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Chapter 1
Introduction

The C programming language was created by Thompson and Ritchie around 1970 as
the implementation language of the Unix operating system [Rit93]. The development
of Unix demonstrated the efficiency and portability of C, and following that success,
C quickly became a dominant general purpose programming language.

More than 40 years after its introduction, C remains among the most widely
used programming languages in the world (see the TIOBE [TIO] and IEEE [IEE15]
indices). However, despite its continuing wide use, C is also among the most bug-
prone programming languages in the world. As a result of weak static typing and the
absence of run-time checks, it is very easy for C programs to have bugs that make the
program crash or behave badly in other ways. Dangling pointers and NULL pointers
can be dereferenced, arrays can be accessed outside their bounds, etc.

A recent example is the Heartbleed bug in the widely used OpenSSL cryptography
library where a buffer overflow allowed access to arbitrary data, which may contain
passwords [MIT, CVE-2014-0160]. Heartbleed is not an incidental case where the
unsafety of C has disastrous consequences. Wang et al. [WCC+12] have shown that
the unsafety of C is a serious problem. In safer programming languages than C, bugs
like these are less likely to occur, but due to the performance, control and portability
benefits of C, the use of C and C derivatives like C++ remains widespread.

Formal verification is a promising approach to retain the performance, control and
portability benefits of C but without the dangers of its unsafety. In formal verification
one uses mathematical methods to obtain the highest level of assurance of a program’s
safety, or even of its entire functional correctness.

In order to advance the use of formal verification applied to C, this thesis describes
a formal semantics corresponding to a significant part of the official C language spec-
ification, the C11 standard [ISO12], as well as technology to enable verification of C
programs in a standards compliant and compiler independent way.

1.1 The C standard

The tutorial book “The C Programming Language” by Kernighan and Ritchie, as
published in 1978 [KR78], has been considered the de facto language specification of

1



1. Introduction

C for over a decade. But as C gained popularity, there became an increasing need for
a definite language specification to keep C dialects from diverging [ISO03].

In 1983, the American National Standards Institute (ANSI) formed a committee
to standardize C, which resulted in the C89 standard [ANS89]. The C89 standard
was later adopted by the International Organization for Standardization (ISO) and
issued as the C90 standard.

The C99 standard [ISO99] has extended C89/C90 with many features (for ex-
ample, intermingled code and variable declarations, long long, compound literals,
effective types, variable length arrays, etc.), contains reworked descriptions of certain
features, and corrections of many mistakes. The most recent version, the C11 stan-
dard [ISO12], has continued reworking descriptions and correcting mistakes, but is
most notable for its added support of concurrency.

Since the standard is intended to be the definite language specification, its main
goal is to be clear, consistent, and unambiguous [ISO03]. However, just like any text
written in prose style natural language, this goal often remains to be desired. This is
particularly troublesome in the following cases:

• The C standard is a contract between compiler writers and programmers. Mis-
understanding of the standard text by compiler writers results in too aggressive
optimizations or other forms of miscompilation. Misunderstanding of the stan-
dard text by programmers results in programming bugs.

• In order to apply formal verification to C, a mathematically precise language
specification is needed. In formal mathematics one cannot cut corners like prose
style texts such as the C standard are able to do.

The fact that the C standard indeed suffers from ambiguities is witnessed by the
numerous requests for clarification in the form of defect reports and the numerous
discussions on the standard committee’s mailing list [ISO].

Many obscurities of C11 are related to the interaction between low-level and high-
level data access in C. Low-level data access involves unstructured and untyped byte
representations whereas high-level data access involves abstract values such as structs
and unions. Compilers often use a high-level view of data access to perform optimiza-
tions whereas programmers expect data access to behave in a low-level way.

This interaction has led to numerous ambiguities in the standard text related to
aliasing, uninitialized memory, end-of-array pointers and type-punning. See for ex-
ample the message [Mac01] on the standard committee’s mailing list, Defect Reports
#236, #260, and #451 [ISO], and the various examples in this thesis.

1.2 Formal C verification

Formal verification is the process of using mathematical methods to prove properties
of programs. There is a wide range of approaches towards formal verification. Some
require human guidance and guarantee full functional correctness, whereas others are
fully automated and merely guarantee the absence of run-time errors (such as out of
bounds array accesses) or are just meant to find bugs.

The basic concepts of verification have been pioneered by Floyd and Hoare in the
1960s [Flo67, Hoa69]. They presented an axiomatic system, nowadays called a Hoare

2



1.2. Formal C verification

logic, which allows reasoning about programs in a structured fashion. Building on
Floyd and Hoare, Dijkstra [Dij75] invented the concept of weakest preconditions. This
concept forms the basis of verification condition generation, which given a program
with logical annotations, produces a set of verification conditions. If all generated
conditions are proven, the program is guaranteed to be correct.

Another approach to formal verification is abstract interpretation, which has been
invented by Cousot and Cousot in the 1970s [CC77]. The idea of abstract interpreta-
tion is to compute an over-approximation of a given program’s behavior. Properties
are then proven with respect to the over-approximation and related back to the con-
crete behavior of the program.

Abstract interpretation is the key to static program analysis, which is widely used
to fully automatically prove shape and safety related properties of programs. Exam-
ples of such systems are the static analyzer of Clang, the Sparse static analyzer, which
is used for the Linux kernel among others, the Coverity static analyzer [BBC+10],
which is used for software in the Large Hadron Collider and the Mars rover Curiosity
among others, and the Astrée static analyzer [BCC+03] used by Airbus among others.
Systems that are based on combinations of static analysis and model checking have
also proven successful, for example Microsoft’s SLAM static driver verifier [BLR11]
and the Berkeley Lazy Abstraction Software Verification Tool [BHJM07].

Since systems for static analysis operate on an approximation of the behavior of
the given program, they are inherently incomplete. In practice that means these sys-
tems will either yield false-negatives from time to time or have to sacrifice soundness.
The emphasis of most systems for static analysis is thus on bug finding.

Human guided systems reduce the problem of incompleteness, and are therefore
more general. These systems are mostly based on a form of verification condition gen-
eration where humans guidance is required to annotate the given program with logical
conditions. The resulting verification conditions are then verified either fully auto-
matically using SAT/SMT solvers, or interactively using proof assistants. Examples
of such systems are Boogie [BMSW10], HAVOC [BHL+10], the Jessie plug-in [MM11]
of Frama-C [CKK+12], Key-C [MLH07], VCC [CDH+09] and Verifast [JP08]. These
systems have for example been used for the verification of a microkernel operating
system written in C [CDH+09].

A shortcoming of the aforementioned systems is the use of an implicit semantics
of C. That means, the semantics of C is part of the implementation of the system
and has not been stated explicitly. The semantics thus cannot be studied on its own,
and is very difficult to get correct with respect to the C standard. Indeed, as shown
in [ER12a, Ell12], many of these systems fail to get correct subtle behaviors of C such
as unspecified order of expression evaluation.

In order to obtain the best environment to reason reliably about C programs, one
needs an explicit semantics in a proof assistant such as Coq [Coq15], Isabelle [WPN08],
or HOL4 [SN08]. The proof assistant can then be used as a unified environment to
establish metatheoretical properties of the language, to verify actual C programs, and
to verify the correctness of C compilers and static analyzers.

The first significant formalized C semantics has been developed by Norrish who
used HOL4 to formalize delicate parts of the C89 standard [Nor99]. A few years later,
Leroy achieved a milestone in compiler verification. He has formalized a large part of

3



1. Introduction

the C semantics in Coq which he has used to prove the correctness of an optimizing
compiler, called CompCert [Ler06]. CompCert is written in Coq itself. Notable uses
of the CompCert semantics include the verification in Coq of an implementation of
SHA [App15], a static analyzer for C [JLB+15], and a microkernel operating system
written in C [GVF+11].

An entire different approach to C verification is the L4.verified project by Klein
et al. [K+09] where the C sources of a microkernel operating system are translated
into monadic definitions inside the Isabelle proof assistant [GLAK14]. Verification is
then performed with respect to these monadic definitions. The C sources are finally
compiled using GCC, and the produced assembly is related to the Isabelle definitions
using translation validation [SMK13].

Both the CompCert and L4.verified project use a specific semantics of C. That
means, they use a semantics that is tied to a specific compiler or computing architec-
ture and thus do not capture all behaviors allowed by the C standard. Verification of a
program against the CompCert semantics gives very strong guarantees when the pro-
gram is compiled with the CompCert compiler but does not give reliable guarantees
when the program is compiled using a different compiler.

Since these projects are aimed towards C verification involving a specific comput-
ing architecture or compiler, their choice for using a semantics that describes fewer
behaviors than the C11 standard is appropriate. However, in order to apply C verifi-
cation to programs compiled with arbitrary C11 compliant compilers, one needs a C
semantics that captures all behaviors allowed by the C11 standard.

Ellison and Roşu [ER12b] have developed such a semantics of C11 using the K
rewriting framework. Their semantics covers an impressive fragment of C close to C11
and is parameterized by implementation choices. Their semantics is primarily aimed
at being executable and has been used as an oracle for compiler testing [RCC+12].
However, their semantics is unlikely to be of practical use in proof assistants because
it is defined on top of a large C abstract syntax and uses a rather ad-hoc execution
state that contains over 90 components.

In summary, the last decades have shown a diversity of impressive results in formal
verification applied to real life languages like C. In order to advance C verification
and to make it more reliable, this thesis presents an explicit semantics of C formalized
in Coq. Such a semantics is an important artifact and has four main applications:

• It makes the standard utterly precise. This is useful for compiler writers, who
will get the means to establish how the standard needs to be understood without
having to deal with the ambiguities of prose style natural language. Program-
mers writing C code get the same benefit.

• It allows one to prove metatheoretical properties of the language specification.
These properties are essential to validate the formal definitions.

• When establishing a property of a C program, it is very attractive to be able
to claim that the property has been proven with respect to the official standard
and thus conforms to widely used compilers such as GCC and Clang. This kind
of knowledge is implicit in most current tools. A formal semantics of C11 makes
it possible to make this connection with the standard explicit.
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• Verified compilers such as CompCert [Ler09a] need a semantics of a version of
C. With a formal version of the C11 semantics, the correctness of the compiler
becomes provable with respect to the official standard.

In order to make these applications possible, our semantics captures all behaviors
allowed by C11, supports a substantial part of the C language, and is usable in proof
assistants. All our results are formalized in the Coq proof assistant.

1.3 The CH2O project

This thesis describes the results of the CH2O project. The goal of the CH2O project
is to develop a formal1 version of the non-concurrent fragment of the C11 standard
that is usable in proof assistants. The CH2O project provides the following kinds of
formal semantics for C, along with proofs that they correspond to each other.

• Operational semantics. An operational semantics describes the behavior of
programs using individual computational steps. It is generally used to reason
about program transformations and to prove metatheoretical properties.

• Executable semantics. An executable semantics is an algorithmic version of
the operational semantics that allows one to compute the set of behaviors of a
given program. It is generally used for debugging and testing purposes.

• Axiomatic semantics. An axiomatic semantics allows one to reason about
programs in a structured fashion. It is generally used to reason about concrete
C programs.

Given the different purposes of these kinds of formal semantics, it is important
to have corresponding versions of these kinds. Without a corresponding executable
semantics it is difficult to test whether the semantics gives the intended behavior to
example programs, and without an axiomatic semantics it is difficult to apply it to
program verification.

The CH2O project does not just consider an academic fragment of the C language.
It considers a significant part that includes many delicate features:

• Integer types, including long long, size_t, ptrdiff_t, etc.
• Implicit type conversions (usual arithmetic conversions and integer promotions).
• Pointer types, including function pointers and void* pointers. Pointers can be

end-of-array and be cast to unsigned char* to access object representations.
• Array types, struct and union types (also as argument and return types of

functions), enum types and typedefs.
• Expressions with side-effects such as assignment (operators), function calls and

the sequencing operators (_ ? _ : _), (_ , _), (_ && _) and ( || ).
• Loops (while, for and do-while), basic control (if-else), non-local control

(goto, break, continue and return) and the switch statement (including
unstructured variants such as Duff’s device).

1A solution of the chemical compound CH2O in water is called formalin.
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• Scoping, including local variables with static and extern storage specifiers.
• Dynamically allocated storage through malloc and free.
• Initializers, compound literals and constant expressions.
• Implementation-defined operators and constants such as sizeof, _Alignof,

offsetof, CHAR_BIT, INT_MIN, INT_MAX, etc.
During the development of CH2O we have kept the following requirements and

principles in mind:
• Close to C11. CH2O is faithful to the C11 standard in order to be compiler

independent. When one proves something about a given program with respect
to CH2O, it should behave that way with any C11 compliant compiler (possibly
restricted to certain implementation-defined choices).

• Static type system. Given that C is a statically typed language, CH2O does
not only capture the dynamic semantics of C11 but also its type system. We
have established properties such as type preservation and a limited form of
progress.

• Proof infrastructure. All parts of the CH2O project with the exception of
the parser have been formalized in Coq (without axioms). This is essential for
its application to program verification in proof assistants. Also, considering the
significant size of CH2O, proving metatheoretical properties of the language
would have been intractable without the support of a proof assistant.
Despite our choice to use Coq, we believe that nearly all parts of CH2O could
be formalized in any proof assistant based on higher-order logic.

• Based on a core language. The definition of C abstract syntax contains a
lot of delicate details such as constant expressions and initializers, and consists
of a large body of mutually dependent parts. Defining a semantics directly on
top of C abstract syntax would make it unusably complicated.
The three versions of the CH2O semantics are defined on top of a more principled
language called CH2O core C. Our language CH2O abstract C, which is
very close to C abstract syntax, is given a semantics by a translation into CH2O
core C. This translation is defined in Coq and proven to be type sound.

• Memory refinements. CH2O has an expressive notion of memory refinements
that relates memory states. The operational semantics is proven invariant under
this notion. Memory refinements form a general way to validate many common-
sense properties of the memory model in a formal way. They also open the door
to reasoning about program transformations.

• Separation logic. Separation logic is a modern variant of Hoare logic that
allows one to reason about imperative programs that use mutable data struc-
tures and pointers [ORY01]. CH2O has an axiomatic semantics in the form of
a separation logic.

1.4 Overview of this thesis

The structure of this thesis is bottom up: we will define the various C semantics
starting from small subcomponents towards the entire semantics. This section gives
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C sources

CH2O
abstract C

Operational
semantics

Γ, δ ` S1 _ S2

Pure expression
evaluation

[[ e ]]Γ,ρ,m = ν

Axiomatic semantics
R, J, T `Γ,δ {P} s {Q}

Typing
judgment

Γ ` S : fmain

Refinement
judgment

S1 vfΓ S2 : fmain

Executable
semantics

S2 ∈ execΓ,δ S1

CH2O core C

Soundness &
Completeness

Soundness &
Completeness

Soundness

Type preservation
& progress

Invariance

Type soundness

Not formalized

Formalized in Coq

Figure 1.1: Overview of the components of the CH2O project. Boxes denote languages
and arrows marked black denote translations between these languages. Dotted boxes
denote judgments (such as a semantics) and arrows marked red denote important
proofs related to these judgments.
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a top-down overview of the thesis as graphically displayed in Figure 1.1. In this thesis
we consider two formalized languages:

• CH2O core C. The syntax of this language resembles actual C but incorpo-
rates many simplifications to make its semantics more principled. For example,
CH2O core C has just one looping construct that generalizes the various loop-
ing constructs of C (while, for and do-while loops), uses De Bruijn indices for
local variables, and makes l-value conversion explicit.

• CH2O abstract C. This language bridges the gap between CH2O core C and
C abstract syntax. It uses named variables, supports global and static variables,
initializers, enum types, typedefs, etc. The semantics of CH2O abstract C is
specified by translation into CH2O core C.

We use a small part that is not formalized to translate actual C source files into
CH2O abstract C. This translation consists of the following phases:

C sources
Pre-

processed
C sources

FrontC
abstract
syntax

CH2O
abstract C

cpp

C
FrontC
OCaml

glue

OCaml

The GNU C preprocessor (called cpp in the diagram) is used to perform macro
expansion and inclusion of header files. The FrontC parser2 is used to transform the
preprocessed C sources into an OCaml representation of an abstract syntax tree. This
abstract syntax tree is then translated into CH2O abstract C using a thin layer of
OCaml glue.

The languages CH2O core C and CH2O abstract C as well as their translation are
formalized in Coq. The translation is proven to be type sound. Type soundness gives
a higher confidence in the correctness of the translation. The various C semantics
that we present will be defined on top of CH2O core C.

Operational semantics. Computation in the small-step operational semantics is
defined as the reflexive transitive closure of a reduction relation Γ, δ ` S1 _ S2. The
environments Γ and δ serve the following purposes:

• The environment Γ ∈ env assigns field types to struct and union types as well
as argument and return types to function names.

• The environment δ ∈ funenv contains the bodies of all declared functions.
States S ∈ state consist of two components: the memory and the current location

in the program that is being executed. The memory corresponding to the initial state
contains storage for global and static variables.

Memories m ∈ mem are represented as forests of well-typed trees whose struc-
ture corresponds to the structure of data types in C. The tree corresponding to the

2Our version of FrontC is based on the version used by CompCert version 2.2 [Ler09a], which
in turn is based on the FrontC parser of the CIL suite [NMRW02]. Note that FrontC is just a lexer
and parser. Contrary to the full CIL suite, it does not perform any code transformations to the C
abstract syntax trees such as pulling out side-effects of expressions.
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declaration struct S { short x, *r; } s = { 33, &s.x } might be (the precise
shape and the bit representations are implementation-defined):

structS

1000010000000000 EEEEEEEEEEEEEEEE ································

The leaves of these trees contain symbolic bits: the integer 33 is represented as
its binary representation 1000010000000000, the padding as symbolic indeterminate
bits E (whose actual values should not be used), and the pointer &s.x as a sequence
of symbolic pointer bits. Bits are annotated with permissions (not displayed).

Our structured memory model gives an unambiguous semantics to delicate fea-
tures of C that have not yet been addressed by others. In particular, the tree structure
naturally models the standard’s notion of effective types [ISO12, 6.5p6-7] which allow
compilers to perform optimizations based on type-based alias analysis.

The current location in the program that is being executed is described using an
adaptation of Huet’s zipper data structure [Hue97] over statement abstract syntax
trees. We use the zipper data structure to accurately describe non-local control (goto,
break, continue, return and unstructured switch) in the presence of block scope
local variables. The current location in the program is a pair (P, φ) where P ∈ ctx is
the context of the part φ ∈ focus that is being executed. We consider the following
forms of program execution:

• Execution of a statement. Execution of a statement occurs by small-step
traversal through the zipper in a direction corresponding to the current form of
(non-local) control. The context P of our zipper implicitly contains the program
stack ρ ∈ stack that assigns locations in memory to local variables.

• Execution of an expression. Execution of an expression is described by a
head reduction Γ, ρ ` (e1,m1) _h (e2,m2). Evaluation contexts [FFKD87] are
used to select a head redex in a whole expression.

• Calling a function and returning from a function. When calling a func-
tion, the zipper is extended with the function body of the callee, which is in
turn executed. Returning from a function resumes execution of the caller, whose
location is stored as part of the context P of our zipper.

• Undefined behavior. We use a special undef state to describe that a run-time
error (undefined behavior in C terminology) has occurred.

Typing judgment. The typing judgment for states has the shape Γ ` S : fmain
where fmain ∈ funname is the function that started the computation that led to S.
We have proven type preservation (reduction in the operational semantics preserves
typing) and a limited form of progress (every non-final non-error state can reduce).

Refinement judgment. The refinement judgment S1 vfΓ S2 : fmain allows one to
relate states with each other. The state S2 may be more defined than S1 (i.e. it may
have fewer indeterminate memory locations). The function f is used to relabel the
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memory and to coalesce multiple top-level objects into subobjects of a larger object.
The operational semantics is proven invariant under refinements in the form of a
backward simulation.

Executable semantics. The executable semantics S2 ∈ execΓ,δ S1 is an algorith-
mic version of the operational semantics. That means, the function execΓ,δ : state→
Pfin(state) computes the finite set of subsequent states.

The executable semantics is proven sound and complete with respect to the op-
erational semantics. The completeness proof is complicated due to excessive non-
determinism in our operational semantics.

Pure expression evaluation. Pure expressions do not contain assignments and
function calls and therefore enjoy three useful properties: they do not modify the
memory state, they yield unique results, and their executions always terminate. These
properties allow us to define an evaluator [[ ]]Γ,ρ,m : expr → option lrval that yields
the resulting address or abstract value of an expression.

The evaluator of pure expressions is used for constant expression evaluation during
the translation of CH2O abstract C into CH2O core C and in assertions of separation
logic. It is proven sound and complete with respect to the operational semantics.

Axiomatic semantics. Judgments of the axiomatic semantics are of the shape
R, J, T `Γ,δ {P} s {Q}. The right hand side {P} s {Q} is a traditional Hoare triple.
That means, P and Q are assertions called the pre- and postcondition. Provided P
holds for the state before executing s, and execution of s terminates, then Q holds
for the state after execution. On top of that, the axiomatic judgment ensures the
absence of run-time errors (undefined behavior in C terminology). The environments
deal with non-local control:

• The environment R specifies the conditions for returns.
• The environment J specifies the conditions for gotos.
• The environment T specifies the conditions for break and continue.
The axiomatic semantics is based on separation logic [ORY01] and is defined using

a shallow embedding in terms of the operational semantics.

1.5 Is CH2O really a formalization of C11?

The skeptic reader may wonder whether the definitions in this thesis really constitute
a formalization of the C11 standard. In this section we will argue that CH2O is indeed
a correct formal definition of C.

• We have carefully studied the standard text, defect reports, and the behaviors
of widely used C compilers. The formal definitions in this thesis are motivated
by references to the standard text, and by contemplating example programs.

• Using our executable semantics we have debugged the semantics on example C
programs. We have tested the semantics on all examples in this thesis, examples
from the standard text and defect reports, as well as on a small test suite. This
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shows that the set of possible behaviors (including undefined behaviors) that
CH2O assigns to these programs conforms with the C11 standard.

• We have designed CH2O to be compatible with the formally verified CompCert
C compiler by Leroy et al. [Ler09b]. This shows that our semantics does not
treat too many programs as semantically illegal (having undefined behavior).

Since the C11 standard is written in English instead of a mathematically precise
formalism, it is impossible to obtain an exact correspondence between CH2O and the
standard text. Even worse, as we will show in Chapter 2, we have found conflicts in
the standard text that would make a mathematical formalization inconsistent. This
has necessitated us to make specific design choices. We have made these design choices
by treating doubtful programs as semantically illegal (having undefined behavior) so
as to ensure that CH2O is safe with respect to existing compilers. Chapter 2 contains
an extensive discussion of this issue.

In order to verify that our choices are reasonable and unambiguous, we have made
use of the following forms of validation:

• All our results have been formalized using the Coq proof assistant. Although a
proof assistant does not guarantee that the definitions have the intended mean-
ing, it provides a good sanity check as it requires one to carefully craft the
definitions and it guarantees that these are mathematically well-formed.

• We have developed various metatheoretical results about the semantics. These
results show that the semantics is well-behaved and enjoys intended properties.
For example, it justifies important compiler optimizations.

• We have developed three different kinds of semantics for C along with proofs
that they correspond to each other. We have thus considered C from multiple
points of view, and thereby ensured that our definitions match our intent.

One may also wonder whether Coq gives higher confidence that our proofs are in-
deed correct. For this issue we refer to the extensive discussion on the trustworthiness
of proof assistants by Pollack [Pol98].

1.6 Contributions

This thesis includes a number of contributions that have been published before. These
contributions are useful in their own right, and may apply to other low-level program-
ming languages such as C++ or LLVM.

• In order to accurately capture allocation and deallocation of block scope vari-
ables due to uses of goto or return statements, we have developed an approach
for handling non-local control flow in the presence of block scope lo-
cal variables [KW13]. Our approach uses an operational semantics in which
the program state is represented through an adaptation of Huet’s zipper data
structure. We have proven soundness of a corresponding separation logic. I have
received an “ETAPS best student contribution award” for this contribution.

• In order to handle non-determinism in expressions with side-effects we have
developed an approach for non-determinism and sequence points [Kre14a].
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Our approach uses a permission system to rule out multiple modifications of
the same memory area in a single expression (which is undefined in C). We have
proven soundness of a corresponding separation logic.

• We have developed a typed memory model based on trees [Kre13]. This
memory model supports both low-level access to byte-level representations and
high-level compiler optimizations based on abstract values (struct and unions).
Our memory model gives an unambiguous semantics to delicate features of C
such as effective types that have not yet been addressed by others.

• We have developed a generalization of separation algebras that is well-
suited for C verification [Kre14b]. We have used our generalization of sep-
aration algebras to compositionally define the CH2O permission system as a
telescope of separation algebras. These separation algebras have also been used
to make the CH2O memory model suitable for separation logic.

• We have developed an interpreter that calculates all behaviors of a given
C program with respect to our semantics [KW15]. This interpreter formally
translates C abstract syntax into a core language, on top of which we have de-
fined an executable semantics that computes the set of all behaviors allowed by
C11. The executable semantics has been proven sound and complete with re-
spect to the operational semantics. The translation into a core language extends
the language with many delicate features of C such as initializers, compound
literals, constant expressions and typedefs.

• We have extended CompCert with some subtle behaviors of C [KLW14],
namely end-of-array pointers and the possibility to byte-wise copy objects. This
extension brings CompCert closer to C11 and the CH2O semantics.

• We have developed a Coq support library. This library has a great number
of definitions and theory on common data structures such as lists, finite sets,
finite maps and hashsets. Our Coq library uses type classes to overload common
notations, such as those used when programming with monads.

1.7 Outline

This thesis consists of the following chapters:
Chapter 2 describes subtleties of C and our treatment of these. These subtleties

are presented in the form of numerous example programs. This chapter furthermore
gives a brief introduction to C. This chapter is based on [KW15] published in CPP’15,
[KLW14] published in ITP’14 and [Kre15] accepted with revisions for JAR.

Chapter 3 describes our formal treatment of implementation-defined aspects of
C such as integer representations, the behavior of integer operations, and the layout
of structs and unions. This leads to a formal treatment of types in C. This chapter is
based on [Kre13] published in CPP’13 and [Kre15] accepted with revisions for JAR.

Chapter 4 describes the CH2O permission system which is built compositionally
using separation algebras. This chapter is based on [Kre14b] published in VSTTE’14
and [Kre15] accepted with revisions for JAR.
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Chapter 5 describes the CH2O memory model. Our memory model is defined
as a forest of trees with bits on their leaves. The combination of trees and bits gives
an appropriate semantics to low-level operations as well as delicate high-level aspects
of C11 such as effective types. This chapter establishes metatheoretical properties of
the memory model related to common compiler optimizations. This chapter is based
on [Kre13] published in CPP’13 and [Kre15] accepted with revisions for JAR.

Chapter 6 describes the language CH2O core C and its operational and exe-
cutable semantics. This chapter establishes desirable metatheoretical properties such
as type preservation, progress, and soundness and completeness of both the executable
semantics and the pure expression evaluator. This chapter is based on [KW13] pub-
lished in FoSSaCS’13, [Kre14a] published in POPL’14 and [Kre15] accepted with
revisions for JAR.

Chapter 7 describes the language CH2O abstract C and its translation into CH2O
core C. This translation is proven type sound, and is combined with the executable
semantics to obtain an interpreter that computes all behaviors of a C source file. We
have used the interpreter to validate our semantics against all examples in this thesis
and a small test suite. This chapter is based on [KW15] published in CPP’15.

Chapter 8 describes a separation logic for CH2O core C. This separation logic
supports novel features such as block scope local variables in the presence of non-local
control and expressions with side-effects in the presence of non-deterministic expres-
sion evaluation. This chapter is based on [KW13] published in FoSSaCS’13, [Kre14a]
published in POPL’14, [Kre14b] published in VSTTE’14 and [Kre15] accepted with
revisions for JAR.

Chapter 9 describes the Coq formalization. All definitions and proofs in this
thesis have been fully formalized using Coq. This chapter also describes a Coq support
library developed as part of CH2O.

Chapter 10 describes related work and Chapter 11 finishes with conclusions
and future work.

1.8 Coq sources

All definitions and proofs in this thesis have been formalized using Coq. The sources
of the formalization are available online under the terms of a BSD license:

http://robbertkrebbers.nl/research/ch2o

Since this thesis describes a large formalization, we often omit details and proofs.
The interested reader can find all details online as part of the Coq sources.

1.9 Notations

This section introduces some common mathematical notions and notations that will
be used throughout this thesis.

Definition 1.9.1. We let N denote the type of natural numbers (including 0), let Z
denote the type of integers, and let Q denote the type of rational numbers. We let
i | j denote that i ∈ N is a divisor of j ∈ N.
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Definition 1.9.2. We let Prop denote the type of propositions, and let bool denote
the type of Booleans whose elements are true and false. Most propositions we consider
have a corresponding Boolean-valued decision function. In Coq we use type classes to
keep track of these correspondences, but in this thesis we leave these correspondences
implicit.
Definition 1.9.3. We let option A denote the option type over A, whose elements
are inductively defined as either ⊥ or x for some x ∈ A. Elements of the option type
are denoted as x? ∈ option A. We implicitly lift operations to operate on the option
type, and often omit cases of definitions that yield ⊥. This is formally described using
the option monad in the Coq formalization.
Definition 1.9.4. A partial function f from A to B is a function f : A→ option B.
Definition 1.9.5. A partial function f is called a finite partial function or a finite
map if its domain dom f := {x | ∃y ∈ B . f x = y} is finite. The type of finite partial
functions is denoted as A →fin B. The operation f [x := y] yields f with the value y
for argument x.
Definition 1.9.6. We let 1 denote the unit type whose only element is ().
Definition 1.9.7. We let A × B denote the product of types A and B. Given a
pair (x, y) ∈ A×B, we let (x, y)1 := x and (x, y)2 := y denote the first and second
projection of (x, y).
Definition 1.9.8. We let A+B denote the sum of types A and B, whose elements
are inductively defined as xl for x ∈ A or yr for y ∈ B. We omit the subscripts l and
r if they are clear from the context.
Definition 1.9.9. We let list A denote the list type over A, whose elements are
inductively defined as either ε or x~x for some x ∈ A and ~x ∈ list A. We let xi ∈ A
denote the ith element of a list ~x ∈ list A (we count from 0). Lists are sometimes
denoted as [ x0, . . . , xn−1 ] ∈ list A for x0, . . . , xn−1 ∈ A.

We use the following operations on lists:
• We often implicitly lift a function f : A0 → · · · → An point-wise to the function
f : list A0 → · · · → list An. The resulting list is truncated to the length of the
smallest input list in case n > 1.

• We often implicitly lift a predicate P : A0 → An−1 → Prop to the predicate
P : list A0 → · · · → list An−1 → Prop that guarantees that P holds for all (pairs
of) elements of the list(s). The lifted predicate requires all lists to have the same
length in case n > 1.

• We let |~x| ∈ N denote the length of ~x ∈ list A.
• We let ~x[i, j) ∈ list A denote the sublist xi . . . xj−1 of ~x ∈ list A.
• We let xn ∈ list A denote the list consisting of n times x ∈ A.
• We let (~xy∞)[i, j) ∈ list A denote the sublist xi . . . xj−1 of ~x ∈ list A which is

padded with y ∈ A in case ~x is too short.
• Given lists ~x ∈ list A and ~y ∈ list B with |~x| = |~y|, we let # »xy ∈ list (A × B)

denote the point-wise pairing of ~x and ~y.
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Chapter 2
Subtleties of C

The semantics of C is oriented towards being efficiently implementable rather than
being abstract in a mathematical sense. This is best captured by the following design
choices from the standard’s rationale [ISO03]:

• Trust the programmer.
• Do not prevent the programmer from doing what needs to be done.
• Make it fast, even if it is not guaranteed to be portable.
These design choices are both a blessing and a curse. They are the reason that C

runs on almost every computer in existence, that C provides a high level of control,
and that C code can be compiled to very efficient machine code.

