Hl1" : l1 7→ #18

"Hl2" : l2 7→ #20

--------------------------------------∗
WP send c #l1;; send c #l2;; recv c;; recv c;; ! #l1 + ! #l2 {{ v, Φ v }}

On line 10, we then resolve the first send operation with Actris’s tactic wp_send with

"[$Hl1]", by giving up ownership of the location l1. Here, the protocol is normalised
by unfolding the recursive definition, after which the head symbol is a send (!) as
expected. The resulting proof state is as follows:

"HΦ" : Φ #42

"Hl2" : l2 7→ #20

"Hc" : c� (<?> MSG #() {{ l1 7→ #(18 + 2) }}; prot_ref_loop)

--------------------------------------∗
WP send c #l2;; recv c;; recv c;; ! #l1 + ! #l2 {{ v, Φ v }}

To resolve the second send operation, we need to weaken the protocol using swapping
(rule v-swap’), which is taken care of automatically by Actris’s tactic wp_send with

"[$Hl2]". The normalisation detects that the protocol has a receive (?) as a head
symbol, and therefore attempts swapping. To do so it steps ahead of the receive (?),
and unfolds the recursive definition, which results in a send (!) as the first symbol
after the head. It then detects that there are no dependencies between the two, and
can thus apply the swapping rule v-swap’, moving the send (!) ahead of the receive
(?). With the head symbol now being a send (!), the symbolic execution continues
as normal, resulting in the proof state:

"HΦ" : Φ #42

"Hc" : c� (<?> MSG #() {{ l1 7→ #(18 + 2) }};

<?> MSG #() {{ l2 7→ #(20 + 2) }}; prot_ref_loop)

--------------------------------------∗
WP recv c;; recv c;; ! #l1 + ! #l2 {{ v, Φ v }}

On line 11 we then proceed as expected with wp_recv as "Hl1" and wp_recv as "Hl2", to
resolve the receive operations, giving us back the updated point-to resources:

91

3. Actris: Session-Type Based Reasoning in Separation Logic

"HΦ" : Φ #42

"Hl1" : l1 7→ #(18 + 2)

"Hl2" : l2 7→ #(20 + 2)

"Hc" : c� prot_ref_loop

--------------------------------------∗
WP ! #l1 + ! #l2 {{ v, Φ v }}

At line 12 we then continue by using wp_load twice to dereference the reacquired and
updated locations, and then use trivial symbolic execution to resolve the remaining
computations. On line 13 we finally close the proof with the continuation hypothesis
by iApply "HΦ".

3.7.3 Tactic Support for Subprotocols

While the Actris tactics automatically apply the subprotocol rules during symbolic
execution, as shown in Section 3.7.2, we sometimes want to prove subprotocol relations
as explicit lemmas. We have tactic support for such proofs as well, which is integrated
with the existing MoSeL tactics iIntros, iExists, iFrame, iModIntro, and iSplitL/iSplitR

by automatically using the subprotocol rules to turn the goal into a goal where the
regular Iris tactics apply.

• iIntros (x1 .. xn) "H1 .. Hm" transforms the subprotocol goal to begin with n

universal quantification and m implications, using the rules v-send-in and v-
recv-in, and then introduces the quantifiers (naming them x1 .. xn) into the
Coq context, and the hypotheses (naming them H1 .. Hm) into the separation
logic context.

• iExists (t1 .. tn) transforms the subprotocol goal to start with n existential
quantifiers, using the v-send-out and v-recv-out rules, and then instantiates
these quantifiers with the terms t1 .. tn specified by the pattern.

• iFrame "H" transforms the subprotocol goal into a separating conjunction be-
tween the payload predicates of the head symbols of either protocol, using the
rules v-send-out and v-recv-out, and then tries to solve the payload predicate
subgoal using "H".

• iModIntro transforms the subprotocol goal into a goal starting with a later modal-
ity (.), using the rules v-send-mono and v-recv-mono, and then introduces
that later by stripping off a later from any hypothesis in the separation logic
context.

• iSplitL/iSplitR "H1 .. Hn" transforms the subprotocol goal into a separating con-
junction between the payload predicates of the head symbols of either protocol,
using the rules v-send-out and v-recv-out, and then creates two subgoals.
For iSplitL the left subgoal is given the hypotheses H1 .. Hn from the separation
logic context, while the right subgoal is given any remaining hypotheses, and
vice versa for iSplitR.

The extensions of these tactics are implemented by defining custom type class in-
stances that hook into the existing MoSeL tactics as described in [Krebbers et al.
2017b].

92

3.7. Coq Mechanisation

1 Lemma list_rev_subprot :

2 ` (<! (l : loc) (vs : list val)> MSG #l {{ llist l vs }};

3 <?> MSG #() {{ llist internal_eq l (reverse vs) }}; END) v
4 (<! (l : loc) (xs : list T)> MSG #l {{ llistI IT l xs }};

5 <?> MSG #() {{ llistI IT l (reverse xs) }}; END).

6 Proof.

7 iIntros (l xs) "Hl".

8 iDestruct (Hlr with "Hl") as (vs) "[Hl HIT]".

9 iExists l, vs. iFrame "Hl".

10 iModIntro. iIntros "Hl".

11 iSplitL.

12 { rewrite big_sepL2_reverse_2. iApply Hlr.

13 iExists (reverse vs). iFrame "Hl HIT". }

14 done.

15 Qed.

Figure 3.22: Proof of subprotocol relation

To demonstrate these tactics, we will go through a proof of the subprotocol relation
for the list reversing service presented in Section 3.3.3:

! (l : Loc)(~v : List Val) 〈l〉
{
l

list7→ ~v
}
. ?〈()〉

{
l

list7→ reverse ~v
}
. end

v ! (l : Loc)(~x : List T) 〈l〉
{
l

list7→IT ~x
}
. ?〈()〉

{
l

list7→IT reverse ~x
}
. end

Recall that the following conversion between the list representation predicate with
payload l

list7→IT ~x and one without payload l
list7→ ~v holds:

Hlr : l
list7→IT ~x ∗−∗ (∃~v. l list7→ ~v ∗∗(x,v)∈(~x,~v) .IT x v)

The full Coq proof is shown in Figure 3.22. On line 7 we start the proof by introducing
the logical variables l, xs and the payload llistI IT l xs of the weaker protocol with
the tactic iIntros (l xs) "Hl". This tactic will implicitly apply the rule v-send-in, so
the goal starts with a universal quantification ∀ (l : loc)(xs : list T). llistI IT l xs

-∗..., which is then introduced based on the regular Iris introduction pattern. This
gives us:

"Hl" : llistI IT l vs

--------------------------------------∗
(<! (l : loc) (vs : list val)> MSG #l {{ llist l vs }};

<?> MSG #() {{ llist l (reverse vs) }}; END) v
(<!> MSG #l; <?> MSG #() {{ llistI IT l (reverse xs) }}; END)

To obtain the payload predicate expected by the stronger protocol, we use the lemma
Hlr, to derive llist l vs and [∗list] x;v ∈ xs;vs, IT x v from llistI l xs with the
tactic iDestruct (Hlr with "Hl") as (vs) "[Hl HIT]" on line 8. The resulting proof state
is:

"Hl" : llist l vs

"HIT" : [∗ list] x;v ∈ xs;vs, IT x v

--------------------------------------∗
(<! (l : loc) (vs : list val)> MSG #l {{ llist l vs }};

<?> MSG #() {{ llist l (reverse vs) }}; END) v
(<!> MSG #l; <?> MSG #() {{ llistI IT l (reverse xs) }}; END)

93

3. Actris: Session-Type Based Reasoning in Separation Logic

At line 9 we instantiate the logical variables of the stronger protocol with the logical
variables l and vs using iExists l, vs. This will implicitly apply the rule v-send-out,
which makes the goal start with ∃ (l : loc) (vs : list val), so the existentials can be
instantiated as usual. To resolve the payload predicate obligation llist l vs, we use
iFrame "Hl". This uses the v-send-out to turn the goal into llist l vs ∗ ..., where
the left subgoal is resolved using "Hl". We then have the following remaining proof
state:

"HIT" : [∗ list] x;v ∈ xs;vs, IT x v

--------------------------------------∗
(<!> MSG #l; <?> MSG #() {{ llist l (reverse vs) }}; END) v
(<!> MSG #l; <?> MSG #() {{ llistI IT l (reverse xs) }}; END)

As the head symbols of both protocols are sends (!) with no logical variables or
payload predicates, we use iModIntro on line 10, which first applies v-send-mono to
step over the sends, and then introduces the later modality (.). This gives us the
proof state:

"HIT" : [∗ list] x;v ∈ xs;vs, IT x v

--------------------------------------∗
(<?> MSG #() {{ llist l (reverse vs) }}; END) v
(<?> MSG #() {{ llistI IT l (reverse xs) }}; END)

On line 10, similarly to before, we use iIntros "Hl", to introduce the payload predicate,
but this time we do it for the stronger protocol, as dictated by v-recv-in:

"HIT" : [∗ list] x;v ∈ xs;vs, IT x v

"Hl" : llist l (reverse vs)

--------------------------------------∗
(<?> MSG #() ; END) v
(<?> MSG #() {{ llistI IT l (reverse xs) }}; END)

To resolve the payload predicate of the weaker protocol, we use iSplitL "Hl HIT" on
line 11, that first use v-recv-out, to turn the goal into llistI IT l (reverse xs) ∗ ...,
and then use the goal splitting pattern of Iris, to give us two subgoals, where we use
the hypotheses "Hl" and "HIT" in the left subgoal. The first subgoal is then:

"HIT" : [∗ list] x;v ∈ xs;vs, IT x v

"Hl" : llist l (reverse vs)

--------------------------------------∗
llistI IT l (reverse xs)

On line 12, we first use the lemma Hlr in the right-to-left direction, and then rewrite
the hypothesis "HIT" using a lemma from the Iris library with rewrite big_sepL2_reverse_2

. We do this to obtain [∗list] x;v ∈ reverse xs;reverse vs, IT x v, in order to match
the proof goal. This gives the proof obligation:

"HIT" : [∗ list] x;v ∈ reverse xs;reverse vs, IT x v

"Hl" : llist l (reverse vs)

--------------------------------------∗
∃ vs : list val, llist l vs ∗ ([∗ list] x;v ∈reverse xs;vs, IT x v)

We finally close the proof on line 13 with iExists (reverse vs), followed by iFrame "

Hl HIT", as the goal matches the hypotheses exactly, when picking reverse vs as the
existential quantification. We then move on to the second subgoal:

94

3.8. Related Work

--------------------------------------∗
(<?> MSG #(); END) v (<?> MSG #(); END)

We resolve this subgoal, on line 14, with the tactic done, which tries to close the proof,
by automatically applying v-refl.

3.8 Related Work

As Actris combines results from both the separation logic and session types com-
munity, there is an abundance of related work. This section briefly elaborates on
the relation to message passing in separation logic (Section 3.8.1) and process calculi
(Section 3.8.2), session types (Section 3.8.3), endpoint sharing (Section 3.8.4), and
verification efforts of map-reduce (Section 3.8.5).

3.8.1 Message Passing and Separation Logic

Lozes and Villard [2012] proposed a logic, based on previous work by Villard et al.
[2009], to reason about programs written in a small imperative language with message
passing using channels similar to ours. Messages are labelled, and protocols are
handled with a combination of finite-state automata (FSA) with correspondingly
labelled transitions and predicates associated with each state of the automata. This
combination is similar to, but less general than, STSs in Iris. Their language does not
support higher-order functions or delegation, but since their language is restricted to
structured concurrency (i.e., not fork-based) and their logic is linear (i.e., not affine),
they ensure that all resources like channels and memory are properly deallocated.

Craciun et al. [2015] introduced “session logic”, a variant of separation logic that
includes predicates for protocol specifications similar to ours. This work includes sup-
port for mutable state, ownership transfer via message-passing, delegation through
higher-order channels, choice using a special type of disjunction operator on the pro-
tocol level, and a sketch of an approach to verify deadlock freedom of programs.
Combined, these features allow them to verify interesting and non-trivial message-
passing programs. Their logic as a whole is not higher-order, which means that
sending functions over channels is not possible. Moreover, their logic does not sup-
port protocol-level logical variables that can connect the transferred message with
the tail protocol. It is therefore not possible to model dependent protocols like we do
in Actris. Their work includes a notion of subtyping as weakening and strengthening
of the payload predicates, however they do not consider swapping, and do not allow
manipulation of resources (or binders by construction) as a part of their relation.
There also exists no support for other concurrency primitives such as locks, which by
extension means that manifest sharing is not possible. In Actris we get this for free
by building on top of Iris, and reusing its ghost state mechanism. Their work has not
been mechanised in a proof assistant, but example programs can be checked using
the HIP/SLEEK verifier.

The original Iris [Jung et al. 2015] includes a small message-passing language with
channels that do not preserve message order. It was included to demonstrate that

95

3. Actris: Session-Type Based Reasoning in Separation Logic

Iris is flexible enough to handle other concurrency models than standard shared-
memory concurrency. Since the Hoare-triples for send and receive only reason about
the entire channel buffer, protocol reasoning must be done via STSs or other forms
of ghost state.

Hamin and Jacobs [2019] take an orthogonal direction and use separation logic to
prove deadlock freedom of programs that communicate via message passing using a
custom logic tailored to this purpose. They did not provide abstractions akin to our
session-type based protocols. Instead one has to reason using invariants and ghost
state explicitly.

Mansky et al. [2017] take yet another direction and verify the functional correct-
ness of a message-passing system written in C using the VST framework in Coq [Ap-
pel 2014]. While they do not verify message-passing programs like we do, they do
verify that the implementation of their message-passing system is resilient to faulty
behaviour in the presence of malicious senders and receivers.

Tassarotti et al. [2017] prove correctness and termination preservation of a com-
piler from a simple language with session types to a functional language with mutable
state, where the channels are implemented using references on the heap. This work
is also done in Iris. The session types they consider are more like standard session
types, which cannot express functional properties of messages, but only their types.

The Disel logic by Sergey et al. [2018] and the Aneris logic by Krogh-Jespersen
et al. [2020] can be used to reason about message-passing programs that work on
network sockets. Channels can only be used to send strings, are not order preserving,
and messages can be dropped but not duplicated. Since only strings are sent over
channels complex data (such as functions) must be marshalled and unmarshalled in
order to be sent over the network. Both Disel and Aneris therefore address a different
problem than we do.

The SteelCore framework by [Swamy et al. 2020] is an extensible concurrent sep-
aration logic based in F?, which has been used to encode unidirectional synchronous
channels. The channels are encoded as a shallow embedding, which is tied together
with ghost state to follow a protocol, using a trace of the communicated messages.
Their protocols are defined as a dependent sequence of value obligations with as-
sociated separation logic predicates, dictating what can be sent over the channel,
including the transfer of ownership. Their channels are first-class and can also be
transferred, effectively achieving delegation. They have postulated that bidirectional
asynchronous communication is possible, but have not yet done that. Finally, their
protocols do not include higher-order protocol-level logical variables, or any notion of
subtyping.

3.8.2 Separation Logic and Process Calculi

Another approach is to verify message-passing programs written in some dialect of
process calculus. We focus on related work that combines process calculus with
separation logic. Neither of the approaches below support delegation or concurrency
paradigms other than message passing.

Francalanza et al. [2011] use separation logic to verify programs written in a
CCS-like language. Channels model memory location, which has the effect that their

96

3.8. Related Work

input-actions behave a lot like our updates of mutable state with variable substitutions
updating the state. As a proof of concept they prove the correctness of an in-place
quick-sort algorithm.

Oortwijn et al. [2016] use separation logic and the mCRL2 process calculus to
model communication protocols. The logic itself operates on a high level of abstrac-
tion and deals exclusively with intraprocess communication where a fractional sepa-
ration logic is used to distribute channel resources to concurrent threads. Protocols
are extracted from code, but there is no formal connection between the specification
logic and the underlying language.

3.8.3 Session Types

Seminal work on linear type systems for the pi calculus by Kobayashi et al. [1996] led
to the creation of binary session types by Honda et al. [1998].

Bocchi et al. [2010] pushed the boundaries of what can be verified with multi-party
session types while staying within a decidable fragment of first-order logic. They use
first-order predicates to describe properties of values being sent and received. Decid-
ability is maintained by imposing restrictions on these predicates, such as ensuring
that nothing is sent that will be invalidated down the line. The constraints on the
logic do, however, limit what programs can be verified. The work includes standard
subtyping on communicated values and on choices, but no notion of swapping sends
ahead of receives.

Later work by Dardha et al. [2012] helped merge the linear type systems of
Kobayashi with Honda’s session types, which facilitated the incorporation of session
types in mainstream programming languages like Java [Hu et al. 2010], Go [Lange
et al. 2018], and OCaml [Padovani 2017; Imai et al. 2019]. These works focus on
adding session-typed support for the Actor model in existing languages, but do not
target functional correctness.

Thiemann and Vasconcelos [2020] introduced label dependent session types, where
tails of protocols can depend on the communicated message, which allows for encoding
of the choice operators using send and receive. This is similar to our encoding of the
choice operators in terms of Actris’s dependent send and receive (Section 3.2.5).

