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This file gives a list of suggestions for the Coq project of dIFP. You may also
invent a project yourself or do a variation of one of the projects. If you invent
a project yourself or do a variation of one of the suggested projects, you have
to discuss it with the teacher.

Library file. As part of your Coq project you should make use of the following
library file:

http://robbertkrebbers.nl/teaching/dIFP-2015/project_lib.v

This file contains the definition of the Case tactics, as well as some common
Coq definitions, such as identifiers.

Extensions. Each project ends with an exercise that lists possible extensions,
of which you have to choose at least one. You are advised to first complete the
whole exercise before starting to work on the extension.

1 The simply typed λ-calculus

The simply typed λ-calculus is a subsystem of Coq that only has function types.
The goal of this project is to formalize the simply typed λ-calculus in Coq and
to implement a type checker for it.

The types and terms are given by the following grammar:

A,B ::= X | A→ B

t, r ::= x | t r | λx : A . t

Here, X ranges over a set of type variables and x over a set of term variables.
Examples of types are X → Y → X and (X → X)→ (X → X), and examples
of terms are λx : X .λy : Y . x and λf : X → X .λx : X . f (f x).

In order to define the set of well-typed terms, we define a typing judgment
Γ ` t : A that states that a term t has type A in environment Γ. The environ-
ment Γ associates types to term variables. The typing judgment Γ ` t : A is
defined by the following inference rules:

x : A ∈ Γ
Γ ` x : A

Γ ` t : A→ B Γ ` r : A
Γ ` t r : B

Γ, x : A ` t : B

Γ ` λx : A . t : A→ B

For example, the term λx : X .λy : Y . x has type X → Y → X, which is shown
by the following derivation:
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x : X, y : Y ` x : X

x : X ` λy : Y . x : Y → X

` λx : X .λy : Y . x : X → Y → X

We formalize the types and terms of the simply typed λ-calculus using the
following inductive definitions in Coq:

Inductive type :=

| tvar : id -> type

| tarr : type -> type -> type.

Inductive term :=

| var : id -> term

| app : term -> term -> term

| lam : id -> type -> term -> term.

The type id of identifiers has been introduced in the chapter “Imp” of Soft-
ware Foundations and is defined in the supplemented library file.

Exercise 1.1 Give Coq definitions of type type corresponding to:

X → Y → X and (X → X)→ (X → X).

Exercise 1.2 Give Coq definitions of type term corresponding to:

λx : X .λy : Y . x and λf : X → X .λx : X . f (f x).

We will represent environments Γ as partial functions:

Definition env := id -> option type.

Definition empty_env : env := fun x => None.

Definition override (E : env) (x : id) (A : type) : env :=

fun y => if beq_id x y then Some A else E y.

Exercise 1.3 Represent the typing judgment Γ ` t : A as an inductively defined
proposition. Do so by completing the following definition:

Inductive typed : env -> term -> type -> Prop :=

| var_typed : forall E x A,

E x = Some A ->

typed E (var x) A

(* fill out *).

Exercise 1.4 Prove ` λx : X .λy : Y . x : X → Y → X. You have to create
a lemma of the following shape:

Lemma test : typed (*your environment *) (*term*) (*type*).
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Exercise 1.5 Implement a type checker by filling out the following definition:

Fixpoint typecheck (E : env) (t : term) : option type :=

(* fill out *).

Exercise 1.6 Explain the difference between the typing judgment typed and the
type checker typecheck.

Exercise 1.7 Write 2 positive tests and 2 negative tests of the type checker
and prove these using the reflexivity tactic.

Exercise 1.8 Prove completeness and soundness of your type checker with re-
spect to the typing rules:

Lemma typecheck_complete : forall E t A,

typed E t A ->

typecheck E t = Some A.

Lemma typecheck_sound : forall E t A,

typecheck E t = Some A ->

typed E t A.