The downside is a heavy burden on programmers. It is very easy for C programs to
have bugs that make the program crash or behave badly in other ways. Furthermore,
C programs can easily be developed with a too specific interpretation of the language
in mind, giving portability and maintenance problems later.

The C standard achieves these goals by underspecification of the language. Instead
of assigning a unique behavior to each program, it assigns a set of possible behaviors to
each program. In the case of semantically illegal programs (those that have undefined
behavior in C terminology) this set contains all possible behaviors (including letting
the program crash). Surprisingly, correctly characterizing the set of programs that
have undefined behavior is the hardest part of formalizing C.

This chapter describes the notions of underspecification used by the C11 standard,
their consequences, as well as our formal treatment of them. This chapter moreover
gives a brief introduction to C and illustrates a number of subtle forms of under-
specification by means of example programs, their bizarre behaviors exhibited when
compiled with widely used C compilers, and their treatment in CH2O.

2.1 Underspecification in the C standard

The C11 standard uses the following notions of underspecification [ISO12, 3.4]:
• Implementation-defined behavior. Program constructs for which the C11

standard delegates specification of their behavior to the compiler writer. For
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example, a compiler may use integers whose sizes are optimal for the target
computing architecture. Implementation-defined behavior is consistent among
each use of the program construct and should be documented by the compiler
writer. The C11 standard only imposes some lower bounds.

• Unspecified behavior. Program constructs for which the C11 standard allows
multiple behaviors. For example, each expression may be evaluated in the order
deemed most efficient. A compiler writer does not have to document his choice,
and his choice may vary for each use of the program construct. For example,
evaluation of the same expression may be left to right in one situation, and right
to left in another.

• Undefined behavior. Program constructs that are semantically illegal and for
which the C11 standard imposes no requirements at all. Examples of undefined
behavior are dereferencing a NULL or dangling pointer, signed integer overflow,
and sequence point violations (modifying a memory location more than once in
between two sequence points). In case of undefined behavior, the program may
behave arbitrarily and is even allowed to crash.

Underspecification is used heavily by the C11 standard: 135 forms of implementation-
defined behavior (including locale specific behavior), 58 forms of unspecified behavior,
and 203 forms of undefined behavior are listed in [ISO12, Annex J].

The extensive use of underspecification in C shifts responsibilities from the com-
piler writer to the programmer:

• Underspecification gives more freedom to compiler writers. It allows
for more effective optimizations, high run-time efficiency, and makes C easily
portable among different computing architectures.

• Underspecification is a burden for programmers. Programmers have to
ensure that their programs behave correctly under any choice of unspecified
behavior and do not exhibit undefined behavior. Also, their assumptions about
implementation-defined behavior should match up with the compiler.

Undefined behavior is often misunderstood. Let us consider dereferencing a NULL
pointer as a running example. In more modern programming languages such as Java
dereferencing a NULL pointer has a definite meaning: the semantics specifies that a
NullPointerException is raised. Such an exception can be caught by error handling
code, and if not, the program terminates with an error message.

In C the situation is different, dereferencing a NULL pointer has undefined behavior,
which means that the standard imposes no requirements on the semantics whatsoever.
A program in which a NULL pointer is dereferenced can therefore exhibit literally any
behavior. For example, it may crash or it may yield unexpected results.

The main advantage of undefined behavior is higher run-time efficiency. Because
the standard imposes no requirements on undefined behavior, a compiler can assume
that a given program is free of undefined behavior. As a result, to compile a pointer
dereference, a compiler does not have to generate code that checks whether the given
pointer is unequal to NULL and raises an exception in case it is not. Instead, it is the
programmer’s responsibility to ensure that no NULL pointers are being dereferenced.
The compiler will trust the programmer entirely on that.
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It is important that programmers ensure that their programs do not exhibit any
form of undefined behavior since undefined behavior may cause (security) bugs. Wang
et al. [WCC+12] and Dietz et al. [DLRA12] give an extensive overview. We consider
an example by Corbet from the Linux kernel [Cor09]:

static unsigned int tun_chr_poll(struct file *file, poll_table *wait) {
struct tun_file *tfile = file->private_data;
struct tun_struct *tun = __tun_get(tfile);
struct sock *sk = tun->sk;
unsigned int mask = 0;
if (!tun) return POLLERR;
...

In the first statement marked red, the -> operator is used to dereference the struct
pointer tun and access its field sk (tun->sk stands for (*tun).sk) Only afterwards,
in the second statement marked red, it is checked that tun is not NULL.

What has been forgotten here is that dereferencing a NULL pointer has undefined
behavior. Since a compiler may rightfully assume programs to be free of undefined
behavior, it is allowed to assume that tun is not NULL and optimize out the ‘super-
fluous’ NULL check (GCC actually does do so). Without the NULL check, an attacker
can run the rest of the function with tun pointing to the 0 address (which is a valid
address in the Linux kernel), leading to privilege escalation [Cor09, WCC+12].

Note that even if the current version of a compiler does not optimize out the NULL
check, future versions of the same compiler may do so without notice.

2.2 Treating underspecification formally

Modeling underspecification formally is folklore:
• Implementation-defined behavior is modeled by parameterization.

The entire CH2O semantics is parameterized by a record that describes prop-
erties such as sizes and endianness of integers.

• Unspecified behavior is modeled by non-determinism. We use a non-
deterministic small-step operational semantics. Selection of possible redexes is
described using evaluation contexts [FFKD87].

• Undefined behavior is modeled by the absence of a semantics. We
use a reduction to a special undef state in the small-step operational semantics.
This undef state should be interpreted as “any behavior is allowed”.

In order to prove that a program satisfies a specification, one has to prove that
the specification is satisfied for all reduction paths through the small-step operational
semantics, and that none of these reduction paths result into a undef state (that is,
one has to prove that the program is free of undefined behavior).

Because implementation-defined behavior is modeled by parameterization, one
can either verify a given program with respect to a specific compiler (by instantiating
the semantics with an implementation environment corresponding to that particular
compiler), or verify a given program with respect to all compilers (by quantifying
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over all implementation environments). All metatheoretical results in this thesis are
established for all CH2O implementation environments. However, to reason about
concrete programs, one often has to take certain implementation-defined properties
into account, such as lower bounds on integer sizes.

2.3 Compiler independent semantics

There is an important difference between a semantics of the C standard and a seman-
tics of a specific C compiler. In this section we explain this difference in the context of
the CompCert compiler by Leroy [Ler09b]. CompCert compiles C code into assembly
code (PowerPC, ARM and x86) and is written and verified in Coq.

The compiler correctness statement of CompCert involves a semantics of C and a
semantics of the assembly language. The correctness statement is roughly:

If the generated assembly code has a certain behavior (with respect to the
assembly semantics), then the source C code also has that behavior (with
respect to the C semantics).

This statement seems to be in the wrong direction, but it is not. The source C
program may have multiple behaviors because of non-determinism (for example, due
to different evaluation orders of side-effects in expressions), in which case it makes
no sense to require the assembly code to exhibit all of these behaviors. Instead, each
behavior the assembly exhibits should correspond to a behavior of the source C pro-
gram. If the source C program has undefined behavior (i.e. it has all behaviors), the
assembly code is allowed to exhibit any behavior (including crashing). The technical
term for the above correctness statement is a backward simulation [Ler09a].

One could use the CompCert semantics to verify properties of actual C programs.
In case one uses the CompCert compiler to compile the given program, one can be sure
that the proven properties will hold for the generated assembly code too. However,
verification against the CompCert semantics does not give reliable guarantees when
the program is compiled using a different compiler such as GCC or Clang.

Like any compiler, CompCert has to make choices for implementation-defined be-
havior (for example integer representations). Furthermore, due to its intended use for
embedded systems, CompCert gives a semantics to some undefined behaviors of C11
(such as violations of effective types) and compiles those in a faithful manner. When
verifying properties of a program with respect to the CompCert semantics one can
therefore make explicit use of behaviors that are defined by the CompCert semantics
but undefined by C11. Note that although CompCert gives defined behavior to some
undefined constructs, it still assigns undefined behavior to many illegal constructs
such as dereferencing a NULL pointer and division by zero.

On the contrary, CH2O intends to be a formal version of the C11 standard. We
therefore have to ensure that if one proves a property of a program with respect to the
CH2O semantics, that property will hold when the program is compiled with any C11
compliant compiler. We thus have to take all unspecified and undefined behavior into
account, even if that makes the semantics more complex, whereas CompCert may (and
even has to) make specific choices for unspecified and undefined behavior. We have to
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C11
CH2O

CompCert C

byte-wise
pointer copy § 2.5.2
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scope pointers § 2.5.1
use of padding § 2.5.3

effective type
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violations § 2.5.9

arithmetic on
pointer bytes § 2.6.2

Figure 2.1: In the paper [KLW14], we have extended CompCert C with the behaviors
in the shaded area to make it an instance of CH2O. Each set in this diagram contains
the programs that according to the semantics have defined behavior. Since the C11
standard is subject to interpretation, we draw it with a dashed line.

do so because the actual behavior of undefined and unspecified constructs differs from
compiler to compiler, different versions of the same compiler, and different hardware,
without that difference being documented at all.

Although CH2O should describe all unspecified and undefined behaviors, we have
more leeway for implementation-defined behavior. Since implementation-defined be-
havior is documented for each compiler, one can compare the compiler documentation
with CH2O. The goal of CH2O is nonetheless to describe as many implementations as
possible, but for example, implementations with legacy integer representations (such
as sign-magnitude or 1’s complement) are not relevant for modern practice.

For widely used compilers such as GCC and Clang, we are of course unable to give
any formal guarantees that a correctness proof against the CH2O semantics ensures
correctness of the generated assembly code. After all, these compilers do not have a
formal semantics. We can only argue that the CH2O semantics has at least as much
undefined behavior as the C11 standard, and assuming these compilers “implement
the C11 standard” accordingly, correctness morally follows.

Since parts of the C11 standard are incomplete or ambiguous it is not always clear
whether a given program has undefined behavior or not. The message [Mac01] on the
standard committee’s mailing list, Defect Reports #236, #260 and #451 [ISO], and
the example programs in this chapter indicate various unclear parts. Since we do not
know how compiler writers interpret such unclear parts of the standard, CH2O errs
on the side of caution: it makes certain behaviors undefined that some people deem
defined according to the standard.

As a formal means of validation we intend to prove that the CompCert C semantics
is an instance of CH2O in future work (see also Section 11.2.2). That means:

• If a program has a certain defined behavior in CompCert C, the program has
that behavior in CH2O too. The program may have more defined behaviors (or
even undefined behavior, which subsumes all behaviors) in CH2O.
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• If a program has undefined behavior in CompCert C, the program has undefined
behavior in CH2O too.

In earlier versions of CompCert this used to be not the case. Comparisons involv-
ing end-of-array pointers and performing a byte-wise copy of a pointer used to have
undefined behavior in the CompCert semantics whereas both had defined behavior in
CH2O. In the paper [KLW14], we have therefore modified the CompCert semantics
and compiler proofs accordingly. Since these modifications are inspired by CH2O, we
will not explicitly treat these in the context of CompCert in this thesis. Section 6.3.1
describes our formal treatment of end-of-array pointers and Section 5.5 describes our
formal treatment of byte-wise copying of pointers in CH2O.

Figure 2.1 gives an overview of the differences between CompCert, CH2O and the
C11 standard. It is important to keep in mind that this figure is not about features,
but about behaviors of features that are both in CompCert and CH2O.

2.4 Introduction to types in C

This section gives a brief introduction to the various data types in C. Those already
familiar with C can easily skip this section.

2.4.1 Integer types
The C language provides the following integer types with increasing sizes:

char short int long long long

The type char constitutes a single byte and is able to hold one character of the
local character set. All other integer types have implementation-defined sizes that
are subject to some lower bounds [ISO12, 5.2.4.2.1]. The type int is intended to have
the natural size for integer arithmetic on the target computing architecture.

All of these types have signed and unsigned variants which can be obtained us-
ing the signed and unsigned qualifiers. Signed integers include the negative cone
whereas unsigned integers are non-negative. Unsigned integers obey the laws of arith-
metic modulo 2n where n is the number of bits. If the signed or unsigned qualifier
is not given, the type is considered signed. An exception is char whose signedness is
implementation-defined [ISO12, 6.2.5p15].

The exact rules for integer operators such as addition, multiplication and shifts
are subtle. Most notably, overflow of arithmetic operations on signed integers has un-
defined behavior [ISO12, 6.5p5], which not all C programmers are aware of. Consider
the following function that takes an int and returns an int:

int f(int x) { return x < x + 1; }

If the function f is called with the maximal value INT_MAX of the integer type int
the addition x + 1 will overflow.

As a result of undefined behavior of signed integer overflow, a compiler is allowed
to optimize the function f to always return 1. Indeed, when compiled with gcc -O2
(version 4.9.2), the following program prints 2147483647 < -2147483648 = 1.
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printf("%d < %d = %d\n", INT_MAX, INT_MAX + 1, f(INT_MAX));

The previous example may seem artificial, but widely used compilers such as gcc
use undefined behavior of integer overflow to optimize loops [Tay08].

In case an operator is applied to operands with different types, both operands are
implicitly converted to a common type. These conversions are known as the integer
promotions [ISO12, 6.3.1.1p2] and usual arithmetic conversions [ISO12, 6.3.1.8p1].

In order to avoid information loss, the rule of thumb is that the operand with the
smallest type is converted into the type of the other operand. The situation is quite
complicated if both signed and unsigned operands are involved. We further discuss
these conversions in Section 3.2.

2.4.2 Pointer types
A pointer is a value that represents the address of an object in memory. In the
example below p is declared to be a pointer to an integer.

int x = 10, y = 10;
int *p;
p = &x; // p points to the variable x
printf("%d\n", *p); // prints the value of x, i.e. 10
*p = 14; // the variable x becomes 14
p = &y; // p points to the variable y

The address of operator & yields a pointer to its operand. It can only be applied to
objects that reside in memory (called l-values in C terminology) and not to constants,
results of function calls and arithmetic operators, etc. The dereferencing operator *
accesses the value its operand points to.

The declaration int *p declares p to have type int*. In the declaration, the
symbol * is grouped together with the variable name p instead of being grouped with
the type int. This notation makes it possible to shorten declarations. For example,
the first three lines of the example can be combined as follows:

int x = 10, y = 10, *p = &x;

The NULL pointer is a distinct pointer that does not point to any object. It is often
used in a way similar to the ⊥ element of the option type. In C both the overloaded
constant 0 and the macro NULL [ISO12, 7.19p3] denote the NULL pointer. Since NULL
does not point to any object, dereferencing it has undefined behavior.

A indeterminate pointer is a pointer that has not been initialized or that points to
an object that has reached the end of its lifetime (a dangling pointer). For example,
the following function returns a dangling integer pointer.

int *f() { int x; return &x; }

Here, the lifetime of the object x has ended after the function f returns, and in
turn &x becomes indeterminate.
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Indeterminate pointers are essentially different from NULL pointers. Whereas it is
only undefined behavior to dereference a NULL pointer, any operation on indeterminate
pointers, including pointer comparison, has undefined behavior.

2.4.3 Array types
Array and pointer types are tightly connected in C. Let us demonstrate this by means
of an example.

int a[4] = { 0, 1, 2, 3 };
printf("%d\n", a[2]); // prints the value 2
int *p = a; // p points to the first element of a
printf("%d\n", *(p + 2)); // prints the value 2
printf("%d\n", p[3]); // prints the value 3

The above code declares an array of 4 integers named a. The indexing operator
[i] is used to refer to the ith element of the array.

Expressions of array type act like like expressions of pointer type that refer to the
first element of the array. In the example p thus points to a[0]:

•

p

0 1 2 3

a

p + 2

Pointer arithmetic is used to move a pointer through an array. In the example,
the pointer p + 2 points to a[2]. For that reason, the C11 standard as well as CH2O
define array indexing e1[e2] as *(e1 + e2)1. Pointers can thus be treated as if they
were arrays, for example, *(p + 3) can also be written as p[3]. More surprisingly,
any object can be treated as an array of size 1 [ISO12, 6.5.6p7].

Contrary to arrays in languages like Java, arrays in C do not contain their size.
Accessing an array outside its bounds yields undefined behavior. This means that
programmers often have to use a separate function argument for the array size. Al-
ternatively, one can use a terminator. In particular, strings are represented as char
arrays that are terminated with the null character \0. The length can then be com-
puted by looking up the first occurrence of \0.

2.4.4 Void type and void pointers
The void type of C is used in two entirely unrelated ways. First of all, it is used for
functions without a return value. For example, the function swap below takes two
pointers and swaps the values they point to. This function does not return a value
and is thus only called for its side-effects.

1Due to commutativity of addition, e1[e2] can be written as e2[e1]. This is often used to
obfuscate code.
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void swap (int *p, int *q) {
int x = *q; // this temporary variable holds the old value of *q
*q = *p; // q points to the old value of *p
*p = x; // p points to the old value of *q

}

Secondly, the type void* is used for pointers to objects of unspecified type. Point-
ers of any type can be cast to a void* pointer and back. In this context, void* thus
acts as a universal pointer type.

2.4.5 Struct types
Struct types are similar to product types in mathematics or record types in many
other programming languages. For example:

struct rational { int numerator; int denominator; };
struct rational one = { .numerator = 1, .denominator = 1 };

The struct keyword introduces a new struct type named rational representing
rational numbers. We call numerator and denominator the fields of the struct. The
second line creates a variable named one of type struct rational.

The operator . is used to access a field of a struct. For example, consider the
function negate that yields the additive inverse of a rational number.

struct rational negate(struct rational q) {
q.numerator = -q.numerator;
return q;

}

Passing and returning of struct values to functions is call-by-value instead of call-
by-reference. This means that passing a struct to a function results in the actual
value of the argument being copied into the callee’s function variable. Changes made
to the function variable have no effect on the argument. For example, after the call
negate(one), the variable one remains unchanged.

In case call-by-reference passing is needed, pointers to structs can be used. Point-
ers to structs are essential in recursive data structures, for example:

struct list { int head; struct list *tail; };

The above code declares a type struct list representing linked lists of integers.
The field tail is a pointer to the tail instead of the tail itself. The function length
computes the length of a linked list.

int length(struct list *p) {
if(p) {

return 1 + length(p->tail);
} else return 0;

}
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Since field indexing of pointers to structs is commonplace, C provides the notation
p->fieldname as a mnemonic for (*p).fieldname.

2.4.6 Union types
Union types are related to disjoint unions in mathematics or sum types in many other
programming languages. The syntax for declaring a new union type is similar to the
syntax for declaring struct types:

union short_or_pointer { short x; int *p; };

The union keyword introduces a new union type named short_or_pointer whose
values is either a short or a pointer to an integer. In the example, we call x and p the
variants of the union, which can be accessed using the . operator.

Although unions are related to sum types, unions are geared towards implementa-
tion and therefore quite different. A union occupies a single memory area that holds
just the value of the current variant. It is the programmer’s job to keep track of which
variant is in use. It is therefore often said that unions are untagged instead of tagged.
The representation of an object u of type union short_or_pointer may look like:

either variant x:
or variant p:

&u.x &u.p

Since the size of one variant may be shorter than the other, there may be unused
storage (called padding). In case a union short_or_pointer contains a value of the
variant q, the part marked gray is unused.

A particular surprising aspect of unions is that pointers to both variants can be
used in expressions. For example:

union short_or_pointer u;
u.x = 10; // u has variant x with value 10
short *q = &u.x; // q points to the x variant of u -> OK
int **qq = &u.p; // qq points to the p variant of u -> OK
*qq = 0; // u is accessed via a pointer to variant p -> bad

The pointers q and qq point to the same address in memory. Both the pointers q
and qq are valid, but the rule of thumb is that only pointers to the current variant
of a union may be used (the pointer q to the variant x in the example). However, as
we will show in Section 2.5.5 and 2.5.6 the exact rules of C11 are more complicated.

2.5 Underspecification covered by CH2O

This section illustrates a number of subtle forms of underspecification in C by means
of example programs, their bizarre behaviors exhibited by widely used C compilers,
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and their treatment in CH2O. Many of these examples involve delicacies due to the
interaction between the following two ways of accessing data:

• In a high-level way using arrays, structs and unions.
• In a low-level way using unstructured and untyped byte representations.
The main problem is that compilers use a high-level view of data access to perform

optimizations whereas both programmers and traditional memory models expect data
access to behave in a concrete low-level way.

2.5.1 Non-local control and block scope variables
The C language allows unrestricted gotos which (unlike break and continue) may
not only jump out of block scopes, but can also jump into block scopes (even if
statements and loops). Block scopes may contain local variables, also called block
scope (local) variables, which can be “taken out of their block” by keeping a pointer
to them. The delicate part is that when leaving a block scope, the lifetime of its local
variables expires. As a result, pointers to these local variables become indeterminate.
Consider the following example where this is the case:

int *p = NULL;
l: if (p) {

return (*p);
} else {

int j = 10;
p = &j;
goto l;

}

When the label l is encountered initially, the variable p is NULL, and execution
continues in the block where p is assigned to point to j. After execution of the goto l,
the block containing j is left, and the lifetime of j expires. In turn, the conditional
if(p) on a dangling pointer has undefined behavior.

This example indicates that a goto could have side-effects on the formal memory.
These side-effects include allocation of local variables that have entered the scope,
as well as deallocations of local variables that have gone out of scope. Although a
compiler can ignore these allocation issues (it is the programmer’s job to ensure that
no dangling pointers are being used), a semantics cannot. Notice that also return,
break and continue statements may create dangling pointers.

To accurately describe these side-effects in our operational semantics, we use a
data structure based on Huet’s zipper [Hue97] to store the location of the substate-
ment that is being executed, as well as the program stack. In order to allow pointers
to local variables, the stack contains references to the value of each variable instead of
the value of each variable itself. Execution of all forms of control, including non-local
control, is modeled by traversal through the zipper. Note that the goal of this traver-
sal is not so much to search for the label, but much more to incrementally calculate
the required allocations and deallocations.
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2.5.2 Byte-level operations and object representations
Apart from high-level access to objects in memory by means of typed expressions, C
also allows low-level access by means of byte-wise manipulation. Each object of type
τ can be interpreted as an unsigned char array of length sizeof(τ), which is called
the object representation [ISO12, 6.2.6.1p4]. Let us consider:

struct S { short x; short *r; } s1 = { 10, &s1.x };
unsigned char *p = (unsigned char*)&s1;

On 32-bit computing architectures such as x86 (with _Alignof(short*)= 4), the
object representation of s1 might be:

01010000 00000000 E E E E E E E E E E E E E E E E • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

x padding r

p p + 1 p + 2

The above object representation contains a hole due to alignment of objects. The
bytes belonging to such holes are called padding bytes.

Alignment is the way objects are arranged in memory. In modern computing
architectures, accesses to addresses that are a multiple of a word sized chunk (often a
multiple of 4 bytes on a 32-bit computing architecture) are significantly faster due to
the way the processor interacts with the memory. For that reason, the C11 standard
has put restrictions on the addresses at which objects may be allocated [ISO12, 6.2.8].
For each type τ , there is an implementation-defined integer constant _Alignof(τ),
and objects of type τ are required to be allocated at addresses that are a multiple of
that constant. In case _Alignof(short*)= 4, there are thus two bytes of padding in
between the fields of struct S.

An object can be copied by copying its object representation. For example, the
struct s1 can be copied to s2 as follows:

struct S { short x; short *r; } s1 = { 10, &s1.x };
struct S s2;
for (size_t i = 0; i < sizeof(struct S); i++)

((unsigned char*)&s2)[i] = ((unsigned char*)&s1)[i];

In the above code, size_t is an unsigned integer type, which is able to hold the
results of the sizeof operator [ISO12, 7.19p2].

Manipulation of object representations of structs also involves access to padding
bytes, which are not part of the high-level representation. In particular, in the exam-
ple the padding bytes are also being copied. The problematic part is that padding
bytes have indeterminate values, whereas in general, reading an indeterminate value
has undefined behavior (for example, reading from an uninitialized int variable is
undefined). The C11 standard provides an exception for unsigned char [ISO12,
6.2.6.1p5], and the above example thus has defined behavior.
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The precise treatment of indeterminate values by the C11 standard is ambiguous,
see Section 2.6.1. To that end, our memory model is conservative and uses a symbolic
representation of bits (see Definition 5.3.1 on page 71) to distinguish determinate and
indeterminate memory. This way, we can precisely keep track of the situations in
which access to indeterminate memory is permitted.

2.5.3 Padding of structs and unions
The following excerpt from the C11 standard points out another challenge with re-
spect to padding bytes [ISO12, 6.2.6.1p6]:

When a value is stored in an object of structure or union type, including
in a member object, the bytes of the object representation that correspond
to any padding bytes take unspecified values.

Let us illustrate this difficulty by an example:
struct S { char x; char y; char z; };
void f(struct S *p) { p->x = 0; p->y = 0; p->z = 0; }

On architectures with sizeof(struct S) = 4, objects of type struct S have one
byte of padding. The object representation may be as follows:

x y z padding

p

Instead of compiling the function f to three store instructions for each field of the
struct, the C11 standard allows a compiler to use a single instruction to store zeros
to the entire struct. This will of course affect the padding byte. Consider:
struct S s = { 1, 1, 1 };
((unsigned char*)&s)[3] = 10;
f(&s);
return ((unsigned char*)&s)[3];

Now, the assignments to fields of s by the function f affect also the padding bytes
of s, including the one ((unsigned char*)&s)[3] that we have assigned to. As a
consequence, the returned value is unspecified.

From a high-level perspective this behavior makes sense. Padding bytes are not
part of the abstract value of a struct, so their actual value should not matter. However,
from a low-level perspective it is peculiar. An assignment to a specific field of a struct
affects the object representation of parts not assigned to.

None of the currently existing C formalizations describes this behavior correctly.
In our tree based memory model we enforce that padding bytes always have an inde-
terminate value, and in turn we have the desired behavior implicitly. Note that if the
function call f(&s) would have been removed, the behavior of the example program
remains unchanged in CH2O.
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2.5.4 Aliasing of pointers
A drawback for efficient compilation of programming languages with pointers is alias-
ing. Aliasing describes a situation in which multiple pointers refer to the same object.
In the following example the pointers p and q are said to be aliased.
int x; int *p = &x, *q = &x;

The problem of aliased pointers is that writes through one pointer may effect the
result of reading through the other pointer. The presence of aliased pointers therefore
often disallows one to change the order of instructions. For example, consider:
int f(int *p, int *q) {

int z = *q; *p = 10; return z;
}

When f is called with pointers p and q that are aliased, the assignment to *p also
affects *q. As a result, one cannot transform the function body of f into the shorter
*p = 10; return (*q);. The shorter function will return 10 in case p and q are
aliased, whereas the original f will always return the original value of *q.

Unlike this example, there are many situations in which pointers can be assumed
not to alias. It is essential for an optimizing compiler to determine where aliasing
cannot occur, and use this information to generate faster code. The technique of
determining whether pointers can alias or not is called alias analysis.

2.5.5 Effective types
In type-based alias analysis, type information is used to determine whether pointers
can alias or not. Consider the following example:
short g(int *p, short *q) {

short z = *q; *p = 10; return z;
}

Here, a compiler is allowed to assume that p and q are not aliased because they
point to objects of different types. The compiler is therefore allowed to transform the
function body of g into the shorter *p = 10; return (*q);.

The peculiar thing is that the C type system does not statically enforce the prop-
erty that pointers to objects of different types are not aliased. A union type can be
used to create aliased pointers to different types:
union int_or_short { int x; short y; } u = { .y = 3 };
int *p = &u.x; // p points to the x variant of u
short *q = &u.y; // q points to the y variant of u
return g(p, q); // g is called with aliased pointers p and q

The above program is valid according to the rules of the C11 type system, but has
undefined behavior during execution of g. This is caused by the standard’s notion
of effective types [ISO12, 6.5p6-7] (also called strict-aliasing restrictions) that assigns
undefined behavior to incorrect usage of aliased pointers to different types.

28



2.5. Underspecification covered by CH2O

We will inline part of the function body of g to indicate the incorrect usage of
aliased pointers during the execution of the example.

union int_or_short { int x; short y; } u = { .y = 3 };
int *p = &u.x; // p points to the x variant of u
short *q = &u.y; // q points to the y variant of u
// g(p, q) is called, the body is inlined
short z = *q; // u has variant y and is accessed through y -> OK
*p = 10; // u has variant y and is accessed through x -> bad

The assignment *p = 10 violates the rules for effective types. The memory area
where p points to contains a union whose variant is y of type short, but is accessed
through a pointer to variant x of type int. This causes undefined behavior.

Effective types form a clear tension between the low-level and high-level way of
data access in C. The low-level representation of the memory is inherently untyped
and unstructured and therefore does not contain any information about variants of
unions. However, the standard treats the memory as if it were typed.

Most existing C formalizations (most notably Norrish [Nor99], Leroy et al. [Ler09b,
LABS12] and Ellison and Roşu [ER12b]) use an unstructured untyped memory model
where each object in the formal memory model consists of an array of bytes. These
formalizations therefore cannot assign undefined behavior to violations of the rules for
effective types. Our memory model is based on structured well-typed trees: effective
types are modeled by the state of the trees in the memory model.

2.5.6 Type-punning
Despite the rules for effective types, it is under certain conditions nonetheless allowed
to access a union through another variant than the current one. Accessing a union
through another variant is called type-punning. For example:

union int_or_short { int x; short y; } u = { .x = 3 };
printf("%d\n", u.y);

This code will reinterpret the bit representation of the int value 3 of u.x as a value
of type short. The reinterpreted value that is printed is implementation-defined (on
architectures where shorts do not have trap values).

Since the C11 standard is ambiguous about the exact conditions under which type-
punning is allowed2, we follow the interpretation by the GCC documentation [GCC]:

Type-punning is allowed, provided the memory is accessed through the
union type.

According to this interpretation the above program indeed has implementation
defined behavior because the variant y is accessed via the expression u.y that involves
the variable u of the corresponding union type.

2The term type-punning merely appears in a footnote [ISO12, footnote 95]. There is however the
related common initial sequence rule [ISO12, 6.5.2.3], for which the C11 standard uses the notion of
visible. This notion is not clearly defined either.
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However, according to this interpretation, type-punning via a pointer to a specific
variant of a union type yields undefined behavior. This is in agreement with the rules
for effective types. For example, the following program has undefined behavior.
union int_or_short { int x; short y; } u = { .x = 3 };
short *p = &u.y;
printf("%d\n", *p);

We formalize the interpretation of C11 by GCC by decorating pointers and l-values
to subobjects with annotations (Definition 5.2.3 on page 65). When a pointer to a
variant of some union is stored in memory, or used as the argument of a function, the
annotations are changed to ensure that type-punning no longer has defined behavior
via that pointer. In Section 5.7 we prove that this approach is correct by showing
that a compiler can perform type-based alias analysis (Theorem 5.7.2 on page 87).