Actris’s subprotocol relation is inspired by the notion of session subtyping, for
which seminal work was carried out by Gay and Hole [2005]. Mostrous et al. [2009]
extended session subtyping to multiparty asynchronous session types, and as part
of that, introduced the notion of swapping sends ahead of receives for independent
channels. Mostrous and Yoshida [2015] later considered swapping over the same
channel in the context of binary session types. Our subprotocol relation is most
closely related to the work of Mostrous and Yoshida [2015], although they define
subtyping as a simulation on infinite trees, using so-called asynchronous contexts,
whereas we define it using Iris’s support for guarded recursion. It should be noted
that the work by Gay and Hole [2005] differs from the work by Mostrous et al. [2009]
and Mostrous and Yoshida [2015] in the orientation of the subtyping relation, as
discussed by Gay [2016]. Our subprotocol relation uses the orientation of Gay and
Hole [2005].

97

3. Actris: Session-Type Based Reasoning in Separation Logic

Session subtyping for recursive type systems is universally carried out as a type
simulation on infinite trees [Gay and Hole 2005; Mostrous et al. 2009; Mostrous and
Yoshida 2015], which complicates subtyping under the recursive operator. Gay et al.
[2020] provide further insights on this problem, although they investigate duality
rather than subtyping. To reason about recursive types, Brandt and Henglein [1998]
present a coinductive formulation of subtyping (which they apply to regular type
systems, rather than session types). We use a similar coinductive formulation, but
instead of ordinary coinduction, we use Iris’s support for guarded recursion, which
lets us prove subtyping relations of recursive protocols using Löb induction.

3.8.4 Endpoint Sharing

One of the key features of session types is that endpoints are owned by a single
process. While these endpoints can be delegated (i.e., transferred from one process
to another), they typically cannot be shared (i.e., be accessed by multiple processes
concurrently). However, as we demonstrate in Section 3.4, sharing channels endpoints
is often desirable, and possible in Actris.

In the pi calculus community there has been prior work on endpoint sharing, e.g.,
by Atkey et al. [2016]; Kobayashi [2006]; Padovani [2014]. The latest contribution in
this line of work is by Balzer and Pfenning [2017]; Balzer et al. [2019], who developed
a type system based on session types with support for manifest sharing. Manifest
sharing is the notion of sharing a channel endpoint between multiple processes using
a lock-like structure to ensure mutual exclusion. Their key idea to ensure mutual
exclusion using a type system is to use adjoint modalities to connect two classes of
types: types that are linear, and thus denote unique channel ownership, and types
that are unrestricted, and thus can be shared. The approach to endpoint sharing in
Actris is different: dependent separation protocols do not include a built-in notion
for endpoint sharing, but can be combined with Iris’s general-purpose mechanisms
for sharing, like locks.

3.8.5 Verification of Map-Reduce

To our knowledge the only verification related to the map-reduce model [Dean and
Ghemawat 2004] is by Ono et al. [2011], who made two mechanisations in Coq. The
first took a functional model of map-reduce and verified a few specific mappers and
reducers, extracted these to Haskell, and ran them using Hadoop Streaming. The
second did the same by annotating Java mappers and reducers using JML and proving
them correct using the Krakatoa tool [Marché et al. 2004], using a combination of
SAT-solvers and the Coq proof assistant. While they worked on verifying specific
mappers and reducers, our case study focuses on verifying the communication of
a map-reduce model that can later be parameterised with concrete mappers and
reducers.

98

3.9. Conclusion and Future Work

3.9 Conclusion and Future Work

In this paper, we have given a comprehensive account of the Actris logic, which incor-
porates a protocol mechanism based on session types into concurrent separation logic
to enable functional correctness proofs of programs that combine message-passing
with other programming and concurrency paradigms. Considering the rich litera-
ture on session types and concurrent separation logic, we expect there to be many
promising directions for future work.

One of the most prominent extensions of binary session types is multi-party session
types [Honda et al. 2008], often called choreographies, which allow concise specifica-
tions of message transfers between more than two parties. It would be interesting to
explore a multi-party version of dependent separation protocols, similar to the multi-
party version of session logic by Costea et al. [2018], to allow Actris to more readily
verify programs that make use of multi-party communication.

In addition to safety (i.e., session fidelity), conventional session type systems
guarantee properties like deadlock and resource-leak freedom. Since Actris is an
extension of concurrent separation logic that supports reasoning about several con-
currency primitives and not only message passing, ensuring deadlock freedom is hard.
The only prior work in this direction that we are aware of is by Hamin and Jacobs
[2019] and Craciun et al. [2015], but it is not immediately obvious how to integrate
that with Iris or Actris. Resource-leak freedom has been studied in Iron, an extension
of Iris by Bizjak et al. [2019], which makes it possible to prove resource-leak freedom
of non-structured fork-based concurrent programs. It would be interesting to build
dependent separation protocols on top of Iron instead of Iris.

99

Chapter 4

Semantic Session Typing

Abstract Session types—a family of type systems for message-passing concurrency—
have been subject to many extensions, where each extension comes with a separate
proof of type safety. These extensions cannot be readily combined, and their proofs
of type safety are generally not machine checked, making their correctness less trust-
worthy. We overcome these shortcomings with a semantic approach to binary asyn-
chronous affine session types, by developing a logical relations model in Coq using
the Iris program logic. We demonstrate the power of our approach by combining var-
ious forms of polymorphism and recursion, asynchronous subtyping, references, and
locks/mutexes. As an additional benefit of the semantic approach, we demonstrate
how to manually prove typing judgements of racy, but safe, programs that cannot be
type checked using only the rules of the type system.

4.1 Introduction

Session types [Honda et al. 1998] guarantee that message-passing programs comply
with a protocol (session fidelity), and do not crash (type safety). While session types
are an active research area, we believe the following challenges have not received the
attention that they deserve:

1. There are many extensions of session types with e.g., polymorphism [Gay 2008],
asynchronous subtyping [Mostrous et al. 2009], and sharing via locks [Balzer
and Pfenning 2017]. While type safety has been proven for each extension in
isolation, existing proofs cannot be readily composed with each other, nor with
other substructural type systems like Affe, Alms, Linear Haskell, Plaid, Rust,
Mezzo, Quill, or System F◦.

2. Session types use substructural types to enforce a strict discipline of channel
ownership. While conventional session-type systems can type check many func-
tions, they inherently exclude some functions that do not obey the ownership
discipline, even if they are safe.

3. Only few session-type systems and their safety proofs have been machine checked
by a proof assistant, making their correctness less trustworthy.

101

4. Semantic Session Typing

We address these challenges by eschewing the traditional syntactic approach to type
safety (using progress and preservation) and instead embrace the semantic approach
to type safety [Appel and McAllester 2001; Ahmed 2004; Ahmed et al. 2010], using
logical relations defined in terms of a program logic [Appel et al. 2007; Dreyer et al.
2009, 2019].

The semantic approach addresses the challenges above as (1) typing judgements
are definitions in the program logic, and typing rules are lemmas in the program
logic (they are not inductively defined), which means that extending the system with
new typing rules boils down to proving the corresponding typing lemmas correct; (2)
safe functions that cannot be conventionally type checked can still be semantically
type checked by manually proving a typing lemma (3) all of our results have been
mechanised in Coq using the Iris framework for concurrent separation logic [Jung
et al. 2015, 2016; Krebbers et al. 2017a; Jung et al. 2018b; Krebbers et al. 2017b,
2018] giving us a high degree of trust that they are correct.

The syntactic approach to type safety requires global proofs of progress (well-
typed programs are either values or can take a step) and preservation (steps taken by
the program do not change types), culminating in type safety (well-typed programs
do not get stuck). One key selling point of the semantic approach to type safety is
that it does not require progress and preservation proofs, thereby allowing snippets
of safe code to be type checked without requiring well-typed terms mid execution.
Safety proofs are deferred to the program logic, whose adequacy/soundness theorem
states that proving a program correct for any postcondition implies that the code will
never get stuck. A concrete example of a racy program that can be semantically, but
not conventionally, type checked is:

λc. (recv c || recv c) : chan (?Z. ?Z. end)((Z× Z)

Two values are requested over channel c in parallel, and returned as a tuple (using the
operator || for parallel composition, and the type chan (?Z. ?Z. end) for a channel
that expects to receive two integers). This program cannot be type checked using
conventional session-type systems as channels are substructural types and cannot be
owned by multiple threads at the same time. Nevertheless, this program is safe1—the
order in which the values are received is irrelevant, as they have the same type.

The fact that this program cannot be type checked is not a shortcoming of con-
ventional session-type systems. Since the correctness relies on a subtle argument (the
recv is executed exactly twice in parallel), it is unreasonable to expect having syn-
tactical typing rules that account for it. However, using the semantic approach, we
can prove the corresponding typing lemma using the full power of the program logic.

An important prerequisite for proving typing lemmas such as the above is to
use an expressive program logic. The Iris concurrent separation logic [Jung et al.
2015, 2016; Krebbers et al. 2017a; Jung et al. 2018b] has proved to be sufficiently
expressive to define semantic type systems for e.g., Rust [Jung et al. 2018a, 2021]
and Scala [Giarrusso et al. 2020], due to its state-of-the-art built-in support for e.g.,
resource ownership, recursion, polymorphism, and concurrency. In addition, we make

1For simplicity, we assume recv to be atomic, or a lock is needed. Even with a lock, conventional
session-type systems cannot handle this program.

102

4.2. A Tour of Semantic Session Typing

use of the Actris framework for message passing in Iris [Hinrichsen et al. 2020, 2021a].
Actris includes the notion of dependent separation protocols, which are like session
types in structure, but were developed to prove functional correctness of message-
passing programs. An additional advantage of Iris (and Actris) is that they come
with an existing mechanisation in Coq. This mechanisation not only includes an
adequacy/soundness theorem, but also tactical support for separation logic proofs
[Krebbers et al. 2017b, 2018].

Contributions and Outline This paper presents an extensive machine-checked
and semantic account of binary (two-party) asynchronous (sends are non-blocking)
affine (resources may be discarded) session types. It makes the following contribu-
tions:

• We define a semantic session-type system as a logical relation in Iris using Ac-
tris’s notion of dependent separation protocols (Section 4.2). As an additional
conceptional contribution, this construction provides a concise connection be-
tween session types and separation logic.

• We demonstrate the extensibility of our approach by adding subtyping for term
and session types, copyable types, equi-recursive term and session types, poly-
morphic term and session types, and mutexes (Section 4.3).

• We demonstrate the benefit of our type system being semantic by integrating
the manual verification of safe but not conventionally type-checkable programs
(Section 4.4).

• We provide insight on the benefits of a semantic type system in regards to
mechanisation efforts (Section 4.5). All of our results are mechanised in the
Coq proof assistant and can be found in [Hinrichsen et al. 2021b].

4.2 A Tour of Semantic Session Typing

We show how to build a semantic session-type system using logical relations on top of
an untyped concurrent language with message passing (Section 4.2.1). We provide a
brief overview of Iris (Section 4.2.2), and then present a lightweight affine type system
(Section 4.2.3) as the core upon which we built our session-type system (Section 4.2.4).
Our affine type system is inspired by RustBelt [Jung et al. 2018a, 2021], but drops
Rust-specific features like borrowing and lifetimes to focus on session types.

4.2.1 Language

We use an untyped higher-order functional programming language with concurrency,
mutable references, and binary asynchronous message passing, whose syntax is:

v ∈ Val ::= () | b | i | ` | c | rec f x := e | . . .
e ∈ Expr ::= v | x | rec f x := e | e1 e2 | e1 || e2 |

ref e | e1 ← e2 | ! e |
new chan () | send e1 e2 | recv e | . . .

103

4. Semantic Session Typing

We let b ∈ B, i ∈ Z, ` ∈ Loc, and c ∈ Chan, where Loc and Chan are countably infinite
sets of identifiers. We omit the standard operations on pairs, sums, etc. We write λx. e
for rec x := e, and let x := e1 in e2 for (λx. e2) e1, and e1; e2 for let := e1 in e2.
Message passing is given an asynchronous semantics: new chan () returns a pair
(c1, c2) of channel endpoints that operate on buffers (~v1, ~v2) that are initially empty,
send ci w enqueues message w in ~vi, while recv ci blocks until a message w is
available in ~v(if i=2 then 1 else 2), and then dequeues and returns w. Mutable references
` are allocated with ref e, updated using e1 ← e2, and dereferenced with ! e. Parallel
composition e1 || e2 executes e1 and e2 in parallel and returns the results as a tuple,
once they have terminated. The language also supports fork and compare-and-set.

4.2.2 Semantic Typing in Iris

The idea of semantic typing is to represent types as logical relations, which are pred-
icates that describe the values that inhabit the type. To model type systems with
features like references or session types, these predicates need to range over program
states. To avoid threading through program states explicitly, we do not use ordinary
set-theoretic predicates, but use predicates in a program logic, and use the connec-
tives of the program logic to give concise definitions of types. The program logic that
we use is Iris, whose propositions P,Q ∈ iProp implicitly range over an extensible
notion of resources, which includes the program state.

Iris is a higher-order separation logic, so it has the usual logical connectives such
as conjunction (P ∧ Q), implication (P ⇒ Q), universal (∀x : τ. P) and existential
(∃x :τ. P) quantification, as well as the connectives of separation logic:

• The points-to connective (` 7→ v) asserts exclusive resource ownership of a heap
location ` ∈ Loc, stating that it holds the value v ∈ Val.

• The separating conjunction (P ∗Q) states that P and Q holds for disjoint sets
of resources.

• The separating implication (P −∗ Q) states that by giving up ownership of the
resources described by P , we obtain ownership of the resources described by Q.
Separating implication is used similarly to implication since (P entails Q −∗ R)
iff (P ∗Q entails R).

• The weakest precondition (wp e {Φ}) states that given a postcondition Φ : Val→
iProp, the expression e is safe, and, if e reduces to a value v, then Φv holds. We
write wp e {w. Q} for wp e {λw. Q}.

As we see in Section 4.2.3 these connectives match up with the type formers
for unique references (` 7→ v), products (P ∗ Q), and affine functions (P −∗ Q and
wp e {Φ}).

Iris’s notion of resources is not limited to heap locations, but can be extended
with custom resources. This feature is used by Actris to extend Iris with support for
reasoning about functional correctness of message-passing programs (Section 4.2.4)
by means of the connective (c � −) that asserts exclusive resource ownership of
the channel c. Moreover, Iris has an extensible mechanism of ghost resources, which
we use in this paper to semantically type safe yet not conventionally type-checkable
programs (Section 4.4).

104

4.2. A Tour of Semantic Session Typing

To define recursive types semantically (Section 4.3.3), Iris provides the later modal-
ity (.P) and the guarded fixpoint operator (µx :τ. t), which enable guarded recursive
definitions of Iris propositions and terms. The guarded fixpoint operator requires all
recursive occurrences of the variable x to occur guarded in t, where an occurrence is
guarded if it appears below a . modality. This ensures that t is contractive in the
variable x, which guarantees that a unique fixpoint exists. Guarded fixpoints can be
folded and unfolded using the equality µ(x : τ). t = t[(µ(x : τ). t)/x].

The proposition .P is strictly weaker than P , since P entails .P , while the reverse
does not hold. The . modality can be eliminated by taking a program step, which
is formalised by the Iris proof rule: (.P) ∗ wp e {Φ} −∗ wp e {w. P ∗ Φw} if e /∈ Val
and w /∈ FV (P). This rule indicates that .P can also be read as “P holds after one
more step of computation”, as P is obtained without . modality in the postcondition
of the weakest precondition, denoting that at least one step has been taken.

In this paper we will not further detail the semantics of Iris, but refer the interested
reader to Jung et al. [2018b] for an extensive account of the Iris model and proof rules.

4.2.3 Term Types

The definitions of our semantic type system are shown in Figure 4.1. Types Typek are
indexed by kinds; F for term types, and � for session types. Meta-variables A,B ∈
TypeF are used for term types, S ∈ Type� for session types, and K ∈ Typek for types
of any kind. Term types TypeF are defined as Iris predicates over values, and session
types Type� are defined as dependent separation protocols of Actris (Section 4.2.4).

Type Formers The ground types (unit type 1, Boolean type B, and integer type Z)
are defined through membership of the corresponding set ({()}, B, and Z). The type
former refuniqA for uniquely-owned references, A1 × A2 for products, and A (B
for affine functions nicely demonstrate the advantage of separation logic—since types
are Iris predicates, they implicitly describe which resources are owned. The points-to
connective (w 7→ v) is used to describe that refuniqA consists of the locations w ∈ Loc
that hold a value v ∈ Val for which the resources Av are owned. The separating
conjunction (∗) is used to describe that A1 × A2 consists of tuples (w1, w2), where
the resources A1 w1 and A2 w2 are owned separately. The separating implication (−∗)
and weakest precondition are used to describe that the affine function type A(B
consists of values w that when applied to an argument v consume the resources Av,
and in return, produce the resources B for the result of w v. Note that the weakest
precondition wp (w v) {B} is used so we can talk about the result of w v. We could
not use B (w v) since the term w v is not a value.

We use Iris’s later modality (.) to ensure that type formers are contractive, which
is needed to model equi-recursive types using Iris’s guarded fixpoint operator in Sec-
tion 4.3.3.

Typing Judgement As is common in substructural type systems with operations
that perform strong updates, we use a typing judgement Γ � e : A �Γ′ (defined in
Figure 4.1) with a pre- and post-context Γ,Γ′ ∈ List(String×TypeF). These contexts
describe the types of variables before and after execution of the expression e.