To prove completeness, you may want to use induction on the hypothesis typed

E t A. To prove soundness, you may want to vary the induction hypothesis.

Exercise 1.9 Extend the language with a feature of your choice. For example:

• Products/conjunctions and sums/disjunctions (easy).

• Natural numbers and recursion (moderate).

• Universal/existential quantification (difficult).

• A relation for β-reduction and a proof of type preservation (very diffi-
cult). See https: // en. wikipedia. org/ wiki/ Subject_ reduction .

You have to extend the types, terms, typing rules, type checker and proofs.

2 SAT solver

The goal of this project is to implement a Boolean Satisfiability (SAT) solver in
Coq and to prove soundness of your implementation.

Boolean formulas are given by the following grammar:

p, q ::= x | true | false | p ∧ q | p ∨ q | p→ q | ¬p.

Here, x ranges over an infinite set of propositional variables. Examples of for-
mulas are (x ∨ ¬y) ∧ (¬x ∨ y), y → (x ∨ y) and x ∧ ¬x ∧ true.
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A Boolean formula p is said to be satisfiable in case its truth table contains
at least one row whose outcome is 1. For example:

x y (x ∨ ¬y) ∧ (¬x ∨ y)
0 0 1
0 1 0
1 0 0
1 1 1

satisfiable

x y ¬y → (x ∨ y)
0 0 0
0 1 1
1 0 1
1 1 1

satisfiable

x x ∧ ¬x ∧ true
0 0
1 0

unsatisfiable

The first part of this project is to represent Boolean formulas in Coq and to
formally define the notion of satisfiability.

Exercise 2.1 Define an inductive type form that represents Boolean formulas.
Start by completing the following definition:

Inductive form :=

| var : id -> form

(* fill out *).

The type id of identifiers has been introduced in the chapter “Imp” of Software
Foundations and is defined in the supplemented library file.

Exercise 2.2 Give Coq definitions of type form corresponding to:

(x ∨ ¬y) ∧ (¬x ∨ y) ¬y → (x ∨ y) and x ∧ ¬x ∧ true.

In order to define satisfiability we introduce the notion of a valuation, which
is a function that assigns true or false to each propositional variable.

Definition valuation := id -> bool.

Definition empty_valuation : valuation := fun x => false.

Definition override (V : valuation)

(x : id) (b : bool) : valuation :=

fun y => if beq_id x y then b else V y.

Exercise 2.3 Define the interpretation of a formula (using the ‘truth table
semantics’) by filling out the following definition:

Fixpoint interp (V : valuation) (p : form) : bool :=

(* fill out *).

A formula is said to be satisfiable if there exists a valuation that makes the
formula true. This corresponds to the following definition in Coq:

Definition satisfiable (p : form) : Prop :=

exists V : valuation , interp V p = true.

You may want to read the section “Existential Quantification” of the chapter
“MoreLogic” of Software Foundations.
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Exercise 2.4 Prove in Coq that (x ∨ ¬y) ∧ (¬x ∨ y) and ¬y → (x ∨ y) are
satisfiable. You should create two lemmas of the shape below:

Lemma test1 : satisfiable (* formula 1*).

Lemma test2 : satisfiable (* formula 2*).

Exercise 2.5 Define a function that given a formula computes a valuation in
which the formula is true. You should implement this function by enumerating
all possible valuations (that is generating its truth table).

Definition find_valuation (p : form) : option valuation :=

(* fill out *).

The function find_valuation should yield None in case no such valuation exists
(i.e. the formula is unsatisfiable).

We can now define our SAT solver as follows:

Definition solver (p : form) : bool :=

match find_valuation p with

| Some _ => true

| None => false

end.

Exercise 2.6 Explain the difference between satisfiable and solver.

Exercise 2.7 Write 2 positive and 2 negative tests of the solver and prove these
tests using the reflexivity tactic.

Exercise 2.8 Prove that solver is sound. That means:

Lemma solver_sound : forall p,

solver p = true -> satisfiable p.