2.5.7 Indeterminate memory and pointers
A pointer value becomes indeterminate when the object it points to has reached the
end of its lifetime [ISO12, 6.2.4] (it has gone out of scope, or has been deallocated).
Dereferencing an indeterminate pointer has of course undefined behavior because it
no longer points to an actual value. However, not many people are aware that using
an indeterminate pointer in pointer arithmetic and pointer comparisons also yields
undefined behavior. Consider:
int *p = malloc(sizeof(int)); assert (p != NULL);
free(p);
int *q = malloc(sizeof(int)); assert (q != NULL);
if (p == q) { // undefined, p is indeterminate due to the free

*q = 10;
*p = 14;
printf("%d\n", *q); // p and q alias, expected to print 14

}

In this code malloc(sizeof(int)) yields a pointer to a newly allocated memory
area that may hold an integer, or yields a NULL pointer in case no memory is available.
The function free deallocates memory allocated by malloc. In the example we assert
that both calls to malloc succeed.

After execution of the second call to malloc it may happen that the memory area
of the first call to malloc is reused: we have used free to deallocate it after all. This
would lead to the following situation in memory:

•

p result of malloc

•

q

Both GCC (version 4.9.2) or Clang (version 3.5.0) use the fact that p and q are
obtained via different calls to malloc as a license to assume that p and q do not alias.
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As a result, the value 10 of *q is inlined, and the program prints the value 10 instead
of the naively expected value 14.

The situation becomes more subtle because when the object a pointer points to
has been deallocated, not just the argument of free becomes indeterminate, but also
all other copies of that pointer. This is therefore yet another example where high-level
representations interact subtly with their low-level counterparts.

In our memory model we represent pointer values symbolically (Definition 5.2.3
on page 65), and keep track of memory areas that have been previously deallocated.
The behavior of operations like == depends on the memory state, which allows us to
accurately capture the described undefined behaviors.

2.5.8 End-of-array pointers
The way the C11 standard deals with pointer equality is subtle. Consider the following
excerpt [ISO12, 6.5.9p6]:

Two pointers compare equal if and only if [...] or one is a pointer to one
past the end of one array object and the other is a pointer to the start of
a different array object that happens to immediately follow the first array
object in the address space.

End-of-array pointers are peculiar because they cannot be dereferenced, they do
not point to any value after all. Nonetheless, end-of-array are commonly used when
looping through arrays.

int a[4] = { 0, 1, 2, 3 };
int *p = a;
while (p < a + 4) { *p += 1; p += 1; }

The pointer p initially refers to the first element of the array a. The value p points
to, as well as p itself, is being increased as long as p is before the end-of-array pointer
a + 4. This code thus increases the values of the array a. The initial state of the
memory is displayed below:

0 1 2 3

a

p a + 4

End-of-array pointers can also be used in a way where the result of a comparison
is not well-defined. In the example below, the printf is executed only if x and y are
allocated adjacently in the address space (typically the stack).

int x, y;
if (&x + 1 == &y) printf("x and y are allocated adjacently\n");
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Based on the aforementioned excerpt of the C11 standard [ISO12, 6.5.9p6], one
would naively say that the value of &x + 1 == &y is uniquely determined by the way x
and y are allocated in the address space. However, the GCC implementers disagree3.
They claim that Defect Report #260 [ISO] allows them to take the derivation of a
pointer value into account.

In the example, the pointers &x + 1 and &y are derived from unrelated objects
(the local variables x and y). As a result, the GCC developers claim that &x + 1 and
&y may compare unequal albeit being allocated adjacently. Consider:

int compare(int *p, int *q) {
// some code to confuse the optimizer
return p == q;

}
int main() {

int x, y;
if (&x + 1 == &y) printf("x and y are adjacent\n");
if (compare(&x + 1, &y)) printf("x and y are still adjacent\n");

}

When compiled with GCC 4.9.2, we have observed that only the string x and y
are still adjacent is being printed. This means that the value of &x + 1 == &y
is not consistent among different occurrences of the comparison.

Due to these discrepancies we assign undefined behavior to questionable uses of
end-of-array pointers while assigning the correct defined behavior to pointer compar-
isons involving end-of-array pointers when looping through arrays (such as in the first
example above). Our treatment is similar to our extension of CompCert [KLW14].

2.5.9 Sequence point violations and non-determinism
Instead of having to follow a specific execution order, the execution order of expres-
sions is unspecified in C. This is a common cause of portability problems because
a compiler may use an arbitrary execution order for each expression, and each time
that expression is executed. Hence, to ensure correctness of a C program with respect
to an arbitrary compiler, one has to verify that each possible execution order is free
of undefined behavior and gives the correct result.

In order to make more effective optimizations possible (for example, delaying of
side-effects and interleaving), the C standard does not allow an object to be modified
more than once during the execution of an expression. If an object is modified more
than once, the program has undefined behavior. We call this requirement the sequence
point restriction. Note that this is not a static restriction, but a restriction on valid
executions of the program. Let us consider an example:

int x, y = (x = 3) + (x = 4);
printf("%d %d\n", x, y);

3See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61502
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By considering all possible execution orders, one would naively expect this pro-
gram to print 4 7 or 3 7, depending on whether the assignment x = 3 or x = 4 is
executed first. However, x is modified twice within the same expression, and thus both
execution orders have undefined behavior. The program is thereby allowed to exhibit
any behavior. Indeed, when compiled with gcc -O2 (version 4.9.2), the compiled
program prints 4 8, which does not correspond to any of the execution orders.

The exact rules corresponding to the sequence point restriction are more lenient:
an object may not be modified more than once or being read after being modified
between two sequence points [ISO12, 6.5p2] instead of whole expressions. A sequence
point occurs for example at the semicolon that terminates a full expression, before
a function call, and after the first operand of the conditional ? : operator [ISO12,
Annex C]. The following expression thus has defined behavior:

int x, y = ((x = 3) ? (x = 4) : (x = 5));

In case assignments are hidden behind a function call, the sequence point restric-
tion also does not apply. For example:

int assign(int *p, int y) { return *p = y; }
int main() {

int x;
assign(&x, 3) + assign(&x, 4);
return x;

}

Due to the sequence point before the function calls to assign, no sequence point
violation occurs. This program thus non-deterministically returns 3 or 4.

Our approach to handling non-determinism and sequence points is inspired by
Norrish [Nor98] and Ellison and Roşu [ER12b]. Our small-step operational semantics
uses evaluation contexts [FFKD87] to non-deterministically select a redex in a whole
expression. Furthermore, each bit in memory carries a permission (Definition 4.3.2 on
page 54) that is set to a special locked permission when a store has been performed.
The memory model prohibits any access (read or store) to objects with locked per-
missions. At the next sequence point, the permissions of locked objects are changed
back into their original permission, making future accesses possible again.

2.6 Other forms of underspecification

There are two ways in which the CH2O semantics deviates from the C11 standard:
some features are missing, and some behaviors are undefined in CH2O that certain
people consider defined according to the C11 standard. There are two main reasons
why CH2O makes more behaviors undefined:

• The standard is incomplete or ambiguous. In this case, compiler writers may
have different interpretations of the standard text, and therefore may perform
more aggressive optimizations than expected. So as to be compiler independent,
CH2O assumes the most restrictive reading by assigning undefined behavior.
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• In order to avoid excessive non-determinism. In case underspecification leads
to an excessive amount of non-determinism, the set of behaviors of even small
programs may become exceedingly large. This may for example happen if one
assigns a non-deterministic object representation to uninitialized variables.
Too much non-determinism makes it impossible to naively implement an ex-
ecutable semantics that can be used to explore all behaviors of already small
programs. Hence, we sometimes use symbolic representations and assign unde-
fined behavior in some cases, which subsumes non-determinism.

There are also other technical reasons why excessive non-determinism is undesired.
Namely, although the CH2O semantics is non-deterministic, the memory operations
are deterministic. Deterministic memory operations allow for convenient equational
reasoning, as used extensively to reason about the separation algebra operations on
memories. This would be more difficult with of non-deterministic operations.

This section describes some features of C that are either not supported by CH2O,
or that have more undefined behaviors in CH2O than certain people might consider
reasonable according to their reading of the C11 standard.

2.6.1 Integer representations of indeterminate memory
The type unsigned char has a special status in C, it is the type of bytes that consti-
tute object representations (see Section 2.5.2). For that reason, in order to facilitate
byte-wise copying of structs, the C11 standard allows one to access all bytes, even
those that are indeterminate, using an expression of type unsigned char. However,
it is unclear from the standard what is supposed to happen when we do not just store
these bytes elsewhere, but for example print them4:

unsigned char i; // i is intentionally uninitialized
&i; // i is not in a register (6.3.2.1p2)
printf("%d\n", i); printf("%d\n", i);

Does execution of this program exhibit undefined behavior? And if not, does it
have to print the same number twice? Since the answers to these questions are unclear
from the standard text, Defect Report #260 [ISO] considered a similar question:

If an object holds an indeterminate value, can that value change other
than by an explicit action of the program?

And the response of the standard committee was:
4The second line of the example circumvents another restriction of the C11 standard. Namely,

Defect Report #338 [ISO] has noticed that on some architectures (e.g. IA-64) registers may hold
trap values that do not exist in memory. Thus, for such architectures, programs cannot safely copy
uninitialized variables of type unsigned char that reside in registers.

The C11 standard has repaired this problem by an ad-hoc workaround [ISO12, 6.3.2.1p2]: “if the
lvalue designates an object of automatic storage duration that could have been declared with the
register storage class, and that object is uninitialized, the behavior is undefined.” We circumvent
this workaround by taking the address &i of i.
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In the case of an indeterminate value all bit-patterns are valid representa-
tions and the actual bit-pattern may change without direct action of the
program.

Although Defect Report #260 has been made obsolete by the C11 standard, the
decision at that time was that the standard text did not need to be changed. The
wording of all relevant parts of C99 and C11 remained identical.

We have attempted to resolve this unclarity by submitting a new defect report.
This Defect Report is numbered #451 [ISO]. Apart from that, we have submitted a
document [KW14] to the standard committee, and Freek Wiedijk has presented the
problem during the 2014 meeting of the standard committee in Parma. The standard
committee has reaffirmed its position on Defect Report #260 [ISO] in favor of more
undefined behavior. However, our efforts have not led to a clarification of the standard
text. To that end, CH2O assigns undefined behavior to uses of indeterminate values
of type unsigned char other than reads and stores (for example, adding 0 to an
indeterminate value of type unsigned char is undefined in CH2O).

It may seem academic to consider what happens when one uses uninitialized vari-
ables (one should initialize one’s variables), but as explained in Section 2.5.2, indeter-
minate values appear naturally in the padding bytes of structs. In case indeterminate
values are allowed to change arbitrarily, a program that temporarily dumps data from
its memory (which may contains structs) into a file could not be implemented. For
that reason, our Defect Report #451 [ISO] argues to give a definite meaning to these
programs and clarify the standard text accordingly.

2.6.2 Integer representations of pointers
On actual computing architectures pointers are represented as integer values that
refer to an offset into the address space. This fact is regularly exploited by code used
in practice. For example integer representations of pointers are used for indexing into
a hash table, and their use is common in the code of operating systems such as Linux.

The C11 standard describes (optional) integer types that can be used to cast a
pointer to an integer. These integer types are called intptr_t and uintptr_t [ISO12,
7.20.1.4]. Not many properties about casting a pointer to such integers and vice versa
are guaranteed. It is only guaranteed that if a valid void is cast to these types, the
pointer obtained by casting back compares equal to the original pointer.

The CH2O semantics uses an abstract memory model with symbolic pointer values
and therefore fails to account for pointer to integer casts. Casting a pointer to an
integer, and vice versa, has undefined behavior in the CH2O semantics.

In CompCert [Ler09a], the situation is similar, but slightly relaxed. Integer types
are not only allowed to hold numerical values, but also symbolic pointer values. Cast-
ing a pointer to an integer, and vice versa, preserves the symbolic structure of the
pointer value in question. This approach is rather limited. Most arithmetic opera-
tions on these “symbolic pointers in integer disguise”, like the arithmetic operations
used to compute an index into a hash table, still have undefined behavior. Also, this
approach invalidates some compiler optimizations [KHM+15].
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Kang et al. [KHM+15] have proposed a memory model for C that uses both
numerical and symbolic pointer representations. Initially each pointer is represented
symbolically, but whenever the numerical representation of a pointer is needed (due to
a pointer to integer cast), it is non-deterministically realized. Contrary to a memory
model based solely on numerical pointer values, they show that their memory model
allows desirable compiler optimizations. Compatibility of their approach with respect
to the C11 standard and integration with struct and union types remains to be
investigated. See also the discussion in Section 10.2.

Given that Defect Report #260 [ISO] allows a compiler to take the derivation of
a pointer value into account, a natural question is whether that also holds for non-
pointer values. Consider the following program (suggested by Marc Schoolderman):

int x = 30, y = 31;
int *p = &x + 1, *q = &y;
intptr_t i = (intptr_t)p, j = (intptr_t)q;
printf("%ld %ld %d\n", i, j, i == j);

When compiled with GCC 4.7.1, this may output:

140734814994316 140734814994316 0

Although the i and j have the same numeric value, they still compare as unequal.
We have reported this problem to the GCC bug tracker5. In the reactions to our
bug report, this behavior was unequivocally considered to be a bug, and has been
changed in GCC 4.8. In other words, although some compiler writers think the license
for optimizations that Defect Report #260 [ISO] gives them is justified, this example
was too extreme for the GCC community to be taken in that light.

2.6.3 Finiteness of memory
The C programming language provides three ways to allocate memory. These corre-
spond to the storage durations described in the C11 standard [ISO12, 6.2.4].

• Static storage. This storage duration is used for global and static local vari-
ables. Objects of this storage duration are allocated and initialized once prior
to program startup, and their lifetime is the entire execution of the program.

• Automatic storage. This storage duration is used for function arguments and
block scope local variables. Objects of this storage duration are allocated when
a function is called, or an enclosed block scope is entered. The lifetime of these
objects extends until the function returns, or the enclosed block scope is left
(possibly by non-local control, see Section 2.5.1). In case a function is called
recursively, new objects are allocated for each function invocation.

• Allocated storage. This storage duration is used for memory allocated via
standard library functions like malloc [ISO12, 7.22.3.4] and calloc [ISO12,
7.22.3.2]. Objects of this storage duration should be deallocated explicitly using
the standard library function free [ISO12, 7.22.3.3].

5See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=54945
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All of these ways to allocate memory can fail if the machine has run out of memory.
The C11 standard captures failure of obtaining memory of allocated storage duration
by letting standard library functions like malloc or calloc return a NULL pointer.
However, the standard does not account for failure to obtain memory of static or
automatic storage duration in any way.

For the case of static storage, the standard’s omission to address failure of obtain-
ing memory does not have practical implications. Allocation is performed prior to
program startup, and it is known statically how much memory will be allocated.

The C11 standard’s omission to account for failure of obtaining memory of auto-
matic storage is a serious issue. Most computing architectures organize their address
space into two parts: the heap and the stack. A simplified version looks as follows:

Stack

Heap
Global variables
Program code

The heap contains memory of allocated storage duration and the stack contains
memory of automatic storage duration. When a function is called, the stack is ex-
tended with a frame containing the function arguments, the local variables, and the
return address (the address of the instruction that has to be executed when the func-
tion is finished). The stack generally has a limited size, and too deep recursion results
in so called stack overflow.

Memory protection on most general purpose computing architectures ensures an
immediate system failure (in the form of a message like segmentation fault) in case
of stack overflow. However, on micro controllers used in embedded computing this
is often not the case. Stack overflow may thus overwrite parts of the heap, or even
parts of the program code. An interesting real-life example is the Toyota unintended
acceleration lawsuit [Sam14]. In this lawsuit it was claimed that stack overflow caused
memory corruption, which resulted in vehicles to accelerate unexpectedly, and thereby
even killed people.

The standard abstracts from implementation details such as the organization of
the memory, and thereby allows implementations to organize their memory differently
than the standard stack and heap organization. Although CH2O abstracts from these
details as well, we believe the standard should account for an abstract version of stack
overflow. Unfortunately, stack overflow is not mentioned in any way by either the
C11 standard [ISO12] or the standard’s rationale [ISO03].

The CH2O semantics thus uses a memory of unbounded size in which allocation of
function arguments and block scope local variables cannot fail. The malloc function
non-deterministically succeeds or yields NULL. Our treatment corresponds to the C11
standard, and is similar to Leroy’s CompCert [Ler09b] (which even has an unbounded
memory model on the level of assembly) and Ellison and Roşu [ER12b].
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Verification of non-functional properties such as stack and memory consumption is
an instance of a broader field of research that also considers time complexity and other
resources a program may use. We will not treat verification of resource consumption
in this thesis, but will finish this chapter with a small survey of the difficulties involved
and the current state of the art in proof assistants for real-life languages.

When verifying assembly code, there is a close correspondence between stack and
memory consumption in the formal semantics and memory consumption in the actual
machine. Myreen [Myr08] takes bounds on stack usage into account when verifying
assembly code. However, for C verification the situation is more challenging because
a compiler is involved. The problem is that a compiler does not necessarily preserve
stack consumption of the program it compiles. For example, inlining of functions and
spilling of variables may increase the stack usage arbitrarily [Ler09a].

The CerCo compiler by Asperti et al. [AAA+11, AAB+13] addresses the problem
by propagating information about stack usage and time complexity through all com-
pilation phases of a simple verified C compiler to generate corresponding verification
conditions in the C sources. Carbonneaux et al. use a similar approach in the context
of the CompCert compiler [CHRS14] and provide a Hoare logic to establish bounds
on stack usage and a verified stack usage analyzer om top of it. These solutions are
however compiler specific and omit features of the C language.
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Chapter 3
Types in C

Contrary to more modern typed programming languages such as Java, ML or Haskell,
C has a rather weak type system that does not enjoy type safety. That means, well-
typedness according to the C type system does not ensure the absence of run-time
errors (such as out of bounds array accesses) nor the absence of run-time type errors
related to effective types. Nonetheless, the C type system ensures the absence of basic
mistakes such as using a wrongly named field of a struct, or using an integer where a
pointer is expected (without an explicit cast).

This chapter describes the types of our language CH2O core C. It supports integer,
pointer, function pointer, array, struct, union and void types. More complicated types
such as enum types and typedefs are defined in Chapter 7 by translation.

This chapter furthermore describes an abstract interface, called an implementation
environment, that describes properties such as size and endianness of integers, and
the layout of structs and unions. The entire CH2O semantics will be parameterized
by an implementation environment.

Implementation environments are defined modularly using a chain of nested en-
vironments. The structure of implementation environments, as well as the outline of
this chapter, is depicted in the following diagram.

Integer coding environment
Section 3.1

Integer environment
Section 3.2

Implementation environment
Section 3.3 and 3.4

Definition of integer types
Encoding of integer values as bits

Integer promotions
Usual arithmetic conversions
Semantics of integer operators

Definition of types
Layout of structs and unions
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3.1 Integer representations

This section describes the part of implementation environments corresponding to
integer types and the encoding of integer values as bits. Integer types consist of a
rank (char, short, int . . . ) and a signedness (signed or unsigned). The set of available
ranks as well as many of their properties are implementation-defined. We therefore
abstract over the ranks in the definition of integer types.

Definition 3.1.1. Integer signedness and integer types over ranks k ∈ K are induc-
tively defined as:

si ∈ signedness ::= signed | unsigned
τi ∈ inttype ::= si k

The projections are called rank : inttype→ K and sign : inttype→ signedness.

Definition 3.1.2. An integer coding environment with ranks K consists of a total
order (K,⊆) of integer ranks having at least the following ranks:

char ⊂ short ⊂ int ⊂ long ⊂ long long and ptr rank.

It moreover has the following functions:

char bits : N≥8 endianize : K → list bool→ list bool
char signedness : signedness deendianize : K → list bool→ list bool

rank size : K → N>0

Here, endianize k and deendianize k should be inverses, endianize k should be a per-
mutation, rank size should be (non-strictly) monotone, and rank size char = 1.

Definition 3.1.3. The judgment x : τi describes that x ∈ Z has integer type τi.

−2char bits∗rank size k−1 ≤ x < 2char bits∗rank size k−1

x : signed k
0 ≤ x < 2char bits∗rank size k

x : unsigned k

The rank char is the rank of the smallest integer type, whose unsigned variant cor-
responds to bytes that constitute object representations (see Section 2.5.2). Its bit size
is char bits (called CHAR_BIT in the standard library header files [ISO12, 5.2.4.2.1]),
and its signedness char signedness is implementation-defined [ISO12, 6.2.5p15].

The rank ptr rank is the rank of the integer types size_t and ptrdiff_t, which
are defined in the standard library header files [ISO12, 7.19p2]. The type ptrdiff_t
is a signed integer type used to represent the result of subtracting two pointers, and
the type size_t is an unsigned integer type used to represent sizes of types.

An integer coding environment can have an arbitrary number of integer ranks
apart from the standard ones char, short, int, long, long long, and ptr rank. This way,
additional integer types like those describe in [ISO12, 7.20] can easily be included.

The function rank size gives the byte size of an integer of a given rank. Since we
require rank size to be monotone rather than strictly monotone, integer types with
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different ranks can have the same size [ISO12, 6.3.1.1p1]. For example, on many
implementations int and long have the same size, but are in fact different.

The C11 standard allows implementations to use either sign-magnitude, 1’s com-
plement or 2’s complement signed integers representations. It moreover allows integer
representations to contain padding or parity bits [ISO12, 6.2.6.2]. However, since all
current machine architectures use 2’s complement representations, this is more of a
historic artifact. Current machine architectures use 2’s complement representations
because these do not suffer from positive and negative zeros and thus enjoy unique
representations of the same integer. Hence, CH2O restricts itself to implementations
that use 2’s complement signed integers representations.

Integer representations in CH2O can solely differ with respect to endianness (the
order of the bits). The function endianize takes a list of bits in little endian order and
permutes them accordingly. We allow endianize to yield an arbitrary permutation and
thus we not just support big- and little-endian, but also mixed-endian variants.

Definition 3.1.4. Given an integer type τi, the integer encoding functions : τi :
Z→ list bool and ( )τi : list bool→ Z are defined as follows:

x : si k := endianize k (x as little endian 2’s complement)
(~β)si k := of little endian 2’s complement (deendianize k ~β)

Lemma 3.1.5. The integer encoding functions are inverses. That means:
1. We have (x : τi)τi = x and |x : τi| = rank size τi provided that x : τi.

2. We have (~β)τi : τi = ~β and (~β)τi : τi provided that |~β| = rank size τi.

3.2 Integer operators

We extend the interface of integer coding environments to describe the implementation-
defined and undefined aspects of the semantics of integer operators.

Definition 3.2.1. C unary and binary operators are inductively defined as:

}c ∈ compop ::= == | <= | < }s ∈ shiftop ::= << | >>

}b ∈ bitop ::= & | | | ˆ } ∈ binop ::= }c | }b | }a | }s
}a ∈ arithop ::= + | - | * | / | % }u ∈ unop ::= - | ˜ | !

An integer implementation (Definition 3.2.5) describes the semantics of casts, and
arithmetic }a and shift }s operators. The semantics of the comparison }c, bitwise
}b, and unary }u operators will be defined in terms of the other operations. The
comparison x != y will be de-sugared into !(x == y).

Implementations have significant leeway in how to implement integer operators.
Most notably, signed overflow of arithmetic operations has undefined behavior [ISO12,
6.5p5], and if an integer is cast to a signed type that cannot represent it, either a
signal is raised, or the resulting value is implementation-defined [ISO12, 6.3.1.3].
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Likewise, the resulting value of a right shift of a negative integer is implementation-
defined [ISO12, 6.5.7p4]. The C11 standard provides this amount of leeway because
native machine instructions on different computing architectures tend to behave dif-
ferently for corner cases.

Before being able to define the semantics of integer operators while taking these
forms of underspecification into account, we have to address typing of operators. The
typing rules of integer operators involve subtle implicit conversions. These conversions
are performed in two steps:

1. The integer promotions: arguments of integer types whose rank is smaller than
int are promoted to int [ISO12, 6.3.1.1p2].

2. The usual arithmetic conversions: the promoted arguments are converted to an
integer of common type [ISO12, 6.3.1.8p1].

We define functions d e : inttype → inttype and ∪ : inttype → inttype → inttype
that correspond to the two steps above. The type of an arithmetic operator }a with
arguments of τi and σi is dτie ∪ dσie.

The need for the integer promotions is motivated by the fact that many machines
do not have fast/native instructions for integer operators on small integer types.

Definition 3.2.2. The function d e : inttype→ inttype performs integer promotions.

dτie :=


signed int if rank τi ⊆ int and signed int can represent all τi values
unsigned int if rank τi ⊆ int and signed int cannot represent all τi values
τi otherwise

The C11 standard defines the usual arithmetic conversions as a binary operation
on integer types. This definition is complicated and contains some implicit duplication
due to symmetry, which is inconvenient when proving properties. To improve the
situation, we show that the usual arithmetic conversion of integer types τi and σi is a
least upper bound τi ∪ σi in a join semi-lattice.

Definition 3.2.3. The usual arithmetic order (inttype,⊆) is inductively defined as:
1. If k1 ⊆ k2 then si k1 ⊆ si k2 and signed k1 ⊆ unsigned k2.
2. If signed k2 can represent all unsigned k1 values, then unsigned k1 ⊆ signed k2.

Lemma 3.2.4. All integer types τi and σi have a least upper bound τi ∪ σi in the
usual arithmetic order (inttype,⊆). The upper bound τi ∪ σi corresponds to the usual
arithmetic conversion in the C11 standard:

signed k1 ∪ signed k2 = signed (k1 ∪ k2)
unsigned k1 ∪ unsigned k2 = unsigned (k1 ∪ k2)

(
signed k1 ∪ unsigned k2

unsigned k2 ∪ signed k1

)
=


unsigned k2 if k1 ⊆ k2

signed k1 if k1 * k2 and signed k1 can
represent all unsigned k2 values

unsigned k1 otherwise
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We will now demonstrate the integer promotions and usual arithmetic conversions
by means of a small example.

unsigned char x = 100, y = 3;
unsigned char z1 = (x * y) / y; /* 300 / 3 = 100 */
unsigned char z2 = (unsigned char)(x * y) / y; /* 44 / 3 = 14 */

Assuming an implementation with char bits = 8 and rank size int = 4, the argu-
ments x and y are both promoted to dunsigned chare = signed int. The type of x * y
is thereby signed int ∪ signed int = signed int, and its result is 300. The resulting
value z1 is thus 300/3 = 100. In case the product is truncated to unsigned char, as
done in the assignment to z2, the result is 44/3 = 14.

Definition 3.2.5. An integer environment with ranks K extends an integer repre-
sentation environment with the following evaluation functions:

int arithop ok : arithop→ Z→ inttype→ Z→ inttype→ Prop
int arithop : arithop→ Z→ inttype→ Z→ inttype→ Z

int shiftop ok : shiftop→ Z→ inttype→ Z→ inttype→ Prop
int shiftop : shiftop→ Z→ inttype→ Z→ inttype→ Z

int cast ok : inttype→ Z→ Prop
int cast : inttype→ Z→ Z

These functions should satisfy the following properties:
1. The results should be well-typed, that is:

x : τi y : σi int arithop ok }a x τi y σi

int arithop }a x τi y σi : dτie ∪ dσie

x : τi y : σi int shiftop ok }a x τi y σi

int shiftop }a x τi y σi : dτie
int cast ok σi x
int cast σi x : σi

2. If an arithmetic operation (respectively shift operation or cast) has defined be-
havior according to the C11 standard, the condition int arithop ok }a x τi y σi
(respectively int shiftop ok }s x τi y σi or int cast ok τi x) should hold.

3. If an arithmetic operation (respectively shift operation or cast) has defined behav-
ior according to the C11 standard, the value int arithop }a x τi y σi (respectively
int shiftop }s x τi y σi or int cast τi x) should correspond to the mathematical
value specified by C11.

The precise statement of the last clauses is rather long winded and formally given as
part of the Coq development.

The last two clauses of the previous definition seem in conflict with the goal of
CH2O to follow the C11 standard closely. This is not the case because CH2O does
not describe just one C semantics, but rather a space of possible C semantics. Each
integer implementation corresponds to a point in this space, and among the points in
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this space, there are those that correspond to C11 and those that have fewer undefined
behaviors than the C11 standard.

This space therefore also contains de facto standards such as the semantics of GCC
or Clang with the -fno-strict-overflow flag enabled. This flag guarantees that
signed integer overflow wraps around modulo instead of having undefined behavior.
In C terminology, one may say that it is implementation-defined whether overflow of
signed integer operators has undefined behavior in CH2O.

3.3 Definition of types

CH2O core C supports integer, pointer, function pointer, array, struct, union and
void types. The translation from CH2O abstract C into CH2O core C translates more
complicated types, such as typedefs and enums, into core types. This translation also
alleviates other simplifications of the CH2O core C type system, such as unnamed
struct and union fields. Floating point types and qualifiers like const and volatile
are not supported by CH2O.

All definitions in this section are implicitly parameterized by an integer environ-
ment with ranks K (Definition 3.2.5).

Definition 3.3.1. Tags t ∈ tag (sometimes called struct/union names) and function
names f ∈ funname are represented as strings.

Definition 3.3.2. The types of CH2O core C, collectively called core types, consist
of point-to types, base types and full types. These are inductively defined as:

τp, σp ∈ ptrtype ::= τ | any | ~τ → τ

τb, σb ∈ basetype ::= τi | τp∗ | void
τ, σ ∈ type ::= τb | τ [n] | struct t | union t

The different kinds of types correspond to the different parts of the memory model.
Addresses and pointers have point-to types (Definitions 5.2.7 on page 67 and 5.2.9
on page 68), base values have base types (Definition 5.5.2 on page 79), and memory
trees and values have full types (Definitions 5.4.3 on page 5.4.3 and 5.5.8 on page 82).

As explained in Section 2.4.4 the void type of C is used for two entirely unrelated
purposes: void is used for functions without return type and void* is used for pointers
to objects of unspecified type. In CH2O this distinction is explicit in the syntax of
types. The type void is used for function without return value. Like the mathematical
unit type it has one value called nothing (Definition 5.5.1 on page 79). The type any∗
is used for pointers to objects of unspecified type.

Unlike more modern programming languages C does not provide first class func-
tions. Instead, C provides function pointers which are just addresses of executable
code in memory instead of closures. Function pointers can be used in a way similar
to ordinary pointers: they can be used as arguments and return value of functions,
they can be part of structs, unions and arrays, etc.

The C language sometimes allows function types to be used as shorthands for
function pointers, for example:
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void sort(int *p, int len, int compare(int,int));

The third argument is a shorthand for int (*compare)(int,int) and is thus in
fact a function pointer instead of a function. In CH2O core C we only have function
pointer types. The third argument of the core type of the function sort thus contains
an additional ∗:

[ (signed int)∗, signed int, (signed int→ signed int)∗ ]→ void.

In CH2O core C struct and union types consist of just a name, and do not contain
the types of their fields. An environment is used to assign fields to structs and unions,
and to assign argument and return types to function names.

Definition 3.3.3. Type environments are defined as:

Γ ∈ env := (tag→fin list type) × (types of struct/union fields)
(funname→fin (list type× type)) (types of functions)

The functions domtag : env → Pfin(tag) and domfunname : env → Pfin(funname) yield
the declared structs and unions, respectively the declared functions. We implicitly
treat environments as functions tag →fin list type and funname →fin (list type × type)
that correspond to underlying finite partial functions.

Struct and union names on the one hand, and function names on the other, have
their own name space in accordance with the C11 standard [ISO12, 6.2.3p1].

Notation 3.3.4. We often write an environment as a mixed sequence of struct and
union declarations t : ~τ , and function declarations f : (~τ , τ). This is possible because
environments are finite.

Since we represent the fields of structs and unions as lists in CH2O core C, fields
are nameless. For example, the C type struct S1 { int x; struct S1 *p; } is
translated into the environment S1 : [ signed int, struct S1∗ ] during the translation
from CH2O abstract C into CH2O core C.