105

4. Semantic Session Typing

Term types:

TypeF , Val→ iProp

any , λw.True
1 , λw. w ∈ {()}
B , λw. w ∈ B
Z , λw. w ∈ Z

refuniqA , λw. ∃v. w ∈ Loc ∗ (w 7→ v) ∗ .(Av)

A1 ×A2 , λw. ∃v1, v2. w = (v1, v2) ∗ .(A1 v1) ∗ .(A2 v2)

A1 +A2 , λw. ∃v. (w = inl v ∗ .(A1 v)) ∨ (w = inr v ∗ .(A2 v))

A(B , λw. ∀v. .(Av) −∗ wp (w v) {B}
chan S , λw. w� S

Session Types:

Type� , iProto

end , end

!A.S , ! (v : Val) 〈v〉{Av}. S
?A.S , ?(v : Val) 〈v〉{Av}. S
⊕{~S} , ! (l : Z) 〈l〉

{
l ∈ dom(~S)

}
. ~S(l)

&{~S} , ?(l : Z) 〈l〉
{
l ∈ dom(~S)

}
. ~S(l)

Judgements:

Γ � σ , ∗(x,A)∈Γ . A(σ(x))

Γ � e : A �Γ′ , ∀σ. (Γ � σ) −∗ wp e[σ] {v. A v ∗ (Γ′ � σ)}

Figure 4.1: Typing judgements and type formers of the semantic type system.

As is standard in logical relations, we use closing substitutions to give a semantics
to typing contexts. Closing substitutions σ ∈ String fin−⇀ Val are finite partial functions
that map the free variables of an expression to corresponding values. Closing substi-
tutions come with a judgement Γ � σ, which expresses that the closing substitution σ
is well-typed in the context Γ. The definition of this judgement employs the iterated
separation conjunction ∗(x,A)∈Γ to ensure that for each variable typing (x,A) in Γ,

there is a corresponding value in the closing substitution σ(x) for which the resources
A(σ(x)) are owned separately.

The typing judgement Γ � e : A �Γ′ is defined in terms of Iris’s weakest precon-
dition. That is, given a closing substitution σ and resources Γ � σ for the pre-context
Γ, the weakest precondition holds for e (under substitution with σ), with the post-
condition stating that the resources Av for the resulting value v are owned separately
from the resources Γ′ � σ for the post-context Γ′.

106

4.2. A Tour of Semantic Session Typing

Selection of Iris’s proof rules for weakest preconditions:

Φv −∗ wp v {Φ} (wp-val)

` 7→ v −∗ wp ! ` {w. (v = w) ∗ (` 7→ v)} (wp-load)
wp e1 {v.wp e2[v/x] {Φ}} −∗ wp (let x := e1 in e2) {Φ} (wp-let)

wp e1 {Φ1} ∗ wp e2 {Φ2} −∗ wp (e1 || e2)

{
w. ∃w1, w2.

(w = (w1, w2)) ∗
Φ1 w1 ∗ Φ2 w2

}
(wp-par)

Selection of semantic typing rules:

Γ � i : Z �Γ Γ, x :A � x : A �Γ, x : any

Γ, x : refuniqA � !x : A �Γ, x : refuniq any

Γ1 � e1 : A �Γ2 Γ2, x :A � e2 : B �Γ3

Γ1 � (let x := e1 in e2) : B �Γ3 \ x

Γ1 � e1 : A1 �Γ′1 Γ2 � e2 : A2 �Γ′2
Γ1 · Γ2 � e1 || e2 : A1 ×A2 �Γ′1 · Γ′2

Figure 4.2: A selection of Iris’s proof rules and semantic typing rules.

Typing Rules Now that the type formers and the typing judgement are in place, we
state the conventional typing rules as lemmas. We prove these lemmas by unfolding
the definition of the semantic typing judgement Γ � e : A �Γ′, and proving the
corresponding proposition in Iris using the rules for weakest preconditions. A selection
of typing rules, along with Iris’s weakest precondition rules used to prove them, is
presented in Figure 4.2.

The typing rule for integer literals follows immediately from wp-val, which states
that the weakest precondition of a value v holds if the postcondition Φv holds. The
typing rule for variables also uses wp-val. Since the pre-context is Γ, x :A, we can
assume ownership of Av for some value v, and should prove a weakest precondition
for v. After using wp-val, we prove the postcondition by giving up Av. Note that the
post-context is Γ, x : any as ownership of A has been moved out. For substructural
type systems this is crucial as in expressions such as let x := y in e, it is generally
not allowed to use y in e as ownership of the type of y has moved to x. This is
formalised by giving the variable y type any in e. The typing rules for load, let, and
parallel composition are proved using the Iris rules wp-load, wp-let, and wp-par.
The rule for parallel composition moreover relies on the property (Γ1 · Γ2 � σ) iff
(Γ1 � σ) ∗ (Γ2 � σ), which allows us to subdivide and recombine ownership of the
pre- and post-contexts between both operands.

Type Safety Type safety means: if [] � e : A �Γ, then e is safe, i.e., e will not
get stuck w.r.t. the language’s operational semantics. For syntactic type systems,
type safety is usually proven via the progress and preservation theorems. For our

107

4. Semantic Session Typing

semantic type system, we get type safety from Iris’s adequacy theorem, which states
that a closed proof of a weakest precondition implies safety [Krebbers et al. 2017a;
Jung et al. 2018b]. Note that our type system is affine (resources are not explicitly
deallocated), and thus the post-context Γ in the type safety statement need not be
empty. We use an affine type system as that allows more practical safe programs to
be typeable.

4.2.4 Session Types

We extend our core type system with the basic session-type formers for sending a
message !A.S, receiving a message ?A.S, the choice primitives for selection ⊕{~S}
and branching &{~S}, and the terminator end. We let ~S : Z fin−⇀ Type� be finite partial

functions from labels to session types, and often write ~S = l1 :S1, . . . ln :Sn. The term
type chan S dictates that a term is a channel that follows the session type S.

Session types are defined in terms of Actris’s dependent separation protocols [Hin-
richsen et al. 2020], which are similar to session types in structure, but can ex-
press functional properties of the transferred data. Dependent separation protocols
prot ∈ iProto are streams of ! ~x : ~τ 〈v〉{P}. prot and ?~x : ~τ 〈v〉{P}. prot constructors
that are either infinite or finite. Here, v is the value that is being sent or received,
P is an Iris proposition denoting the ownership of the resources being transferred
as part of the message, and the logical variables ~x : ~τ bind into v, P , and prot to
constrain the message v and the tail protocol prot . Finite protocols are ultimately
terminated by an end constructor. As an example, the dependent separation protocol
! (` : Loc) (i : Z) 〈`〉{` 7→ i ∗ 10 ≤ i}. ?〈()〉{` 7→ (i+ 1)}. end expresses that an integer
reference whose value is at least 10 is sent, after which the recipient increments it by
one and sends back a unit token () along with the reference ownership.

Actris’s connective c� prot denotes ownership of a channel c with a dependent
separation protocol prot . The Actris proof rules are shown in Figure 4.3. The rule for
new chan () allows ascribing any protocol to a new channel, obtaining ownership of
c� prot and c′� prot for the respective endpoints. Here, prot is the dual of prot , in
which any receive (?) is turned into a send (!), and vice versa. The rule for send c w
requires the head of the protocol to be a send (!), and the value w that is sent to
match up with the ascribed value. Concretely, to send a message w, one needs to give
up ownership of c � ! ~x : ~τ 〈v〉{P}. prot , pick an appropriate instantiation ~t for the
variables ~x :~τ so that w = v[~t/~x], and give up ownership of the associated resources
P [~t/~x]. Subsequently, one gets back ownership of the protocol tail c � prot [~t/~x].
The rule for recv c is essentially dual to the rule for send c w. One needs to give
up ownership of c� ?~x :~τ 〈v〉{P}. prot , and in return acquires the resources P [~y/~x],
the return value w where w = v[~y/~x], and finally the ownership of the protocol tail
prot [~y/~x], where ~y are instances of the variables of the protocol.

Semantics of Session Types The definitions of session types are shown in Fig-
ure 4.1. Since session types (Type�) are defined as dependent separation protocols
iProto, the channel type chan S is defined in terms of Actris’s connective for channel
ownership w � S. The definition of the terminator (end), send (!), and receive (?)

108

4.2. A Tour of Semantic Session Typing

Actris’s proof rules for dependent separation protocols:

wp new chan () {w. ∃c, c′. (w = (c, c′)) ∗
c� prot ∗ c′� prot}

c� ! ~x :~τ 〈v〉{P}. prot ∗ P [~t/~x] −∗ wp send c (v[~t/~x])
{
c� prot [~t/~x]

}
c� ?~x :~τ 〈v〉{P}. prot −∗ wp recv c{w. ∃~y. (w = v[~y/~x]) ∗

c� prot [~y/~x] ∗ P [~y/~x]}

Semantic typing rules for channels:

Γ � new chan () : chan S × chan S �Γ

Γ � e : A �Γ′, x : chan (!A.S)

Γ � send x e : 1 �Γ′, x : chan S
Γ, x : chan (?A.S) � recv x : A �Γ, x : chan S

1 ≤ i ≤ n
Γ, x : chan (⊕{l1 : S1, . . . , ln : Sn}) � select x li : 1 �Γ, x : chan Si

Γ, x : chan S1 � e1 : A �Γ′ · · · Γ, x : chan Sn � en : A �Γ′

Γ, x : chan (&{l1 : S1, . . . , ln : Sn}) � branch x with l1 ⇒ e1 | . . . | ln ⇒ en : A �Γ′

Figure 4.3: Actris’s proof rules for dependent separation protocols and semantic
typing rules for channels.

follow from their dependent separation protocol counterparts. For example !A.S is
defined as ! (v : Val) 〈v〉{A v}. S. It says that a value v is sent along with ownership
of the type predicate A v.

While the choice types ⊕{~S} and &{~S} do not have a direct counterpart in Actris,

they can be encoded. For example, ⊕{~S} is defined as ! (l : Z) 〈l〉
{
l ∈ dom(~S)

}
. ~S(l).

It expresses that a valid label l ∈ dom(~S) (modelled as an integer) is sent. This
definition makes use of the fact that dependent separation protocols are dependent,
as the protocol tail ~S(l) depends on the label l that is sent.

Duality The duality S of session types S is inherited from Actris. We thus obtain
the usual duality laws (on the left) from the Actris duality laws (on the right):

end = end end = end

!A.S = ?A.S ! ~x :~τ 〈v〉{P}. prot = ?~x :~τ 〈v〉{P}. prot

?A.S = !A.S ?~x :~τ 〈v〉{P}. prot = ! ~x :~τ 〈v〉{P}. prot

Similarly, our semantic definition of the branch (&) and select (⊕) operators in terms
of Actris’s send (!) and receive (?) protocols, enables us to use the Actris duality laws

109

4. Semantic Session Typing

to prove that the dual of a select is a branch, and vice versa:

⊕{l1 : S1, . . . , ln : Sn} = &{l1 : S1, . . . , ln : Sn}

&{l1 : S1, . . . , ln : Sn} = ⊕ {l1 : S1, . . . , ln : Sn}

Session Typing Rules The session typing rules are shown in Figure 4.3. Since
the channel operations perform strong updates, the typing rules require channels
to be variables so they can update the context. Given the close similarity between
Actris and session typing, the typing rules follow from the Actris rules up to minor
separation logic reasoning.

The rules for select and branch demonstrate the extensibility of our approach.
Our language does not have these operations as primitives, but they can be defined
as macros:

select x l , send x l

branch x with

l1 ⇒ e1 | . . . |
ln ⇒ en

, let i := recv x in
if i = l1 then e1 else · · ·
if i = ln then en else () ()

The typing rule for select follows immediately from the proof rule for send. Simi-
larly, the typing rule for branch follows from the proof rule for recv, but additionally
requires some reasoning in Iris about the sequence of if-expressions. Note that the
stuck expression () () is used in case no matching branch for the label li has been
found. While this stuck expression is obviously not safe, it is never executed because
of the condition l ∈ dom(~S) in the definition of select (⊕) and branch (&).

Type Safety Since the extension with session types did not change the definition
of the semantic typing judgement, but merely added new type formers and typing
rules, the type safety result from Section 4.2.3 remains applicable without change.

4.3 Extending the Type System

We demonstrate the extensibility of our approach to session types by adding term-
and session-level subtyping (Section 4.3.1 and Section 4.3.7), copyable types (Sec-
tion 4.3.2), term- and session-level equi-recursive types (Section 4.3.3), term- and
session-level polymorphism (Section 4.3.4 and Section 4.3.5), and locks/mutexes (Sec-
tion 4.3.6). While we only present a small representative selection of rules associated
with each extension, all rules can be found in Section 4.A.

4.3.1 Term-Level Subtyping

Subtyping A <: B indicates that any member of type A is also a member of type B.
In a semantic type system, subtyping is defined in terms of the separating implication:

A <: B , ∀v. A v −∗ B v

Γ <:ctx Γ′ , ∀σ. (Γ � σ) −∗ (Γ′ � σ)

110

4.3. Extending the Type System

The definition states that A is a subtype of B if for any value v, we can give up
resources A v to obtain resources B v. The context subtyping relation Γ <:ctx Γ′

is defined similarly. It is essentially the pointwise lifting of the subtyping relation,
applied to each type in the contexts Γ and Γ′. It expresses that when we hold resources
Γ � σ for the context Γ, then we can give those up to obtain the resources Γ′ � σ for
Γ′. With these definitions at hand, we prove the usual subsumption rule as a lemma:

Γ1 <:ctx Γ′1 Γ′1 � e : A �Γ′2 A <: B Γ′2 <:ctx Γ2

Γ1 � e : B �Γ2

The proof of the above lemma makes use of the Iris proof rule (∀v. Φ1 v −∗ Φ2 v) −∗
wp e {Φ1} −∗ wp e {Φ2}, which states that separating implications can be applied in
the postconditions of weakest preconditions.

In addition to the subsumption rule, we prove the conventional subtyping rules as
lemmas. For example:

A <: any
A <: B B <: C

A <: C

C <: A B <: D

A(B <: C (D

A <: C B <: D

A×B <: C ×D

These lemmas are proved by unfolding the definition of the subtyping relation, and
involve some trivial reasoning using separating implication in Iris. We will see more
interesting subtyping rules in section 4.3.2 and section 4.3.7.

4.3.2 Copyable Types

Session-type systems are substructural, in the sense that some types are inhabited by
values that can be used at most once. This becomes evident in the variable and load
rules from section 4.2.3, which move out ownership by turning the element type into
the any type. While moving out ownership is necessary for soundness in general, this
is too restrictive for types that do not assert ownership of any resources, such as B,
Z, or Z ∗ B. These types need not be moved out as their inhabitants can be used
multiple times. We therefore extend the type system with a notion of copyable types.
Concretely, we define a type former copy and a property copyable:

copyA , λw. �(Aw)

copyableA , A <: copyA

The type copyA describes the values of type A that can be freely duplicated (used
an arbitrary number of times). We thus have A <: copyA for ground types A ∈
{1,B,Z}, but not for types like A ∈

{
refuniqB, chan S

}
that assert ownership.

Conversely, we have copyA <: A for any type A, i.e., copyA is always a subtype of A.
A type is copyable (written copyableA) if all of its values can be freely duplicated,
i.e., when A is a subtype of copyA. Ground types (1, B, Z) are copyable, and
copyability is closed under products and sums.

An example of a type where some, but not all, values can be duplicated is the type
A(B of affine functions: a function can only be duplicated if it has not captured
ownership of exclusive resources from the context (through a free variable that has

111

4. Semantic Session Typing

a non-copyable type). Hence, we define A → B , copy (A (B) as the type of
unrestricted functions, that can be applied any number of times.

The type former copy is defined using the persistence modality (�) of Iris, where

�P means that the proposition P holds without ownership of (exclusively-owned)
resources. Propositions that do not assert ownership of (exclusively-owned) resources
are called persistent. In particular, �P is always persistent, allowing the proposition
P to be freely duplicated using the rule �P −∗ (�P ∗P). This allows copyable types
occurring in the context to be duplicated:

x :A <:ctx x :A, x :A if copyableA

Our approach of using Iris’s notion of persistence to model copyability of types is
similar to the approach used in RustBelt [Jung et al. 2018a, 2021] to model the
substructural features of Rust. However, copyability in RustBelt is defined directly
in Iris, and not reflected into the type system by means of a copy type former and a
subtyping rule.

4.3.3 Equi-Recursive Term and Session Types

We extend our type system with equi-recursive types using Iris’s fixpoint operator.
Recall from Section 4.2.2 that Iris’s fixpoint operator requires that recursive def-
initions are contractive, meaning that recursive occurrences appear below a later
modality (.). A recursive occurrence is also considered guarded when it appears in:

• The postcondition Φ of an Iris weakest precondition wp e {Φ} with e /∈ Val.

• The tail prot of the dependent separation protocols ! ~x : ~τ 〈v〉{P}. prot and
?~x :~τ 〈v〉{P}. prot .

• The protocol prot of the Actris connective c� prot for channel ownership.

These occurences are guarded because the corresponding constructs contain . modal-
ities internally.