Exercise 2.9 Extend your SAT solver in one of the following ways:

• Extend your development to three-valued logic (moderate). Three-valued
logic has three truth values: true, false and some indeterminate third value.
See https: // en. wikipedia. org/ wiki/ Three-valued_ logic .

• Write an optimizer that simplifies a Boolean formula using the laws below,
and prove correctness of your optimizer (moderate).

x ∧ true = x true ∧ x = x x ∧ false = false false ∧ x = false

x ∨ true = true true ∨ x = true x ∨ false = x false ∨ x = x

You should incoorporate this optimizer in solver and its correctness proof.

5

https://en.wikipedia.org/wiki/Three-valued_logic


• Write a converter that transforms Boolean formulas into negation nor-
mal form and prove correctness of your converter (difficult). A Boolean
formula is in negation normal form if the negation operator ¬ is only ap-
plied to variables. You should incoorporate this optimizer in solver and
its correctness proof.

• Write a converter that transforms Boolean formulas into conjunctive nor-
mal form and prove correctness of your converter (very difficult). See
also https: // en. wikipedia. org/ wiki/ Conjunctive_ normal_ form .
You should incoorporate this optimizer in solver and its correctness proof.

• Prove completeness of your solver (very difficult). That means:

Lemma solver_complete : forall p,

satisfiable p -> solver p = true.

3 Binary search trees

The goal of this project is to implement some operations on binary search trees
in Coq and to prove essential properties of the implementation.

A binary search tree is a data structure to efficiently store a finite set of
natural numbers. Binary trees are inductively defined in Coq as follows:

Inductive tree :=

| leaf : tree

| node : tree -> nat -> tree -> tree.

A binary tree is said to be a binary search tree if it satisfies the binary search
tree property, which states that the value in each node is greater (but not equal
to) than all values in the left sub-tree, and smaller (but not equal to) than
all values in the right sub-tree. For example, the tree on the left satisfies the
property, but the one on the right does not (leafs are omitted):

10

5

2 7

16

12 17

1

2

3 4

5

The tree on the right does not satisfy the binary search tree property because
there is a node numbered 2 as a left sub-tree of a node numbered 1.

Exercise 3.1 Give Coq definitions of type tree corresponding to the above bi-
nary trees.

Exercise 3.2 Define an inductively defined proposition that describes whether
a binary tree satisfies the binary search tree property. Do so by completing the
following definition:

Inductive sorted : tree -> Prop :=
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| leaf_sorted : sorted leaf

(* fill out *).

In order to define the above function you may want to define helpers greater

: nat -> tree -> Prop and smaller : nat -> tree -> Prop or all : (nat ->

Prop) -> tree -> Prop as inductively defined propositions.

Exercise 3.3 Prove that the first tree you have defined in Exercise 3.1 satisfies
the binary search tree property, and that the second one does not. You may want
to make use of composition ; of tactics and the repeat tactical.

Exercise 3.4 Define a function that describes whether an element is contained
in a binary search tree or not:

Fixpoint elem_of (x : nat) (t : tree) : bool :=

(* fill out *).

To define an efficient implementation of the elem_of function, you should
not traverse the whole tree, but make use of the binary search tree property.

Exercise 3.5 Write 2 positive tests and 2 negative tests of the elem_of function
and prove these using the reflexivity tactic.

The last part of this project is to define a function that inserts a natural
number into a binary search tree. You have to prove that the resulting tree is
indeed a binary search tree, and you have to prove that it is correct.

Exercise 3.6 Define a function that inserts a natural number into a binary
search tree:

Fixpoint insert (x : nat) (t : tree) : tree :=

(* fill out *).

If the number x is already in the tree, it should return the original tree.

Exercise 3.7 Write 2 tests of the insert function and prove these using the
reflexivity tactic.