Although structs and unions are semantically very different (products versus sums,
respectively), environments do not keep track of whether a tag has been used for a
struct or a union type. Structs and union types with the same tag are thus allowed.
The translator from CH2O abstract C into CH2O core C forbids the same name being
used to declare both a struct and union type.

Although our mutual inductive syntax of types already forbids many incorrect
types such as functions returning functions (instead of function pointers), still some
ill-formed types such as int[0] are syntactically valid. Also, we have to ensure that
cyclic structs and unions are only allowed when the recursive definition is guarded
through pointers. Guardedness by pointers ensures that the sizes of types are finite
and statically known. Consider the following types:

struct list1 { int hd; struct list1 tl; }; /* illegal */
struct list2 { int hd; struct list2 *p_tl; }; /* legal */
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The type declaration struct list1 is illegal because it has a reference to itself.
In the type declaration struct list2 the self reference is guarded through a pointer
type, and therefore legal. Of course, this generalizes to mutual recursive types like:

struct tree { int hd; struct forest *p_children; };
struct forest { struct tree *p_hd; struct forest *p_tl; };

Definition 3.3.5. The following judgments are defined by mutual induction:
• The judgment Γ `∗ τp describes point-to types τp to which a pointer may point:

Γ `∗ any
Γ `∗ ~τ Γ `∗ τ

Γ `∗ ~τ → τ

Γ `b τb

Γ `∗ τb

Γ ` τ n , 0
Γ `∗ τ [n]

Γ `∗ struct t Γ `∗ union t

• The judgment Γ `b τb describes valid base types τb:

Γ `b τi

Γ `∗ τp

Γ `b τp∗ Γ `b void

• The judgment Γ ` τ describes valid types τ :

Γ `b τb

Γ ` τb

Γ ` τ n , 0
Γ ` τ [n]

t ∈ domtag Γ
Γ ` struct t

t ∈ domtag Γ
Γ ` union t

Definition 3.3.6. The judgment ` Γ describes well-formed environments Γ. It is
inductively defined as:

` ∅
` Γ Γ ` ~τ ~τ , ε t < domtag Γ

` t : ~τ , Γ
` Γ Γ `∗ ~τ Γ `∗ τ f < domfunname Γ

` f : (~τ , τ), Γ

Note that Γ ` τ does not imply ` Γ. Most results therefore have ` Γ as a premise.
These premises are left implicit in this thesis.

In order to support (mutually) recursive struct and union types, pointers to in-
complete struct and union types are permitted in the judgment Γ `∗ τp that describes
types to which pointers are allowed, but forbidden in the judgment Γ ` τ of validity
of types. Let us consider the following type declarations:

struct S2 { struct S2 x; }; /* illegal */
struct S3 { struct S3 *p; }; /* legal */

Well-formedness ` Γ of the environment Γ := S3 : [ struct S3∗ ] can be derived
using the judgments ∅ `∗ struct S3, ∅ `b struct S3∗, ∅ ` struct S3∗, and thus ` Γ. The
environment S2 : [ struct S2 ] is ill-formed because we do not have ∅ ` struct S2.

The typing rule for function pointers types is slightly more delicate. This is best
illustrated by an example:

union U { int i; union U (*f) (union U); };
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This example displays a recursive self reference to a union type through a function
type, which is legal in C because function types are in fact pointer types. Due to this
reason, the premises of Γ `∗ ~τ → τ are Γ `∗ ~τ and Γ `∗ τ instead of Γ ` ~τ and Γ ` τ .
Well-formedness of the above union type can be derived as follows:

` Γ
Γ `b signed int
Γ ` signed int

Γ `∗ union U Γ `∗ union U
Γ `∗ union U→ union U

Γ `b (union U→ union U)∗
Γ ` (union U→ union U)∗

` U : [ signed int, (union U→ union U)∗ ], Γ
In order to define operations by recursion over the structure of well-formed types

(see for example Definition 5.5.7 on page 81, which turns a sequence of bits into a
value), we often need to perform recursive calls on the types of fields of structs and
unions. In Coq we have defined a custom recursor and induction principle using
well-founded recursion. In this chapter, we will use these implicitly.

Affeldt et al. [AM13, AS14] have formalized non-cyclicity of types using a complex
constraint on paths through types. Our definition of validity of environments (Defi-
nition 3.3.6) follows the structure of type environments, and is therefore well-suited
to implement the aforementioned recursor and induction principle.

Definition 3.3.7. The judgment completeΓ τ describes that a type τ is complete. It
is inductively defined as:

completeΓ τb completeΓ τ [n]
t ∈ domtag Γ

completeΓ (struct t)
t ∈ domtag Γ

completeΓ (union t)

Fact 3.3.8. We have Γ ` τ iff Γ `∗ τ and completeΓ τ .

As discussed in Section 2.4.3, there is a close correspondence between array and
pointer types in C. Arrays are not first class types, and except for special cases such
as initialization, manipulation of arrays is achieved via pointers. In CH2O core C we
consider arrays as first class types so as to avoid having to make exceptions for the
case of arrays all the time.

Due to this reason, more types are considered valid in CH2O core C than consid-
ered valid in C11. The translator from CH2O abstract C resolves exceptional cases
for arrays. For example, a function parameter of array type acts like a parameter of
pointer type in C11 [ISO12, 6.7.6.3]1.

void f(int a[10]);

The corresponding core type of f is thus (signed int)∗ → void. Note that the core
type (signed int)[10]→ void is also valid, but entirely different, and never generated
by the translator from CH2O abstract C.

1The array size is ignored unless the static keyword is used. In case f would have the pro-
totype void f(int a[static 10]), the pointer a should provide access to an array of at least 10
elements [ISO12, 6.7.6.3]. The static keyword is not supported by CH2O.
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3.4 Implementation environments

We finish this chapter by extending integer environments to describe implementation-
defined properties related the layout of struct and union types. Section 7.3 defines
inhabitants of this interface corresponding to actual computing architectures.

Definition 3.4.1. A implementation environment with ranksK consists of an integer
environment with ranks K and functions:

sizeofΓ : type→ N alignofΓ : type→ N fieldsizesΓ : list type→ list N

These functions should satisfy:

sizeofΓ (si k) = rank size k sizeofΓ (τp∗) , 0 sizeofΓ void , 0
sizeofΓ (τ [n]) = n ∗ sizeofΓ τ

sizeofΓ (struct t) = Σ fieldsizesΓ ~τ if Γ t = ~τ

sizeofΓ τi ≤ zi and |~τ | = |~z| if fieldsizesΓ ~τ = ~z, for each i < |~τ |
sizeofΓ τi ≤ sizeofΓ (union t) if Γ t = ~τ , for each i < |~τ |
alignofΓ τ | alignofΓ (τ [n])
alignofΓ τi | alignofΓ (struct t) if Γ t = ~τ , for each i < |~τ |
alignofΓ τi | alignofΓ (union t) if Γ t = ~τ , for each i < |~τ |
alignofΓ τ | sizeofΓ τ if Γ ` τ
alignofΓ τi | offsetofΓ ~τ i if Γ ` ~τ , for each i < |~τ |

Here, we let offsetofΓ ~τ i denote Σj<i(fieldsizesΓ ~τ)j. The functions sizeofΓ, alignofΓ,
and fieldsizesΓ should be closed under weakening of Γ.

Notation 3.4.2. Given an implementation environment, we let:

bitsizeofΓ τ := sizeofΓ τ · char bits
bitoffsetofΓ τ j := offsetofΓ τ j · char bits
fieldbitsizesΓ τ := fieldsizesΓ τ · char bits

We let sizeofΓ τ specify the number of bytes out of which the object representation
of an object of type τ constitutes. Objects of type τ should be allocated at addresses
that are a multiple of alignofΓ τ . We will prove that our abstract notion of addresses
satisfies this property (see Lemma 5.2.17 on page 70). The functions sizeofΓ, alignofΓ
correspond to the sizeof and _Alignof operators [ISO12, 6.5.3.4], and offsetofΓ
corresponds to the offsetof macro [ISO12, 7.19p3]. The list fieldsizesΓ ~τ specifies
the layout of a struct type with fields ~τ as follows:

τ0 τ1

sizeofΓ τ0 sizeofΓ τ1

(fieldsizesΓ ~τ)0 (fieldsizesΓ ~τ)1

offsetofΓ ~τ 0 offsetofΓ ~τ 1 offsetofΓ ~τ 2
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Chapter 4
Permissions and separation algebras

Permissions control whether memory operations such as a read or store are allowed
or not. In order to obtain the highest level of precision, we tag each individual bit in
memory with a corresponding permission. In the operational semantics, permissions
have two main purposes:

• Permissions are used to formalize the sequence point restriction which assigns
undefined behavior to programs in which an object in memory is modified more
than once in between two sequence points.

• Permissions are used to distinguish objects in memory that are writable from
those that are read-only (const qualified in C terminology).

In the axiomatic semantics based on separation logic, permissions play an impor-
tant role for share accounting. We use share accounting for subdivision of permissions
among multiple subexpressions to ensure that:

• Writable objects are unique to each subexpression.
• Read-only objects may be shared between subexpressions.
This distinction is originally due to Dijkstra [Dij68] and is essential in separation

logic with permissions [BCOP05]. The novelty of our work is to use separation logic
with permissions for non-determinism in expressions in C. Share accounting gives rise
to a natural treatment of C’s sequence point restriction.

Separation algebras as introduced by Calcagno et al. [COY07] abstractly capture
common structure of subdivision of permissions. We present a generalization of sepa-
ration algebras that is well-suited for C verification in Coq and use this generalization
to build the permission system and memory model compositionally. The permission
system will be constructed as a telescope of separation algebras:

perm := L(C(Q))︸      ︷︷      ︸
non-const qualified

+ Q︸︷︷︸
const qualified

Here, Q is the separation algebra of fractional permissions, C is a functor that extends
a separation algebra with a counting component, and L is a functor that extends a
separation algebra with a lockable component (used for the sequence point restric-
tion). This chapter explains these functors and their purposes in detail.
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4.1 Separation logic and share accounting

Before we will go into the details of the CH2O permission system, we briefly introduce
separation logic. Separation logic [ORY01] is an extension of Hoare logic that provides
better means to reason about imperative programs that use mutable data structures
and pointers. The key feature of separation logic is the separating conjunction P ∗ Q
that allows one to subdivide the memory into two disjoint parts: a part described by
P and another part described by Q. The separating conjunction is most prominent
in the frame rule.

{P} s {Q}
{P ∗ R} s {Q ∗ R}

This rule enables local reasoning. Given a Hoare triple {P} s {Q}, this rule allows
one to derive that the triple also holds when the memory is extended with a disjoint
part described by R. The frame rule shows its merits when reasoning about functions.
There it allows one to consider a function in the context of the memory the function
actually uses, instead of having to consider the function in the context of the entire
program’s memory. However, already in derivations of small programs the use of the
frame rule can be demonstrated1:

{x 7−→ 0} x:=10 {x 7−→ 10}
{x 7−→ 0 ∗ y 7−→ 0} x:=10 {x 7−→ 10 ∗ y 7−→ 0}

{y 7−→ 0} y:=12 {y 7−→ 12}
{x 7−→ 10 ∗ y 7−→ 0} y:=12 {x 7−→ 10 ∗ y 7−→ 12}

{x 7−→ 0 ∗ y 7−→ 0} x:=10; y:=12 {x 7−→ 10 ∗ y 7−→ 12}

The singleton assertion a 7−→ v denotes that the memory consists of exactly one
object with value v at address a. The assignments are not considered in the context
of the entire memory, but just in the part of the memory that is used.

The key observation that led to our separation logic for C as presented in Chap-
ter 8 is the correspondence between non-determinism in expressions and a form of
concurrency. Inspired by the rule for the parallel composition [O’H04], we have rules
for each operator } that are of the following shape.

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 } e2 {Q1 ∗ Q2}

The intuitive idea of this rule is that if the memory can be subdivided into two
parts in which the subexpressions e1 and e2 can be executed safely, then the expression
e1 } e2 can be executed safely in the whole memory. Non-interference of the side-
effects of e1 and e2 is guaranteed by the separating conjunction. It ensures that the
parts of the memory described by P1 and P2 do not have overlapping areas that will
be written to. We thus effectively rule out expressions with undefined behavior such
as (x = 3) + (x = 4) (see Section 2.5.9 for discussion).

Subdividing the memory into multiple parts is not a simple operation. In order
to illustrate this, let us consider a shallow embedding of assertions of separation logic

1Contrary to traditional separation logic, we do not give local variables a special status of being
stack allocated. We do so, because in C even local variables are allowed to have pointers to them.
See Section 2.5.1 for an example.
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P,Q : mem → Prop (think of mem as being the set of finite partial functions from
some set of object identifiers to some set of objects. The exact definition in the context
of CH2O is given in Definition 5.4.4 on page 74). In such a shallow embedding, one
would define the separating conjunction as follows:

P ∗ Q := λm .∃m1m2 .m = m1 ∪ m2 ∧ P m1 ∧Qm2.

The operation ∪ is not the disjoint union of finite partial functions, but a more fine
grained operation. There are two reasons for that. Firstly, subdivision of memories
should allow for partial overlap, as long as writable objects are unique to a single
part. For example, the expression x + x has defined behavior, but the expressions
x + (x = 4) and (x = 3) + (x = 4) have not.

We use separation logic with permissions [BCOP05] to deal with partial overlap of
memories. That means, we equip the singleton assertion a γ7−→ v with a permission γ.
The essential property of the singleton assertion is that given a writable permission
γw there is a readable permission γr with:

(a γw7−−→ v) ↔ (a γr7−→ v) ∗ (a γr7−→ v).

The above property is an instance of a slightly more general property. We consider
a binary operation ∪ on permissions so we can write (see Lemma 8.3.6 on page 154
for the actual result):

(a γ1∪γ27−−−−→ v) ↔ (a γ17−→ v) ∗ (a γ27−→ v).

Secondly, it should be possible to subdivide array, struct and union objects into
subobjects corresponding to their elements. For example, in the case of an array
int a[2], the expression (a[0] = 1) + (a[1] = 4) has defined behavior, and we
should be able to prove so. The essential property of the singleton assertion for an
array [ y0, . . . , yn−1 ] value is (see Lemma 8.3.5 on page 153 for the actual result):

(a γ7−→ array [ v0, . . . , vn−1 ]) ↔ (a[0] γ7−→ v0) ∗ · · · ∗ (a[n− 1] γ7−→ vn−1).

4.2 Separation algebras

As shown in the previous section, the key operation needed to define a shallow em-
bedding of separation logic with permissions is a binary operation ∪ on memories and
permissions. Calcagno et al. introduced the notion of a separation algebra [COY07]
so as to capture common properties of the ∪ operation. A separation algebra (A, ∅,∪)
is a partial cancellative commutative monoid (see Definition 4.2.1 for our actual def-
inition). Some prototypical instances of separation algebras are:

• Finite partial functions (A →fin B, ∅,∪), where ∅ is the empty finite partial
function, and ∪ the disjoint union on finite partial functions.

• The Booleans (bool, false,∨).
• Boyland’s fractional permissions ([0, 1]Q, 0,+) where 0 denotes no access, 1 de-

notes writable access, and 0 < < 1 denotes read-only access [BCOP05, Boy03].

51



4. Permissions and separation algebras

Separation algebras are also closed under various constructs (such as products and
finite functions), and complex instances can thus be built compositionally.

When formalizing separation algebras in the Coq proof assistant, we quickly ran
into some problems:

• Dealing with partial operations such as ∪ is cumbersome, see Section 9.5.
• Dealing with subset types (modeled as Σ-types) is inconvenient.
• Operations such as the difference operation \ cannot be defined constructively

from the laws of a separation algebra.
In order to deal with the issue of partiality, we turn ∪ into a total operation. Only

in case x and y are disjoint, notation x ⊥ y, we require x ∪ y to satisfy the laws of
a separation algebra. Instead of using subsets, we equip separation algebras with a
predicate valid : A→ Prop that explicitly describes a subset of the carrier A. Lastly,
we explicitly add a difference operation \.

Definition 4.2.1. A separation algebra consists of a type A, with:
• An element ∅ : A
• A predicate valid : A→ Prop
• Binary relations ⊥, ⊆ : A→ A→ Prop
• Binary operations ∪, \ : A→ A→ A

Satisfying the following laws:
1. If valid x, then ∅ ⊥ x and ∅ ∪ x = x

2. If x ⊥ y, then y ⊥ x and x ∪ y = y ∪ x
3. If x ⊥ y and x ∪ y ⊥ z, then y ⊥ z, x ⊥ y ∪ z, and x ∪ (y ∪ z) = (x ∪ y) ∪ z
4. If z ⊥ x, z ⊥ y and z ∪ x = z ∪ y, then x = y

5. If x ⊥ y, then valid x and valid (x ∪ y)
6. If x ⊥ y and x ∪ y = ∅, then x = ∅
7. If x ⊥ y, then x ⊆ x ∪ y
8. If x ⊆ y, then x ⊥ y \ x and x ∪ y \ x = y

Laws 1–4 describe the traditional laws of a separation algebra: identity, commu-
tativity, associativity and cancellativity. Law 5 ensures that valid is closed under the
∪ operation. Law 6 describes positivity. Laws 7 and 8 fully axiomatize the ⊆ relation
and \ operation. Using the positivity and cancellation law, we obtain that ⊆ is a
partial order in which ∪ is order preserving and respecting.

In case of permissions, the ∅ element is used to split objects of compound types
(arrays and structs) into multiple parts as detailed in Section 8.3. To that end, we
use separation algebras instead of permission algebras [ORY01], which are a variant
of separation algebras without an ∅ element.

Definition 4.2.2. The Boolean separation algebra bool is defined as:

valid x := True ∅ := false
x ⊥ y := ¬x ∨ ¬y x ∪ y := x ∨ y
x ⊆ y := x→ y x \ y := x ∧ ¬y
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In the case of fractional permissions [0, 1]Q the problem of partiality and subset
types already clearly appears. The ∪ operation (here +) can ‘overflow’. We remedy
this problem by having all operations operate on pre-terms (here Q) and the predicate
valid describes validity of pre-terms (here 0 ≤ ≤ 1).

Definition 4.2.3. The fractional separation algebra Q is defined as:

valid x := 0 ≤ x ≤ 1 ∅ := 0
x ⊥ y := 0 ≤ x, y ∧ x+ y ≤ 1 x ∪ y := x+ y

x ⊆ y := 0 ≤ x ≤ y ≤ 1 x \ y := x− y

The version of separation algebras by Klein et al. [KKB12] in Isabelle also models
∪ as a total operation and uses a relation ⊥. There are some differences:

• We include a predicate valid to prevent having to deal with subset types.
• They have weaker premises for associativity (law 3), namely x ⊥ y, y ⊥ z and
x ⊥ z instead of x ⊥ y and x ∪ y ⊥ z. Ours are more natural, e.g. for fractional
permissions one has 0.5 ⊥ 0.5 but not 0.5 + 0.5 ⊥ 0.5, and it thus makes no
sense to require 0.5 ∪ (0.5 ∪ 0.5) = (0.5 ∪ 0.5) ∪ 0.5 to hold.

• Since Coq (without axioms) does not have a choice operator, the \ operation
cannot be defined in terms of ∪. Isabelle has a choice operator.

Dockins et al. [DHA09] have formalized a hierarchy of different separation algebras
in Coq. They have dealt with the issue of partiality by treating ∪ as a relation instead
of a function. This is unnatural, because equational reasoning becomes impossible
and one has to name all auxiliary results.

Bengtson et al. [BJSB11] have formalized separation algebras in Coq to reason
about object-oriented programs. They have treated ∪ as a partial function, and have
not defined any complex permission systems.

4.3 Permissions

We classify permissions using permission kinds.

Definition 4.3.1. The lattice of permission kinds (pkind,⊆) is defined as:

Writable

Readable Locked

Existing

⊥

The order k1 ⊆ k2 expresses that k1 allows fewer operations than k2. This orga-
nization of permissions is inspired by that of Leroy et al. [LABS12]. The intuitive
meaning of the permission kinds is as follows:

• Writable. Writable permissions allow reading and writing.
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4. Permissions and separation algebras

• Readable. Read-only permissions allow solely reading.
• Existing. Existence permissions [BCOP05] are used for objects that are known

to exist but whose value cannot be used. Existence permissions are essential
because C only permits pointer arithmetic on pointers that refer to objects that
have not been deallocated (see Section 2.5.7 for discussion).

• Locked. Locked permissions are used to formalize the sequence point restric-
tion. When an object is modified during the execution of an expression, it is
temporarily given a locked permission to forbid any read/write accesses until
the next sequence point. Section 6.4 details the treatment of sequence points
in the operational semantics.
For example, in (x = 3) + *p; the assignment x = 3 locks the permissions of
the object x. Since future read/write accesses to x are forbidden, accessing *p
results in undefined in case p points to x. At the sequence point ;, the original
permission of x is restored.
Locked permissions are different from existence permissions because the oper-
ational semantics can change writable permissions into locked permissions and
vice versa, but cannot do that with existence permissions.

• ⊥. Empty permissions allow no operations.
In our separation logic we do not only have control which operations are allowed,

but also have to deal with share accounting.
• We need to subdivide objects with writable or read-only permission into multiple

parts with read-only permission. For example, in the expression x + x, both
subexpressions require x to have at least read-only permission.

• We need to subdivide objects with writable permission into a part with existence
permission and a part with writable permission. For example, in the expression
*(p + 1) = (*p = 1), the subexpression *p = 1 requires *p to have writable
permission, and the subexpression *(p + 1) requires *p to have at least exis-
tence permission so as to perform pointer arithmetic on p.

When reassembling subdivided permissions (using ∪), we need to know when the
original permission is reobtained. Therefore, the underlying permission system needs
to have more structure, and cannot consist of just the permission kinds.

Definition 4.3.2. CH2O permissions perm are defined as:

γ ∈ perm := L(C(Q))︸      ︷︷      ︸
non-const qualified

+ Q︸︷︷︸
const qualified

Lockable SA Counting SA Fractional SA

where L(A) := {�, ♦} ×A and C(A) := Q×A.

In Section 4.5 we will give the exact definition of the separation algebra operations
on permissions by defining these one by one for the counting separation algebra C, the
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♦(0, 1)

♦(0, 0)

�(0, 1)

Writable

Existing ⊥

Locked

Readable

1

0

Readable

Figure 4.1: The CH2O permission system.

lockable separation algebra L, and the separation algebra on sums +. This section
gives a summary of the important aspects of the permission system.

We combine fractional permissions to account for read-only/writable permissions
with counting permissions to account for the number of existence permissions that
have been handed out. The annotations {�, ♦} describe whether a permission is locked
� or not ♦. Only writable permissions have a locked variant.

Const permissions are used for objects declared with the const qualifier (currently
we only support string literals that are implicitly declared const). Modifying an object
with const permissions results in undefined behavior. Const permissions do not have
a locked variant or a counting component because they do not allow writing.

Figure 4.1 indicates the valid predicate by the areas marked green and displays
how the elements of the permission system project onto their kinds. The operation
∪ is defined roughly as the point-wise addition and \ as point-wise subtraction.

We will define an operation 1
2 : perm→ perm to subdivide a writable or read-only

permission into read-only permissions.

1
2γ :=


♦(0.5 · x, 0.5 · y) if γ = ♦(x, y)
0.5 · x if γ = x ∈ Q
γ otherwise, dummy value

Given a writable or read-only permission γ, the subdivided read-only permission
1
2γ enjoys 1

2γ ⊥
1
2γ and 1

2γ ∪
1
2γ = γ.

The existence permission token := ♦(−1, 0) is used in combination with the \ op-
eration to subdivide a writable permission γ into a writable permission γ \ token and
an existence permission token. We have token ∪ (γ \ token) = γ by law 8 of separa-
tion algebras. Importantly, only objects with ♦(0, 1) permission can be deallocated,
whereas objects with γ \ token permission cannot (see Definition 5.6.5 on page 85)
because expressions such as (p == p) + (free(p),0) have undefined behavior.

4.4 Extended separation algebras

We extend separation algebras with a split operation 1
2 and predicates to distinguish

permissions in our memory model.
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4. Permissions and separation algebras

Definition 4.4.1. An extended separation algebra extends a separation algebra with:
• Predicates splittable, unmapped, exclusive : A→ Prop
• A unary operation 1

2 : A→ A

Satisfying the following laws:
9. If x ⊥ x, then splittable (x ∪ x)

10. If splittable x, then 1
2x ⊥

1
2x and 1

2x ∪
1
2x = x

11. If splittable y and x ⊆ y, then splittable x
12. If x ⊥ y and splittable (x ∪ y), then 1

2 (x ∪ y) = 1
2x ∪

1
2y

13. unmapped ∅, and if unmapped x, then valid x
14. If unmapped y and x ⊆ y, then unmapped x
15. If x ⊥ y, unmapped x and unmapped y, then unmapped (x ∪ y)
16. exclusive x iff valid x and for all y with x ⊥ y we have unmapped y
17. Not both exclusive x and unmapped x
18. There exists an x with valid x and not unmapped x

The 1
2 -operation is partial, but described by a total function whose result 1

2x is
only meaningful if splittable x holds. Law 11 ensures that splittable permissions are
infinitely splittable, and law 12 ensures that 1

2 distributes over ∪.
The predicates unmapped and exclusive associate an intended semantics to ele-

ments of a separation algebra. Let us consider fractional permissions to indicate the
intended meaning of these predicates.

Definition 4.4.2. The fractional separation algebra Q is extended with:

splittable x := 0 ≤ x ≤ 1 1
2x := 0.5 · x

unmapped x := x = 0 exclusive x := x = 1

Remember that permissions will be used to annotate each individual bit in mem-
ory. Unmapped permissions are on the bottom: they do not allow their bit to be used
in any way. Exclusive permissions are on the top: they are the sole owner of a bit
and can do anything to that bit without affecting disjoint bits.

Fractional permissions have exactly one unmapped element and exactly one exclu-
sive element, but in the CH2O permission system this is not the case. The elements
of the CH2O permission system are classified as follows:

unmapped exclusive Examples
X Writable and Locked permissions

Readable permissions
X The ∅ permission and Existing permissions

In order to abstractly describe bits annotated with permissions we define the
tagged separation algebra T tT (A). In its concrete use T Ebit(perm) in the memory model
(Definition 5.3.3 on page 71), the elements (γ, b) consist of a permission γ ∈ perm
and bit b ∈ bit. We use the symbolic bit E that represents indeterminate storage to
ensure that bits with unmapped permissions indeed have no usable value.
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Definition 4.4.3. Given a separation algebra A and a set of tags T with default tag
t ∈ T , the tagged separation algebra T tT (A) := A× T over A is defined as:

valid (x, y) := valid x ∧ (unmapped x→ y = t)
∅ := (∅, t)

(x, y) ⊥ (x′, y′) := x ⊥ x′ ∧ (unmapped x ∨ y = y′ ∨ unmapped x′)
∧ (unmapped x→ y = t) ∧ (unmapped x′ → y′ = t)

(x, y) ∪ (x′, y′) :=
{

(x ∪ x′, y′) if y = t

(x ∪ x′, y) otherwise
splittable (x, y) := splittable x ∧ (unmapped x→ y = t)

1
2 (x, y) := ( 1

2x, y)
unmapped (x, y) := unmapped x ∧ y = t

exclusive (x, y) := exclusive x

The definitions of the omitted relations and operations are as expected.

4.5 Permissions as a separation algebra

This section gives the full definitions of the separation algebras involved in the con-
struction of the CH2O permission system perm := L(C(Q)) + Q.

The counting separation algebra over a separation algebra A has elements (x, y)
with x ∈ Q and y ∈ A. The rational number x counts the number of existence per-
missions (i.e. permissions that only allow pointer arithmetic) that have been handed
out. Existence permissions themselves are elements (x, ∅) with x < 0. To ensure
that the counting separation algebra is closed under ∪ and preserves splittability, the
counter x is a rational number instead of an integer.

Definition 4.5.1. Given a separation algebra A, the counting separation algebra
C(A) := Q×A over A is defined as:

valid (x, y) := valid y ∧ (unmapped y → x ≤ 0) ∧ (exclusive y → 0 ≤ x)
∅ := (0, ∅)

(x, y) ⊥ (x′, y′) := y ⊥ y′ ∧ (unmapped y → x ≤ 0) ∧ (unmapped y′ → x′ ≤ 0)
∧ (exclusive (y ∪ y′)→ 0 ≤ x+ x′)

(x, y) ∪ (x′, y′) := (x+ x′, y ∪ y′)
splittable (x, y) := splittable y ∧ (unmapped y → x ≤ 0) ∧ (exclusive y → 0 ≤ x)

1
2 (x, y) := (0.5 · x, 1

2y)
unmapped (x, y) := unmapped y ∧ x ≤ 0

exclusive (x, y) := exclusive y ∧ 0 ≤ x

The lockable separation algebra adds annotations {�, ♦} to account for whether
a permission is locked � or not ♦. Permissions that are locked have exclusive write
ownership, and are thus only disjoint from those that are unmapped.
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4. Permissions and separation algebras

Definition 4.5.2. Given a separation algebra A, the lockable separation algebra
L(A) := {�, ♦} ×A over A is defined as:

valid (♦x) := valid x valid (�x) := exclusive x
∅ := ♦ ∅

♦x ⊥ ♦ y := x ⊥ y ♦x ⊥ � y := x ⊥ y ∧ unmapped x ∧ exclusive y
�x ⊥ � y := False �x ⊥ ♦ y := x ⊥ y ∧ exclusive x ∧ unmapped y
♦x ∪ ♦ y := ♦(x ∪ y) ♦x ∪ � y := �(x ∪ y)

�x ∪ ♦ y := �(x ∪ y)
splittable (�x) := False splittable (♦x) := splittable x

1
2 (♦x) := ♦( 1

2x)
unmapped (�x) := False unmapped (♦x) := unmapped x

exclusive (�x) := exclusive x exclusive (�x) := exclusive x

The separation algebra structure on the sum is intuitively straightforward, but
technically subtle because the ∅ elements have to be identified. We achieve this by
ensuring that only the ∅ element of A in A+B is used.

Definition 4.5.3. Given a separation algebras A and B, the separation algebra on
the sum A+B is defined as:

valid xl := valid x valid xr := valid x ∧ x , ∅
∅ := ∅l

xl ⊥ yl := x ⊥ y xr ⊥ yr := x ⊥ y ∧ x , ∅ ∧ y , ∅
xl ⊥ yr := x = ∅ ∧ valid y ∧ y , ∅ xr ⊥ yl := valid x ∧ x , ∅ ∧ y = ∅
xl ∪ yl := (x ∪ y)l xr ∪ yr := (x ∪ y)r

xl ∪ yr := yr xr ∪ yl := xr

splittable xl :=splittable x splittable xr :=splittable x ∧ x = ∅
1
2 (xl) :=( 1

2x)l
1
2 (xr) :=( 1

2x)r

unmapped xl := unmapped x unmapped xr := unmapped x ∧ x , ∅
exclusive xl := exclusive x exclusive xr := exclusive x

Definition 4.5.4. The operations on the CH2O permission system kind : perm →
pkind, lock, unlock : perm→ perm and token : perm are defined as:

kind γ :=



Writable if γ = ♦(x, 1)
Readable if γ = ♦(x, y) with 0 < y < 1 or γ = x

Existing if γ = ♦(x, 0) with x , 0
Locked if γ = �(x, y)
Readable if γ ∈ Q
⊥ otherwise
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lock γ :=
{
�(x, y) if γ = ♦(x, y)
γ otherwise

unlock γ :=
{
♦(x, y) if γ = �(x, y)
γ otherwise

token := ♦(−1, 0)

Lemma 4.5.5. The CH2O permission system satisfies the following properties:

unlock (lock x) = x if Writable ⊆ kind x
kind (lock x) = Locked if Writable ⊆ kind x

kind
( 1

2x
)

=
{

Readable if Writable ⊆ kind x
kind x otherwise

kind token = Existing
kind (x \ token) = kind x

kind x1 ⊆ kind x2 if x1 ⊆ x2

4.6 Reasoning about disjointness

To prove soundness of our axiomatic semantics in Chapter 8 we often have to reason
about preservation of disjointness under memory operations. This section describes
some machinery to ease reasoning about disjointness. We show that our machinery,
as originally developed in [Kre14a], extends to any separation algebra.