We lift the guarded recursion operator of Iris into a kinded operator for equi-
recursion in the type system:

µ (X : k). K , µ(X : Typek). K (K is contractive in X)

From Iris’s proof rule for fixpoints, we get that this is indeed a fixpoint, i.e., we have
µ (X : k). K = K[µ (X : k). K/X].

We put later modalities in the definitions of type formers to ensure that they
are contractive in all arguments. This allows construction of recursive term and
session types, including examples from the session type literature [Gay et al. 2020],
such as µ (X : �). !(chan X). X, where the recursion variable X occurs in the type of
messages.

It is worth noting that most existing logical relation developments in Iris model
iso-recursive types. Hence, instead of putting . modalities in the definitions of type
formers, they put a . modality in the definition of the recursion operator. This avoids
the contractive side-condition, but requires explicit fold and unfold operations in the
language (to take an operational step to remove the . modality).

112

4.3. Extending the Type System

4.3.4 Polymorphism in Term Types

We extend the type system with kinded parametric polymorphism, by introducing
universal types ∀(X : k). A and existential types ∃(X : k). A, which are polymorphic
in a variable X of kind k. The kind k indicates whether the type is polymorphic
over term types (kind F) or session types (kind �). Using polymorphism in term
types, we can write types such as ∀(X :F). X → X (for describing the polymorphic
identity function). Using polymorphism in session types, we can write types such as
∀(X : �). chan (!Z.X) (chan X (for describing a function that reads an integer
from a channel with an arbitrary tail X). Universal and existential types are defined
as follows:

∀(X : k). A , λw. ∀(X : Typek).wp (w ()) {A}
∃(X : k). A , λw. ∃(X : Typek). .(Aw)

As is custom for logical relations in Iris, these types are defined in the style of
parametricity—they use Iris-level universal and existential quantifiers over seman-
tic types X : Typek. This is possible because Iris supports higher-order impredicative
quantification (i.e., quantification over Iris predicates and Actris protocols).

Note that universal types are inhabited by values w that produce a value of the
instantiated type A when applied to the unit value (), as indicated by the weakest
precondition in the definition. In other words, the inhabitants of universal types
are thunks. This is since we consider a type system with explicit type abstraction
and type instantiation constructs. Since the base language is untyped, we use term-
level abstractions to indicate type abstraction and instantiation: type abstraction is
written λ . e and type instantiation is written w () when w is a type abstraction. By
using explicit thunks, we avoid having to impose an ML-like value restriction [Wright
1995] to ensure type safety in the presence of imperative side-effects. The typing rules
for term-level polymorphism are standard and can be found in Section 4.A.

4.3.5 Polymorphism in Session Types

A more interesting extension is polymorphism in session types [Gay 2008]. An exam-
ple is the following type, which describes the interaction with a polymorphic compu-
tation service:

compute type , µ (rec : �). ⊕ {cont : !(X:F) (1(X). ?X. rec, stop : end}

The service can be used by sending computation requests 1(X, and then awaiting
their results X. Different types can be picked for the type variable X at each recursive
iteration.

To extend our type system with polymorphism in session types, we redefine the
send and receive session types to include binders ~X for type variables:

! ~X:~k A.S , ! (~X : ~Typek)(v : Val) 〈v〉{Av}. S
? ~X:~k A.S , ?(~X : ~Typek)(v : Val) 〈v〉{Av}. S

113

4. Semantic Session Typing

The binders ~X are kinded so that we can quantify over both term types and session
types.

This definition relies on the fact that binders ~x :~τ in Actris’s dependent separation
protocols ! ~x :~τ 〈v〉{P}. prot and ?~x :~τ 〈v〉{P}. prot are higher-order and impredicative
(i.e., they allow quantification over Iris predicates and Actris protocols). The typing
rules are extended to allow instantiation of binders when sending a message, and
elimination of type variables when receiving a message. Concretely, the rule for
channel creation remains unchanged, while the rules for send and receive become:

Γ � e : A[~K/ ~X] �Γ′, x : chan (! ~X:~k A.S)

Γ � send x e : 1 �Γ′, x : chan S[~K/ ~X]

Γ, x : chan S, y :A � e : B �Γ′ ~X /∈ FV (Γ,Γ′, B)

Γ, x : chan (? ~X:~k A.S) � let y := recv x in e : B �Γ′ \ {y}

The second rule requires the result y of recv to be let-bound to ensure that the type
variables ~X cannot escape into the context Γ′ or the type B.

With this rule, we can type check the following function that follows the compu-
tation service type compute type:

compute service , rec go c :=
branch c with
left ⇒ let f := recv c in send (f ()) ; go c
| right⇒ ()
end

We can prove the typing judgement Γ � compute service : chan compute type →
() �Γ using only the typing rules of our semantic type system. In section 4.4.2 we
consider a client that uses this service, which cannot itself be type checked using our
typing rules but rather requires a manual proof of its typing judgement.

4.3.6 Locks and Mutexes

The substructural nature of channels (of type chan S) ensure that they can be used
by at most one thread at the same time. Balzer and Pfenning [2017] proposed a more
liberal extension of session types that allows channels to be shared between multiple
threads via locks. We show that we can achieve a similar kind of sharing by extending
our type system with a type former mutexA of mutexes (i.e., lock-protected values
of type A) inspired by Rust’s Mutex library. For example, mutexes make it possible
to share the channel to the computation service compute type from Section 4.3.5
between multiple clients—they can acquire the mutex (mutex compute type), send
any number of computation requests, retrieve the corresponding results, and then
release the mutex.

The mutex type former is copyable, and comes with operations newmutex to al-
locate a mutex, acquiremutex to acquire a mutex by blocking until no other thread
holds it, and releasemutex to release the mutex. The typing rules are shown in Fig-
ure 4.4 and include the type former mutex, which signifies that the mutex is acquired.

114

4.3. Extending the Type System

Iris’s proof rules for locks:

is lock lk R −∗ �(is lock lk R)

R −∗ wp new lock () {lk . is lock lk R}
is lock lk R −∗ wp acquire lk {R}

is lock lk R ∗R −∗ wp release lk {True}

Semantic typing rules for mutexes:

copyable (mutexA)

Γ � newmutex : A→ mutexA �Γ

Γ, x : mutexA � acquiremutex x : A �Γ, x : mutexA

Γ � e : A �Γ′, x : mutexA

Γ � releasemutex x e : 1 �Γ′, x : mutexA

Figure 4.4: Iris’s proof rules for locks and semantic typing rules for mutexes.

To extend our type system with mutexes we make use of the locks library that is
available in Iris. This library consists of operations newlock, acquire, and release,
which are similar to the mutex operations, but do not protect a value. The mutex
operations are defined in terms of locks as follows:

newmutex , λy. (new lock (), ref y)

acquiremutex , λx. acquire (fst x); ! (snd x)

releasemutex , λx y. (snd x)← y; release (fst x)

That is, newmutex creates a lock alongside a boxed value. The value can then be
acquired with acquiremutex, which first acquires the lock. Finally, releasemutex
moves the value back into the box, and releases the lock.

The Iris rules for locks are shown in Figure 4.4 and make use of the representation
predicate is lock lk R, which expresses that a lock lk guards the resources R. When
creating a new lock one has to give up ownership of R, and in turn, obtains the
representation predicate is lock lk R. The representation is persistent, so it can be
freely duplicated. When entering a critical section using acquire lk , a thread gets
exclusive ownership of R, which has to be given up when releasing the lock using
release lk . Using the lock representation predicate, we define type formers for
mutexes:

mutexA , λw. ∃lk , `. (w = (lk , `)) ∗ is lock lk (∃v. (` 7→ v) ∗ .(Av))

mutexA , λw. ∃lk , `. (w = (lk , `)) ∗ is lock lk (∃v. (` 7→ v) ∗ .(Av)) ∗ (` 7→ −)

115

4. Semantic Session Typing

The mutex type former states that its values are pairs of locks and boxed values.
The mutex type former additionally asserts ownership of the reference, implying that
the lock has been acquired. The typing rules for mutexes as shown in Figure 4.4 are
proven as lemmas.

4.3.7 Session-Level Subtyping

Session-level subtyping S <: T , originally presented by Gay and Hole [2005], relates
session subtypes S with session supertypes T , that can be used in place of the subtype,
captured by monotonicity with the subtyping of the channel type:

S <: T

chan S <: chan T

Subtyping in session types allows sending supertypes and receiving subtypes, as well
as increasing and reducing the range of choices for branchings and selections, respec-
tively:

A2 <: A1 S1 <: S2

!A1. S1 <: !A2. S2

A1 <: A2 S1 <: S2

?A1. S1 <: ?A2. S2

~S2 ⊆ ~S1

⊕{~S1} <: ⊕{~S2}

~S1 ⊆ ~S2

&{~S1} <: &{~S2}

This is essential for program reuse, e.g., any program that handles more choices than
indicated by a branch type should be able to accept a channel with that branch type.

In asynchronous session types, one can further extend subtyping with a “swap-
ping” rule ?A1. !A2. S <: !A2. ?A1. S that allows performing sends (!) ahead of re-
ceives (?), and similar rules that allow performing selects (⊕) ahead of receives (?),
sends (!) ahead of branches (&), and selects (⊕) ahead of branches (&) [Mostrous et al.
2009]2. For example, using swapping, a client of the computation service from Sec-
tion 4.3.5, with type compute type can swap the selects and sends ahead of receives,
to send multiple computation requests at once, and only then await the computed
results.

To extend our semantic session types with session subtyping, we make use of
Actris’s notion of subprotocols [Hinrichsen et al. 2021a], for which the rules are shown
in Figure 4.5. The first four rules mimic the behaviour of session subtyping in how it is
possible to send more and receive less, while accounting for the protocol-level binders
of dependent separation protocols. In particular, we can (1) move out binders and
propositions of right-hand side sending protocols (v-send-out) and (2) left-hand side
receiving protocols (v-recv-out), and (3) move in binders and propositions of right-
hand side sending protocols (v-send-in) and (4) left-hand side receiving protocols
(v-recv-in). Rule v-swap accounts for the swapping of sends and receives that are
independent of each other, as guaranteed by the omission of binders in the rule. If
binders are present, the first four rules should be used first. Rules v-send-mono and
v-recv-mono account for the monotonicity of the subprotocol relation in the tails,

2Discrepancies in the direction between the swapping rules of Mostrous et al. [2009] and us will
be discussed in Section 4.6.

116

4.3. Extending the Type System

Actris’s proof rules for subprotocols:(
∀~x :~τ . P −∗

(
prot1 v ! 〈v〉. prot2

))
−∗ (prot1 v ! ~x :~τ 〈v〉{P}. prot2) (v-send-out)(

∀~x :~τ . P −∗
(
?〈v〉. prot1 v prot2

))
−∗ (?~x :~τ 〈v〉{P}. prot1 v prot2) (v-recv-out)

P [~t/~x] −∗ (! ~x :~τ 〈v〉{P}. prot v ! 〈v[~t/~x]〉. prot [~t/~x]) (v-send-in)

P [~t/~x] −∗ (?〈v[~t/~x]〉. prot [~t/~x] v ?~x :~τ 〈v〉{P}. prot) (v-recv-in)

?〈v1〉{P1}. ! 〈v2〉{P2}. prot v ! 〈v2〉{P2}. ?〈v1〉{P1}. prot (v-swap)

.(prot1 v prot2) −∗ (! 〈v〉{P}. prot1 v ! 〈v〉{P}. prot2) (v-send-mono)

.(prot1 v prot2) −∗ (?〈v〉{P}. prot1 v ?〈v〉{P}. prot2) (v-recv-mono)

(prot1 v prot2) −∗ (c� prot1) −∗ (c� prot2) (v-chan-mono)

Semantic subtyping rules for session polymorphism:

S1 <: !A.S2

S1 <: !(~X:~k)A.S2

?A.S1 <: S2

?(~X:~k)A.S1 <: S2

!(~X:~k)A.S <: !A[~K/ ~X]. S[~K/ ~X] ?A[~K/ ~X]. S[~K/ ~X] <: ?(~X:~k)A.S

Figure 4.5: A selection of the Actris’s proof rules for subprotocols and semantic
session subtyping rules. v-send-out and v-recv-out only hold if τ ∈ ~τ is inhabited

and rule v-chan-mono states that Actris’s connective for channel ownership is closed
under the subprotocol relation. The subprotocol relation is reflexive and transitive.

With Actris’s subprotocol relation at hand, we define the semantic subtyping
relation for session types as follows:

S <: T , S v T

We then prove the conventional subtyping rules for asynchronous session types as
lemmas using the rules in Figure 4.5 for Actris’s subprotocol relation. These subtyping
rules include, but are not limited to, contra- and covariance of the type A of the send
!A.S and receive ?A.S session types respectively, the various forms of swapping as
described in the beginning of this section, and the rules for reducing and increasing the
range of choices for selecting and branching protocols as also shown in the beginning
of this section.

As a new feature, which up to our knowledge is not present in existing session
type systems, we prove the subtyping rules for polymorphic session types as shown
in Figure 4.5. For sending session types, we can instantiate the polymorphic types of
subtypes, and generalise over the polymorphic types for supertypes. Conversely, for
receiving session types, we can instantiate the polymorphic types of supertypes, and
generalise over the polymorphic types for subtypes.

Subtyping for polymorphic session types is useful to describe the interaction be-
tween generic services and concrete clients. For example, consider a mapping service

117

4. Semantic Session Typing

to which one can send a function A(B, a value A, and get back the mapped result
B. The most generic session type for interacting with such a service would be the
following:

!(X,Y :F) (X (Y). !X. ?Y. end

Now assume that we have type checked a concrete client with the following session
type:

!(Z(B). !Z. ?B. end

While this concrete session type is not compatible with the one expected by the
service, we can use the subtyping relation to weaken the generic type into the concrete
one:

!(X,Y :F) (X (Y). !X. ?Y. end v !(Z(B). !Z. ?B. end

The judgement follows from !(~X:~k)A.S <: !A[~K/ ~X]. S[~K/ ~X]. Conversely, one could

allocate the types from the perspective of the concrete client, and then weaken the
service type into the generic type, by generalising over the received types:

?(Z(B). ?Z. !B. end v ?(X,Y :F) (X (Y). ?X. !Y. end

This subtyping judgement follows from the rule for receive ?A[~K/ ~X]. S[~K/ ~X] <:
?(~X:~k)A.S.

4.4 Manual Typing Proofs

We demonstrate how safe programs that are not typeable using the existing typing
rules can be assigned a typing judgement via a manual proof in Iris/Actris. We
call such proofs manual typing proofs. As advocated by Jung et al. [2018a, 2021],
such proofs are useful since typing judgements, regardless of whether they have been
derived manually or by using our typing rules, are interchangeable. While Jung et al.
use such proofs to verify low-level concurrent libraries, we use them to verify binary
message-passing programs where the user of one endpoint is verified using existing
typing rules, and the other via a manual typing proof.

We first provide an intuition for the manual typing proof approach by proving
the typing judgement of the parallel receiving program from the introduction (Sec-
tion 4.4.1), and then show a more realistic example by proving the typing judgement
of a parallel client of the computation service from Section 4.3.5 that uses a produc-
er/consumer pattern (Section 4.4.2).

4.4.1 Receiving in Parallel

Consider the example from Section 4.1 (where the locks have been made explicit):

threadprog ,
λc lk . acquire lk ;

let x := recv c in
release lk ;
x

lockprog ,
λc. let lk := new lock () in

(threadprog c lk || threadprog c lk)

118

4.4. Manual Typing Proofs

We want to prove the following typing judgement:

Γ � lockprog : chan (?Z. ?Z. end)((Z× Z) �Γ

This typing judgement is not derivable from the typing rules we presented so far,
even with mutexes instead of plain locks, as the channel type changes each time the
lock/mutex is acquired and released. However, we can unfold the definition of the
semantic typing judgement and types, which gives us the following proof obligation
in Iris/Actris:

(c� ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end) −∗

wp lockprog c

{
v. ∃v1, v2.

(v = (v1, v2)) ∗
.(v1 ∈ Z) ∗ .(v2 ∈ Z)

}
The proof of above obligation is carried out using Iris’s support for fractional permis-
sions q

γ
where q ∈ (0, 1]Q and γ is an identifier. The permission reflects how much

of the channel protocol its owner is allowed to resolve, enforced by the following lock
invariant:

chaninv c ,
(c� ?(v1 : Val) 〈v1〉{v1 ∈ Z}. ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end) ∨ (i)

(c� ?(v2 : Val) 〈v2〉{v2 ∈ Z}. end ∗ 1/2
γ
) ∨ (ii)

(c� end ∗ 1
γ
) (iii)

The invariant describes that the channel is in one of three states: (i) no values
have been received yet, (ii) one value has been received, or (iii) all values have been
received. State (ii) and (iii) assert that the invariant (not the thread) has half and
full ownership of the fractional permission respectively.

The proof is carried out by allocating a full fractional permission 1
γ

(with a
fresh identifier γ), after which the lock predicate is lock lk (chaninv c) is allocated
by giving up ownership of the channel c, where chaninv c is initially in state (i). The

fractional permission is then split into two halves 1/2
γ
, which are each delegated to a

thread, along with the persistent lock predicate is lock lk (chaninv c). Both threads
have the same proof obligation:

(is lock lk (chaninv c) ∗ 1/2
γ
) −∗ wp threadprog c lk {v. v ∈ Z}

First, the lock invariant is obtained by acquiring the lock. The channel can then
either be in state (i) or (ii), as having half of the fractional permission excludes the
possibility of the full fraction being in the lock (and thereby state (iii)).