Exercise 3.8 Prove that the insert function preserves the binary search tree
property. That means:

Lemma insert_sorted : forall t x,

sorted t -> sorted (insert x t).
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Exercise 3.9 Prove that the insert function is correct. That means:

Lemma insert_correct : forall t x y,

sorted t ->

elem_of y (insert x t) = orb (elem_of y t) (beq_nat x y).

Exercise 3.10 Extend your development on binary search trees with a feature
of your choice. For example:

• A converter from lists to binary search trees and vice versa. Prove a useful
property about the interaction between these functions (easy).

• A delete function. Prove that delete preserves the binary search tree prop-
erty and prove a property about the interaction with elem_of (moderate).

• Self-balancing search trees, such as black-red trees or AVL trees (very dif-
ficult). See also https: // en. wikipedia. org/ wiki/ Self-balancing_

binary_ search_ tree .

4 Arithmetic expression decompiler

The goal of this project is to formalize a compiler and decompiler for an arith-
metical expression language. You have to prove that the compiler is correct and
that the decompiler is an inverse of the compiler.

We consider an expression language of arithmetical expressions that is de-
fined by the following inductive types in Coq:

Inductive unop :=

| OSucc : unop

| OPred : unop.

Inductive binop :=

| OPlus : binop

| OMult : binop.

Inductive exp :=

| ENat : nat -> exp

| EUnOp : unop -> exp -> exp

| EBinOp : binop -> exp -> exp -> exp.

The expression ENat denotes a constant. The unary operator OSucc computes
the successor and OPred computes the predecessor (which is defined to be 0 in
case the argument is 0). The operators OPlus and OMult perform addition and
multiplication as usual.

Exercise 4.1 Define a function eval that gives a semantics to expressions. Fill
out the following template:

Fixpoint eval (e : exp) : nat :=

(* fill out *).
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Exercise 4.2 Write 2 tests of the eval function and prove these tests using the
reflexivity tactic.

The first part of this project is to define a compiler from arithmetical expres-
sions to a stack machine. The instructions of the stack machine are in reverse
Polish notation and are given by the following Coq definitions:

Inductive instruction :=

| IPush : nat -> instruction

| IUnOp : unop -> instruction

| IBinOp : binop -> instruction.

Exercise 4.3 Implement a compiler:

Fixpoint compile (e : exp) : list instruction :=

(* fill out *).

Exercise 4.4 Implement a virtual machine for stack instructions.

Definition vm : list instruction -> option nat :=

(* fill out *).

The virtual machine should yield None in case of stack underflow. For example,
vm [EBinOp OPlus; IPush 10] = None.

Exercise 4.5 Write 2 positive tests and 2 negative tests of the virtual machine
and prove these using the reflexivity tactic.

Exercise 4.6 Prove correctness of your compiler:

Lemma vm_correct : forall e,

vm (compile e) = Some (eval e).

The next part of this project is to define a decompiler. The decompiler trans-
lates a list of machine instructions into a corresponding arithmetical expression.
You have to show that the decompiler is an inverse of the compiler.

Exercise 4.7 Define a decompiler:

Definition decompile : list instruction -> option exp :=

(* fill out *).

The decompiler should yield None in case the list of instructions is ill-formed.
For example, decompile [EBinOp OPlus; IPush 10] = None.

9



The implementation of the decompiler is very similar to the implementation
of the virtual machine. However, instead of evaluating a list of instructions to
a value, you have to evaluate the list to an expression.

Exercise 4.8 Prove that the decompiler is a left-inverse of the compiler:

Lemma decompile_correct : forall e,

decompile (compile e) = Some e.

Exercise 4.9 Extend your project in one of the following ways:

• Extend the language with an operator that may fail (for example, division
may fail in case of division by zero) (moderate). You have to extend the
syntax and semantics of the expression and machine language, as well as
your proofs.

• Extend the language with a non-deterministic random number generator
(difficult). You have to extend the syntax and semantics of the expres-
sion and machine language, as well as your proofs.