Definition 4.6.1. Disjointness of a list ~x, notation⊥ ~x, is defined as:
1. ⊥ ε
2. If⊥ ~x and x ⊥

⋃
~x, then⊥ (x~x)

Notice that⊥ ~x is stronger than having xi ⊥ xj for each i , j. For example, using
fractional permissions, we do not have ⊥ [ 0.5, 0.5, 0.5 ] whereas 0.5 ⊥ 0.5 clearly
holds. Using disjointness of lists we can for example state the associativity law (law 3
of Definition 4.2.1) in a symmetric way:

Fact 4.6.2. If⊥ (x y z), then x ∪ (y ∪ z) = (x ∪ y) ∪ z.

We define a relation ~x1 ≡⊥ ~x2 that expresses that ~x1 and ~x2 behave equivalently
with respect to disjointness.

Definition 4.6.3. Equivalence of lists ~x1 and ~x2 with respect to disjointness, notation
~x1 ≡⊥ ~x2, is defined as:

~x1 ≤⊥ ~x2 := ∀x .⊥ (x~x1)→⊥ (x~x2)
~x1 ≡⊥ ~x2 := ~x1 ≤⊥ ~x2 ∧ ~x2 ≤⊥ ~x1
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It is straightforward to show that ≤⊥ is reflexive and transitive, is respected by
concatenation of lists, and is preserved by list containment. Hence, ≡⊥ is an equiv-
alence relation, a congruence with respect to concatenation of lists, and is preserved
by permutations. The following results (on arbitrary separation algebras) allow us to
reason algebraically about disjointness.

Fact 4.6.4. If ~x1 ≤⊥ ~x2, then⊥ ~x1 implies⊥ ~x2.

Fact 4.6.5. If ~x1 ≡⊥ ~x2, then⊥ ~x1 iff⊥ ~x2.

Theorem 4.6.6. We have the following algebraic properties:

∅ ≡⊥ ε
x1 ∪ x2 ≡⊥ x1 x2 provided that x1 ⊥ x2⋃

~x ≡⊥ ~x provided that⊥ ~x

x2 ≡⊥ x1 (x2 \ x1) provided that x1 ⊆ x2

In Section 8.1 we show that we have similar properties as the above for the specific
operations of our memory model.
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Chapter 5
The memory model

The memory model is the core of a semantics of an imperative programming language.
It models the memory states and describes the behavior of memory operations. The
main operations described by the CH2O memory model are:

• Reading a value at a given address.
• Storing a value at a given address.
• Allocating a new object to hold a local variable or storage obtained via malloc.
• Deallocating a previously allocated object.
Formalizing the C11 memory model in a faithful way is a challenging task because

C features both low-level and high-level data access. Low-level data access involves
unstructured and untyped byte representations whereas high-level data access involves
typed abstract values such as arrays, structs and unions.

This duality makes the memory model of C more complicated than the memory
model of nearly any other programming language. For example, more mathematically
oriented languages such as Java and ML feature only high-level data access whereas
assembly languages feature only low-level data access.

The situation becomes more complicated as the C11 standard allows compilers to
perform optimizations based on a high-level view of data access that are inconsistent
with the traditional low-level view of data access. In Chapter 2 we have shown that
widely used C compilers actively perform such optimizations. It is therefore essential
to faithfully describe the interaction between both views of data access.

In order to formalize the interaction between low-level and high-level data access
we represent the formal memory state as a forest of well-typed trees whose structure
corresponds to the structure of data types in C. The leaves of these trees consist of
bits to capture low-level aspects of the language.

The key concepts of our memory model are as follows.
• Memory trees (Section 5.4) are used to represent each object in memory. They

are abstract trees whose structure corresponds to the shape of C data types.
The memory tree of struct S { short x, *r; } s = { 33, &s.x } might
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be (the precise shape and the bit representations are implementation-defined):

structS

1000010000000000 EEEEEEEEEEEEEEEE ································

The leaves of memory trees contain permission annotated bits (Section 5.3).
Bits are represented symbolically: the integer value 33 is represented as its
binary representation 1000010000000000, the padding bytes as symbolic inde-
terminate bits E (whose actual value should not be used), and the pointer &s.x
as a sequence of symbolic pointer bits.
The memory itself is a forest of memory trees. Memory trees are explicit about
type information (in particular the variants of unions) and thus give rise to a
natural formalization of effective types.

• Pointers (Section 5.2) are formalized using paths through memory trees. Since
we represent pointers as paths, the formal representation contains detailed infor-
mation about how each pointer has been obtained (in particular which variants
of unions were used). A detailed formal representation of pointers is essential
to describe effective types.

• Abstract values (Definition 5.5) are trees whose structure is similar to memory
trees, but have base values (mathematical integers and pointers) on their leaves.
The abstract value of struct S { short x, *r; } s = { 33, &s.x } is:

structS

33 •

Abstract values hide internal details of the memory such as permissions, padding
and object representations. They are therefore used in the external interface of
the memory model and throughout the operational semantics.

Memory trees, abstract values and bits with permissions can be converted into
each other. These conversions are used to define operations internal to the memory
model. However, none of these conversions are bijective because different information
is materialized in these three data types:

Abstract values Memory trees Bits with permissions
Permissions X X
Padding always E X
Variants of union X X
Mathematical values X

This table indicates that abstract values and sequences of bits are complementary.
Memory trees are a middle ground, and therefore suitable to describe both the low-
level and high-level aspects of the C memory.

62



5.1. Interface of the memory model

5.1 Interface of the memory model

This chapter defines the CH2O memory model whose external interface consists of
operations with the following types:

lookupΓ : addr→ mem→ option val
forceΓ : addr→ mem→ mem

insertΓ : addr→ mem→ val→ mem
writableΓ : addr→ mem→ Prop

lockΓ : addr→ mem→ mem
unlock : lockset→ mem→ mem
allocΓ : index → val→ bool→ mem→ mem
dom : mem→ Pfin(index)

freeable : addr→ mem→ Prop
free : index → mem→ mem

Notation 5.1.1. We let m〈a〉Γ := lookupΓ a m and m〈a := v〉Γ := insertΓ a v m.

Many of these operations depend on the typing environment Γ which assigns fields
to structs and unions (Definition 3.3.3 on page 45). This dependency is required as
these operations need to be aware of the layout of structs and unions.

The operation m〈a〉Γ yields the value stored at address a in memory m. It fails
with ⊥ if the permissions are insufficient, effective types are violated, or a is an end-of-
array address. Reading from (the abstract) memory is not a pure operation. Although
it does not affect the memory contents, it may affect the effective types [ISO12, 6.5p6-
7]. This happens for example in case type-punning is performed (see Section 2.5.6).
This impurity is factored out by the operation forceΓ a m.

The operation m〈a := v〉Γ stores the value v at address a in memory m. A store
is only permitted in case permissions are sufficient, effective types are not violated,
and a is not an end-of-array address. The proposition writableΓ a m describes the
side-conditions necessary to perform a store.

After a successful store, the operation lockΓ a m is used to lock the object at
address a in memory m. The lock operation temporarily reduces the permissions to
Locked so as to prohibit future accesses to a. Locking yields a formal treatment of
the sequence point restriction (which states that modifying an object more than once
between two sequence points results in undefined behavior, see Section 2.5.9).

The operational semantics accumulates a set Ω ∈ lockset of addresses that have
been written to (Definition 5.6.1) and uses the operation unlock Ω m at the subsequent
sequence point (which may be at the semicolon that terminates a full expression).
The operation unlock Ω m restores the permissions of the addresses in Ω and thereby
makes future accesses to the addresses in Ω possible again. In Chapter 6, we describe
how we treat sequence points and locks in the operational semantics.

The operation allocΓ o v µ m allocates a new object with value v in memory m.
The object has object identifier o < dom m which is non-deterministically chosen by
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the operation semantics. The Boolean µ expresses if the new object is allocated by
malloc (the expression allocτ e in our language, see Definition 6.1.4 on page 95).

Accompanying allocΓ, the operation free o m deallocates a previously allocated ob-
ject with object identifier o in memory m. In order to deallocate dynamically obtained
memory via free, the side-condition freeable a m describes that the permissions are
sufficient for deallocation, and that a points to a malloced object.

5.2 Representation of pointers

Adapted from CompCert [LB08, LABS12], we represent memory states as finite par-
tial functions from object identifiers to objects. Each local, global and static variable,
as well as each invocation of malloc, is associated with a unique object identifier of a
separate object in memory. This approach separates unrelated objects by construc-
tion, and is therefore well-suited for reasoning about memory transformations.

We improve on CompCert by modeling objects as structured trees instead of arrays
of bytes to keep track of padding bytes and the variants of unions. This is needed to
faithfully describe C11’s notion of effective types (see Section 2.5.5 for an informal
description). This approach allows us to describe various undefined behaviors of C11
that have not been considered by others (see Sections 2.5.2 and 2.5.6).

In the CompCert memory model, pointers are represented as pairs (o, i) where o
is an object identifier and i is a byte offset into the object with object identifier o.
Since we represent objects as trees instead of as arrays of bytes, we represent pointers
as paths through these trees rather than as byte offsets.

Definition 5.2.1. Object identifiers o ∈ index are elements of a fixed countable set.
In the Coq development we use binary natural numbers, but since we do not rely on
any properties apart from countability, we keep the representation opaque.

We first introduce a typing environment to relate the shape of paths representing
pointers to the types of objects in memory.

Definition 5.2.2. Memory typing environments ∆ ∈ memenv are finite partial func-
tions index →fin (type× bool). Given a memory environment ∆:

1. An object identifier o has type τ , notation ∆ ` o : τ , if ∆ o = (τ, β) for a β.
2. An object identifier o is alive, notation ∆ ` o alive, if ∆ o = (τ, false) for a τ .

Memory typing environments evolve during program execution. The code below
is annotated with the corresponding memory environments in red.

short x;
∆1 = {o1 7→ (signed short, false)}
int *p;
∆2 = {o1 7→ (signed short, false), o2 7→ (signed int∗, false)}
p = malloc(sizeof(int));
∆3 = {o1 7→ (signed short, false), o2 7→ (signed int∗, false), o3 7→ (signed int, false)}
free(p);
∆4 = {o1 7→ (signed short, false), o2 7→ (signed int∗, false), o3 7→ (signed int, true)}
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Here, o1 is the object identifier of the variable x, o2 is the object identifier of the
variable p and o3 is the object identifier of the storage obtained via malloc.

Memory typing environments also keep track of objects that have been deallocated.
Although one cannot directly create a pointer to a deallocated object, existing pointers
to such objects remain in memory after deallocation (see the pointer p in the above
example). These pointers, also called dangling pointers, cannot actually be used, see
the discussion in Section 2.4.2.

Definition 5.2.3. References, addresses and pointers are inductively defined as:

r ∈ refseg ::=
τ [n]
↪−−→ i | struct t

↪−−−→ i | union t
↪−−−→q i with q ∈ {◦, •}

~r ∈ ref := list refseg
a ∈ addr ::= (o : τ, ~r, i)σ>∗σp

p ∈ ptr ::= NULL σp | a | f~τ 7→τ

References are paths from the top of an object in memory to some subtree of that
object. The shape of references matches the structure of types:

• The reference
τ [n]
↪−−→ i is used to select the ith element of a τ -array of length n.

• The reference struct t
↪−−−→ i is used to select the ith field of a struct t.

• The reference union t
↪−−−→q i is used to select the ith variant of a union t.

References can describe most pointers in C but cannot account for end-of-array
pointers and pointers to individual bytes. We have therefore defined the richer notion
of addresses. An address (o : τ, ~r, i)σ>∗σp consists of:

• An object identifier o with type τ .
• A reference ~r to a subobject of type σ in the entire object of type τ .
• An offset i to a particular byte in the subobject of type σ (note that one cannot

address individual bits in C).
• The type σp to which the address is cast. We use a points-to type in order to

account for casts to the anonymous void* pointer, which is represented as the
points-to type any. This information is needed to define, for example, pointer
arithmetic, which is sensitive to the type of the address.

In turn, pointers extend addresses with a NULL pointer NULL σp for each type σp,
and function pointers f~τ 7→τ which contain the name and type of a function.

Let us consider the following global variable declaration:

struct S {
union U { signed char x[2]; int y; } u;
void *p;

} s;

The formal representation of the pointer (void*)(s.u.x + 2) is:

(os : struct S,
struct S
↪−−−→ 0 union U

↪−−−→• 0
signed char[2]
↪−−−−−−−→ 0, 2)signed char>∗any.
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Here, os is the object identifier associated with the variable s of type struct S. The
reference struct S

↪−−−→ 0 union U
↪−−−→• 0

signed char[2]
↪−−−−−−−→ 0 and byte-offset 2 describe that the pointer

refers to the third byte of the array s.u.x. The pointer refers to an object of type
signed char. The annotation any describes that the pointer has been cast to void*.

The annotations q ∈ {◦, •} on references union s
↪−−−→q i describe whether type-punning

is allowed or not. The annotation •means that type-punning is allowed, i.e. accessing
another variant than the current one has defined behavior. The annotation ◦ means
that type-punning is forbidden. A pointer whose annotations are all of the shape ◦,
and thereby does not allow type-punning at all, is called frozen.

Definition 5.2.4. The freeze function | |◦ : refseg→ refseg is defined as:

|
τ [n]
↪−−→ i |◦ :=

τ [n]
↪−−→ i | struct t

↪−−−→ i |◦ := struct t
↪−−−→ i | union t

↪−−−→q i |◦ := union t
↪−−−→◦ i

A reference segment r is frozen, notation frozen r, if | r |◦ = r. Both | |◦ and frozen
are lifted to references, addresses, and pointers in the expected way.

Pointers stored in memory are always in frozen shape. Definitions 5.4.10 and 5.5.3
describe the formal treatment of effective types and frozen pointers, but for now we
reconsider the example from Section 2.5.6:

union U { int x; short y; } u = { .x = 3 };
short *p = &u.y;
printf("%d\n", *p); // Undefined
printf("%d\n", u.y); // OK

Assuming the object u has object identifier ou, the pointers &u.x, &u.y and p have
the following formal representations:

&u.x: (ou : union U,
union U
↪−−−→• 0, 0)signed int>∗signed int

&u.y: (ou : union U,
union U
↪−−−→• 1, 0)signed short>∗signed short

p: (ou : union U,
union U
↪−−−→◦ 1, 0)signed short>∗signed short

These pointers are likely to have the same object representation on actual comput-
ing architectures. However, due to effective types, &u.y may be used for type-punning
but p may not. It is thus important that we distinguish these pointers in the formal
memory model.

The additional structure of pointers is also needed to determine whether pointer
subtraction has defined behavior. The behavior is only defined if the given pointers
both point to an element of the same array object [ISO12, 6.5.6p9]. Consider:

struct S { int a[3]; int b[3]; } s;
s.a - s.b; // Undefined, different array objects
(s.a + 3) - s.b; // Undefined, different array objects
(s.a + 3) - s.a; // OK, same array objects
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Here, the pointers s.a + 3 and s.b have different representations in the memory
model. Definition 6.3.2 on page 102 gives the formal definition of pointer subtraction.

We will now define typing judgments for references, addresses and pointers. The
judgment for references Γ ` ~r : τ � σ states that σ is a subobject type of τ which
can be obtained via the reference ~r (see also Definition 5.7.1). For example, int[2]

is a subobject type of struct S { int x[2]; int y[3]; } via struct S
↪−−−→ 0.

Definition 5.2.5. The judgment Γ ` ~r : τ � σ describes that ~r is a valid reference
from τ to σ. It is inductively defined as:

Γ ` ε : τ � τ

Γ ` ~r : τ � σ[n] i < n

Γ ` ~r
σ[n]
↪−−→ i : τ � σ

Γ ` ~r : τ � struct t Γ t = ~σ i < |~σ|

Γ ` ~r struct t
↪−−−→ i : τ � σi

Γ ` ~r : τ � union t Γ t = ~σ i < |~σ|

Γ ` ~r union t
↪−−−→q i : τ � σi

The typing judgment for addresses is more involved than the judgment for refer-
ences. Let us first consider the following example:

int a[4];

Assuming the object a has object identifier oa, the end-of-array pointer a+4 could
be represented in at least the following ways (assuming sizeof (signed int) = 4):

(oa : signed int[4],
signed int[4]
↪−−−−−−→ 0, 16)signed int>∗signed int

(oa : signed int[4],
signed int[4]
↪−−−−−−→ 3, 4)signed int>∗signed int

In order to ensure canonicity of pointer representations, we let the typing judgment
for addresses ensure that the reference ~r of (o : τ, ~r, i)σ>∗σp always refers to the first
element of an array subobject. This renders the second representation illegal.

Definition 5.2.6. The relation τ >∗ σp, type τ is pointer castable to σp, is inductively
defined by τ >∗ τ , τ >∗ unsigned char, and τ >∗ any.

Definition 5.2.7. The judgment Γ,∆ `∗ a : σp describes that the address a refers to
type σp. It is inductively defined as:

∆ ` o : τ Γ ` τ Γ ` ~r : τ � σ

offset ~r = 0 i ≤ sizeofΓ σ · size ~r sizeofΓ σp | i σ >∗ σp

Γ,∆ ` (o : τ, ~r, i)σ>∗σp : σp

Here, the helper functions offset, size : ref → N are defined as:

offset ~r :=
{
i if ~r = ~r2

τ [n]
↪−−→ i

0 otherwise
size ~r :=

{
n if ~r = ~r2

τ [n]
↪−−→ i

1 otherwise
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We use an intrinsic encoding of syntax, which means that terms contain redundant
type annotations so we can read off types. Functions to read off types are named
typeof and will not be defined explicitly. Type annotations make it more convenient
to define operations that depend on types (such as offset and size in Definition 5.2.7).
As usual, typing judgments ensure that type annotations are consistent.

The premises i ≤ sizeofΓ σ · size ~r and sizeofΓ σp | i of the typing rule ensure that
the byte offset i is aligned and within range. The inequality i ≤ sizeofΓ σ · size ~r is
non-strict so as to allow end-of-array pointers.

Definition 5.2.8. An address a = (o : τ, ~r, i)σ>∗σp is called strict, notation Γ `
a strict, in case it satisfies i < sizeofΓ σ · size ~r.

The judgment τ >∗ σp does not describe the typing restriction of cast expressions.
Instead, it defines the invariant that each address (o : τ, ~r, i)σ>∗σp should satisfy. Since
C is not type safe, the operation for pointer casting (Definition 6.3.4 on page 103)
has τ >∗ σp as a side-condition:

int x, *p = &x;
void *q = (void*)p; // OK, signed int >∗ any
int *q1 = (int*)q; // OK, signed int >∗ signed int
short *q2 = (short*)p; // Statically ill-typed
short *q3 = (short*)q; // Undefined behavior, signed int ≯∗ signed short

Definition 5.2.9. The judgment Γ,∆ `∗ p : σp describes that the pointer p refers to
type σp. It is inductively defined as:

Γ `∗ σp

Γ,∆ `∗ NULL σp : σp

Γ,∆ ` a : σp

Γ,∆ `∗ a : σp

Γ f = (~τ , τ)
Γ,∆ `∗ f~τ 7→τ : ~τ → τ

Addresses (o : τ, ~r
σ[n]
↪−−→ j, i)σ>∗σp that point to an element of τ [n] always have their

reference point to the first element of the array, i.e. j = 0. For some operations we
use the normalized reference which refers to the actual array element.

Definition 5.2.10. The functions index : addr → index, refΓ : addr → ref, and
byteΓ : addr→ N obtain the index, normalized reference, and normalized byte offset.

index (o : τ, ~r, i)σ>∗σp := o

refΓ (o : τ, ~r, i)σ>∗σp := setoffset (i÷ sizeofΓ σ) ~r
byteΓ (o : τ, ~r, i)σ>∗σp := i mod (sizeofΓ σ)

Here, the function setoffset : N→ ref → ref is defined as:

setoffset j ~r :=
{
~r2

τ [n]
↪−−→ j if ~r = ~r2

τ [n]
↪−−→ i

r otherwise
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Let us display the above definition graphically. Given an address (o : τ, ~r, i)σ>∗σp ,
the normalized reference and normalized byte offset are as follows:

~r
i

refΓ a

byteΓ a

For end-of-array addresses the normalized reference is ill-typed because references
cannot be end-of-array. For strict addresses the normalized reference is well-typed.

Definition 5.2.11. The judgment ∆ ` p alive describes that the pointer p is alive.
It is inductively defined as:

∆ ` NULL σp alive
∆ ` (index a) alive

∆ ` a alive ∆ ` f~τ 7→τ alive

The judgment ∆ ` o alive on object identifiers is defined in Definition 5.2.2.

For many operations we have to distinguish addresses that refer to an entire object
and addresses that refer to an individual byte of an object. We call addresses of the
later kind byte addresses. For example:

int x, *p = &x; // p is not a byte address
unsigned char *q = (unsigned char*)&x; // q is a byte address

Definition 5.2.12. An address (o : τ, ~r, i)σ>∗σp is a byte address if σ , σp.

To express that memory operations commute (see for example Lemma 5.4.14), we
need to express that addresses are disjoint, meaning they do not overlap. Addresses
do not overlap if they belong to different objects or take a different branch at an array
or struct. Let us consider an example:

union { struct { int x, y; } s; int z; } u1, u2;

The pointers &u1 and &u2 are disjoint because they point to separate memory
objects. Writing to one does not affect the value of the other and vice versa. Likewise,
&u1.s.x and &u1.s.y are disjoint because they point to different fields of the same
struct, and as such do not affect each other. The pointers &u1.s.x and &u1.z are
not disjoint because they point to overlapping objects and thus do affect each other.

Definition 5.2.13. Disjointness of references ~r1 and ~r2, notation ~r1 ⊥ ~r2, is induc-
tively defined as:

|~r1 |◦ = |~r2 |◦ i , j

~r1
σ[n]
↪−−→ i ~r3 ⊥ ~r2

σ[n]
↪−−→ j ~r4

|~r1 |◦ = |~r2 |◦ i , j

~r1
struct t
↪−−−→ i ~r3 ⊥ ~r2

struct t
↪−−−→ j ~r4
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Note that we do not require a special case for |~r1 |◦ , |~r2 |◦. Such a case is implicit
because disjointness is defined in terms of prefixes.

Definition 5.2.14. Disjointness of addresses a1 and a2, notation a1 ⊥Γ a2, is in-
ductively defined as:

index a1 , index a2
a1 ⊥Γ a2

index a1 = index a2 refΓ a1 ⊥ refΓ a2
a1 ⊥Γ a2

both a1 and a2 are byte addresses
index a1 = index a2 | refΓ a1 |◦ = | refΓ a2 |◦ byteΓ a1 , byteΓ a2

a1 ⊥Γ a2

The first inference rule accounts for addresses whose object identifiers are different,
the second rule accounts for addresses whose references are disjoint, and the third rule
accounts for addresses that point to different bytes of the same subobject.

Definition 5.2.15. The reference bit-offset bitoffsetΓ : refseg→ N is defined as:

bitoffsetΓ (
τ [n]
↪−−→ i) := i · bitsizeofΓ τ

bitoffsetΓ ( union t
↪−−−→q i) := 0

bitoffsetΓ ( struct t
↪−−−→ i) := bitoffsetofΓ ~τ i where Γ t = ~τ

Moreover, we let bitoffsetΓ a := Σi (bitoffsetΓ (refΓ a)i) + byteΓ a · char bits.

Disjointness implies non-overlapping bit-offsets, but the reverse implication does
not always hold because references to different variants of unions are not disjoint. For
example, given the declaration union { struct { int x, y; } s; int z; } u,
the pointers corresponding to &u.s.y and &u.z are not disjoint.

Lemma 5.2.16. If Γ,∆ ` a1 : σ1, Γ,∆ ` a2 : σ2, Γ ` {a1, a2} strict, a1 ⊥Γ a2, and
index a1 , index a2, then either:

1. bitoffsetΓ a1 + bitsizeofΓ σ1 ≤ bitoffsetΓ a2, or
2. bitoffsetΓ a2 + bitsizeofΓ σ2 ≤ bitoffsetΓ a1.

Lemma 5.2.17 (Well-typed addresses are properly aligned). If Γ,∆ ` a : σ, then
(alignofΓ σ · char bits) | bitoffsetΓ a.

5.3 Representation of bits

As shown in Section 2.5.2, each object in C can be interpreted as an unsigned char
array called the object representation. On actual computing architectures, the object
representation consists of a sequence of concrete bits (zeros and ones). However, so
as to accurately describe all undefined behaviors, we need a special treatment for the
object representations of pointers and indeterminate memory in the formal memory
model. To that end, CH2O represents the bits belonging to the object representations
of pointers and indeterminate memory symbolically.
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Definition 5.3.1. Bits are inductively defined as:

b ∈ bit ::= E | 0 | 1 | (ptr p)i.

Definition 5.3.2. The judgment Γ,∆ ` b describes that a bit b is valid. It is induc-
tively defined as:

Γ,∆ ` E
β ∈ {0, 1}
Γ,∆ ` β

Γ,∆ `∗ p : σp frozen p i < bitsizeofΓ (σp∗)
Γ,∆ ` (ptr p)i

A bit is either a concrete bit 0 or 1, the ith fragment bit (ptr p)i of a pointer p,
or the indeterminate bit E. Integers are represented using concrete sequences of bits,
and pointers as sequences of fragment bits. Assuming bitsizeof (signed int∗) = 32,
a pointer p : signed int will be represented as the bit sequence (ptr p)0 . . . (ptr p)31,
and assuming bitsizeof (signed int) = 32 on a little-endian architecture, the integer
33 : signed int will be represented as the bit sequence 1000010000000000.

The approach using a combination of symbolic and concrete bits is similar to
Leroy et al. [LABS12] and has the following advantages:

• Symbolic bit representations for pointers avoid the need to clutter the memory
model with subtle, implementation-defined, and run-time dependent operations
to decode and encode pointers as concrete bit sequences.

• We can precisely keep track of memory areas that are uninitialized. Since these
memory areas consist of arbitrary concrete bit sequences on actual machines,
most operations on them have undefined behavior.

• While reasoning about program transformations one has to relate the memory
states during the execution of the source program to those during the execu-
tion of the target program. Program transformations can, among other things,
make more memory defined (that is, transform some indeterminate E bits into
determinate bits) and relabel the memory. Symbolic bit representations make
it easy to deal with such transformations (see Section 5.8).

• It vastly decreases the amount of non-determinism, making it possible to eval-
uate the memory model as part of an executable semantics (see Section 6.8).

• The use of concrete bit representations for integers still gives a semantics to
many low-level operations on integer representations.

A small difference with Leroy et al. [LABS12] is that the granularity of our memory
model is on the level of bits rather than bytes. Currently we do not make explicit use
of this granularity, but it allows us to support bit-fields more faithfully with respect
to the C11 standard in future work.

Objects in our memory model are annotated with permissions. We use permission
annotations on the level of individual bits, rather than on the level of bytes or entire
objects, to obtain the most precise way of permission handling.

Definition 5.3.3. Permission annotated bits are defined as:

b ∈ pbit := T Ebit(perm) = perm× bit.
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In the above definition, T is the tagged separation algebra that has been defined
in Definition 4.4.3 on page 57. We have spelled out its definition for brevity’s sake.

Definition 5.3.4. The judgment Γ,∆ ` b describes that a permission annotated bit
b is valid. It is inductively defined as:

Γ,∆ ` b valid γ b = E in case unmapped γ
Γ,∆ ` (γ, b)

5.4 Representation of the memory

Memory trees are abstract trees whose structure corresponds to the shape of data
types in C. They are used to describe individual objects (base values, arrays, structs,
and unions) in memory. The memory is a forest of memory trees.

Definition 5.4.1. Memory trees are inductively defined as:

w ∈ mtree ::= baseτb
~b | arrayτ ~w | structt

#   »

w~b | uniont (i, w, ~b) | uniont ~b.

The structure of memory trees is close to the structure of types (Definition 3.3.2
on page 44) and thus reflects the expected semantics of types: arrays are lists, structs
are tuples, and unions are sums. Let us consider the following example:

struct S {
union U { signed char x[2]; int y; } u; void *p;

} s = { .u = { .x = {33,34} }, .p = s.u.x + 2 };

The memory tree representing the object s with object identifier os may be as
follows (permissions are omitted for brevity’s sake, and integer encoding and padding
are subject to implementation-defined behavior):

structS

unionU

array

10000100signed char: 01000100

EEEEEEEEEEEEEEEE

(ptr p)0 (ptr p)1 . . . (ptr p)31any∗:

.0

p = (os : struct S,
struct S
↪−−−→ 0

union U
↪−−−→• 0

signed char[2]
↪−−−−−−→ 0, 2)signed char>∗any

The representation of unions requires some explanation. We considered two kinds
of memory trees for unions:

• The memory tree uniont (i, w, ~b) represents a union whose variant is i. Unions
of variant i can only be accessed through a pointer to variant i. This is essential
for effective types. The list ~b represents the padding after the element w.
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• The memory tree uniont ~b represents a union whose variant is yet unspecified.
Whenever the union is accessed through a pointer to variant i, the list ~b will
be interpreted as a memory tree of the type belonging to the ith variant.

The reason that we consider unions uniont ~b with unspecific variant at all is that
in some cases the variant cannot be known. Unions that have not been initialized do
not have a variant yet. Also, when a union object is constructed byte-wise through
its object representation, the variant cannot be known.

Although unions are tagged in the formal memory, actual compilers implement
untagged unions. Information about variants should thus be internal to the formal
memory model. In Section 5.8 we prove that this is indeed the case.

The additional structure of memory trees, namely type annotations, variants of
unions, and structured information about padding, can be erased by flattening. Flat-
tening just appends the bytes on the leaves of the tree.

Definition 5.4.2. The flatten operation ( ) : mtree→ list pbit is defined as:

baseτb
~b := ~b arrayτ ~w := w0 . . . w|~w|−1

structt
#   »

w~b := (w0 ~b0) . . . (w|~w|−1 ~b|~w|−1) uniont (j, w, ~b) := w ~b uniont ~b := ~b

The flattened version of the memory tree representing the object s in the previous
example is as follows:

10000100 01000100 EEEEEEEE EEEEEEEE (ptr p)0 (ptr p)1 . . . (ptr p)31

Definition 5.4.3. The judgment Γ,∆ ` w : τ describes that the memory tree w has
type τ . It is inductively defined as:

Γ `b τb Γ,∆ ` ~b |~b| = bitsizeofΓ τb

Γ,∆ ` baseτb
~b : τb

Γ,∆ ` ~w : τ |~w| = n , 0
Γ,∆ ` arrayτ ~w : τ [n]

Γ t = ~τ Γ,∆ ` ~w : ~τ
∀i . (Γ,∆ ` ~bi ~bi all E |~bi| = (fieldbitsizesΓ ~τ)i − bitsizeofΓ τi)

Γ,∆ ` structt
#   »

w~b : struct t

Γ t = ~τ i < |~τ | Γ,∆ ` w : τi Γ,∆ ` ~b ~b all E
bitsizeofΓ (union t) = bitsizeofΓ τi + |~b| ¬unmapped (w ~b)

Γ,∆ ` uniont (i, w, ~b) : union t

Γ t = ~τ Γ,∆ ` ~b |~b| = bitsizeofΓ (union t)
Γ,∆ ` uniont ~b : union t

Although padding bits should be kept indeterminate (see Section 2.5.2), padding
bits are explicitly stored in memory trees for uniformity’s sake. The typing judgment
ensures that the value of each padding bit is E and that the padding thus only have
a permission. Storing a value in padding is a no-op (see Definition 5.4.13).
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The side-condition ¬unmapped (w ~b) in the typing rule for a union uniont (i, w, ~b)
of a specified variant ensures canonicity. Unions whose permissions are unmapped
cannot be accessed and should therefore be in an unspecified variant. This condition
is essential for the separation algebra structure, see Sections 8.1 and 8.3.