If the invariant is in state (i), the thread takes a step of the protocol and surrenders

its fractional permission 1/2
γ

leaving the invariant in state (ii); if the invariant is in
state (ii) a similar step is taken leaving the invariant with the full fractional permission

1
γ

in state (iii).

4.4.2 A Parallel Computation Client

In section 4.3.5 we considered the session type compute type for a client of a poly-
morphic recursive computation service. We now consider a client compute client,

119

4. Semantic Session Typing

compute client , λl c.
let n := llength l in
let ctr := ref 0 in
let l′ := lnil () in
let lk := new lock () in
(produce l ctr lk c ||
consume l′ n ctr lk c);
l′

produce ,
rec go l ctr lk c :=
if lisnil l then
acquire lk ;
select c stop;

release lk
else

acquire lk ;
select c cont;
send c (lpop l);
ctr ← ! ctr + 1

release lk ;
go l ctr lk c

consume ,
rec go l n ctr lk c :=
if n = 0 then () else
acquire lk ;
if ! ctr = 0 then
release lk ;
go l n ctr lk c

else

let x := recv c in
ctr ← ! ctr − 1;
release lk ;
go l (n− 1) ctr lk c;
lcons x l

Figure 4.6: A producer-consumer client for the computation service. (The operations
on lists llength, lnil, lisnil, and lpop, are standard and their code have thus
been elided).

shown in Figure 4.6, which interacts with the service by sending a list of computa-
tion requests and receiving their results in parallel, similar to the producer-consumer
pattern.3 We want to prove:

Γ � compute client : list (1(A)(chan compute type(list A �Γ

where list A , µrec. refuniq (1 + (A× rec)).
The client compute client operates on a channel endpoint c, where the compu-

tation service has the other endpoint. The client creates a shared counter ctr to keep
track of the number of requests that are being processed, a linked list l′ for the re-
sults, and a lock lk . It runs the producer produce and consumer consume in parallel,
which both race for the lock lk to access the channel c and counter ctr . The producer
processes the input list l one-by-one by sending each computation in l on the channel
c, and increasing the shared counter ctr thereafter. The consumer consume adds the
results one-by-one to the list l′ by receiving them on the channel c, and decreasing
the shared counter ctr thereafter. When both the producer and consumer terminate,
the client returns the list l′ that then contains the results.

The type system cannot type check compute client, as (1) its safety depends
on the length of the list, which is not available from the type, and (2) the channel
c is shared and the type changes between each concurrent access. To prove that
compute client is semantically typed, we unfold its typing judgement, and resolve
each step of the program in sequence, by applying the related weakest precondition

3For simplicity, our producer and consumer just iterate through a list, whereas in reality they
would perform some computations so there is a point in having the producer and consumer operate
in parallel.

120

4.4. Manual Typing Proofs

rules. We first use the weakest precondition rule for llength:

list A l −∗ wp llength l
{
n. n = |~v| ∗ l list7→A ~v

}
This rule converts the type predicate list A of the linked list l into the separation-
logic list representation predicate l

list7→A ~v, which additionally makes the contents ~v of
the linked list l explicit. This predicate is defined as follows:

l
list7→A ~v ,

{
l 7→ inl () if ~v = []

∃l2. l 7→ inr (v1, l2) ∗A v1 ∗ l2
list7→A ~v2 if ~v = [v1] · ~v2

The remainder of the proof is similar to the proof of the parallel receive in Sec-
tion 4.4.1—we establish a lock invariant chaninvpc ctr c A to share the counter ctr
and the channel c between the producer and consumer, and use a fractional permission
q
γ

to determine the state of the shared channel c:

chaninvpc ctr c A , ∃n. ctr 7→ n ∗
(c� ((?A)n · compute type) ∨ (i)

(c� ((?A)n · end) ∗ 1
γ
)) (ii)

The lock invariant states that the session type of the channel starts with a sequence
of receive actions (?A)n, where n is the value of the shared counter ctr . Here, the
notation Sn denotes S appended to itself n times (the append operation · is inherited
from Actris). The invariant expresses that either (i) the channel is still open, which
permits unfolding the recursive definition to send additional requests, or (ii) the
channel terminates with end, after the n receive steps have been resolved. State (ii)

requires the full fractional permission 1
γ
, which must be released before closing the

channel.
The proof is carried out by allocating the fractional permission 1

γ
(with a fresh

identifier γ), after which the weakest precondition rules for parallel composition (see
Figure 4.2), the producer produce, and consumer consume are used:

is lock lk (chaninvpc ctr c A) ∗ 1
γ ∗ l list7→(1(A) ~v −∗

wp produce l ctr lk c
{
l

list7→(1(A) []
}

is lock lk (chaninvpc ctr c A) ∗ l list7→A [] −∗
wp consume l n ctr lk c

{
∃~w. |~w| = n ∗ l list7→A ~w

}
The proof of produce proceeds as follows. Owning 1

γ
means the lock invariant

is in state (i). Therefore, after unfolding the recursive tail and instantiating the
polymorphic binder in the type of c, we have:

c� (?A)n · ⊕
{
cont : !(1(A). ?A. compute type

stop : end

}
The select and send actions can then be swapped ahead of the receives, resulting in:

c� ⊕
{
cont : !(1(A). (?A)n+1 · compute type

stop : (?A)n · end

}
121

4. Semantic Session Typing

If the list is non-empty, we resolve a computation step (by selecting the cont branch
and sending a computation with type 1(A) resulting in c� (?A)n+1·compute type.
After incrementing the shared counter ctr , we reestablish the lock invariant in state
(i). If the list is empty, we close the channel (by selecting the stop branch), resulting
in c � (?A)n · end. We reestablish the lock invariant in state (ii) by giving up the

fractional permission 1
γ
.

The proof of consume proceeds as follows. We only perform a receive operation
when the shared counter ctr is positive, which means we have c� ?A. (?A)n−1 · S.
Here, S is compute type or end, depending on whether the lock invariant is in state
(i) or (ii), respectively. After the receive operation we have c� (?A)n−1 ·S, so after
decrementing the shared counter ctr we can reestablish the lock invariant.

To finalise the proof of the client compute client, we weaken l
list7→A ~w returned

by consume to list A l by forgetting about the contents ~w of the linked list l.

4.5 Mechanisation in Coq

In this paper, we have used what is often called the “foundational approach” to
semantic type safety [Appel and McAllester 2001; Ahmed 2004; Ahmed et al. 2010].
That means that contrary to conventional logical relation developments, types are
not defined syntactically, and then given a semantic interpretation. Instead, types
are defined as combinators in terms of their semantic interpretation. This approach
gives rise to an “open” system that can easily be extended with new type formers,
and is thus particularly suitable for mechanisation in a proof assistant like Coq.
Furthermore, as we will show in this section, the foundational approach makes it
possible to reuse Coq’s variables to model type-level binding, avoiding boilerplate
that would be necessary with a first-order representation of variable binding.

Our mechanisation is built on top of the mechanisation of Iris and Actris in Coq,
which provides a number of noteworthy advantages. First, we can reuse their libraries
for various programming constructs, such as locks (from Iris) and channels (from
Actris). Second, we avoid reasoning about explicit resources in Coq by making use
of the MoSeL framework (formerly, Iris Proof Mode), which provides tactics tailored
for reasoning about the connectives of separation logic, and hides unnecessary details
related to the embedding of separation logic in Coq [Krebbers et al. 2017b, 2018].

Typing Judgments Term and session types are represented as a dependent type
indexed by a kind:4

Inductive kind := tty_kind | sty_kind. (* F or � *)

Inductive lty Σ : kind → Type :=

| Ltty : (val → iProp Σ) → lty Σ tty_kind

| Lsty : iProto Σ → lty Σ sty_kind.

Notation ltty Σ := (lty Σ tty_kind).

Notation lsty Σ := (lty Σ sty_kind).

4As is common in Iris, all definitions are parameterised by a Σ, which describes the resources
that are available. For the purpose of this paper, this technicality can be ignored.

122

4.5. Mechanisation in Coq

Typing contexts are represented as association lists:

Inductive ctx_item Σ := CtxItem {

ctx_item_name : string;

ctx_item_type : ltty Σ }.

Notation ctx Σ := (list (ctx_item Σ)).

The semantic term typing judgement is defined as:

(* ltty_car: ltty Σ → (val → iProp Σ) is the

inverse of Ltty *)

Definition ltyped (Γ1 Γ2 : ctx Σ)
(e : expr) (A : ltty Σ) : iProp Σ :=

� ∀ vs, ctx_ltyped vs Γ1 -∗
WP subst_map vs e {{ v, ltty_car A v ∗ ctx_ltyped vs Γ2 }}.

Notation "Γ1 � e : A �Γ2" :=

(ltyped Γ1 Γ2 e A) : bi_scope.

Notation "Γ1 � e : A �Γ2" :=

(` ltyped Γ1 Γ2 e A) : type_scope.

The typing judgement is defined for the deeply-embedded expressions expr of the
(untyped) language HeapLang, which is the default language shipped with Iris, and
is extended by the Actris framework with connectives for message passing. HeapLang
use strings for variables, and hence our typing contexts ctx do that too. Compared
to e.g., De Bruijn indices or locally nameless, the use of strings makes it possible to
write programs in a human-readable way.5

The typing judgement is identical to the definition in Section 4.2.3, but is defined
as an internal notion in Iris, i.e., it is an Iris proposition iProp instead of a Coq
proposition Prop. This provides some flexibility in manual typing proofs. For example,
it makes it possible to prove typing judgements using Löb induction, without having
to unfold their definition. To ensure that the typing judgement can be used as an
ordinary proposition of higher-logic in Iris, it contains the plainly modality (�), which
ensures that it does not capture any separation logic resources.6 We define two
notations so the typing judgement can be used internally and externally. The second
notation uses the validity predicate of Iris (`), which turns an iProp into a Prop.

Typing Lemmas As an example of how a semantic typing rule looks like in Coq,
consider the lemma corresponding to the typing rule for let-expressions:

Lemma ltyped_let Γ1 Γ2 Γ3 x e1 e2 A1 A2 :

(Γ1 � e1 : A1 �Γ2) -∗
(ctx_cons x A1 Γ2 � e2: A2 �Γ3) -∗
(Γ1 � (let: x := e1 in e2) : A2 �ctx_filter_eq x Γ2 ++ ctx_filter_ne x Γ3).

The typing rule of let shows the handling of shadowing of variables: ctx_cons x A1 Γ2

removes all bindings of x from Γ2 before adding the new binding, and ctx_filter_eq x

Γ2 makes sure that potentially overshadowed variables are preserved. Dealing with

5Since HeapLang’s operational semantics is defined on closed terms, the use of strings does not
cause issues with variable capture. See also [Pierce et al. 2020, Section STLC] for a discussion on
the use of strings for variables.

6The plainly modality (�) is like the persistent modality (�), but additionally makes sure no
persistent resources are captured.

123

4. Semantic Session Typing

shadowing in the proof is trivial due to some general-purpose lemmas for Γ � σ
(ctx_ltyped Γ vs in Coq). The proof of the typing rule is 9 lines of Coq code.

The term type for kinded universal types is defined as:

Definition lty_forall {k}

(C : lty Σ k → ltty Σ) : ltty Σ :=

Ltty (λ w, ∀ X, WP w #() {{ ltty_car (C X) }}).

Notation "∀ X, C" := (lty_forall (λ X, C)): lty_scope.

Lemma ltyped_tlam Γ1 Γ2 Γ’ e k (C : lty Σ k → ltty Σ) :

(∀ K, Γ1 � e: C K �[]) -∗
(Γ1 ++ Γ2 � (λ: <>, e) : (∀ X, C X) �Γ2).

Lemma ltyped_tapp Γ Γ2 e k (C : lty Σ k → ltty Σ) K :

(Γ � e : (∀ X, C X) �Γ2) -∗
(Γ � e #() : C K �Γ2).

The universal type shows how the semantic approach allows binders to be modelled
using Coq’s binders. The argument C of lty_forall is a Coq function, and thus the
binding in the notation ∀ X, C is simply achieved using a Coq lambda abstraction
λ X, C. This approach gives the same feeling of working with higher-order abstract
syntax [Pfenning and Elliott 1988], albeit being semantical instead of syntactical.
The typing rule for type abstraction similarly uses Coq’s binders, where the ∀ K in
the premise implicitly ensures that K is fresh. The proof of the two typing rules are 4
and 3 lines of code, respectively.

The session type for selection (⊕) and branching (&) is:

Inductive action := Send | Recv.

Definition lty_choice (a : action)

(Ss : gmap Z (lsty Σ)) : lsty Σ :=

Lsty (<a@(i: Z)> MSG #x {{ pis_Some (Ss !! i)q }}; lsty_car (Ss !!! i)).

Notation lty_select := (lty_choice Send).

Lemma ltyped_select Γ x i S Ss :

Γ !! x = Some (chan (lty_select Ss)) →
Ss !! i = Some S →
Γ � select x #i : () �env_cons x (chan S) Γ.

Since ⊕ and & are dual, this definition (as well as in many other dual definitions,
lemmas, and proofs) are factorised using the inductive type action. The syntax <a@(

~x :~τ)> MSG v {{ P }}; prot expands to Actris’s ! ~x :~τ 〈v〉{P}. prot or ?~x :~τ 〈v〉{P}. prot
depending on the action a. The definition uses the finite map library gmap of std++
[The Coq-std++ Team 2020], to represent the choices Ss. The notation Ss !!! i is
the lookup function on maps, whose result is only well-defined if i is in the map Ss,
as required by is_Some (Ss !! i). The notation p_q embeds a Coq Prop into Iris. The
typing rule for select requires the label i to be in the map Ss, and updates the channel
S based on the label. The proof uses Actris’s proof rules, and is 6 lines of code.

Type Safety. The type safety lemma is stated as follows:

Lemma ltyped_safety e σ es σ’ e’ :

(∃ A, [] � e : A �[]) →
rtc erased_step ([e], σ) (es, σ’) → e’ ∈ es →
is_Some (to_val e’) ∨ reducible e’ σ’.

124

4.6. Related Work

This lemma states that if we have a typing judgment for a closed expression e, and
we start execution of the single thread e to obtain a list of resulting threads es after
any number of execution steps (modeled using the reflexive-transitive closure, rtc, of
HeapLang’s small-step reduction relation), then any thread e’ in es is either a value
or can take a step.

4.6 Related Work

Session Types Seminal work on subtyping for binary recursive session types for
a synchronous pi-calculus was done by Gay and Hole [2005]. Mostrous et al. [2009]
expand on this work by adding support for multi-party asynchronous recursive session
types, and later for higher-order process calculi [Mostrous and Yoshida 2015]. These
two works present the session subtyping relation with inverted orientations, inverting
the sub- and supertypes, which has been discussed by Gay [2016]. Our semantic
session subtyping relation uses the same orientation as Gay and Hole. Mostrous et al.
[2009] also present an output-input swapping rule, which inspired our swapping rule in
Section 4.3.7, even though their type system is multi-party, as the idea is compatible
with both session type variants. They additionally claim that their subtyping is
decidable, it was later proven to not be the case by Bravetti et al. [2017], precisely
because of the swapping rule.

Gay [2008] introduced bounded polymorphic session types where branches con-
tain type variables for term types with upper and lower bounds. This work neither
supports recursive types, session subtyping, nor delegation, but Gay hypothesised
that recursion could be done. Dardha et al. [2012] expanded on this work by adding
subtyping and delegation, while still only conjecturing that recursion was a possible
extension. Caires et al. [2013] devised a polymorphic session type system for the
synchronous pi-calculus with existential and universal quantifiers at the type-level,
but not at the session-level. However, like Gay’s work, their system supports neither
recursive types nor subtyping.

Thiemann and Vasconcelos [2020] introduced label dependent session types, where
tails can depend on the communicated message, which allows for encoding choice using
send and receive. This is similar to the encoding of our semantic choice types in terms
of Actris’s dependent send and receive. While their work does not have asynchronous
subtyping or polymorphism, it supports recursive types over natural numbers, with
a recurser for type checking of such types.

Balzer and Pfenning [2017] and Balzer et al. [2019] proposed a session-type system
that allows sharing of channels via locks. Their system contains unrestricted types
that can be shared, linear types that cannot, and modalities to move between the two
through the use of locks. Our mutex type works similarly with copyable types, but
our system is more general, as the copyable types tie into Iris’s general-purpose mech-
anisms for sharing. We can also impose mutexes on only one endpoint of a channel,
while they require mutual locking on both ends, and integrate manual typing proofs
of racy programs. They provide proofs for subject reduction and type preservation,
not just to obtain type safety, but also to obtain deadlock freedom, which we do not
consider.