• Prove that the decompiler is a right inverse of the compiler (difficult):

Lemma compile_decompile : forall ins e,

decompile ins = Some e -> compile e = ins.

• As you may have noticed, the decompiler and the virtual machine, as well
as its correctness proofs, are very similar. Try to figure out an abstraction
so you can factor out similarities (very difficult).

5 Monads

The goal of this project is to obtain an understanding of monads, to be able to
prove the laws of commonly used monads, and to program in monadic style.

Monads are an abstract way of capturing many common programming con-
cepts such as partiality, error handling, statefulness, non-determinism and con-
tinuations in a functional programming language. A monad consists of a type
constructor M : Type→ Type and two operations:

• The ret operation takes a value x : A from a plain type and injects it into
the monad. The value ret x has type M A.

• The bind operation takes a monadic value m : M A and applies a function
f : A→M B to it. The resulting value bind m f has type M B.

The purpose of these operations is best explained by an example. For that,
we consider the option monad:

Definition option_ret {A} (x : A) : option A := Some x.

Definition option_bind {A B}
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(m : option A) (f : A -> option B) : option B :=

match m with

| Some x => f x

| None => None

end.

The option monad is used to model partiality: the constructor Some denotes
that a computation has succeeded, and the constructor None denotes that a
computation has failed. As shown in the above definition, option_ret models a
successful computation, and option_bind propagates failures.

Recall the index function from the chapter “Poly” of Software Foundations
that returns the nth element of a list, and yields None in case the element does
not exist. We can use option_bind to use it multiple times, without having to
perform explicit pattern matches on the results of index.

Fixpoint index {A} (n : nat) (l : list A) : option A :=

match l with

| [] => None

| a :: l’ =>

if beq_nat n O then Some a else index (pred n) l’

end.

Definition test (l : list nat) : option nat :=

option_bind (index 1 l) (fun n1 =>

option_bind (index 3 l) (fun n2 =>

option_bind (index 5 l) (fun n3 =>

option_ret (n1 + n2 + n3)))).

The function test retrieves the 1st, 3rd and 5th of the list l and sums these
elements. If one of the elements does not exist, the whole function test fails by
returning None. Let us try it out:

Eval compute in test [1;2;3;4;5;6;7;8;9;10]. // Some 12

Eval compute in test [1;2;3;4]. // None

Exercise 5.1 Write 2 positive tests and 2 negative tests for multiple uses of
index using option_ret and option_bind and prove these using the reflexivity

tactic.

An important part of a monad is that it satisfies the monad laws: ret is a
neutral element for bind and binding two functions consecutively is the same as
binding one function that is composed using a bind. These laws are expressed
by the following Coq definition that is parametrized by a type constructor M and
the operations ret and bind:

Definition monad

{M : Type -> Type}

(ret : forall {A}, A -> M A)

(bind : forall {A B}, M A -> (A -> M B) -> M B) :=

(forall A B (f : A -> M B) x, bind (ret x) f = f x) /\

(forall A (m : M A), bind m ret = m) /\

(forall A B C (f : A -> M B) (g : B -> M C) (m : M A),

bind (bind m f) g = bind m (fun x => bind (f x) g)).
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Exercise 5.2 Prove that option satisfies the monad laws:

Lemma option_monad : monad (@option_ret) (@option_bind).

Another example is the list monad which can be used to deal with functions
that yield multiple values. The ret function yields the singleton list, and bind

applies a function to each element of the list and flattens the result.

Definition list_ret {A} (x : A) : list A := [x].

Fixpoint list_bind {A B}

(l : list A) (f : A -> list B) : list B :=

match l with

| [] => []

| x :: l => f x ++ list_bind l f

end.