Definition 5.4.4. Memories are defined as:

m ∈ mem := index →fin (mtree× bool + type).

Each object (w, µ) in memory is annotated with a Boolean µ to describe whether
it has been allocated using malloc (in case µ = true) or as a block scope local, static,
or global variable (in case µ = false). The types of deallocated objects are kept to
ensure that dangling pointers (which may remain to exist in memory, but cannot be
used) have a unique type.

Definition 5.4.5. The judgment Γ,∆ ` m describes that the memory m is valid. It
is defined as the conjunction of:

1. For each o and τ with mo = τ we have:
a) ∆ ` o : τ , b) ∆ 0 o alive, and c) Γ ` τ .

2. For each o, w and µ with mo = (w, µ) we have:
a) ∆ ` o : τ , b) ∆ ` o alive, c) Γ,∆ ` w : τ , and d) not w all (∅, E).

The judgment ∆ ` o alive on object identifiers is defined in Definition 5.2.2.

Definition 5.4.6. The minimal memory typing environment m ∈ memenv of a mem-
ory m is defined as:

m := λo .

{
(τ, true) if mo = τ

(typeof w, false) if mo = (w, µ)

Notation 5.4.7. We let Γ ` m denote Γ,m ` m.

Many of the conditions of the judgment Γ,∆ ` m ensure that the types of m
match up with the types in the memory environment ∆ (see Definition 5.2.2). One
may of course wonder why do we not define the judgment Γ ` m directly, and even
consider typing of a memory in an arbitrary memory environment. Consider:

int x = 10, *p = &x;

Using an assertion of separation logic we can describe the memory induced by the
above program as x 7−→ 10 ∗ p 7−→ &x. The separation conjunction ∗ describes that
the memory can be subdivided into two parts, a part for x and another part for p.
When considering p 7−→ &x in isolation, which is common in separation logic, we have
a pointer that refers outside the part itself. This isolated part is thus not typeable by
Γ ` m, but it is typeable in the context of a the memory environment corresponding
to the whole memory. See also Lemma 8.1.8 on page 148.
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In the remaining part of this section we will define various auxiliary operations
that will be used to define the memory operations in Section 5.6. We give a summary
of the most important auxiliary operations:

newγΓ : type→ mtree for γ : perm
( )[ ]Γ : mem→ addr→ option mtree

( )[ /f ]Γ : mem→ addr→ mem for f : mtree→ mtree

Intuitively these are just basic tree operations, but unions make their actual def-
initions more complicated. The indeterminate memory tree newγΓ τ consists of inde-
terminate bits with permission γ, the lookup operation m[a]Γ yields the memory tree
at address a in m, and the alter operation m[a/f ]Γ applies the function f to the
memory tree at address a in m.

The main delicacy of all of these operations is that we sometimes have to interpret
bits as memory trees, or reinterpret memory trees as memory trees of a different type.
Most notably, reinterpretation is needed when type-punning is performed:

union int_or_short { int x; short y; } u = { .x = 3 };
short z = u.y;

This code will reinterpret the bit representation of a memory tree representing an
int value 3 as a memory tree of type short. Likewise:

union int_or_short { int x; short y; } u;
((unsigned char*)&u)[0] = 3;
((unsigned char*)&u)[1] = 0;
short z = u.y;

Here, we poke some bytes into the object representation of u, and interpret these
as a memory tree of type short.

We have defined the flatten operation w that takes a memory tree w and yields
its bit representation already in Definition 5.4.2. We now define the operation which
goes in opposite direction, called the unflatten operation.

Definition 5.4.8. The unflatten operation ( )τΓ : list pbit→ mtree is defined as:

(~b)τb
Γ := baseτb

~b

(~b)τ [n]
Γ := arrayτ ((~b[0, s))τΓ . . . (~b[(n−1)s, ns))τΓ) where s := bitsizeofΓ τ

(~b)struct t
Γ := structt

(~b[0, s0))τ0Γ
~bE[s0, z1)

. . .

(~b[zn−1, zn−1+sn−1))τn−1
Γ

~bE[zn−1+sn−1, zn)


where Γ t = ~τ , n := |~τ |, si := bitsizeofΓ τi and zi := bitoffsetofΓ ~τ i

(~b)union t
Γ := uniont ~b

Here, the operation ( )E : pbit→ pbit is defined as (x, b)E := (x, E).
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5. The memory model

In the above definition, the need for uniont ~b memory trees becomes clear. While
unflattening a bit sequence as union type, there is no way of knowing which variant
of the union the bits constitute. Notice that the operations ( ) and ( )τΓ are neither
left nor right inverses of each other:

• We do not have (w)τΓ = w for each w with Γ,∆ ` w : τ . Variants of unions are
destroyed by flattening w.

• We do not have (~b)τΓ = ~b for each ~b with |~b| = bitsizeofΓ τ either. Padding bits
become indeterminate due to ( )E by unflattening.

In Section 5.8 we prove weaker variants of these cancellation properties that are
sufficient for proofs about program transformations.

Definition 5.4.9. Given a permission γ ∈ perm, the operation newγΓ : type→ mtree
that yields the indeterminate memory tree is defined as:

newγΓ τ := ((γ, E)bitsizeofΓ τ )τΓ.

The memory tree newγΓ τ that consists of indeterminate bits with permission γ is
used for objects with indeterminate value. We have defined newγΓ τ in terms of the
unflattening operation for simplicity’s sake. This definition enjoys desirable structural
properties such as newγΓ (τ [n]) = (newγΓ τ)n.

We will now define the lookup operation m[a]Γ that yields the subtree at address
a in the memory m. The lookup function is partial, it will fail in case a is end-of-array
or violates effective types. We first define the counterpart of lookup on memory trees
and then lift it to memories.

Definition 5.4.10. The lookup operation on memory trees ( )[ ]Γ : mtree→ ref →
option mtree is defined as:

w[ε]Γ := w

(arrayτ ~w)[(
τ [n]
↪−−→ i)~r]Γ := wi[~r]Γ

(structt
#   »

w~b)[( struct t
↪−−−→ i)~r]Γ := wi[~r]Γ

(uniont (j, w, ~b))[( union t
↪−−−→q i)~r]Γ :=


w[~r]Γ if i = j

((w ~b)[0, s))τi

Γ [~r]Γ if i , j, q = •, exclusive (w ~b)
⊥ if i , j, q = ◦

where Γ t = ~τ and s = bitsizeofΓ τi

(uniont ~b)[( union t
↪−−−→q i)~r]Γ := (~b[0, bitsizeofΓ τi))

τi

Γ [~r]Γ if Γ t = ~τ , exclusive ~b

The lookup operation uses the annotations q ∈ {◦, •} on union s
↪−−−→q i to give a formal

semantics to the strict-aliasing restrictions [ISO12, 6.5.2.3].
• The annotation q = • allows a union to be accessed via a reference whose variant

is unequal to the current one. This is called type-punning.
• The annotation q = ◦ allows a union to be accessed only via a reference whose

variant is equal to the current one. This means, it rules out type-punning.
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5.4. Representation of the memory

Failure of type-punning is captured by partiality of the lookup operation. The
behavior of type-punning of uniont (j, w, ~b) via a reference to variant i is described by
the conversion ((w ~b)[0, bitsizeofΓ τi))

τi

Γ . The memory tree w is converted into bits and
reinterpreted as a memory tree of type τi.

The exclusive conditions in the union cases will be explained in Section 8.1.

Definition 5.4.11. The lookup operation on memories ( )[ ]Γ : mem → addr →
option mtree is defined as:

m[a]Γ :=
{

((w[refΓ a]Γ)[i, j))unsigned char
Γ if a is a byte address

w[refΓ a]Γ if a is not a byte address

provided that m (index a) = (w, µ). In omitted cases the result is ⊥. In this definition
we let i := byteΓ a · char bits and j := (byteΓ a+ 1) · char bits.

We have to take special care of addresses that refer to individual bytes rather than
whole objects. Consider:

struct S { int x; int y; } s = { .x = 1, .y = 2 };
unsigned char z = ((unsigned char*)&s)[0];

In this code, we obtain the first byte ((unsigned char*)&s)[0] of the struct s.
This is formalized by flattening the entire memory tree of the struct s, and selecting
the appropriate byte.

The C11 standard’s description of effective types [ISO12, 6.5p6-7] states that an
access (which is either a read or store) affects the effective type of the accessed object.
This means that although reading from memory does not affect the memory contents,
it may still affect the effective types. Let us consider an example where it is indeed
the case that effective types are affected by a read:

short g(int *p, short *q) {
short z = *q; *p = 10; return z;

}
int main() {

union int_or_short { int x; short y; } u;
// initialize u with zeros, the variant of u remains unspecified
for (size_t i = 0; i < sizeof(u); i++) ((unsigned char*)&u)[i] = 0;
return g(&u.x, &u.y);

}

In this code, the variant of the union u is initially unspecified. The read *q in g
forces its variant to y, making the assignment *p to variant x undefined. Note that it
is important that we also assign undefined behavior to this example, a compiler may
assume p and q to not alias regardless of how g is called.

We factor these side-effects out using a function forceΓ : addr→ mem→ mem that
updates the effective types (that is the variants of unions) after a successful lookup.
The forceΓ function, as defined in Definition 5.6, can be described in terms of the
alter operation m[a/f ]Γ that applies the function f : mtree→ mtree to the object at

77



5. The memory model

address a in the memory m and update variants of unions accordingly to a. To define
forceΓ we let f be the identify.

Definition 5.4.12. Given a function f : mtree → mtree, the alter operation on
memory trees ( )[ /f ]Γ : mtree→ ref → mtree is defined as:

w[ε/f ]Γ := f w

(arrayτ ~w)[(
τ [n]
↪−−→ i)~r/f ]Γ := arrayτ (~w[i := wi[~r/f ]Γ])

(structt
#   »

w~b)[( struct t
↪−−−→ i)~r/f ]Γ := structt ((

#   »

w~b)[i := wi[~r/f ]Γ~bi])

(uniont (i, w, ~b))[( union t
↪−−−→q j)~r/f ]Γ :=

{
uniont (i, w[~r/f ]Γ, ~b) if i = j

uniont (i, (((w~b)[0, s))τi

Γ )[~r/f ]Γ, (w~b)E[s, z)) if i , j

(uniont ~b)[( union t
↪−−−→q i)~r/f ]Γ := uniont (i, ((~b[0, s))τi

Γ )[~r/f ]Γ, ~bE[s, z))

In the last two cases we have Γ t = ~τ , s := bitsizeofΓ τi and z := bitsizeofΓ (union t).
The result of w[~r/f ]Γ is only well-defined in case w[~r]Γ , ⊥.

Definition 5.4.13. Given a function f : mtree → mtree, the alter operation on
memories ( )[ /f ]Γ : mem→ addr→ mem is defined as:

m[a/f ]Γ :=
{
m[(index a) := (w[refΓ a/f ]Γ, µ)] if a is a byte address
m[(index a) := (w[refΓ a/f ]Γ, µ)] if a is not a byte address

provided that m (index a) = (w, µ). In this definition we let:

f w := (w[0, i) f (w[i, j))unsigned char
Γ w[j, bitsizeofΓ (typeof w)))typeof w

Γ

where i := byteΓ a · char bits and j := (byteΓ a+ 1) · char bits.

The lookup and alter operation enjoy various properties; they preserve typing and
satisfy laws about their interaction. We list some for illustration.

Lemma 5.4.14 (Alter commutes). If Γ,∆ ` m, a1 ⊥Γ a2 with:
• Γ,∆ ` a1 : τ1, m[a1]Γ = w1, and Γ,∆ ` f1 w1 : τ1, and
• Γ,∆ ` a2 : τ2, m[a2]Γ = w2, and Γ,∆ ` f2 w2 : τ2,

then we have:
m[a2/f2]Γ[a1/f1]Γ = m[a1/f1]Γ[a2/f2]Γ.

Lemma 5.4.15. If Γ,∆ ` m, m[a]Γ = w, and a is not a byte address, then:

(m[a/f ]Γ)[a]Γ = f w.

A variant of Lemma 5.4.15 for byte addresses is more subtle because a byte address
can be used to modify padding. Since modifications of padding are masked, a suc-
cessive lookup may yield a memory tree with more indeterminate bits. In Section 5.8
we present an alternative lemma that covers this situation.

We conclude this section with a useful helper function that zips a memory tree
and a list. It is used in for example Definitions 5.6.5 and 8.1.4.

78



5.5. Representation of values

Definition 5.4.16. Given a function f : pbit → B → pbit, the operation that zips
the leaves f̂ : mtree→ list B → mtree is defined as:

f̂ (baseτb
~b) ~y := baseτb (f ~b ~y)

f̂ (arrayτ ~w) ~y := arrayτ (f̂ w0 ~y[0, s1) . . . f̂ wn−1 ~y[sn−1, sn))
where n := |~w| and si := Σj<i|wj |

f̂ (structt
#   »

w~b) ~y := structt

f̂ w0 ~y[0, s0) f ~b0 ~y[s0, z1)
. . .

f̂ wn−1 ~y[zn−1, zn−1+sn−1) f ~bn−1 ~y[zn−1+sn−1, zn)


where n := |~w|, si := |wi|, and zi := Σj<i|wi ~bi|

f̂ (uniont (i, w, ~b)) ~y := uniont (i, f̂ w ~y[0, |w|), f ~b ~y[|w|, |w~b|))

f̂ (uniont ~b) ~y := uniont (f ~b ~y)

5.5 Representation of values

Memory trees (Definition 5.4.1) are still rather low-level and expose permissions and
implementation specific properties such as bit representations. In this section we
define abstract values, which are like memory trees but have mathematical integers
and pointers instead of bit representations as leaves. Abstract values are used in the
external interface of the memory model (Section 5.1).

Definition 5.5.1. Base values are inductively defined as:

vb ∈ baseval ::= indet τb | nothing | intτi x | ptr p | byte~b.

While performing byte-wise operations (for example, byte-wise copying a struct
containing pointer values), abstraction is broken, and pointer fragment bits have to
reside outside of memory. The value byte~b is used for this purpose.

Definition 5.5.2. The judgment Γ,∆ `b vb : τb describes that the base value vb has
base type τb. It is inductively defined as:

Γ `b τb τb , void
Γ,∆ `b indet τb : τb Γ,∆ `b nothing : void

x : τi

Γ,∆ `b intτi x : τi

Γ,∆ `∗ p : σp

Γ,∆ `b ptr p : σp∗
Γ,∆ ` ~b |~b| = char bits Not ~b all in {0, 1} Not ~b all E

Γ,∆ `b byte~b : unsigned char

The side-conditions of the typing rule for byte~b ensure canonicity of representa-
tions of base values. It ensures that the construct byte~b is only used if ~b cannot be
represented as an integer intunsigned char x or indet (unsigned char).

In Definition 5.5.6 we define abstract values by extending base values with con-
structs for arrays, structs and unions. In order to define the operations to look up
and store values in memory, we define conversion operations between abstract values
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5. The memory model

and memory trees. Recall that the leaves of memory trees, which represent base val-
ues, are just sequences of bits. We therefore first define operations that convert base
values to and from bits. These operations are called flatten and unflatten.

Definition 5.5.3. The flatten operation ( ) Γ : baseval→ list bit is defined as:

indet τb
Γ := EbitsizeofΓ τb

nothing Γ := EbitsizeofΓ void

intτi x
Γ := x : τi

ptr p Γ := (ptr | p |◦)0 . . . (ptr | p |◦)bitsizeofΓ (typeof p∗)−1

byte~b
Γ

:= ~b

The operation : τi : Z→ list bool is defined in Definition 3.1.4 on page 41.

Definition 5.5.4. The unflatten operation ( )Γ
τb

: list bit→ baseval is defined as:

(~b)void
Γ := nothing

(~b)τi
Γ :=


intτi (~β)τi if ~b is a {0, 1} sequence ~β
byte~b if τi = unsigned char, not ~b all in {0, 1}, and not ~b all E
indet τi otherwise

(~b)σp∗
Γ :=

{
ptr p if ~b = (ptr p)0 . . . (ptr p)bitsizeofΓ (σp∗)−1 and typeof p = σp

indet (σp∗) otherwise

The operation ( )τi : list bool→ Z is defined in Definition 3.1.4 on 41.

The encoding of pointers is an important aspect of the flatten operation related to
our treatment of effective types. Pointers are encoded as sequences of frozen pointer
fragment bits (ptr | p |◦)i (see Definition 5.2.4 for the definition of frozen pointers).
Recall that the flatten operation is used to store base values in memory, whereas the
unflatten operation is used to retrieve them. This means that whenever a pointer p
is stored and read back, the frozen variant | p |◦ is obtained.

Lemma 5.5.5. For each Γ,∆ `b vb : τb we have (vb Γ)τb
Γ = | vb |◦.

Freezing formally describes the situations in which type-punning is allowed since
a frozen pointer cannot be used to access a union of another variant than its current
one (Definition 5.4.10). Let us consider an example:

union U { int x; short y; } u = { .x = 3 };
short *p = &u.y; // a frozen version of the pointer &u.y is stored
printf("%d", *p); // type-punning via a frozen pointer -> undefined

Here, an attempt to type-punning is performed via the frozen pointer p, which is
formally represented as:

(ou : union U,
union U
↪−−−→◦ 1, 0)signed short>∗signed short.
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The lookup operation on memory trees (which will be used to obtain the value of
*p from memory, see Definitions 5.4.10 and 5.6.5) will fail. The annotation ◦ prevents
a union from being accessed through an address to another variant than its current
one. In the example below type-punning is allowed:

union U { int x; short y; } u = { .x = 3 };
printf("%d", u.y);

Here, type-punning is allowed because it is performed directly via u.y, which has
not been stored in memory, and thus has not been frozen.

Definition 5.5.6. Abstract values are inductively defined as:

v ∈ val ::= vb | arrayτ ~v | structt ~v | uniont (i, v) | uniont ~v.

The abstract value uniont ~v represents a union whose variant is unspecified. The
values ~v correspond to interpretations of all variants of union t. Consider:

union U { int x; short y; int *p; } u;
for (size_t i = 0; i < sizeof(u); i++) ((unsigned char*)&u)[i] = 0;

Here, the object representation of u is initialized with zeros, and its variant thus
remains unspecified. The abstract value of u is1:

unionU [ intsigned int 0, intsigned short 0, indet (signed int∗) ]

Recall that the variants of a union occupy a single memory area, so the sequence ~v
of a union value uniont ~v cannot be arbitrary. There should be a common bit sequence
representing it. This is not the case in:

unionU [ intsigned int 0, intsigned short 1, indet (signed int∗) ]

The typing judgment for abstract values guarantees that ~v can be represented by
a common bit sequence. In order to express this property, we first define the unflatten
operation that converts a bit sequence into an abstract value.

Definition 5.5.7. The unflatten operation ( )τΓ : list bit→ val is defined as:

(~b)τb
Γ := (~b)τb

Γ (the right hand side is Definition 5.5.3 on base values)

(~b)τ [n]
Γ := arrayτ ((~b[0, s))τΓ . . . (~b[(n−1)s, ns))τΓ) where s := bitsizeofΓ τ

(~b)struct t
Γ := structt ((~b[0, s0))τ0Γ . . . (~b[zn−1, zn−1+sn−1))τn−1

Γ )
where Γ t = ~τ , n := |~τ |, si := bitsizeofΓ τi and zi := bitoffsetofΓ ~τ i

(~b)union t
Γ := uniont ((~b[0, s0))τ0Γ . . . (~b[0, sn−1))τn−1

Γ )
where Γ t = ~τ , n := |~τ | and si := bitsizeofΓ τi

1Note that the C11 standard does not guarantee that the NULL pointer is represented as zeros,
thus u.p is not necessarily NULL.
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Definition 5.5.8. The judgment Γ,∆ ` v : τ describes that the value v has type τ .
It is inductively defined as:

Γ,∆ `b vb : τb
Γ,∆ ` vb : τb

Γ,∆ ` ~v : τ |~v| = n , 0
Γ,∆ ` arrayτ ~v : τ [n]

Γ t = ~τ Γ,∆ ` ~v : ~τ
Γ,∆ ` structt ~v : struct t

Γ t = ~τ i < |~τ | Γ,∆ ` v : τi
Γ,∆ ` uniont (i, v) : union t

Γ t = ~τ Γ,∆ ` ~v : ~τ Γ,∆ ` ~b ∀i . (vi = (~b[0, bitsizeofΓ τi))
τi

Γ )
Γ,∆ ` uniont ~v : union t

The flatten operation ( ) Γ : val→ list bit, which converts an abstract value v into
a bit representation v Γ, is more difficult to define (we need this operation to define the
conversion operation from abstract values into memory trees, see Definition 5.5.11).
Since padding bits are not present in abstract values, we have to insert these. Also,
in order to obtain the bit representation of an unspecified uniont ~v value, we have to
construct the common bit sequence~b representing ~v. The typing judgment guarantees
that such a sequence exists, but since it is not explicit in the value uniont ~v, we have
to reconstruct it from ~v. Consider:
union U { struct S { short y; void *p; } x1; int x2; };

Assuming sizeofΓ (signed int) = sizeofΓ (any∗) = 4 and sizeofΓ (signed short) = 2,
a well-typed union U value of an unspecified variant may be:

v = unionU [ structS [ intsigned short 0, ptr p ], intsigned int 0 ].

The flattened versions of the variants of v are:
structS [ intsigned short 0, ptr p ] Γ = 0 . . . 0 0 . . . 0 E . . . E E . . . E (ptr p)0 . . . (ptr p)31

intsigned int 0 Γ = 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0
v Γ = 0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 0 (ptr p)0 . . . (ptr p)31

This example already illustrates that so as to obtain the common bit sequence v Γ

of v we have to insert padding bits and “join” the padded bit representations.

Definition 5.5.9. The join operation on bits t : bit→ bit→ bit is defined as:

E t b := b b t E := b b t b := b.

Definition 5.5.10. The flatten operation ( ) Γ : val→ list bit is defined as:

vb Γ := vb Γ

arrayτ ~v
Γ := v0 Γ . . . v|~v|−1 Γ

structt ~v Γ := (v0 ΓE∞)[0, z0) . . . (vn−1 ΓE∞)[0, zn−1)

where Γ t = ~τ , n := |~τ |, and zi := bitoffsetofΓ ~τ i

uniont (i, v) Γ := (v ΓE∞)[0, bitsizeofΓ (union t))

uniont ~v
Γ :=

⊔|~v|−1
i=0 (vi ΓE∞)[0, bitsizeofΓ (union t))
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The operation ofvalΓ : list perm → val → mtree, which converts a value v of type
τ into a memory tree ofvalΓ ~γ v, is albeit technical fairly straightforward. In principle
it is just a recursive definition that uses the flatten operation vb Γ for base values vb

and the flatten operation uniont ~v
Γ for unions uniont ~v of an unspecified variant.

The technicality is that abstract values do not contain permissions, so we have
to merge the given value with permissions. The sequence ~γ with |~γ| = bitsizeofΓ τ
represents a flattened sequence of permissions. In the definition of the memory store
m〈a := v〉Γ (see Definition 5.6.5), we convert v into the stored memory tree ofvalΓ ~γ v
where γ constitutes the old permissions of the object at address a.

Definition 5.5.11. The operation ofvalΓ : list perm→ val→ mtree is defined as:

ofvalΓ ~γ (vb) := basetypeof vb

# »

γb where ~b := vb Γ

ofvalΓ ~γ (arrayτ ~v) := arrayτ (ofvalΓ ~γ[0, s) v0 . . . ofvalΓ ~γ[(n−1)s, ns) vn−1)
where s := bitsizeofΓ τ and n := |~v|

ofvalΓ ~γ (structt ~v) := structt

ofvalΓ ~γ[0, s0) v0 ~γ
E
[s0, z1)

. . .
ofvalΓ ~γ[zn−1, zn−1+sn−1) vn−1 ~γ

E
[zn−1+sn−1, zn)


where Γ t = ~τ , n := |~τ |, si := bitsizeofΓ τi
and zi := bitoffsetofΓ ~τ i

ofvalΓ ~γ (uniont (i, v)) := uniont (i, ofvalΓ ~γ[0, s) v,~γ
E
[s, bitsizeofΓ (union t)))

where s := bitsizeofΓ (typeof v)

ofvalΓ ~γ (uniont ~v) := uniont
# »

γb where ~b := uniont ~v
Γ

Converting a memory tree into a value is as expected: permissions are removed
and unions are interpreted as values corresponding to each variant.

Definition 5.5.12. The operation tovalΓ : mtree→ val is defined as:

tovalΓ (baseτb

# »

γb) := (~b)τb
Γ

tovalΓ (arrayτ ~w) := arrayτ (tovalΓ w0 . . . tovalΓ w|~w|−1)

tovalΓ (structt
#   »

w~b) := structt (tovalΓ w0 . . . tovalΓ w|~w|−1)
tovalΓ (uniont (i, w, ~b)) := uniont (i, tovalΓ w)

tovalΓ (uniont
# »

γb) := (~b)union t
Γ

The function tovalΓ is an inverse of ofvalΓ up to freezing of pointers. Freezing is
intended, it makes indirect type-punning illegal.

Lemma 5.5.13. Given Γ,∆ ` v : τ , and let ~γ be a flattened sequence of permissions
with |~γ| = bitsizeofΓ τ , then we have:

tovalΓ (ofvalΓ ~γ v) = | v |◦.
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The other direction does not hold because invalid bit representations will become
indeterminate values.

struct S { int *p; } s;
for (size_t i = 0; i < sizeof(s); i++) ((unsigned char*)&s)[i] = i;
// s has some bit representation that does not constitute a pointer
struct S s2 = s;
// After reading s, and storing it, there are no guarantees about s2,
// whose object representation thus consists of Es

We finish this section by defining the indeterminate abstract value newΓ τ , which
consists of indeterminate base values. The definition is similar to its counterpart on
memory trees (Definition 5.4.9).

Definition 5.5.14. The operation newΓ : type → val that yields the indeterminate
value is defined as:

newΓ τ := (EbitsizeofΓ τ )τΓ.

Lemma 5.5.15. If Γ ` τ , then:

tovalΓ (newγΓ τ) = newΓ τ and ofvalΓ (γbitsizeofΓ τ ) (newΓ τ) = newγΓ τ.

5.6 Memory operations

Now that we have all primitive definitions in place, we can compose these to imple-
ment the actual memory operations as described in the beginning of this section. The
last part that is missing is a data structure to keep track of objects that have been
locked. Intuitively, this data structure should represent a set of addresses, but up to
overlapping addresses.

Definition 5.6.1. Locksets are defined as:

Ω ∈ lockset := Pfin(index × N).

Elements of locksets are pairs (o, i) where o ∈ index describes the object identifier
and i ∈ N a bit-offset in the object described by o. We introduce a typing judgment
to describe that the structure of locksets matches up with the memory layout.

Definition 5.6.2. The judgment Γ,∆ ` Ω describes that the lockset Ω is valid. It is
inductively defined as:

for each (o, i) ∈ Ω there is a τ with ∆ ` o : τ and i < bitsizeofΓ τ

Γ,∆ ` Ω

Definition 5.6.3. The singleton lockset { }Γ : addr→ lockset is defined as:

{a}Γ := {(index a, i) | bitoffsetΓ a ≤ i < bitoffsetΓ a+ bitsizeofΓ (typeof a)}.
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Lemma 5.6.4. If Γ,∆ ` a1 : σ1 and Γ,∆ ` a2 : σ2 and Γ ` {a1, a2} strict, then:

a1 ⊥Γ a2 implies {a1}Γ ∩ {a2}Γ = ∅.

Definition 5.6.5. The memory operations are defined as:

m〈a〉Γ := tovalΓ w if m[a]Γ = w and ∀i .Readable ⊆ kind (w)i
forceΓ a m := m[(index a) := (w[refΓ a/λw

′ . w′]Γ, µ)] if m (index a) = (w, µ)
m〈a := v〉Γ := m[a/λw . ofvalΓ (w1) v]Γ

writableΓ a m := ∃w .m[a]Γ = w and ∀i .Writable ⊆ kind (w)i
lockΓ a m := m[a/λw . apply lock to all permissions of w]Γ

unlock Ω m := {(o, (f̂ w ~y, µ)) | mo = (w, µ)} ∪ {(o, τ) | mo = τ}
where f (γ, b) true := (unlock γ, b)

f (γ, b) false := (γ, b),
and ~y := ((o, 0) ∈ Ω) . . . ((o, |bitsizeofΓ (typeof w)| − 1) ∈ Ω)

allocΓ o v µ m := m[o := (ofvalΓ (♦(0, 1)bitsizeofΓ (typeof v)) v, µ)]

freeable a m := ∃o τ σ nw . a = (o : τ,
τ [n]
↪−−→ 0, 0)τ>∗σ, m o = (w, true)

and all w have the permission ♦(0, 1)
free o m := m[o := typeof w] if mo = (w, µ)

The lookup operationm〈a〉Γ uses the lookup operationm[a]Γ that yields a memory
tree w (Definition 5.4.11), and then converts w into the value tovalΓ w. The operation
m[a]Γ already yields ⊥ in case effective types are violated or a is an end-of-array
address. The additional condition of m〈a〉Γ ensures that the permissions allow for a
read access. Performing a lookup affects the effective types of the object at address a.
This is factored out by the operation forceΓ a m which applies the identity function
to the subobject at address a in the memory m. Importantly, this does not change
the memory contents, but merely changes the variants of the involved unions.

The store operation m〈a := v〉Γ uses the alter operation m[a/λw . ofvalΓ (w1) v]Γ
on memories (Definition 5.4.13) to apply λw . ofvalΓ (w1) v to the subobject at address
a. The stored value v is converted into a memory tree while retaining the permissions
w1 of the previously stored memory tree w at address a.

The definition of lockΓ a m is straightforward. In the Coq development we use
a map operation on memory trees to apply the function lock (Definition 4.3.2 on
page 54) to the permission of each bit of the memory tree at address a.

The operation unlock Ω m unlocks a whole lockset Ω, rather than an individual
address, in memory m. For each memory tree w at object identifier o, it converts Ω to
a Boolean vector ~y = ((o, 0) ∈ Ω) . . . ((o, |bitsizeofΓ (typeof w)| − 1) ∈ Ω) and merges
w with ~y (using Definition 5.4.16) to apply unlock (Definition 4.3.2 on page 54) to the
permissions of bits that should be unlocked in w. We show some lemmas to illustrate
that the operations for locking and unlocking enjoy the intended behavior:

Lemma 5.6.6. If Γ,∆ ` m and Γ,∆ ` a : τ and writableΓ a m, then we have:

locks (lockΓ a m) = locks m ∪ {a}Γ.
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Lemma 5.6.7. If Ω ⊆ locks m, then locks (unlock Ω m) = locks m \ Ω.