125

4. Semantic Session Typing

Logical Relations Logical relations have been studied extensively in the context of
Iris, for type safety of type systems [Krebbers et al. 2017b; Jung et al. 2018a; Giarrusso
et al. 2020], program refinement [Krebbers et al. 2017b; Krogh-Jespersen et al. 2017;
Tassarotti et al. 2017; Timany et al. 2018; Frumin et al. 2018], robust safety [Swasey
et al. 2017], and non-interference [Frumin et al. 2020]. The most immediately related
work in this area is the RustBelt project [Jung et al. 2018a], which uses logical
relations to prove type safety and datarace-freedom of a large subset of Rust and its
standard libraries, focusing on Rust’s lifetime and borrowing mechanism. RustBelt
employs the foundational approach to logical relations in its Coq development, from
which we have drawn much inspiration. Giarrusso et al. [2020] used logical relations
in Iris to prove type safety of a version of Scala’s core calculus DOT, which has a rich
notion of subtyping, but is different in nature from session subtyping.

The connection between logic and session types has been studied through the
Curry-Howard correspondence by e.g., Caires and Pfenning [2010], Wadler [2012],
Carbone et al. [2017], and Dardha and Gay [2018]. As part of this line of work, Perez et
al. used logical relations to prove termination [Pérez et al. 2012] and confluence [Pérez
et al. 2014] of session-based concurrent systems.

Mechanisation of Session Types Mechanisations pertaining to session types are
all fairly recent. There are two other mechanisations of session types in Iris. Tassarotti
et al. [2017] proved termination preserving refinements for a compiler from a session-
typed language to a functional language where message buffers are modelled on the
heap. Hinrichsen et al. [2020, 2021a] developed the Actris mechanisation that this
work is built on top of. Both lines of work focus on different properties than type
safety.

Gay et al. [2020] explored various notions of duality, mechanising their results
in Agda, and demonstrate that allowing duality to distribute over the recursive µ-
operator yields an unsound system when type variables appear in messages, as the
message type could change in tandem with the dualisation of the recursion, making
endpoints disagree on the type of exchanged values. In our setup duality does not
distribute over µ. Instead recursive definitions must be unfolded to expose the ses-
sion type before duality can be applied, rendering the recursion and message type
unchanged. Even so, we can drop down to Actris and use Löb induction to prove
(subtyping) properties of recursive types and their duals.

Castro et al. [2020] focused on the metatheory of binary session types for syn-
chronous communication, and prove in Coq, using the locally nameless approach
to variable binding, subject reduction and that typing judgements are preserved by
structural congruence.

Thiemann [2019] mechanised an intrinsically-typed definitional interpreter for a
session-typed language with recursive types and subtyping in Agda. The mechani-
sation did, however, require a substantial amount of manual bookkeeping, in partic-
ular for properties about resource separation. Rouvoet et al. [2020] streamlined the
intrinsically-typed approach by developing separation logic-like abstractions in Agda.
They applied these abstractions to a small session-typed language without recursive
types, subtyping, or polymorphism.

126

4.7. Conclusion

4.7 Conclusion

In this paper we demonstrate how the foundational semantic approach to type safety
can be applied to session typing and how to construct and mechanise an extensible
session-type system with support for manual typing proofs. The crux of the semantic
approach is to use a program logic that is expressive enough to model all intended
features (e.g., channels, subtyping, polymorphism, recursion, locks/mutexes) while
satisfying the required properties (e.g., type safety). By building on top of the Iris
and Actris frameworks we are able to inherit their constructs to mechanise such an
extensible session-type system with little proof effort.

4.A The Complete Type System

This appendix includes an extensive overview of the mechanised semantic session-
type system. Like the paper, all of the definitions and rules have been mechanised in
the Coq proof assistant, and can be found in [Hinrichsen et al. 2021b].

In particular, the appendix shows the type and judgement definitions in Figure 4.7,
the typing rules in Figures 4.8 and 4.9, and the subtyping rules in Figures 4.11 to 4.14.

As some of the details of the type system were omitted in the main text, we pref-
ace the overview with a cursory clarification of these. In particular, we introduce a
streamlined approach for handling copyable versus uncopyable types, which allows
unifying various typing rules (Section 4.A.1). We furthermore describe kinded sub-
typing and type equivalence (Section 4.A.2), shared reference types (Section 4.A.3),
and discuss the internal versions of all judgements of the type system (Section 4.A.4).

We omit the typing rule for polymorphic sends from Section 4.3.5 because it can be
derived from the original rule for send (Ty-ChanSend) along with the subsumption
(Ty-Sub) and the subtyping for instantiating the binders of the send session type
(SubTy-Send-In).

4.A.1 Uncopy

To handle copyable types, one typically has two rules for each construct that might
move out ownership (one for non-copyable types and one for copyable types), e.g.:

Ty-RefUniqLoad-Move

Γ, x : refuniqA � !x : A �Γ, x : refuniq any

Ty-RefUniqLoad-Copy

copyableA

Γ, x : refuniqA � !x : A �Γ, x : refuniqA

The full version of our type system unifies these rules as a single rule Ty-RefUniqLoad

using the uncopy type former. The uncopy type former acts as an inverse of the copy

type former. When uncopy is applied to copyA, copy and uncopy cancel out, leaving
the type A, as expressed by the subtyping rule SubTy-Uncopy-Elim. In combination
with the rule SubTy-Copy-Intro, this means that the uncopy type former has no

127

4. Semantic Session Typing

effect on copyable types A, i.e., if copyableA, then uncopyA <: A. However, when
applied to a non-copyable type A, the uncopy type former has an effect, and thus
cannot be stripped. This prevents the value from being used again, similarly to
replacing the type by any.

The uncopy type former is defined in terms of the coreP modality of Iris (coreP
itself is defined in terms of other logical primitives), which acts as a similar “inverse” to
the persistence modality (�). The definition and proof rules of the coreP modality can
be found at https://gitlab.mpi-sws.org/iris/iris/-/blob/master/theories/
bi/lib/core.v.

4.A.2 Kinded Subtyping and Type Equivalence

The subtyping relation <: is kinded, i.e., it takes arguments of type Typek and its
definition depends on the kind k. By making the subtyping relation kinded, we can
unify subtyping rules that are identical for both type kinds, such as the rule SubTy-

Refl for reflexivity.
Additionally, to unify subtyping rules that go in both directions, such as the

rule SubTy-Rec-Unfold for unfolding recursive types, we define a relation for type
equivalence K <:> L as the symmetric closure of the subtyping relation:

K <:> L , K <: L ∧ L <: K

Similar to the subtyping relation, the relation for type equivalence is kinded so it
applies to both term and session types.

4.A.3 Shared References

We also have an additional type former refshr, which is not mentioned in the main
text of the paper. This is the type of shared references, or references that can be freely
duplicated and shared between threads, but whose type is not allowed to change by
writing new values. Moreover, shared references can only hold values of a copyable
type, to prevent values from being copied by reading and writing to a reference.

The definition of the type former refshr for shared references is standard in logical
relation developments in Iris. It is defined in terms of Iris invariants, written P ,
which contain a proposition P . Invariants are always persistent (even if the proposi-
tion P itself is not), meaning they can be freely duplicated. Moreover, it is possible
to open an invariant to gain access to the proposition P inside, as long as that is
restricted to an atomic program step, and the invariant is re-established by reproving
P at the end of the atomic step In practice, this means that it is only possible to apply
atomic read and write operations to shared references, and the fact that invariants
must be re-established ensures that we cannot change the type of the value contained
in the reference, in contrast to the store rule for unique references refuniq.

4.A.4 Internal Judgements

In Section 4.5 we remarked that in the Coq mechanisation we defined the typing
judgement as an internal definition in Iris, instead of as an external definition in the

128

https://gitlab.mpi-sws.org/iris/iris/-/blob/master/theories/bi/lib/core.v
https://gitlab.mpi-sws.org/iris/iris/-/blob/master/theories/bi/lib/core.v

4.A. The Complete Type System

meta logic. In the full version of the type system, we use the same treatment for the
typing judgements. To make sure that the judgements behave like ordinary propo-
sitions of higher-order logic (instead of propositions that hold ownership), their defi-
nitions include the plainly modality (�). This modality carves out the step-indexed
subset of the Iris logic. The rules of the plainly modality can be found in https:

//gitlab.mpi-sws.org/iris/iris/-/blob/master/theories/bi/plainly.v.
As a result of defining all judgements as internal notions, all typing rules are in

fact implications in the Iris logic.

129

https://gitlab.mpi-sws.org/iris/iris/-/blob/master/theories/bi/plainly.v
https://gitlab.mpi-sws.org/iris/iris/-/blob/master/theories/bi/plainly.v

4. Semantic Session Typing

Term Types:

TypeF , Val→ iProp

any , λw.True
1 , λw. w ∈ {()}
B , λw. w ∈ B
Z , λw. w ∈ Z

refuniqA , λw. ∃v. w ∈ Loc ∗ (w 7→ v) ∗ .(Av)

refshr A , λw. (w ∈ Loc) ∗ ∃v. (w 7→ v) ∗�(Av)

A1 ×A2 , λw. ∃w1, w2. w = (w1, w2) ∗ .(A1 w1) ∗ .(A2 w2)

A1 +A2 , λw. ∃v. (w = inl v ∗ .(A1 v)) ∨ (w = inr v ∗ .(A2 v))

A(B , λw. ∀v. .(Av) −∗ wp (w v) {B}
chan S , λw. w� S

copyA , λw. �(Aw)

A→ B , copy (A(B)

uncopyA , λw. coreP (Aw)

µ (X : k). K , µ(X : Typek). K (K is contractive in X)

∀(X : k). A , λw. ∀(X : Typek).wp (w ()) {A}
∃(X : k). A , λw. ∃(X : Typek). .(Aw)

mutexA , λw. ∃lk , `. (w = (lk , `)) ∗ is lock lk (∃v. (` 7→ v) ∗ .(Av))

mutexA , λw. ∃lk , `. (w = (lk , `)) ∗ is lock lk (∃v. (` 7→ v) ∗ .(Av)) ∗ (` 7→ −)

Session Types:

Type� , iProto

end , end

!A.S , ! (v : Val) 〈v〉{Av}. S
?A.S , ?(v : Val) 〈v〉{Av}. S

! ~X:~k A.S , ! (~X : ~Typek)(v : Val) 〈v〉{Av}. S
? ~X:~k A.S , ?(~X : ~Typek)(v : Val) 〈v〉{Av}. S
⊕{~S} , ! (l : Z) 〈l〉

{
l ∈ dom(~S)

}
. ~S(l)

&{~S} , ?(l : Z) 〈l〉
{
l ∈ dom(~S)

}
. ~S(l)

Judgements:

Γ � σ , ∗(x,A)∈Γ . A(σ(x))

Γ � e : A �Γ′ , �(∀σ. (Γ � σ) −∗ wp e[σ] {v.A v ∗ (Γ′ � σ)})
A <: B , �(∀v. A v −∗ B v)

S <: T , �(S v T)

K <:> L , K <: L ∧ L <: K

Γ <:ctx Γ′ , �(∀σ. (Γ � σ) −∗ (Γ′ � σ))

copyableA , A <: copyA

Figure 4.7: Typing judgements and type formers.

130

4.A. The Complete Type System

Basics:

Ty-Unit

Γ � () : 1 �Γ
Ty-Bool

Γ � b : B �Γ
Ty-Int

Γ � i : Z �Γ

Ty-Neg
Γ � e : B �Γ′

Γ � ¬e : B �Γ′

Ty-Arith
Γ � e2 : Z �Γ′ Γ′ � e1 : Z �Γ′′ op ∈ {+,−}

Γ � e1 op e2 : Z �Γ′′

Ty-Cond
Γ � e2 : Z �Γ′ Γ′ � e1 : Z �Γ′′ op ∈ {=,≤}

Γ � e1 op e2 : B �Γ′′

Ty-If
Γ � e1 : B �Γ′ Γ′ � e2 : A �Γ′′ Γ′ � e3 : A �Γ′′

Γ � if e1 then e2 else e3 : A �Γ′′

Ty-Var

Γ, x :A � x : A �Γ, x : uncopyA

Ty-Lam
Γ, x :A � e : B �Γ′′

Γ · Γ′ � λx. e : A(B �Γ′

Ty-Rec
Γ = x1 :A1, . . . , xn :An

Γcopy = x1 : uncopyA1, . . . , xn : uncopyAn
Γcopy, f :A→ B, x :A � e : B �Γ′′

Γ · Γ′ � rec f x := e : A→ B �Γ′

Ty-App
Γ � e2 : A �Γ′ Γ′ � e1 : A(B �Γ′′

Γ � e1 e2 : B �Γ′′

Ty-Let
Γ1 � e1 : A �Γ2 Γ2, x :A � e2 : B �Γ3

Γ1 � let x := e1 in e2 : B �Γ3 \ x

Ty-Par
Γ1 � e1 : A1 �Γ′1 Γ2 � e2 : A2 �Γ′2

Γ1 · Γ2 � e1 || e2 : A1 ×A2 �Γ′1 · Γ′2

Ty-Sub
Γ1 <:ctx Γ′1 Γ′1 � e : A �Γ′2 A <: B Γ′2 <:ctx Γ2

Γ1 � e : B �Γ2

Figure 4.8: Term typing rules.

131

4. Semantic Session Typing

Product and Sums:

Ty-Pair
Γ � e2 : A2 �Γ′ Γ′ � e1 : A1 �Γ′′

Γ � (e1, e2) : A1 ×A2 �Γ′′

Ty-InL
Γ � e : A �Γ′

Γ � inl e : A+B �Γ′

Ty-InR
Γ � e : B �Γ′

Γ � inr e : A+B �Γ′
Ty-Fst

Γ, x :A1 ×A2 � fst x : A1 �Γ, x : uncopyA1 ×A2

Ty-Snd

Γ, x :A1 ×A2 � snd x : A2 �Γ, x :A1 × uncopyA2

Ty-Case
Γ � e1 : A+B �Γ′ Γ′ � e2 : A(C �Γ′′ Γ′ � e3 : B(C �Γ′′

Γ � case e1 e2 e3 : C �Γ′′

Polymorphism:

Ty-TLam
Γ � e : A �Γ′′ X /∈ FV (Γ,Γ′)

Γ · Γ′ � λ . e : ∀X. A �Γ′

Ty-TApp
Γ � e : ∀X. A �Γ′

Γ � e () : A[K/X] �Γ′

Ty-Pack
Γ � e : A[K/X] �Γ′

Γ � e : ∃X. A �Γ′

Ty-Unpack
Γ � e1 : ∃X. A �Γ′ Γ′, x :A � e2 : B �Γ′′ X /∈ FV (Γ,Γ′′, B)

Γ � let x := e1 in e2 : B �Γ′′ \ x

References:

Ty-ToRefShr
Γ � e : refuniq (copyA) �Γ′

Γ � e : refshr A �Γ′

Ty-RefShrLoad
Γ � e : refshr A �Γ′

Γ � ! e : A �Γ′

Ty-RefShrStore
Γ � e2 : copyA �Γ′ Γ′ � e1 : refshr A �Γ′′

Γ � e1 ← e2 : 1 �Γ′′

Ty-RefUniqAlloc

Γ � e : A �Γ′

Γ � ref e : refuniqA �Γ′

Ty-RefUniqFree

Γ � e : refuniqA �Γ′

Γ � free e : 1 �Γ′

Ty-RefUniqStore

Γ � e : B �Γ′, x : refuniqA

Γ � x ← e : 1 �Γ′, x : refuniqB

Ty-RefUniqLoad

Γ, x : refuniqA � !x : A �Γ, x : refuniq (uncopyA)

Figure 4.9: Term typing rules (cont.)

132

4.A. The Complete Type System

Channels:

Ty-ChanAlloc

Γ � new chan : 1→ chan S × chan S �Γ

Ty-ChanSend
Γ � e : A �Γ′, x : chan (!A.S)

Γ � send x e : 1 �Γ′, x : chan S

Ty-ChanRecv

Γ, x : chan (?A.S) � recv x : A �Γ, x : chan S

Ty-ChanRecvPoly

Γ, x : chan S, y :A � e : B �Γ′ ~X /∈ FV (Γ,Γ′, B)

Γ, x : chan (? ~X:~k A.S) � let y := recv x in e : B �Γ′ \ {y}

Ty-Select
1 ≤ i ≤ n

Γ, x : chan (⊕{l1 : S1, . . . , ln : Sn}) � select x li : 1 �Γ, x : chan Si

Ty-Branch
Γ, x : chan S1 � e1 : A �Γ′ · · · Γ, x : chan Sn � en : A �Γ′

Γ, x : chan (&{l1 : S1, . . . , ln : Sn}) � branch x with l1 ⇒ e1 | . . . | ln ⇒ en : A �Γ′

Locks:

Ty-MutexAlloc

Γ � newmutex : A→ mutexA �Γ

Ty-MutexAcquire

Γ, x : mutexA � acquiremutex x : A �Γ, x : mutexA

Ty-MutexRelease
Γ � e : A �Γ′, x : mutexA

Γ � releasemutex x e : 1 �Γ′, x : mutexA

Figure 4.10: Term typing rules (cont.)