Exercise 5.3 Implement a function that computes all permutations of a list:

Fixpoint permutations {A} (l : list A) : list (list A) :=

For example permutations [1;2;3] may yield [[1;2;3]; [2;1;3]; [2;3;1];

[1;3;2]; [3;1;2]; [3;2;1]] (it does not matter in which order the permuta-
tions appear in the result). You should use list_ret and list_bind, and you
may define at most one helper function using a Fixpoint.

Exercise 5.4 Prove that list satisfies the monad laws:

Lemma list_monad : monad (@list_ret) (@list_bind).

Yet another example is the state monad, which attaches state information to
a type. Given a type A, the corresponding type is a function that takes a state,
and yields a resulting state and the return value of type A. The ret function
produces a value without changing the state, and the bind function propagates
changes to the state:

Definition state (A : Type) : Type := nat -> (nat * A).

We have represented states using natural numbers, but one could of course
use any type, or make the definition polymorphic in the type of states. For the
purpose of this exercise, this will not be necessary.

Exercise 5.5 Implement the operations state_ret and state_bind. Prove that
your operations satisfy the monad laws:

Lemma state_monad : monad (@state_ret) (@state_bind).

In order to prove the above lemma, you need the functional extensionality axiom,
which states that functions f and g are equal if ∀x . f x = g x. It can be obtained
by adding the following to the beginning of your file:

Require Import FunctionalExtensionality.
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Use Check @functional_extensionality to see the Coq statement of the imported
functional extensionality axiom.

In the remaining part of this exercise, we will use the state monad to imple-
ment a function that relabels binary trees. Binary trees are defined as:

Inductive tree :=

| leaf : tree

| node : tree -> nat -> tree -> tree.

The relabel function should preserve the tree structure, but change the labels
such that they are numbed consecutively from left to right. For example:

10

5

2 7

16

becomes

1

2

3 4

5

In order to implement this function, we use the state monad to keep track of
a counter. Each time we encounter a node, we increase the counter and relabel
it. First we define a helper function to increase the counter.

Exercise 5.6 Write a function that produces the value of the state and in-
creases the value of the state by one:

Definition state_inc : state nat := (* fill out *).

Exercise 5.7 Write a function that relabels trees as described above:

Fixpoint relabel (t : tree) : state tree :=

(* fill out *)

You should use the monadic operations state_ret, state_bind and state_inc.

Exercise 5.8 Write 2 tests of the relabel function and prove these using the
reflexivity tactic.

Exercise 5.9 The size of a binary tree is defined as:

Fixpoint size (t : tree) : nat :=

match t with

| leaf => 0

| node x l r => S (size l + size r)

end.

Write a lemma that states that the relabel function preserves the size of a
binary tree and prove this lemma.
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Exercise 5.10 Extend your project in one of the following ways:

• Implement a non-trivial algorithm of your choice using one of the monads
we have previously defined, and prove an interesting property about this
algorithm (easy).

• Implement another monad (for example the error monad, the reader monad
or the continuation passing style monad) and prove that your implementa-
tion enjoys the monad laws (easy). See https: // en. wikipedia. org/

wiki/ Monad_ ( functional_ programming) #Other_ examples .

• Define an inductively defined relation that describes that two binary trees
have the same shape. Write a lemma that states that the relabel function
preserves the shape of a binary tree and prove this lemma (moderate).

• Define the notion of an additive monad and show that the option and list
monad are an instance of it (moderate). See https: // en. wikipedia.

org/ wiki/ Monad_ ( functional_ programming) #Additive_ monads .

• Monads can also be defined in terms of the operations:

ret : ∀A .A→M A

fmap : ∀AB . (A→ B)→ (M A→M B)

join : ∀A .M (M A)→M A.

satisfying certain monadic laws (see https: // en. wikipedia. org/ wiki/
Monad_ %28functional_ programming% 29# fmap_ and_ join ). Prove that
each ret/bind monad is a ret/fmap/join monad, and vice versa (difficult).
You are allowed to make use of the functional extensionality axiom.
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