Provided o < dom m, allocation allocΓ o v µ m extends the memory with a new
object holding the value v and full permissions ♦(0, 1). Typically we use v = newΓ τ
for some τ , but global and static variables are allocated with a specific value v.

The operation free o m deallocates the object o in m, and keeps track of the type
of the deallocated object. In order to deallocate dynamically obtained memory via
free, the side-condition freeable a m describes that the permissions are sufficient for
deallocation, and that a points to the first element of a malloced array.

All operations preserve typing and satisfy the expected laws about their interac-
tion. We list some for illustration.

Fact 5.6.8. If writableΓ a m, then there exists a value v with a〈m〉Γ = v.

Lemma 5.6.9 (Stores commute). If Γ,∆ ` m and a1 ⊥Γ a2 with:
• Γ,∆ ` a1 : τ1, writableΓ a1 m, and Γ,∆ ` v1 : τ1, and
• Γ,∆ ` a2 : τ2, writableΓ a2 m, and Γ,∆ ` v2 : τ2,

then we have:

m〈a2 := v2〉Γ〈a1 := v1〉Γ = m〈a1 := v1〉Γ〈a2 := v2〉Γ.

Lemma 5.6.10 (Looking up after storing). If Γ,∆ ` m and Γ,∆ ` a : τ and
Γ,∆ ` v : τ and writableΓ a m and a is not a byte address, then we have:

(m〈a := v〉Γ)〈a〉Γ = | v |◦.

Storing a value v in memory and then retrieving it, does not necessarily yield the
same value v. It intentionally yields the value | v |◦ whose pointers have been frozen.
Note that the above result does not hold for byte addresses, which may store a value
in a padding byte, in which case the resulting value is indeterminate.

Lemma 5.6.11 (Stores and lookups commute). If Γ,∆ ` m and a1 ⊥Γ a2 and
Γ,∆ ` a2 : τ2 and writableΓ a2 m and Γ,∆ ` v2 : τ2, then we have:

m〈a1〉Γ = v1 implies (m〈a2 := v2〉Γ)〈a1〉Γ = v1.

These results follow from Lemma 5.4.14, 5.4.15 and 5.5.13.

5.7 Type-based alias analysis

The purpose of C11’s notion of effective types [ISO12, 6.5p6-7] is to make it possible
for compilers to perform typed-based alias analysis. Consider:

short g(int *p, short *q) {
short x = *q; *p = 10; return x;

}
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Here, a compiler should be able to assume that p and q are not aliased because
they point to objects with different types (although the integer types signed short and
signed int may have the same representation, they have different integer ranks, see
Definition 3.1.2 on page 40, and are thus different types). If g is called with aliased
pointers, execution of the function body should have undefined behavior in order to
allow a compiler to soundly assume that p and q are not aliased.

From the C11 standard’s description of effective types it is not immediate that
calling g with aliased pointers results in undefined behavior. We prove an abstract
property of our memory model that shows that this is indeed a consequence, and that
indicates a compiler can perform type-based alias analysis. This also shows that our
interpretation of effective types of the C11 standard, in line with the interpretation
from the GCC documentation [GCC], is sensible.

Definition 5.7.1. A type τ is a subobject type of σ, notation τ ⊆Γ σ, if there exists
some reference ~r with Γ ` ~r : σ� τ .

For example, int[2] is a subobject type of struct S { int x[2]; int y[3]; }
and int[2][2], but not of struct S { short x[2]; }, nor of int(*)[2].

Theorem 5.7.2 (Strict-aliasing). Given Γ,∆ ` m, frozen addresses a1 and a2 with
∆,m ` a1 : σ1 and ∆,m ` a2 : σ2 and σ1, σ2 , unsigned char, then either:

1. We have σ1 ⊆Γ σ2 or σ2 ⊆Γ σ1.
2. We have a1 ⊥Γ a2.
3. Accessing a1 after accessing a2 and vice versa fails. That means:

a) (forceΓ a2 m)〈a1〉Γ = ⊥ and (forceΓ a1 m)〈a2〉Γ = ⊥, and
b) m〈a2 := v1〉Γ〈a1〉Γ = ⊥ and m〈a1 := v2〉Γ〈a2〉Γ = ⊥ for all stored values

v1 and v2.

This theorem implies that accesses to addresses of disjoint type are either non-
overlapping or have undefined behavior. Fact 5.6.8 accounts for a store after a lookup.
Using this theorem, a compiler can optimize the generated code in the example based
on the assumption that p and q are not aliased. Reconsider:

short g(int *p, short *q) { short x = *q; *p = 10; return x; }

If p and q are aliased, then calling g yields undefined behavior because the assign-
ment *p = 10 violates effective types. Let m be the initial memory while executing
g, and let ap and aq be the addresses corresponding to p and q, then the condition
writableΓ ap (forceΓ aq m) does not hold by Theorem 5.7.2 and Fact 5.6.8.

5.8 Memory refinements

This section defines the notion of memory refinements that allows us to relate memory
states, and in Section 6.7 we prove that the operational semantics is invariant under
this notion. Memory refinements form a general way to validate many common-sense
properties of the memory model in a formal way. For example, they show that the
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memory is invariant under relabeling. More interestingly, they show that symbolic
information (such as variants of unions) cannot be observed.

Memory refinements also open the door to reason about program transformations.
We demonstrate their usage by proving soundness of constant propagation and by
verifying an abstract version of memcpy.

Memory refinements are a variant of Leroy and Blazy’s notion of memory exten-
sions and injections [LB08]. A memory refinement is a relation m1 vfΓ m2 between a
source memory state m1 and target memory state m2, where:

1. The function f : index → option (index× ref) is used to rename object identifiers
and to coalesce multiple objects into subobjects of a compound object.

2. Deallocated objects in m1 may be replaced by arbitrary objects in m2.
3. Indeterminate bits E in m1 may be replaced by arbitrary bits in m2.
4. Pointer fragment bits (ptr p)i that belong to deallocated pointers in m1 may be

replaced by arbitrary bits in m2.
5. Effective types may be weakened. That means, unions with a specific variant

in m1 may be replaced by unions with an unspecified variant in m2, and point-
ers with frozen union annotations ◦ in m1 may be replaced by pointers with
unfrozen union annotations • in m2.

The key property of a memory refinement m1 vfΓ m2, as well as of Leroy and
Blazy’s memory extensions and injections, is that memory operations are more defined
on the target memory m2 than on the source memory m1. For example, if a lookup
succeeds on m1, it also succeed on m2 and yield a related value.

The main judgment m1 vf :∆1 7→∆2
Γ m2 of memory refinements will be built using

a series of refinement relations on the structures out of which the memory consists
(addresses, pointers, bits, memory trees, values). All of these judgments should satisfy
some basic properties, which are captured by the judgment ∆1 vf∆ ∆2.

Definition 5.8.1. A renaming function f : index → option (index × ref) is a refine-
ment, notation ∆1 vf∆ ∆2, if the following conditions hold:

1. If f o1 = (o, ~r1) and f o2 = (o, ~r2), then o1 = o2 or ~r1 ⊥ ~r2 ( injectivity).
2. If f o1 = (o2, ~r), then frozen ~r.
3. If f o1 = (o2, ~r) and ∆1 ` o1 : σ, then ∆2 ` o2 : τ and Γ ` ~r : τ � σ for a τ .
4. If f o1 = (o2, ~r) and ∆2 ` o2 : τ , then ∆1 ` o1 : σ and Γ ` ~r : τ � σ for a σ.
5. If f o1 = (o2, ~r) and ∆1 ` o1 alive, then ∆2 ` o2 alive.

The renaming function f : index → option (index× ref) is the core of all refinement
judgments. It is used to rename object identifiers and to coalesce multiple source
objects into subobjects of a single compound target object.
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Consider a renaming f with f o1 = (o1,
struct t
↪−−−→ 0) and f o2 = (o1,

struct t
↪−−−→ 1), and

an environment Γ with Γ t = [ τ1, τ2 ]. This gives rise to following refinement:

τ1

o1

τ2

o2

vfΓ struct t

τ1 τ2

o1

τ3

o3

Injectivity of renaming functions guarantees that distinct source objects are coa-
lesced into disjoint target subobjects. In the case of Blazy and Leroy, the renaming
functions have type index → option (index × N), but we replaced the natural number
by a reference since our memory model is structured using trees.

Since memory refinements rearrange the memory layout, addresses should be rear-
ranged accordingly. The judgment a1 vf :∆1 7→∆2

Γ a2 : τp describes how a2 is obtained
by renaming a1 according to the renaming f , and moreover allows frozen union anno-
tations ◦ in a1 to be changed into unfrozen ones • in a2. The index τp in the judgment
a1 vf :∆1 7→∆2

Γ a2 : τp corresponds to the type of a1 and a2.
The judgment for addresses is lifted to the judgment for pointers in the obvious

way. The judgment for bits is inductively defined as:

β ∈ {0, 1}

β vf :∆1 7→∆2
Γ β

p1 vf :∆1 7→∆2
Γ p2 : σp frozen p2 i < bitsizeofΓ (σp∗)

(ptr p1)i vf :∆1 7→∆2
Γ (ptr p2)i

Γ,∆2 ` b
E vf :∆1 7→∆2

Γ b

Γ,∆1 ` a : σ ∆1 0 a alive Γ,∆2 ` b

(ptr a)i vf :∆1 7→∆2
Γ b

The last two rules allow indeterminate bits E, as well as pointer fragment bits
(ptr a)i belonging to deallocated storage, to be replaced by arbitrary bits b.

The judgment is lifted to memory trees following the tree structure and using the
following additional rule:

Γ t = ~τ Γ,∆ ` w1 : τi w1 ~b1 vf :∆1 7→∆2
Γ

~b2 ~b1 all E
bitsizeofΓ (union t) = bitsizeofΓ τi + |~b1| ¬unmapped (w1 ~b1)

uniont (i, w1, ~b1) vf :∆1 7→∆2
Γ uniont ~b2 : union t

This rule allows a union that has a specific variant in the source to be replaced by a
union with an unspecified variant in the target. The direction seems counter intuitive,
but keep in mind that unions with an unspecified variant allow more behaviors.

Lemma 5.8.2. If w1 vf :∆1 7→∆2
Γ w2 : τ , then Γ,∆1 ` w1 : τ and Γ,∆2 ` w2 : τ .

This lemma is useful because it removes the need for simultaneous inductions on
both typing and refinement judgments.
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We define m1 vfΓ m2 as m1 vf :m1 7→m2
Γ m2, where the judgment m1 vf :∆1 7→∆2

Γ m2
is defined such that if f o1 = (o2, ~r), then:

w1

o1

implies ∃w2 τ with

w2

~r

o2

and w1 vf :∆1 7→∆2
Γ w2 : τ .

The above definition makes sure that objects are renamed, and possibly coalesced
into subobjects of a compound object, as described by the renaming function f .

In order to reason about program transformations modularly, we show that mem-
ory refinements can be composed.

Lemma 5.8.3. Memory refinements are reflexive for valid memories, that means, if
Γ,∆ ` m, then m vid:∆7→∆

Γ m where id o := (o, ε).

Lemma 5.8.4. Memory refinements compose, that means, if m1 vf :∆1 7→∆2
Γ m2 and

m2 vf
′:∆2 7→∆3

Γ m3, then m1 vf
′◦f :∆1 7→∆3

Γ m3 where:

(f ′ ◦ f) o1 :=
{

(o3, ~r2 ~r3) if f o1 = (o2, ~r2) and f ′ o2 = (o3, ~r3)
⊥ otherwise

All memory operations are preserved by memory refinements. This property is
not only useful for reasoning about program transformations, but also indicates that
the memory interface does not expose internal details (such as variants of unions)
that are unavailable in the memory of a (concrete) machine.

Lemma 5.8.5. If m1 vf :∆1 7→∆2
Γ m2 and a1 vf :∆1 7→∆2

Γ a2 : τ and m1〈a1〉Γ = v1, then
there exists a value v2 with m2〈a2〉Γ = v2 and v1 vf :∆1 7→∆2

Γ v2 : τ .

Lemma 5.8.6. If m1 vf :∆1 7→∆2
Γ m2 and a1 vf :∆1 7→∆2

Γ a2 : τ and v1 vf :∆1 7→∆2
Γ v2 : τ

and writableΓm1 a1, then:
1. We have writableΓm2 a2.
2. We have m1〈a1 := v1〉Γ vf :∆1 7→∆2

Γ m2〈a2 := v2〉Γ.

As shown in Lemma 5.6.10, storing a value v in memory and then retrieving it,
does not necessarily yield the same value v. In case of a byte address, the value may
have been stored in padding and therefore have become indeterminate. Secondly,
it intentionally yields the value | v |◦ in which all pointers are frozen. However, the
widely used compiler optimization of constant propagation, which substitutes values
of known constants at compile time, is still valid in our memory model.

Lemma 5.8.7. If Γ,∆ ` v : τ , then | v |◦ v∆
Γ v : τ .
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Theorem 5.8.8 (Constant propagation). If Γ,∆ ` m and Γ,∆ ` a : τ and Γ,∆ `
v : τ and writableΓ a m, then there exists a value v′ with:

m〈a := v〉Γ〈a〉Γ = v′ and v′ v∆
Γ v : τ.

Copying an object w by an assignment results in it being converted to a value
tovalΓ w and back. This conversion makes invalid representations of base values in-
determinate. Copying an object w byte-wise results in it being converted to bits w
and back. This conversion makes all variants of unions unspecified. The following
theorem shows that a copy by assignment can be transformed into a byte-wise copy.

Theorem 5.8.9 (Memcpy). If Γ,∆ ` w : τ , then:

ofvalΓ (w1) (tovalΓ w) v∆
Γ w v∆

Γ (w)τΓ : τ.

Unused reads cannot be removed unconditionally in the CH2O memory model
because these have side-effects in the form of uses of the forceΓ operation that updates
effective types. We show that uses of forceΓ can be removed for frozen addresses.

Theorem 5.8.10. If Γ,∆ ` m and m〈a〉Γ , ⊥ and frozen a, then forceΓ a m v∆
Γ m.
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Chapter 6
CH2O core C

This chapter describes the language CH2O core C. The syntax of this language re-
sembles actual C but incorporates many simplifications to make its semantics more
principled. For example, CH2O core C has just one looping construct that generalizes
the various looping constructs of C (while, for and do-while loops), uses De Bruijn
indices for local variables and makes l-value conversion explicit. Chapter 7 shows how
C abstract syntax is translated into CH2O core C.

This chapter defines three versions of the semantics of CH2O core C. A small-step
operational semantics, an executable semantics and an evaluator for pure expressions.
We summarize the key points of these semantics below.

CH2O core C is typed, which means that each syntactical category of the lan-
guage has a typing judgment. We establish desirable properties such as type preser-
vation (reduction in the operational semantics preserves typing, see Theorem 6.6.13),
progress (every non-final non-error state can reduce, see Theorem 6.6.14) and invari-
ance under memory refinements (Theorem 6.7.1).

Operational semantics. Computation in the small-step operational semantics is
defined as the reflexive transitive closure of a reduction relation Γ, δ ` S1 _ S2. The
environment δ ∈ funenv contains the bodies of all declared functions.

States S ∈ state consist of two components: the memory and the current loca-
tion in the program that is being executed. The current location in the program
is described using an adaptation of Huet’s zipper data structure [Hue97] over state-
ment abstract syntax trees. We use the zipper data structure to accurately describe
non-local control (goto, break, continue, return and unstructured switch) in the
presence of block scope local variables. The current location in the program is a pair
(P, φ) where P ∈ ctx is the context of the part φ ∈ focus that is being executed. We
consider the following forms of program execution:

• Execution of a statement. Execution of a statement occurs by small-step
traversal through the zipper in a direction corresponding to the current form of
(non-local) control. The context P of our zipper implicitly contains the program
stack ρ ∈ stack that assigns locations in memory to local variables.
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• Execution of an expression. Execution of an expression is described by a
head reduction Γ, ρ ` (e1,m1) _h (e2,m2). Evaluation contexts [FFKD87] are
used to select a head redex in a whole expression.

• Calling a function and returning from a function. When calling a func-
tion, the zipper is extended with the function body of the callee, which is in
turn executed. Returning from a function resumes execution of the caller, whose
location is stored as part of the context P of our zipper.

• Undefined behavior. We use a special undef state to describe that a run-time
error (undefined behavior in C terminology) has occurred.

Executable semantics. The executable semantics S2 ∈ execΓ,δ S1 is an algorith-
mic version of the operational semantics. That means, the function execΓ,δ : state→
Pfin(state) computes the finite set of subsequent states.

The executable semantics is proven sound (Theorem 6.8.2) and complete (Theo-
rem 6.8.7) with respect to the operational semantics.

Pure expression evaluation. Pure expressions do not contain assignments and
function calls and therefore enjoy three useful properties: they do not modify the
memory state, they yield unique results, and their executions always terminate. These
properties allow us to define an evaluator [[ ]]Γ,ρ,m : expr → option lrval that yields
the resulting address or abstract value of an expression.

The evaluator for pure expressions is proven sound (Theorem 6.9.5) and complete
(Theorem 6.9.7) with respect to the operational semantics.

6.1 Expressions

This section defines the syntax of expressions of CH2O core C. Although the semantics
will only be given in Sections 6.3 and 6.4, we already explain the informal meaning
of the different expression constructs and define their typing rules.

The C language distinguishes expressions that are l-values and r-values [ISO12,
6.3.2.1]. This distinction originates from the assignment e1 = e2 where the left hand
side e1 does not designate a value, but a pointer that refers to a value in memory.
In CH2O core C we let l-values reduce to pointers and r-values to abstract values.
L-values reduce to pointers rather than addresses because they can be NULL [ISO12,
6.5.3.2p3]. L-values of function type account for function designators [ISO12, 6.3.2.1].

Definition 6.1.1. Left-right values are defined as:

ν ∈ lrval := ptr + val.

The C language supports simple assignments e1 = e2 [ISO12, 6.5.16.1], com-
pound assignments [ISO12, 6.5.16.1] such as e1 += e2, and increment and decrement
operators [ISO12, 6.5.3.1, 6.5.2.4] such as e++ and --e. CH2O core C generalizes these
forms of assignments.
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Definition 6.1.2. Assignment kinds are inductively defined as:

α ∈ assign ::= := | } := | :=}.

The syntax of binary operators } is given in Definition 3.2.1 on page 41.

Definition 6.1.3. The judgment τ1 α τ2 : σ describes the resulting type σ of an
assignment α with operands of types τ1 and τ2. It is inductively defined as:

(τ1)τ2 : τ1
τ1 := τ2 : τ1

τ1 } τ2 : σ (τ1)σ : τ1
τ1 } := τ2 : τ1

τ1 } τ2 : σ (τ1)σ : τ1
τ1 :=} τ2 : τ1

The judgments }u τ : σ, τ1 } τ2 : σ, and (σ)τ : σ describe typing of unary, binary
and cast operators. They are defined following the structure of types.

We now give an informal description of the semantics of assignments:
• The assignment e1 := e2 performs a simple assignment. It assigns the value of
e2 to the pointer designated by e1. It yields the value of e2.

• The assignment e1 } := e2 performs a compound assignment. It assigns the
value of e1 } e2 to the pointer designated by e1. It yields the value of e1 } e2.

• The assignment e1 :=} e2 generalizes the postfix increment and postfix decre-
ment operators. It assigns the value of e1 } e2 to the pointer designated by e1.
It yields the original value of e1.

The above description is subject to the implicit type conversions shown in Defini-
tion 6.1.3. The formal semantics of assignments is given in Definition 6.3.7.

Definition 6.1.4. CH2O core C expressions are inductively defined as:

e ∈ expr ::= xi | [ν]Ω (variables and constants)
| ∗e | &e (l-value and r-value conversion)
| e .l r | e .r r (indexing of arrays, structs and unions)
| e1[~r := e2] (altering arrays, structs and unions)
| e1 α e2 | load e (assignments and loading from memory)
| e(~e) | abort τ (function calls and undefined behavior)
| allocτ e | free e (allocation and deallocation)
| }u e | e1 } e2 | (τ)e (unary, binary and cast operators)
| (e1, e2) | e1 ? e2 : e3 (comma and sequenced conditional)

The syntax of unary operators }u and binary operators } is given in Definition 3.2.1
on page 41.

Notation 6.1.5. We often abbreviate [ν]∅ as ν.

Notation 6.1.6. We let [~ν]~Ω denote [ν0]Ω0 , . . . , [νn−1]Ωn−1 where n = |~Ω| = |~ν|.

We define typing judgments Γ,∆, ~τ `l e : τp for l-values and Γ,∆, ~τ r̀ e : τ for
r-values. The list ~τ ∈ list type gives the types of local variables, which are represented
as De Bruijn indices [Bru72]. This means that a local variable xi refers to the i-th
enclosing local variable declaration (Definition 6.2.2), whose type is τi.
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Definition 6.1.7. The judgment Γ,∆, ~τ `l e : τp describes that e is an l-expression
of type τ , and Γ,∆, ~τ r̀ e : τ describes that e is an r-expression of type τ . These
judgments are mutually inductively defined as:

Γ,∆, ~τ `l xi : τi
Γ,∆ ` Ω Γ,∆ ` v : τ

Γ,∆, ~τ r̀ [v]Ω : τ
Γ,∆ ` Ω Γ,∆ ` a : τp

Γ,∆, ~τ `l [a]Ω : τp

Γ,∆, ~τ r̀ e : τp∗
Γ,∆, ~τ `l ∗e : τp

Γ,∆, ~τ `l e : τp

Γ,∆, ~τ r̀ &e : τp∗

Γ,∆, ~τ `l e : τ Γ ` r : τ � σ

Γ,∆, ~τ `l e .l r : σ
Γ,∆, ~τ r̀ e : τ Γ ` r : τ � σ

Γ,∆, ~τ r̀ e .r r : σ
Γ ` ~r : τ � σ Γ,∆, ~τ r̀ e1 : τ Γ,∆, ~τ r̀ e2 : σ

Γ,∆, ~τ r̀ e1[~r := e2] : τ

τ1 α τ2 : σ Γ,∆, ~τ `l e1 : τ1 Γ,∆, ~τ r̀ e2 : τ2
Γ,∆, ~τ r̀ e1 α e2 : σ

Γ,∆, ~τ `l e : τ completeΓ τ

Γ,∆, ~τ r̀ load e : τ
Γ,∆, ~τ r̀ e : ~σ → τ Γ,∆, ~τ r̀ ~e : ~σ completeΓ τ

Γ,∆, ~τ r̀ e(~e) : τ
Γ ` τ

Γ,∆, ~τ r̀ abort τ : τ

Γ ` τ Γ,∆, ~τ r̀ e : σi

Γ,∆, ~τ `l allocτ e : τ
Γ,∆, ~τ `l e : τp

Γ,∆, ~τ r̀ free e : void
}u τ : σ Γ,∆, ~τ r̀ e : τ

Γ,∆, ~τ r̀ }u e : σ
τ1 } τ2 : σ Γ,∆, ~τ r̀ e1 : τ1 Γ,∆, ~τ r̀ e2 : τ2

Γ,∆, ~τ r̀ e1 } e2 : σ
(σ)τ : σ Γ ` σ Γ,∆, ~τ r̀ e : τ

Γ,∆, ~τ r̀ (σ)e : σ
Γ,∆, ~τ r̀ e1 : τ1 Γ,∆, ~τ r̀ e2 : τ2

Γ,∆, ~τ r̀ (e1, e2) : τ2
Γ,∆, ~τ r̀ e1 : τb τb , void Γ,∆, ~τ r̀ e2 : σ Γ,∆, ~τ r̀ e3 : σ

Γ,∆, ~τ r̀ e1 ? e2 : e3 : σ
Notation 6.1.8. We sometimes combine typing of l-expressions and r-expressions
using the shorthand Γ,∆, ~τ ` e : τlr where τlr ∈ ptrtype + type.

In actual C, l-values that do not have array type are implicitly converted to r-values
by l-value conversion [ISO12, 6.3.2.1p2], and l-values of array type are implicitly con-
verted to r-values of pointer type that refer to the first element of the array [ISO12,
6.3.2.1p3]. In CH2O core C we make these conversions explicit using the expressions
&e, ∗e and load e that are meant to map between l-values and r-values. The expres-
sions &e is the coercion from l-values into r-values, and ∗e is its partial inverse. The
expression load e is used to obtain the stored value designated by an l-value e.

Due to explicit l-value conversion, we have operators to select fields of structs and
unions as l-values e .l r and as r-values e .r r. The semantics of these operators is
entirely different. The operator e .l r operates on pointers whereas e .r r operates on
values. Let us illustrate the difference:
struct S { int x; int y; } s;
struct S f() { struct S r = { 2, 3 }; return r; }
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The expression s.x performs field indexing on an l-value because s is an l-value,
whereas f().x performs field indexing on an r-values because f() is an r-value.

The operator e .l r is also used to convert l-values of array type into r-values of
pointer type that refer to the first element of the array. Consider:

int a[4], *p = a;

The right hand side of the assignment *p = a corresponds to the following CH2O
core C expression:

&
(
xa .l (

signed int[4]
↪−−−−−−→ 0)

)
.

The leaves of expressions [ν]Ω are annotated with a finite set Ω ∈ lockset of locked
addresses. The set Ω is used to describe the sequence point restriction. Whenever
an assignment is performed, the affected object is locked in memory and its address
is added to Ω. Locking an address enforces the sequence point restriction because
permissions enforce that consecutive accesses to that address will fail. At the subse-
quent sequence point, the objects of the addresses in Ω are unlocked in order to allow
future accesses to the assigned objects. Section 6.4 formally treats the sequence point
restriction as part of the operational semantics.

This set is only used for bookkeeping during program execution. It is initially
empty as ensured by the typing judgment for statements (see Definition 6.2.4).

Definition 6.1.9. The function locks : expr → lockset collects the set of lock anno-
tations of an expression.

Definition 6.1.10. Stacks are defined as:

ρ ∈ stack := list (index × type).

Definition 6.1.11. The judgment ∆ ` ρ describes that ρ is a valid stack in ∆. The
judgment holds iff ∆ ` o : τ for each (o, τ) ∈ ρ. Validity of memory indices ∆ ` o : τ
has been defined in Definition 5.2.2 on page 64.

Accessing the value of a local variable has an additional level of indirection. A
local variable xi represented as a De Bruijn index refers to the i-th item on the stack ρ,
which contains a reference to the value in memory instead of the value of the variable
itself. This way, pointers to both local and allocated storage are treated uniformly.
Evaluation of xi consists of looking up its object identifier o in the stack ρ, and yields
an address to the memory tree at position o in memory. The value of a variable can
be obtained through a load.

The first operand e of a function call e(~e) is an expression instead of a function
name. This expression should yield a function pointer to the callee.

The expression abort τ results in undefined behavior when evaluated. The trans-
lation from CH2O abstract C inserts abort τ expressions in branches of the program
that have undefined behavior when reached.

The expressions allocτ e and free e are used for allocation and deallocation of dy-
namically allocated memory. These correspond to the C11 standard library functions
malloc [ISO12, 7.22.3.4] and free [ISO12, 7.22.3.3], but we treat them as primitives.
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Note that because of effective types malloc and free cannot be implemented in terms
of standards compliant C code. We currently only supports invocations of malloc of
the following shape:

malloc(e * sizeof(τ))

Our allocτ e expression corresponds to invocations of malloc as these. Its type is
τ∗ and it is thus similar to the type-safe new operator of C++. An untyped version
of malloc that allocates a chunk of untyped memory is left for future work.

The expression e1[~r := e2] is used to encode initializers [ISO12, 6.7.9] and com-
pound literals [ISO12, 6.5.2.5]. Compound literals are expressions that denote struct,
union and array values. For example:

struct S { int x, y[2], z; };
(struct S){ .y[1] = f(), g(), .x = 10 };

Compound literals are already complicated from a syntactical point of view: sub-
objects can be initialized hereditarily (the initializer .y[1]=f() specifies the second
element of y), initializers may occur in any order, and field names (also called des-
ignators) may be omitted. If the designator is omitted, the next object in the tree
structure is initialized (in the example, g() initializes the field z). From a semantical
point of view, side-effects may be executed in any order [ISO12, 6.7.9p23].

During the translation from CH2O abstract C into CH2O core C, we translate
each compound literal into a sequence of [ := ] constructs. The CH2O core C
expression corresponding to the above compound literal is:

0struct S
Γ [( struct S

↪−−−→ 1
signed int[1]
↪−−−−−−→ 0) := (ptr fvoid7→signed int)(ε)]

[( struct S
↪−−−→ 2) := (ptr gvoid7→signed int)(ε)]

[( struct S
↪−−−→ 0) := intsigned int 10]

The value 0struct S
Γ is a struct initialized with zeros (see Definition 6.3.12). Fields

that are not explicitly initialized are implicitly initialized with the zero value [ISO12,
6.7.9p10]. Our non-deterministic semantics for expressions allows the function calls
to f and g to be executed in any order.

6.2 Statements

This section defines the syntax and typing rules of the statements of CH2O core C.
We have omitted the (unstructured) switch statement for brevity’s sake but it is part
of the Coq formalization.

Definition 6.2.1. Label names l ∈ labelname are represented as strings.
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Definition 6.2.2. CH2O core C statements are inductively defined as:

s ∈ stmt ::= e | return e (expression and return statements)
| goto l | l : (goto and label)
| throw n | catch s (throw and catch)
| skip | s1 ; s2 (the skip statement and composition)
| localτ s (block scope local variable declaration)
| loop s (infinite loop)
| if (e) s1 else s2 (conditional statement)

The typing judgment for statements is of the shape Γ,∆, ~τ ` s : (β, τ ?). The type
of the return statements is given by τ ? ∈ option type, which is ⊥ if s does not contain
any returns. The Boolean β denotes whether s is statically known to always return.

Definition 6.2.3. The judgment τ ?
1 ; τ ?

2 � τ ? denotes that τ ? is the combined return
type of τ ?

1 and τ ?
2 . It is inductively defined as:

τ ? ; τ ? � τ ? ⊥; τ � τ τ ;⊥ � τ

Definition 6.2.4. The judgment Γ,∆, ~τ ` s : (β, τ ?) describes that the statement s
has return type τ ? and is known to always return if β = true. It is inductively defined
as:

Γ,∆, ~τ r̀ e : τ locks e = ∅
Γ,∆, ~τ ` e : (false, ⊥)

Γ,∆, ~τ r̀ e : τ locks e = ∅
Γ,∆, ~τ ` return e : (true, τ)

Γ,∆, ~τ ` goto l : (true, ⊥) Γ,∆, ~τ ` (l :) : (false, ⊥)

Γ,∆, ~τ ` throw n : (true, ⊥)
Γ,∆, ~τ ` s : (β, σ?)

Γ,∆, ~τ ` catch s : (false, σ?)

Γ,∆, ~τ ` skip : (false, ⊥)
Γ,∆, ~τ ` s1 : (β1,τ ?

1 ) Γ,∆, ~τ ` s2 : (β2,τ ?
2 ) τ ?

1 ; τ ?
2 � σ?

Γ,∆, ~τ ` s1 ; s2 : (β2, σ?)
Γ ` τ Γ,∆, τ ~τ ` s : (β, σ?)

Γ,∆, ~τ ` localτ s : (β, σ?)
Γ,∆, ~τ ` s : (β, σ?)

Γ,∆, ~τ ` loop s : (true, σ?)

Γ,∆, ~τ r̀ e : τb τb , void locks e = ∅
Γ,∆, ~τ ` s1 : (β1, τ ?

1 ) Γ,∆, ~τ ` s2 : (β2, τ ?
2 ) τ ?

1 ; τ ?
2 � σ?