133

4. Semantic Session Typing

Subtyping Properties:

SubTy-Refl

K <: K

SubTy-Trans
K <: L L <: M

K <: M

SubTy-Bi
K <: L L <: K

K <:> L
SubTy-Bi-Refl

K <:> K

SubTy-Bi-Trans
K <:> L L <:> M

K <:> M

SubTy-Bi-Trans-Left
K <:> L L <: M

K <: M

SubTy-Bi-Trans-Right
K <: L L <:> M

K <: M

SubTy-Bi-Sym
L <:> K

K <:> L
SubTy-Rec-Unfold

µX.K <:> K(µX.K)

Term Subtyping:

SubTy-Any

A <: any

SubTy-Lolli
C <: A B <: D

A(B <: C (D

SubTy-Arr
C <: A B <: D

A→ B <: C → D

SubTy-Product
A <: C B <: D

A×B <: C ×D

SubTy-Sum
A <: C B <: D

A+B <: C +D

SubTy-Forall
∀X. (A <: B)

∀X. A <: ∀X. B

SubTy-Exist
∀X. (A <: B)

∃X. A <: ∃X. B
SubTy-Exist-Elim

A[K/X] <: ∃X. A

SubTy-Ref-Uniq

A <: B

refuniqA <: refuniqB

SubTy-Ref-Shr
A <:> B

refshr A <: refshr B

SubTy-Chan
S <: T

chan S <: chan T

SubTy-Mutex
A <:> B

mutexA <: mutexB

SubTy-MutexGuard
A <:> B

mutexA <: mutexB

Figure 4.11: Subtyping rules.

134

4.A. The Complete Type System

Copyable Types:

SubTy-Copy
A <: B

copyA <: copyB

SubTy-Copy-Intro
copyableA

A <: copyA
SubTy-Copy-Elim

copyA <: A

SubTy-Uncopy
A <: B

uncopyA <: uncopyB
SubTy-Uncopy-Intro

A <: uncopyA
SubTy-Uncopy-Elim

uncopy (copyA) <: A

SubTy-Copyable-Copy

copyable (copyA)
SubTy-Copyable-Uncopy

copyable (uncopyA)
SubTy-Copyable-Any

copyable any

SubTy-Copyable-Unit

copyable1
SubTy-Copyable-Bool

copyableB
SubTy-Copyable-Int

copyableZ

SubTy-Copyable-Product
copyableA copyableB

copyable (A×B)

SubTy-Copyable-Sum
copyableA copyableB

copyable (A+B)

SubTy-Copyable-Exists
∀X. copyableA
copyable (∃X. A)

SubTy-Copyable-RefShr

copyable (refshr X)

SubTy-Copyable-Mutex

copyable (mutexX)

Context Subtyping:

Ctx-Permute
Γ′ is a permutation of Γ

Γ <:ctx Γ′
Ctx-Refl

Γ <:ctx Γ

Ctx-Trans
Γ1 <:ctx Γ2 Γ2 <:ctx Γ3

Γ1 <:ctx Γ3

Ctx-Nil

Γ <:ctx []

Ctx-Cons
A <: B Γ <:ctx Γ′

x :A,Γ <:ctx x :B,Γ′

Ctx-App
Γ1 <:ctx Γ2 Γ′1 <:ctx Γ′2

Γ1 · Γ′1 <:ctx Γ2 · Γ′2

Ctx-Copy

x :A <:ctx x :A, x : uncopyA

Ctx-Copyable
copyableA

x :A <:ctx x :A, x :A

Figure 4.12: Subtyping rules (cont.)

135

4. Semantic Session Typing

Session Subtyping:

SubTy-Send
B <: A S <: T

!A.S <: !B. T

SubTy-Recv
A <: B S <: T

?A.S <: ?B. T

SubTy-Send-In

!(~X:~k)A.S <: !A[~K/ ~X]. S[~K/ ~X]

SubTy-Recv-In

?A[~K/ ~X]. S[~K/ ~X] <: ?(~X:~k)A.S

SubTy-Send-Out
S <: !A. T

S <: !(~X:~k)A. T

SubTy-Recv-Out
?A.S <: T

?(~X:~k)A.S <: T

SubTy-Select

∀i. ~Si <: ~Ti

⊕{~li : ~Si}i∈~i <: ⊕{~li : ~Ti}i∈~i

SubTy-Select-SubsetEq
~j ⊆~i

⊕{~li : ~Si}i∈~i <: ⊕{~lj : ~Sj}j∈~j

SubTy-Branch

∀i. ~Si <: ~Ti

&{~li : ~Si}i∈~i <: &{~li : ~Ti}i∈~i

SubTy-Branch-SubsetEq
~i ⊆ ~j

&{~li : ~Si}i∈~i <: &{~lj : ~Sj}j∈~j

SubTy-Swap-Recv-Send

?A. !B.S <: !B. ?A.S

SubTy-Swap-Branch-Send

&{l1 : !A.S1, . . . , ln : !A.Sn} <: !A.&{l1 : S1, . . . , ln : Sn}

SubTy-Swap-Recv-Select

?A. ⊕ {l1 : S1, . . . , ln : Sn} <: ⊕{l1 : ?A.S1, . . . , ln : ?A.Sn}

SubTy-Swap-Branch-Select
&{l1 : ⊕{l′1 : S(1,1), . . . , l

′
m : S(1,m)},

. . . ,
ln : ⊕{l′1 : S(n,1), . . . , l

′
m : S(n,m)}}

<: ⊕{l′1 : &{l1 : S(1,1), . . . , ln : S(n,1)},
. . . ,
l′m : &{l1 : S(n,1), . . . , ln : S(n,m)}}

Figure 4.13: Subtyping rules (cont.)

136

4.A. The Complete Type System

Duality Subtyping:

SubTy-Dual
T <: S

S <: T

SubTy-Dual-Left
T <: S

S <: T

SubTy-Dual-Right
T <: S

S <: T

SubTy-Dual-Send

! ~X A.S <:> ? ~X A.S
SubTy-Dual-Recv

? ~X A.S <:> ! ~X A.S
SubTy-Dual-End

end <:> end

SubTy-Dual-Select

⊕{l1 : S1, . . . , ln : Sn} <:> &{l1 : S1, . . . , ln : Sn}

SubTy-Dual-Branch

&{l1 : S1, . . . , ln : Sn} <:> ⊕{l1 : S1, . . . , ln : Sn}

Append Subtyping:

SubTy-App
S <: U T <: V

S · T <: U · V
SubTy-App-Assoc

S · (T · U) <:> (S · T) · U

SubTy-App-Send

(! ~X A.S) · T <:> ! ~X A. (S · T)
SubTy-App-Recv

(? ~X A.S) · T <:> ? ~X A. (S · T)

SubTy-App-Select

(⊕{l1 : S1, . . . , ln : Sn}) · T <:> ⊕{l1 : S1 · T, . . . , ln : Sn · T}

SubTy-App-Branch

(&{l1 : S1, . . . , ln : Sn}) · T <:> &{l1 : S1 · T, . . . , ln : Sn · T}

SubTy-App-End-Right

S · end <:> S
SubTy-App-End-Left

end · S <:> S

Figure 4.14: Subtyping rules (cont.)

137

Bibliography

Amal Ahmed. 2004. Semantics of types for mutable state. Ph.D. Dissertation. Prince-
ton University. https://dl.acm.org/doi/10.5555/1037736

Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang
Tan, and Daniel C. Wang. 2010. Semantic foundations for typed assembly lan-
guages. TOPLAS 32, 3 (2010). https://doi.org/10.1145/1709093.1709094

Akka. 2021. The Akka Project. (2021). https://akka.io/

Akka.NET. 2021. The Akka.NET Project. (2021). https://getakka.net/

Pierre America and Jan J. M. M. Rutten. 1989. Solving Reflexive Domain Equations
in a Category of Complete Metric Spaces. JCSS 39, 3 (1989). https://doi.org/

10.1016/0022-0000(89)90027-5

Andrew W. Appel. 2011. Verified Software Toolchain. In ESOP (LNCS, Vol. 7226).
https://doi.org/10.1007/978-3-642-19718-5_1

Andrew W. Appel. 2014. Program Logics - for Certified Compilers. Cam-
bridge University Press. http://www.cambridge.org/de/academic/

subjects/computer-science/programming-languages-and-applied-logic/

program-logics-certified-compilers?format=HB

Andrew W. Appel and David A. McAllester. 2001. An indexed model of recursive
types for foundational proof-carrying code. TOPLAS 23, 5 (2001). https://doi.

org/10.1145/504709.504712

Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouil-
lon. 2007. A very modal model of a modern, major, general type system. In POPL.
https://doi.org/10.1145/1190216.1190235

Robert Atkey, Sam Lindley, and J. Garrett Morris. 2016. Conflation Confers Concur-
rency. In Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday.
https://doi.org/10.1007/978-3-319-30936-1_2

Mehdi Bagherzadeh, Nicholas Fireman, Anas Shawesh, and Raffi Khatchadourian.
2020. Actor concurrency bugs: a comprehensive study on symptoms, root causes,
API usages, and differences. PACMPL 4, OOPSLA (2020). https://doi.org/

10.1145/3428282

139

https://dl.acm.org/doi/10.5555/1037736
https://doi.org/10.1145/1709093.1709094
https://akka.io/
https://getakka.net/
https://doi.org/10.1016/0022-0000(89)90027-5
https://doi.org/10.1016/0022-0000(89)90027-5
https://doi.org/10.1007/978-3-642-19718-5_1
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
http://www.cambridge.org/de/academic/subjects/computer-science/programming-languages-and-applied-logic/program-logics-certified-compilers?format=HB
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1145/3428282
https://doi.org/10.1145/3428282

Bibliography

Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with Session Types.
PACMPL 1, ICFP (2017). https://doi.org/10.1145/3110281

Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Manifest Deadlock-
Freedom for Shared Session Types. In ESOP (LNCS, Vol. 11423). https://doi.

org/10.1007/978-3-030-17184-1_22

Bedrock Systems A/S. 2021. The Bedrock Systems Project. (2021). https://

bedrocksystems.com/

Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. 2015.
Verified Correctness and Security of OpenSSL HMAC. https://www.usenix.org/

conference/usenixsecurity15/technical-sessions/presentation/beringer

Lars Birkedal and Aleš Bizjak. 2020. Lecture Notes on Iris: Higher-Order Concurrent
Separation Logic. https://iris-project.org/tutorial-material.html.

Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring.
2012. First steps in synthetic guarded domain theory: step-indexing in the topos
of trees. LMCS 8, 4 (2012). https://doi.org/10.2168/LMCS-8(4:1)2012

Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. 2010. The category-theoretic
solution of recursive metric-space equations. TCS 411, 47 (2010). https://doi.

org/10.1016/j.tcs.2010.07.010

Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: man-
aging obligations in higher-order concurrent separation logic. PACMPL 3, POPL
(2019). https://doi.org/10.1145/3290378

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A Theory of
Design-by-Contract for Distributed Multiparty Interactions. In CONCUR. https:

//doi.org/10.1007/978-3-642-15375-4_12

Michael Brandt and Fritz Henglein. 1998. Coinductive Axiomatization of Recursive
Type Equality and Subtyping. Fundamenta Informaticae 33, 4 (1998). https:

//doi.org/10.3233/FI-1998-33401

Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Za-
vattaro. 2021. A Sound Algorithm for Asynchronous Session Subtyping and its
Implementation. LMCS 17, 1 (2021). https://lmcs.episciences.org/7238

Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. 2017. Undecidability of
asynchronous session subtyping. Information and Computation 256 (2017). https:

//doi.org/10.1016/j.ic.2017.07.010

Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In CON-
CUR (LNCS, Vol. 3170). https://doi.org/10.1007/978-3-540-28644-8_2

Lúıs Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. 2013. Behav-
ioral Polymorphism and Parametricity in Session-Based Communication. In ESOP
(LNCS, Vol. 7792). https://doi.org/10.1007/978-3-642-37036-6_19

140

https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-030-17184-1_22
https://bedrocksystems.com/
https://bedrocksystems.com/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/beringer
https://iris-project.org/tutorial-material.html
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1145/3290378
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.3233/FI-1998-33401
https://doi.org/10.3233/FI-1998-33401
https://lmcs.episciences.org/7238
https://doi.org/10.1016/j.ic.2017.07.010
https://doi.org/10.1016/j.ic.2017.07.010
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-642-37036-6_19

Bibliography

Lúıs Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear
Propositions. In CONCUR (LNCS, Vol. 6269). https://doi.org/10.1007/

978-3-642-15375-4_16

Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. 2017.
Multiparty session types as coherence proofs. Acta Informatica 54, 3 (2017).
https://doi.org/10.1007/s00236-016-0285-y

David Castro, Francisco Ferreira, and Nobuko Yoshida. 2020. EMTST: Engineering
the Meta-theory of Session Types. In TACAS (LNCS, Vol. 12079). https://doi.

org/10.1007/978-3-030-45237-7_17

Ernie Cohen, Eyad Alkassar, Vladimir Boyarinov, Markus Dahlweid, Ulan Degen-
baev, Mark A. Hillebrand, Bruno Langenstein, Dirk Leinenbach, Michal Moskal,
Steven Obua, Wolfgang J. Paul, Hristo Pentchev, Elena Petrova, Thomas Santen,
Norbert Schirmer, Sabine Schmaltz, Wolfram Schulte, Andrey Shadrin, Stephan
Tobies, Alexandra Tsyban, and Sergey Tverdyshev. 2009. Invariants, Modularity,
and Rights. In PSI. https://doi.org/10.1007/978-3-642-11486-1_4

Coq Development Team. 2021. The Coq Proof Assistant. (2021). https://coq.

inria.fr

Andreea Costea, Wei-Ngan Chin, Shengchao Qin, and Florin Craciun. 2018. Au-
tomated Modular Verification for Relaxed Communication Protocols. In APLAS.
https://doi.org/10.1007/978-3-030-02768-1_16

Florin Craciun, Tibor Kiss, and Andreea Costea. 2015. Towards a Session Logic
for Communication Protocols. In ICECCS. https://doi.org/10.1109/ICECCS.

2015.33

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA:
A Logic for Time and Data Abstraction. In ECOOP. https://doi.org/10.1007/

978-3-662-44202-9_9

Ornela Dardha and Simon J. Gay. 2018. A New Linear Logic for Deadlock-Free
Session-Typed Processes. In FOSSACS (LNCS, Vol. 10803). https://doi.org/

10.1007/978-3-319-89366-2_5

Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2012. Session Types Revisited.
In PPDP. https://doi.org/10.1007/978-3-030-17184-1_22

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. 2015. The Lean Theorem Prover (System Description). Cham. https:

//doi.org/10.1007/978-3-319-21401-6_26

Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In OSDI. http://www.usenix.org/events/osdi04/tech/

dean.html

141

https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1007/978-3-030-45237-7_17
https://doi.org/10.1007/978-3-642-11486-1_4
https://coq.inria.fr
https://coq.inria.fr
https://doi.org/10.1007/978-3-030-02768-1_16
https://doi.org/10.1109/ICECCS.2015.33
https://doi.org/10.1109/ICECCS.2015.33
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html

Bibliography

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2009. Logical Step-Indexed Logical
Relations. In LICS. https://doi.org/10.1109/LICS.2009.34

Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. 2010. A relational
modal logic for higher-order stateful ADTs. In POPL. https://doi.org/10.

1145/1706299.1706323

Derek Dreyer, Amin Timany, Robbert Krebbers, Lars Birkedal, and Ralf Jung.
2019. What Type Soundness Theorem Do You Really Want to Prove?
SIGPLAN blog post, available at https://blog.sigplan.org/2019/10/17/

what-type-soundness-theorem-do-you-really-want-to-prove/.

Adrian Francalanza, Julian Rathke, and Vladimiro Sassone. 2011. Permission-Based
Separation Logic for Message-Passing Concurrency. LMCS 7, 3 (2011). https:

//doi.org/10.2168/LMCS-7(3:7)2011

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A Mechanised
Relational Logic for Fine-Grained Concurrency. In LICS. https://doi.org/10.

1145/3209108.3209174

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2020. Compositional Non-
Interference for Fine-Grained Concurrent Programs. To appear in S&P’21.

Simon J. Gay. 2008. Bounded polymorphism in session types. MSCS 18, 5 (2008).
https://doi.org/10.1017/S0960129508006944

Simon J. Gay. 2016. Subtyping Supports Safe Session Substitution. In Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday. https:

//doi.org/10.1007/978-3-319-30936-1_5

Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types in the
pi calculus. Acta Informatica 42, 2-3 (2005). https://doi.org/10.1007/

s00236-005-0177-z

Simon J. Gay, Peter Thiemann, and Vasco T. Vasconcelos. 2020. Duality of Session
Types: The Final Cut. In PLACES (EPTCS, Vol. 314). https://doi.org/10.

4204/EPTCS.314.3

Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Robbert Kreb-
bers. 2020. Scala step-by-step: soundness for DOT with step-indexed logical rela-
tions in Iris. PACMPL 4, ICFP (2020). https://doi.org/10.1145/3408996

Liang Gu, Alexander Vaynberg, Bryan Ford, Zhong Shao, and David Costanzo. 2011.
CertiKOS: a certified kernel for secure cloud computing. In APSys ’11 Asia Pacific
Workshop on Systems, Shanghai, China, July 11-12, 2011. https://doi.org/

10.1145/2103799.2103803

Jafar Hamin and Bart Jacobs. 2019. Transferring Obligations Through Synchroniza-
tions. In ECOOP. https://doi.org/10.4230/LIPIcs.ECOOP.2019.19

142

https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1145/1706299.1706323
https://doi.org/10.1145/1706299.1706323
https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-do-you-really-want-to-prove/
https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-do-you-really-want-to-prove/
https://doi.org/10.2168/LMCS-7(3:7)2011
https://doi.org/10.2168/LMCS-7(3:7)2011
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.1017/S0960129508006944
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.1145/3408996
https://doi.org/10.1145/2103799.2103803
https://doi.org/10.1145/2103799.2103803
https://doi.org/10.4230/LIPIcs.ECOOP.2019.19

Bibliography

Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. 1973. A Universal Modu-
lar ACTOR Formalism for Artificial Intelligence. In IJCAI. http://ijcai.org/

Proceedings/73/Papers/027B.pdf

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Ac-
tris: Session-type based reasoning in separation logic. PACMPL 4, POPL (2020).
https://doi.org/10.1145/3371074

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2021a. Ac-
tris 2.0: Asynchronous session-type based reasoning in separation logic. (2021).
Manuscript under review.

Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengt-
son. 2021b. Coq Mechanization of “Machine-checked semantic session typ-
ing”. Archived version at https://zenodo.org/record/4322752, latest version
at https://gitlab.mpi-sws.org/iris/actris.

Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengt-
son. 2021c. Machine-checked semantic session typing. In CPP. https://doi.org/

10.1145/3437992.3439914

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (1969). https://doi.org/10.1145/363235.363259

Aquinas Hobor, Andrew Appel, and Francesco Nardelli. 2008. Oracle Semantics for
Concurrent Separation Logic. In Programming Languages and Systems. Lecture
Notes in Computer Science, Vol. 4960. Springer Berlin / Heidelberg. http://dx.

doi.org/10.1007/978-3-540-78739-6_27 10.1007/978-3-540-78739-6 27.

Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR. https://doi.org/

10.1007/3-540-57208-2_35

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language
Primitives and Type Discipline for Structured Communication-Based Program-
ming. In ESOP (LNCS, Vol. 1381). https://doi.org/10.1007/BFb0053567

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous
session types. In POPL. https://doi.org/10.1145/1328438.1328472

Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei
Honda. 2010. Type-Safe Eventful Sessions in Java. In ECOOP. https://doi.

org/10.1007/978-3-642-14107-2_16

Keigo Imai, Nobuko Yoshida, and Shoji Yuen. 2019. Session-OCaml: A session-based
library with polarities and lenses. Science of Computer Programming 172 (2019).
https://doi.org/10.1016/j.scico.2018.08.005

Iris Development Team. 2021. The Mechanisation of Iris. (2021). https://gitlab.

mpi-sws.org/iris/iris/

143

http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1145/3371074
https://zenodo.org/record/4322752
https://gitlab.mpi-sws.org/iris/actris
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1145/363235.363259
http://dx.doi.org/10.1007/978-3-540-78739-6_27
http://dx.doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-642-14107-2_16
https://doi.org/10.1007/978-3-642-14107-2_16
https://doi.org/10.1016/j.scico.2018.08.005
https://gitlab.mpi-sws.org/iris/iris/
https://gitlab.mpi-sws.org/iris/iris/

Bibliography

Samin S. Ishtiaq and Peter W. O’Hearn. 2001. BI as an Assertion Language for
Mutable Data Structures. In POPL. https://dl.acm.org/doi/10.1145/373243.

375719

Jacques-Henri Jourdan and Robbert Krebbers. 2018. Iris Tutorial at POPL. Available
online at https://gitlab.mpi-sws.org/iris/tutorial-popl18.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a.
RustBelt: Securing the Foundations of the Rust Programming Language. PACMPL
2, POPL (2018). https://doi.org/10.1145/3158154

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2021. Safe
systems programming in Rust: The promise and the challenge. To appear in
CACM.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-Order
Ghost State. In ICFP. https://doi.org/10.1145/2951913

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,
and Derek Dreyer. 2018b. Iris from the ground up: A modular foundation for
higher-order concurrent separation logic. JFP 28 (2018). https://doi.org/10.

1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars
Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an Orthogonal
Basis for Concurrent Reasoning. In POPL. https://doi.org/10.1145/2676726.

2676980

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: formal verification
of an OS kernel. In SOSP. https://doi.org/10.1145/1629575.1629596

Naoki Kobayashi. 2006. A New Type System for Deadlock-Free Processes. In CON-
CUR (LNCS, Vol. 4137). https://doi.org/10.1007/11817949_16

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1996. Linearity and the
Pi-Calculus. In POPL. https://doi.org/10.1145/237721.237804

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver
Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: A
General, Extensible Modal Framework for Interactive Proofs in Separation Logic.
PACMPL 2, ICFP (2018). https://doi.org/10.1145/3236772

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and
Lars Birkedal. 2017a. The Essence of Higher-Order Concurrent Separation Logic. In
ESOP (LNCS, Vol. 10201). https://doi.org/10.1007/978-3-662-54434-1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive Proofs in
Higher-Order Concurrent Separation Logic. In POPL. https://doi.org/10.

1145/3093333.3009855

144

https://dl.acm.org/doi/10.1145/373243.375719
https://dl.acm.org/doi/10.1145/373243.375719
https://gitlab.mpi-sws.org/iris/tutorial-popl18
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2951913
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/11817949_16
https://doi.org/10.1145/237721.237804
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3093333.3009855
https://doi.org/10.1145/3093333.3009855

Bibliography

Neelakantan R. Krishnaswami, Aaron Turon, Derek Dreyer, and Deepak Garg. 2012.
Superficially substructural types. In ICFP. https://doi.org/10.1145/2364527.

2364536

Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. 2017. A relational
model of types-and-effects in higher-order concurrent separation logic. In POPL.
https://doi.org/10.1145/3093333.3009877

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede
Gregersen, and Lars Birkedal. 2020. Aneris: A Mechanised Logic for Modular
Reasoning about Distributed Systems. In ESOP. https://doi.org/10.1007/

978-3-030-44914-8_13

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014.
CakeML: a verified implementation of ML. In POPL. https://doi.org/10.

1145/2535838.2535841

Leslie Lamport. 1977. Proving the Correctness of Multiprocess Programs. IEEE TSE
3, 2 (1977). https://doi.org/10.1109/TSE.1977.229904

Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2018. A static
verification framework for message passing in Go using behavioural types. In ICSE.
https://doi.org/10.1145/3180155.3180157

Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming a
compiler with a proof assistant. In POPL. https://doi.org/10.1145/1111037.

1111042

Étienne Lozes and Jules Villard. 2012. Shared Contract-Obedient Endpoints. In ICE.
https://doi.org/10.4204/EPTCS.104.3

William Mansky, Andrew W. Appel, and Aleksey Nogin. 2017. A verified messaging
system. PACMPL 1, OOPSLA (2017). https://doi.org/10.1145/3133911

Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. 2004. The KRAKA-
TOA tool for certificationof JAVA/JAVACARD programs annotated in JML.
JLAMP 58, 1-2 (2004). https://doi.org/10.1016/j.jlap.2003.07.006

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. JCSS 17, 3
(1978). https://doi.org/10.1016/0022-0000(78)90014-4

Dimitris Mostrous and Vasco Thudichum Vasconcelos. 2014. Affine Sessions. In CO-
ORDINATION. https://doi.org/10.1007/978-3-662-43376-8_8

Dimitris Mostrous and Nobuko Yoshida. 2015. Session typing and asynchronous sub-
typing for the higher-order π-calculus. Information and Computation 241 (2015).
https://doi.org/10.1016/j.ic.2015.02.002

Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global Principal Typing
in Partially Commutative Asynchronous Sessions. In ESOP (LNCS, Vol. 5502).
https://doi.org/10.1007/978-3-642-00590-9_23

145

https://doi.org/10.1145/2364527.2364536
https://doi.org/10.1145/2364527.2364536
https://doi.org/10.1145/3093333.3009877
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.4204/EPTCS.104.3
https://doi.org/10.1145/3133911
https://doi.org/10.1016/j.jlap.2003.07.006
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1007/978-3-662-43376-8_8
https://doi.org/10.1016/j.ic.2015.02.002
https://doi.org/10.1007/978-3-642-00590-9_23

Bibliography

Hiroshi Nakano. 2000. A Modality for Recursion. In LICS. https://doi.org/10.

1109/LICS.2000.855774

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco.
2014. Communicating State Transition Systems for Fine-Grained Concurrent Re-
sources. In ESOP. https://doi.org/10.1007/978-3-642-54833-8_16

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic. LNCS, Vol. 2283. https://doi.org/10.

1007/3-540-45949-9

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR.
https://doi.org/10.1007/978-3-540-28644-8_4

Kosuke Ono, Yoichi Hirai, Yoshinori Tanabe, Natsuko Noda, and Masami Hagiya.
2011. Using Coq in Specification and Program Extraction of Hadoop MapReduce
Applications. In SEFM. https://doi.org/10.1007/978-3-642-24690-6_24

Wytse Oortwijn, Stefan Blom, and Marieke Huisman. 2016. Future-based Static
Analysis of Message Passing Programs. In PLACES. https://doi.org/10.4204/

EPTCS.211.7

Luca Padovani. 2014. Deadlock and lock freedom in the linear π-calculus. In CSL-
LICS. https://doi.org/10.1145/2603088.2603116

Luca Padovani. 2017. A simple library implementation of binary sessions. JFP 27
(2017). https://doi.org/10.1017/S0956796816000289

Jorge A. Pérez, Lúıs Caires, Frank Pfenning, and Bernardo Toninho. 2012. Linear
Logical Relations for Session-Based Concurrency. In ESOP (LNCS, Vol. 7211).
https://doi.org/10.1007/978-3-642-28869-2_27

Jorge A. Pérez, Lúıs Caires, Frank Pfenning, and Bernardo Toninho. 2014. Linear
logical relations and observational equivalences for session-based concurrency. In-
formation and Computation 239 (2014). https://doi.org/10.1016/j.ic.2014.

08.001

Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In PLDI.
https://doi.org/10.1145/53990.54010

Benjamin C. Pierce et al. 2020. Programming Language Foundations. https:

//softwarefoundations.cis.upenn.edu/plf-current/index.html

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Struc-
tures. In LICS. https://doi.org/10.1109/LICS.2002.1029817

Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020.
Intrinsically-typed definitional interpreters for linear, session-typed languages. In
CPP. ACM. https://doi.org/10.1145/3372885.3373818

146

https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-642-24690-6_24
https://doi.org/10.4204/EPTCS.211.7
https://doi.org/10.4204/EPTCS.211.7
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1145/53990.54010
https://softwarefoundations.cis.upenn.edu/plf-current/index.html
https://softwarefoundations.cis.upenn.edu/plf-current/index.html
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3372885.3373818

Bibliography

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming and proving
with distributed protocols. PACMPL 2, POPL (2018). https://doi.org/10.

1145/3158116

Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Pred-
icates. In ESOP. https://doi.org/10.1007/978-3-642-54833-8_9

Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. 2010. Verifying Generics
and Delegates. In ECOOP. https://doi.org/10.1007/978-3-642-14107-2_9

Kasper Svendsen, Filip Sieczkowski, and Lars Birkedal. 2016. Transfinite Step-
Indexing: Decoupling Concrete and Logical Steps. In ESOP. https://doi.org/

10.1007/978-3-662-49498-1_28

Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman,
and Guido Mart́ınez. 2020. SteelCore: an extensible concurrent separation logic
for effectful dependently typed programs. PACMPL 4, ICFP (2020). https:

//doi.org/10.1145/3409003

David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and compositional
verification of object capability patterns. PACMPL 1, OOPSLA (2017). https:

//doi.org/10.1145/3133913

Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. 2013. Why Do Scala De-
velopers Mix the Actor Model with other Concurrency Models?. In ECOOP.
https://doi.org/10.1007/978-3-642-39038-8_13

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for
Concurrent Termination-Preserving Refinement. In ESOP (LNCS, Vol. 10201).
https://doi.org/10.1007/978-3-662-54434-1_34

The CertiK Team. 2021. The CertiK Project. (2021). https://certik.io/

The Coq-std++ Team. 2020. An extended “standard library” for Coq. Available
online at https://gitlab.mpi-sws.org/iris/stdpp.

The Erlang Team. 2021. The Erlang Language Project. (2021). https://www.

erlang.org/

The Go Team. 2021. The Go Language Project. (2021). https://golang.org/

Peter Thiemann. 2019. Intrinsically-Typed Mechanized Semantics for Session Types.
In PPDP. https://doi.org/10.1145/3354166.3354184

Peter Thiemann and Vasco T. Vasconcelos. 2020. Label-dependent session types.
PACMPL 4, POPL (2020). https://doi.org/10.1145/3371135

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2018. A
logical relation for monadic encapsulation of state: Proving contextual equivalences
in the presence of runST. PACMPL 2, POPL (2018). https://doi.org/10.1145/

3158152

147

https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-14107-2_9
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.1145/3409003
https://doi.org/10.1145/3409003
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3133913
https://doi.org/10.1007/978-3-642-39038-8_13
https://doi.org/10.1007/978-3-662-54434-1_34
https://certik.io/
https://gitlab.mpi-sws.org/iris/stdpp
https://www.erlang.org/
https://www.erlang.org/
https://golang.org/
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3371135
https://doi.org/10.1145/3158152
https://doi.org/10.1145/3158152

Bibliography

Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. 2019. Understanding
Real-World Concurrency Bugs in Go. In ASPLOS. https://doi.org/10.1145/

3297858.3304069

Jules Villard, Étienne Lozes, and Cristiano Calcagno. 2009. Proving Copyless Message
Passing. In APLAS. https://doi.org/10.1007/978-3-642-10672-9_15

Philip Wadler. 2012. Propositions as sessions. In ICFP. https://doi.org/10.1145/

2364527.2364568

Andrew K. Wright. 1995. Simple Imperative Polymorphism. Lisp and Symbolic
Computation 8, 4 (1995). https://dl.acm.org/doi/10.1007/BF01018828

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type
Soundness. Information and Computation 115, 1 (1994). https://doi.org/10.

1006/inco.1994.1093

148

https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1007/978-3-642-10672-9_15
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/2364527.2364568
https://dl.acm.org/doi/10.1007/BF01018828
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093

	Introduction
	Message Passing
	Safety and Session Types
	Functional Correctness and Concurrent Separation Logic
	Challenges
	Message Passing and other Concurrency Models
	Safety via Functional Correctness
	Mechanisation

	Problem Statement and Contributions
	List of Publications and Manuscripts
	Actris: Session-Type Based Reasoning in Separation Logic. Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers, POPL'20
	Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic. Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers, LMCS manuscript in review
	Machine-Checked Semantic Session Typing. Jonas Kastberg Hinrichsen, Daniël Louwrink, Jesper Bengtson, and Robbert Krebbers, CPP'21, recipient of Distinguished Paper Award
	Mechanisations and Artifacts

	Background
	Operational Semantics
	Interleavings in Concurrent Operational Semantics
	The Semantics of HeapLang
	Implementation of Locks and Parallel Composition
	Implementation of a Mutable Linked List
	Implementation of Binary Channels for Message Passing

	Safety, Functional Correctness, and Semantic Typing
	Safety
	Functional Correctness
	Semantic Typing

	The Iris Logic
	Separation Logic in Iris
	Persistent Resources in Iris
	Step-Indexing in Iris
	Reasoning about Concurrent Programs in Iris
	Ghost State in Iris
	Concluding Remarks

	Actris: Session-Type Based Reasoning in Separation Logic
	Introduction
	Message Passing in Concurrent Separation Logic
	Actris 1.0: Dependent Separation Protocols
	Actris 2.0: Subprotocols
	Formal Correspondence to Session Types
	Contributions and Outline
	Differences from the Conference Version

	A Tour of Actris
	The Actris Language
	The Actris Logic
	Basic Protocols
	Transferring Functions
	Choice
	Recursive Protocols
	Delegation
	Dependent Protocols

	Subprotocols
	The Subprotocol Relation
	Swapping
	Minimal Protocols
	Subprotocols and Recursion

	Manifest Sharing via Locks
	Locks and Ghost State
	A Distributed Load-Balancing Mapper

	Case Study: Map-Reduce
	A Functional Specification of Map-Reduce
	Implementation of Map-Reduce
	Functional Correctness of Map-Reduce

	The Model of Actris
	The Model of Dependent Separation Protocols
	The Model of the Subprotocol Relation
	Protocol Consistency
	The Actris Ghost Theory
	Semantics of Channels
	The Model of Channel Ownership
	Adequacy of Actris
	Solving the Recursive Domain Equation for Protocols

	Coq Mechanisation
	Mechanisation Effort
	Tactic Support for Session Type-Based Reasoning
	Tactic Support for Subprotocols

	Related Work
	Message Passing and Separation Logic
	Separation Logic and Process Calculi
	Session Types
	Endpoint Sharing
	Verification of Map-Reduce

	Conclusion and Future Work

	Semantic Session Typing
	Introduction
	A Tour of Semantic Session Typing
	Language
	Semantic Typing in Iris
	Term Types
	Session Types

	Extending the Type System
	Term-Level Subtyping
	Copyable Types
	Equi-Recursive Term and Session Types
	Polymorphism in Term Types
	Polymorphism in Session Types
	Locks and Mutexes
	Session-Level Subtyping

	Manual Typing Proofs
	Receiving in Parallel
	A Parallel Computation Client

	Mechanisation in Coq
	Related Work
	Conclusion
	The Complete Type System
	Uncopy
	Kinded Subtyping and Type Equivalence
	Shared References
	Internal Judgements

	Bibliography