Γ,∆, ~τ ` if (e) s1 else s2 : (β1 ∧ β2, σ?)

The statement localτ s opens a block scope with one local variable of type τ . Since
we use De Bruijn indices, the statement localτ s is nameless.

The C language supports while, for and do-while looping statements [ISO12,
6.8.5]. We make the semantics of CH2O core C more principled by factoring out
similarities in these looping statements.
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We adapt the treatment of loops by Leroy [Ler06] and use a construct loop s for
an infinite loop, which combined with the throw n statement that jumps to the nth
surrounding catch construct, can encode all C loops:

while(e) s⇒ catch (loop (if (e) skip else throw 0 ; catch s))
for(e1 ; e2 ; e3) s⇒ e1 ; catch (loop (if (e2) skip else throw 0 ; catch s ; e3))

do s while(e)⇒ catch (loop (catch s ; if (e) skip else throw 0))

In this setting, break statements are encoded as throw 1 statements and continue
statements are encoded as throw 0 statements.

One could encode throw and catch using gotos. We have tried this approach, but
it turned out to be inconvenient due to freshness conditions on labels.

Definition 6.2.5. CH2O core C programs are defined as:

δ ∈ funenv := funname→fin stmt.

The judgment Γ,∆ ` δ for programs ensures that each function body in δ is well-
typed with respect to its corresponding prototype in Γ and ensures that all gotos
and throws have a corresponding labeled statement or catch. We will first introduce
some auxiliary definitions to express these properties formally.

Definition 6.2.6. The function labels : stmt → Pfin(labelname) collects the set of
labels of labeled substatements. The function gotos : stmt → Pfin(labelname) collects
the set of labels of gotos.

Definition 6.2.7. The judgment s ↑ n describes that all throws in s will be caught
if s is surrounded by n level of catches. It is inductively defined as:

e ↑ n return e ↑ n goto l ↑ n (l :) ↑ n
i < n

throw i ↑ n
s ↑ n+ 1

catch s ↑ n

skip ↑ n
s1 ↑ n s2 ↑ n

s1 ; s2 ↑ n
s ↑ n

localτ s ↑ n
s ↑ n

loop s ↑ n
s1 ↑ n s2 ↑ n

if (e) s1 else s2 ↑ n

Definition 6.2.8. The judgment (β, τ ?) � σ denotes that σ is a valid return type of
(β, τ ?). It is inductively defined as:

(true, σ) � σ (false, void) � void (true, ⊥) � σ (false, ⊥) � void

Definition 6.2.9. The judgment Γ,∆ ` δ describes that a program δ is valid. For
each function name f and statement s with δ f = s there should be argument types ~τ
and a return type σ with Γ f = (~τ , σ) and:

1. The function body is well-typed: Γ,∆, ~τ ` s : (β, τ ?).
2. The return type matches the prototype: (β, τ ?) � σ.
3. The argument types are complete: completeΓ ~τ (see Definition 3.3.7 on page 47).
4. All gotos have a corresponding labeled statement: gotos s ⊆ labels s.
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5. All throws have a corresponding catch: s ↑ 0.
Furthermore, all prototypes should have a declaration: domfunname Γ ⊆ dom δ.

The judgment for programs requires each branch of a non-void function to have a
return statement. This is not the case in:

int f() { while(1) { /* do something */ } }

A return (abort signed int) statement will be inserted by the translation from CH2O
abstract C into CH2O core C. This approach captures all undefined behaviors due to
control reaching the end of a non-void function [ISO12, 6.9.1p12].

6.3 Semantics of operators

This section describes the semantics of the expression constructs for binary operators
e1 } e2, unary operators }u e, casts (τ)e, assignments e1 α e2, indexing of compound
types r .l e and r .r e, and altering of compound types e1[~r := e2].

6.3.1 Pointer comparisons
As shown in Section 2.5.8, end-of-array pointers give rise to subtle corner cases:

int x, y;
if (&x + 1 == &y) printf("x and y are allocated adjacently\n");

According to the C11 [ISO12, 6.5.9p6] standard, the printf is executed depending
on the way &x and &y are allocated in the address space. However, in GCC this is not
always the case, see the example in Section 2.5.8. Due to discrepancies between the
C11 standard [ISO12, 6.5.9p6] and Defect Report #260 [ISO] it is unclear if this is
a bug in GCC. We thus assign undefined behavior to these questionable comparisons
involving end-of-array pointers.

Definition 6.3.1. The judgment Γ,m ` (a1 }c a2) defined describes if comparison of
addresses a1 and a2 is defined. It is inductively defined as:

m ` {a1, a2} alive index a1 , index a2 → (}c = (==) and Γ ` {a1, a2} strict)
Γ,m ` (a1 }c a2) defined

Comparison operators }c ∈ compop are defined in Definition 3.2.1 on page 41. The
result of the comparison (a1 }c a2) is defined as follows:

(a1 }c a2) := index a1 = index a2 ∧ bitoffsetΓ a1 }c bitoffsetΓ a2.

The bit-offset bitoffsetΓ a of an address a is defined in Definition 5.2.15 on page 70.

The judgment Γ,m ` (a1 }c a2) defined distinguishes two cases:
• Both addresses point into the same object (index a1 = index a2). In this case it

does not matter if one of the addresses is end-of-array.
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• The addresses point into different objects (index a1 , index a2). In this case both
should be strict (that is, not end-of-array, see Definition 5.2.8 on page 68) and
one may only test for equality ==. Inequality comparisons < or <= of addresses
that point into different objects have undefined behavior [ISO12, 6.5.8p5].

Comparison ignores the tree structure of the surrounding object entirely since it
is defined in terms of bit-offsets bitoffsetΓ. Let us consider some examples:
struct S { int a[3]; int b[3]; } s1, s2;
s1.a == s2.b; // OK, neither of the two pointers is end-of-array
s1.a == s1.b+3; // OK, same object
s1.a == s2.b+3; // Undefined, different objects, s2.b+3 end-of-array
s1.a <= s1.b; // OK, <= into the same object
s1.a <= s2.a; // Undefined, <= with different objects

It is important to note that the common programming practice of using end-of-
array pointer comparisons in loops through arrays is allowed in CH2O. For example,
the program from Section 2.5.8 that increases all values of a has defined behavior:
int a[4] = { 0, 1, 2, 3 };
int *p = a; // p and a point into the same object
while (p < a + 4) { *p += 1; p += 1; }

As shown in Section 2.5.7, using an indeterminate pointer in a pointer comparison
has undefined behavior. The side-condition m ` {a1, a2} alive of the judgment Γ,m `
(a1}c a2) defined ensures that the given addresses have not been deallocated (see also
Definition 5.2.2 on page 64). For example:
int *p = malloc(sizeof(int)); assert (p != NULL);
free(p);
int *q = malloc(sizeof(int)); assert (q != NULL);
if (p == q) { ... } // Undefined, p refers to deallocated memory

6.3.2 Pointer subtraction
The C11 standard puts stronger requirements on pointer subtraction than on pointer
comparison. Pointer subtraction has defined behavior only if the given pointers both
point to elements of the same array object [ISO12, 6.5.6p9]. This is a stronger re-
quirement than that both pointers should be part of the same memory object as used
for pointer comparisons. For example:
struct S { int a[3]; int b[3]; } s;
s.a - s.b; // Undefined, different array objects
(s.a + 3) - s.a; // OK, same array object

Definition 6.3.2. The judgment Γ,m ` (a1 - a2) defined describes if subtraction of
an address a2 from a1 is defined. It is inductively defined as:

m ` o alive |~r1 |◦ = |~r2 |◦ ((i1 − i2)÷ sizeofΓ σp) : signed ptr rank
Γ,m ` ((o : τ, ~r1, i1)σ>∗σp - (o : τ, ~r2, i2)σ>∗σp) defined
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The result of the subtraction a1 - a2 is defined as follows:

(o : τ, ~r1, i1)σ>∗σp - (o : τ, ~r2, i2)σ>∗σp := (i1 − i2)÷ sizeofΓ σp

The side-condition ((i1− i2)÷ sizeofΓ σp) : signed ptr rank ensures that the differ-
ence can be represented as an integer of type ptrdiff_t [ISO12, 6.5.6p9].

6.3.3 Pointer addition
Pointer addition can be used to move a pointer through an array object. Overflow of
pointer addition has undefined behavior even if the overflown pointer is not derefer-
enced [ISO12, 6.5.6p8]. For example:

int a[10], *p = a + 15; // Undefined, overflow

Definition 6.3.3. The judgment Γ,m ` (a + j) defined describes if addition of an
integer j ∈ Z to an address a is defined. It is inductively defined as:

m ` o alive 0 ≤ i+ j · sizeofΓ σp ≤ sizeofΓ σ · size ~r
Γ,m ` ((o : τ, ~r, i)σ>∗σp + j) defined

The result of the addition a + j is defined as follows:

(o : τ, ~r, i)σ>∗σp + j := (o : τ, ~r, i+ j · sizeofΓ σp)σ>∗σp

Pointer addition is type aware, which means that adding j to an address of type
σ increases its byte offset by j · sizeofΓ σ instead of j.

6.3.4 Pointer casting
Casting an pointer has undefined behavior in case the resulting pointer is ill-aligned
or if the cast breaks dynamic typing. For example:

int x;
(short*)(void*)&x; // Undefined, int* cast to short*
(int*)((unsigned char*)&x + 1); // Undefined, ill-aligned

Definition 6.3.4. The judgment Γ,m ` (σp)a defined describes if casting an address
a to pointer type σp is defined. It is inductively defined as:

m ` o alive sizeofΓ σp | i σ >∗ σp

Γ,m ` (σp)(o : τ, ~r, i)σ>∗σ′p defined

The result of the cast (σp)a is defined as follows:

(σp)(o : τ, ~r, i)σ>∗σ′p := (o : τ, ~r, i)σ>∗σp
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6.3.5 Value operators
This section lifts the previously defined semantics of unary, binary and cast operators
on addresses (Sections 6.3.1-6.3.4) and integers (Section 3.2) to abstract values.

Definition 6.3.5. The judgment m ` (}u v) defined describes if applying a unary
operator }u to a value v is defined. The result is denoted by }u v. Both notions are
defined by lifting the notions on integers and addresses to abstract values:

}u v m ` (}u v) defined }u v

- intτi x int arithop ok (-) 0 τi x τi intdτie (int arithop (-) 0 τi x τi)
˜ intτi x True intdτie ((˜ x : dτie)dτie)
! intτi x True intsigned int (if x = 0 then 1 else 0)
! ptr a m ` a alive intsigned int 0
! ptr (NULL τp) True intsigned int 1
! ptr (f~τ 7→τ ) True intsigned int 0

The integer encoding functions : τi : Z→ list bool and ( )τi : list bool→ Z are defined
in Definition 3.1.4 on page 41. The predicate int arithop ok and function int arithop
are part of the integer environment as defined in Definition 3.2.5 on page 43.

The judgments Γ,m ` (v1 } v2) defined and Γ,m ` (τ)v defined for binary opera-
tors and casts, and their resulting values v1 } v2 and (τ)v, are defined similarly. We
refer the interested reader to the Coq formalization for the details.

6.3.6 Conditionals
In order to define which branch of a conditional expression e ? e2 : e3 or conditional
statement if (e) s1 else s2 has to be taken, we define what is means for a value “to be
zero”. Due to typing, we know that the controlling expression e has integer or pointer
type, so we only need to define what it means for values of those types to be zero.
Branching on an indeterminate value has undefined behavior.

Definition 6.3.6. The judgment zero vb denotes that a base value vb is zero. It only
has a defined meaning if m ` (zero vb) defined holds. These judgments are inductively
defined as:

m ` (zero (intτi x)) defined
m ` p alive

m ` (zero (ptr p)) defined

zero (intτi 0) zero (ptr (NULL σp))

6.3.7 Assignments
This section describes the semantics of the various kinds of assignments.
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Definition 6.3.7. The judgment Γ,m ` (a α v) 7→ass (va, v′) describes the assigned
value va and resulting r-value v′ of an assignment a α v. It is inductively defined as:

Γ,m ` (τ)v defined τ = typeof a
Γ,m ` (a := v) 7→ass ((τ)v, (τ)v)

m〈a〉Γ = va Γ,m ` (va } v) defined Γ,m ` (τ)(va } v) defined τ = typeof a
Γ,m ` (a } := v) 7→ass ((τ)(va } v), (τ)(va } v))

m〈a〉Γ = va Γ,m ` (va } v) defined Γ,m ` (τ)(va } v) defined τ = typeof a
Γ,m ` (a :=} v) 7→ass ((τ)(va } v), va)

Note that the casts are needed to take the integer promotions [ISO12, 6.3.1.1p2]
and the usual arithmetic conversions [ISO12, 6.3.1.8p1] into account.

6.3.8 Address indexing
This section defines the top address topτ o, which refers to the corresponding object
with object identifier o in memory, and the element operation a〈r〉Γ, which selects an
element r of an address a that refers to an object of array, struct or union type. Let
us demonstrate where these operations are used:
struct S {

union U { signed char x[2]; int y; } u; void *p;
} s;

In the context of this type declaration, we consider the pointer s.u.x + 2, which
corresponds to the following expression in CH2O core C:

r-value, s.u.x + 2︷                                                                               ︸︸                                                                               ︷(
&
(
xs .l ( struct S

↪−−−→ 0) .l ( union U
↪−−−→• 0)︸                                    ︷︷                                    ︸

l-value, s.u.x

.l (
signed int[2]
↪−−−−−−→ 0)

)
+ 2
)

The operators .l (
signed int[2]
↪−−−−−−→ 0) and & make the conversion of the l-value s.u.x of

array type into a pointer to its first element explicit.
In the operational semantics, we interpret the variable xs as the address topo τ

where the object identifier o and type τ are obtained from the stack (Definition 6.1.10).
The expression (e .l r) is interpreted using the operation a〈r〉Γ.

Definition 6.3.8. The top address top : index → type→ addr is defined as:

topτ o := (o : τ, ε, 0)τ>∗τ .

Definition 6.3.9. The element operation ( )〈 〉Γ : addr → refseg → addr on ad-
dresses is defined as:

((o : τ, ~r, i)σ>∗ )〈r〉Γ := (o : τ, ~r2, sizeofΓ σ2 · offset r)σ2>∗σ2

where ~r2 := (setoffset (i ÷ sizeofΓ σ) ~r) (setoffset 0 r). The element operation is only
well-defined in case a type σ2 with Γ ` r : σ� σ2 exists.
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The element operation involves some fiddling with byte offsets due to our treat-
ment of end-of-array and unsigned char* pointers. It enjoys nice properties on strict
addresses (addresses that are not end-of-array).

Lemma 6.3.10. If Γ,∆ ` a : τ , Γ ` r : τ � σ, and a is a strict address, then:

index (a〈r〉Γ) = index a refΓ (a〈r〉Γ) = (refΓ a)r byteΓ (a〈r〉Γ) = 0.

The functions refΓ : addr → ref and byteΓ : addr → N yield the normalized reference
and normalized byte offset of an address (Definition 5.2.10 on page 68).

6.3.9 Value indexing
This section defines the operation v[~r]Γ, which yields the subvalue at location ~r in the
abstract value v. It is used to describe the semantics of the expression construct e .l r
for indexing of r-values, which is used to select a field of a struct or union returned
by a function. It corresponds to f().x in the following example:

struct S { int x; int y; };
struct S f() { struct S r = { 2, 3 }; return r; }
int main() { return f().x; }

Definition 6.3.11. The lookup operation on abstract values ( )[ ]Γ : val → ref →
option val is defined as:

v[ε]Γ := v

(arrayτ ~v)[(
τ [n]
↪−−→ i)~r]Γ := vi[~r]Γ

(structt ~v)[( struct t
↪−−−→ i)~r]Γ := vi[~r]Γ

(uniont (i, v))[( union t
↪−−−→q i)~r]Γ := v[~r]Γ

(uniont (j, v))[( union t
↪−−−→q i)~r]Γ :=


v[~r]Γ if i = j

((v ΓE∞)[0, s))
τi

Γ [~r]Γ if i , j and q = •
⊥ if i , j and q = ◦

where Γ t = ~τ and s := bitsizeofΓ τi

(uniont ~v)[( union t
↪−−−→q i)~r]Γ := vi[~r]Γ

The definition of v[~r]Γ is similar to the definition of the lookup operation w[~r]Γ
on memory trees (Definition 5.4.10 on page 76). For all cases, except for unions, it
performs a straightforward subtree lookup. If a union is assessed through a pointer
to a different variant than its current variant, the value is reinterpreted as a value of
another type by conversion into bits and back.
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6.3.10 Compound literals
Recall from page 6.1 in Section 6.1 that initializers and compound literals are encoded
as sequences:

0τΓ[~r0 := e0] . . . [~rn−1 := en−1]

where 0τΓ denotes the value of type τ that is initialized with zeros.
This section defines the zero value 0τΓ and the insert operation v1[~r := v2]Γ on

abstract values corresponding to the e1[~r := e2] operator. The definition of 0τΓ corre-
sponds to [ISO12, 6.7.9] of the C11 standard.

Definition 6.3.12. The operation 0( )
Γ : type → val constructs the value initialized

with zeros. It is defined as:

0void
Γ := nothing 0τi

Γ := intτi 0 0τp∗
Γ := ptr (NULL τp)

0τ [n]
Γ := arrayτ (0τΓ)n

0struct t
Γ := structt (0τ0Γ . . .0τn−1

Γ ) if Γ t = ~τ and n = |~τ |
0union t

Γ := uniont (0,0τ0Γ ) if Γ t = ~τ

The semantics of e1[~r := e2] is defined in terms of the insert operation v1[~r := v2]Γ
on abstract values, which replaces the subvalue at location ~r in v1 by v2.

Definition 6.3.13. The insert operation on abstract values ( )[ := ]Γ : ref →
val→ option val is defined as:

v[ε := v′]Γ := v′

(arrayτ ~v)[(
τ [n]
↪−−→ i)~r := v′]Γ := arrayτ (~v[i := vi[~r := v′]Γ])

(structt ~v)[( struct i
↪−−−→ t)~r := v′]Γ := structt (~v[i := vi[~r := v′]Γ])

(uniont (i, v))[( union t
↪−−−→q j)~r := v′]Γ :=

{
uniont (i, v[~r := v′]Γ) if i = j

uniont (i, ((v ΓE∞)[0, s))
τi

Γ [~r := v′]Γ) if i , j
where Γ t = ~τ and s := bitsizeofΓ τi

(uniont ~v)[( union t
↪−−−→q i)~r := v′]Γ := uniont (i, vi[~r := v′]Γ)

The result of v[~r := v′]Γ is only well-defined in case v[~r]Γ , ⊥.

6.4 Operational semantics of expressions

This section defines the head reduction (e1,m1)_h (e2,m2) of expressions, which in
turn will be lifted to full expressions using evaluation contexts.

Definition 6.4.1. Head reduction Γ, ρ ` (e1,m1) _h (e2,m2) of expressions is in-
ductively defined by the following rules:

1. (xi,m)_h ([topτ o]∅,m) if ρ(i) = (o, τ)
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2. (∗[ptr p]Ω,m)_h ([p]Ω,m) if m ` p alive
3. (&[p]Ω,m)_h ([ptr p]Ω,m)
4. ([a]Ω .l r,m)_h ([a〈r〉Γ]Ω,m) if Γ ` a strict
5. ([v]Ω .r r,m)_h ([v′]Ω,m) if v[r]Γ = v′

6. ([v1]Ω1 [~r := [v2]Ω2 ],m)_h ([v1[~r := v2]Γ]Ω1∪Ω2 ,m) if v1[~r]Γ , ⊥
7. ([a]Ω1 α [v]Ω2 ,m)_h ([v′]{a}Γ∪Ω1∪Ω2 , lockΓ a (m〈a := va〉Γ))

if writableΓ a m and Γ,m ` (a α v) 7→ass (va, v′)
8. (load [a]Ω,m)_h ([v]Ω, forceΓ a m) if m〈a〉Γ = v

9. (allocτ [intτi n]Ω,m)_h ([NULL τ ]Ω,m) if 0 < n.

10. (allocτ [intτi n]Ω,m)_h ([(topτ [n] o)〈
τ [n]
↪−−→ 0〉Γ]Ω, allocΓ o (τ [n]) true m)

if 0 < n, for any o < dom m

11. (free [a]Ω,m)_h ([nothing]Ω, free (index a) m) if freeable a m
12. (}u [v]Ω,m)_h ([}u v]Ω,m) if m ` (}u v) defined
13. ([v1]Ω1 } [v2]Ω2 ,m)_h ([v1 } v2]Ω1∪Ω2 ,m) if Γ,m ` (v1 } v2) defined
14. ((τ)[v]Ω,m)_h ([(τ)v]Ω,m) if Γ,m ` (τ)v defined
15. ([vb]Ω ? e2 : e3,m)_h (e2, unlock Ω m) if m ` (zero vb) defined and ¬zero vb

16. ([vb]Ω ? e2 : e3,m)_h (e3, unlock Ω m) if m ` (zero vb) defined and zero vb

17. (([v]Ω, e),m)_h (e, unlock Ω m)

Notice that the alloc function non-deterministically returns a NULL pointer (rule 9)
or a pointer to a newly allocated object (rule 10). A NULL pointer is returned in case
the system has run out of memory, see also Section 2.6.3.

We use evaluation contexts [FFKD87] to lift the head reduction to full expressions.
Evaluation contexts provide a way to compactly describe the selection of head redexes
as part of a whole expression.

Definition 6.4.2. (Singular) expression contexts are inductively defined as:

Es ∈ ectxs ::= ∗2 | &2 | 2 .l r | 2 .r r | 2[~r := e2] | e1[~r := 2]
| 2 α e2 | e1 α 2 | load 2 | 2(~e) | e(~e1 2~e2) | allocτ 2 | free 2

| }u 2 | 2 } e2 | e1 }2 | (τ)2 | 2 ? e2 : e3 | (2, e2)
E ∈ ectx := list ectxs

Given an expression context E and an expression e, the substitution of e for the hole
2 in E, notation E [ e ], is defined as usual.

The typing judgment Γ,∆, ~τ ` E : τlr � σlr for expression contexts is derived from
the typing judgment Γ,∆, ~τ ` e : τlr for expressions (Definition 6.1.7) in the obvious
way. We define it explicitly for completeness’ sake.
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6.4. Operational semantics of expressions

Definition 6.4.3. The judgment Γ,∆, ~τ ` Es : τlr � σlr describes that Es is a valid
singular expression context of type σlr with a hole 2 of type τlr. It is inductively
defined as:

Γ,∆, ~τ ` ∗2 : (τ∗)r � (τ)l Γ,∆, ~τ ` &2 : (τp)l � (τp∗)r

Γ ` r : τ � σ

Γ,∆, ~τ ` 2 .l r : τ l � σl

Γ ` r : τ � σ
Γ,∆, ~τ ` 2 .r r : τ r � σr

Γ ` ~r : τ � σ Γ,∆, ~τ r̀ e2 : σ
Γ,∆, ~τ ` 2[~r := e2] : τ r � τ r

Γ ` ~r : τ � σ Γ,∆, ~τ r̀ e1 : τ
Γ,∆, ~τ ` e1[~r := 2] : σr � τ r

τ1 α τ2 : σ Γ,∆, ~τ r̀ e2 : τ2
Γ,∆, ~τ ` 2 α e2 : (τ1)l � σr

τ1 α τ2 : σ Γ,∆, ~τ `l e1 : τ1
Γ,∆, ~τ ` e1 α 2 : (τ2)r � σr

completeΓ τ

Γ,∆, ~τ ` load 2 : τ l � τ r

Γ,∆, ~τ r̀ ~e : ~σ completeΓ σ

Γ,∆, ~τ ` 2(~e) : ((~σ → σ)∗)r � σr

Γ,∆, ~τ r̀ e : (~σ1σ~σ2 → τ)∗ Γ,∆, ~τ r̀ ~e1 : ~σ1 Γ,∆, ~τ r̀ ~e2 : ~σ2 completeΓ τ

Γ,∆, ~τ ` e(~e1 2~e2) : σr � τ r

Γ ` τ
Γ,∆, ~τ ` allocτ 2 : (τi)r � τ l Γ,∆, ~τ ` free 2 : (τp)l � voidr

}u τ : σ
Γ,∆, ~τ ` }u 2 : τ r � σr

τ1 } τ2 : σ Γ,∆, ~τ r̀ e2 : τ2
Γ,∆, ~τ ` 2 } e2 : (τ1)r � σr

τ1 } τ2 : σ Γ,∆, ~τ r̀ e1 : τ1
Γ,∆, ~τ ` e1 }2 : (τ2)r � σr

(σ)τ : σ Γ ` σ
Γ,∆, ~τ ` (σ)2 : τ r � σr

Γ,∆, ~τ r̀ e2 : τ2
Γ,∆, ~τ ` (2, e2) : (τ1)r � (τ2)r

τb , void Γ,∆, ~τ r̀ e2 : σ Γ,∆, ~τ r̀ e3 : σ
Γ,∆, ~τ ` 2 ? e2 : e3 : (τb)r � σr

Definition 6.4.4. The judgment Γ,∆, ~τ ` E : τlr � σlr describes that E is a valid
expression context of type σlr with a hole 2 of type τlr. It is inductively defined as:

Γ,∆, ~τ ` ε : σlr � σlr

Γ,∆, ~τ ` Es : τlr � σlr Γ,∆, ~τ ` E : σlr � υlr

Γ,∆, ~τ ` Es E : τlr � υlr

Lemma 6.4.5. Validity of expression contexts enjoys the substitution property:

Γ,∆, ~τ ` E [ e ] : σlr iff Γ,∆, ~τ ` E : τlr � σlr and Γ,∆, ~τ ` e : τlr for some τlr.

Intuitively, an expression context E is just an expression with a hole 2 that de-
scribes the location of the head redex. The head reduction is lifted to full expressions
as follows (see Rule 2a of Definition 6.5.8 for the actual rule):

(e1,m1)_h (e2,m2)
(E [ e1 ], m1) _ (E [ e2 ], m2)
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We follow Norrish [Nor98], Leroy [Ler09b] and Ellison and Roşu [ER12b] by using
expression contexts to formalize the unspecified order of expression execution. Since
expression contexts overlap, non-trivial expressions e can be decomposed into multiple
combinations of head redexes e′ and expression contexts E that enjoy e = E [ e′ ]. For
example, the expression e1 + e2 can be written as both (2 + e2)[ e1 ] and (e1 + 2)[ e2 ].
The above reduction rule can therefore be applied in two different ways, allowing one
to reduce the subexpressions e1 and e2 in any order.

The execution order of expressions is however not unspecified in all aspects by the
C11 standard. The first operand of the conditional e1 ? e2 : e3 and comma (e1, e2)
expression is guaranteed to be evaluated to a value before (one of) the other operands
are evaluated at all1. We therefore do not include the expression contexts e1 ? 2 : e3,
e1 ? e2 : 2 and (e1,2).

Undefined behavior and function calls make the actual reduction rules for full
expressions somewhat more complicated. We follow Leroy [Ler09b] by distinguishing
the following three cases (see Definition 6.5.8 for the formal definition as part of the
whole program semantics):

• Subexpressions that can head reduce. This is just the rule that we have
described above: a whole expression E [ e1 ] may reduce to E [ e2 ] provided that
we have (e1,m1)_h (e2,m2).

• Subexpressions that contain a function call. Subexpressions of the shape
[ν]Ω([~ν]~Ω), i.e. function calls, are not described by the head reduction. Instead,
a function call suspends expression execution and goes into a state in which the
function body is executed. When execution of the function body is finished, the
result is plugged back into the whole expression.
This way, we correctly deal with non-terminating functions, and do not allow
function calls to be interleaved [ISO12, 6.5.2.2p10].

• Subexpressions that have undefined behavior. A subexpression has un-
defined behavior if it has the shape of a head redex, but cannot be head reduced.
In this case, the whole program semantics goes into a special undef state that
accounts for undefined behavior.

Formally, a subexpression has undefined behavior if it is an unsafe redex, which
is captured by the following definitions.

Definition 6.4.6. An expression is a redex if it has one of the following shapes:

xi ∗[ν]Ω &[ν]Ω [ν]Ω .l r [ν]Ω .r r
[ν1]Ω1 [~r := [ν2]Ω2 ] [ν]Ω1 α [ν]Ω2 [ν]Ω([~ν]~Ω) abort τ load [ν]Ω
allocτ [ν]Ω free [ν]Ω }u [ν]Ω [ν1]Ω1 } [ν2]Ω2 (τ)[ν]Ω
[ν]Ω ? e2 : e3 ([ν]Ω, e)

Definition 6.4.7. An expression e is safe, notation Γ, ρ ` (e,m) safe, if either:
1 The comma operator (e1,e2) should not be confused with the commas that separate function

arguments f(e1,e2). The arguments of the comma operator are guaranteed to be evaluated left to
right, and the value of the first operand is thrown away. Function arguments, on the other hand,
may be evaluated in any order.
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1. The expression e is a function call. That is, e = [ν]Ω([~ν]~Ω).
2. There is an expression e′ and memory m′ such that Γ, ρ ` (e,m)_h (e′,m′).

The abort τ expression does not have a rule for head reduction, and is therefore
an unsafe redex. This is intended because abort τ is used to describe an expression
that when reached has undefined behavior.

The expressions e1 ? e2 : e3 and (e1, e2) play an important role in the sequence
point restriction, which states that an object may not be modified more than once,
or being read after being modified, between two sequence points [ISO12, 6.5p2]. The
expressions e1 ? e2 : e3 and (e1, e2) contain a sequence point. For example:

int x = 0, *p = &x;
x + x; // OK
(x = 3) + (x = 4); // Undefined, x modified twice
(x = 3) + (*p = 4); // Undefined, x modified twice
(x = 3) + x; // Undefined, x can be read after being modified
(x = 3, x = 4); // OK, the , construct contains a sequence point
((x = 3) ? x : 1); // OK, the ? construct contains a sequence point

To describe the sequence point restriction formally, we let rule 7 of Definition 6.4.1
for assignments not only store the value v at address a, but also let it lock a:

writableΓ a m Γ,m ` (a α v) 7→ass (va, v′)
Γ, δ ` ([a]Ω1 α [v]Ω2 ,m)_h ([v′]{a}Γ∪Ω1∪Ω2 , lockΓ a (m〈a := va〉Γ))

By locking a, we temporarily reduce its permissions in order to make consecutive
accesses to it illegal. We furthermore add a to the set {a}Γ ∪Ω1 ∪Ω2 to keep track of
the fact it has been locked. Rule 14 for the comma ([v]Ω, e) and rules 15 and 16 for the
conditional [v]Ω ? e2 : e3 describe a sequence point by unlocking the set Ω in memory,
which makes future accesses to Ω possible again. Let us consider an example:

((a1 := 3) + (a2 := 4), e)

([3]{a1} + (a2 := 4), e) ((a1 := 3) + [4]{a2}, e)

([7]{a1,a2}, e)

e

lock a1 lock a2

lock a2 lock a1

unlock {a1, a2}

In case the addresses a1 and a2 are the same or do partially overlap, the assignment
executed last has undefined behavior. That is because the first assignment locks the
address, which in turn causes the writableΓ condition of rule 7 to fail. If a1 and a2 do
not overlap, no undefined behavior due to sequence point violations occurs. Notice
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that accesses to a1 or a2 in the second operand of the comma operator are legal as
its corresponding sequence point unlocks {a1, a2}.

As discussed in Section 2.5.9, there is a sequence point before each function call.
The following program thus non-deterministically returns 3 or 4:

int assign(int *p, int y) { return *p = y; }
int main() {

int x;
assign(&x, 3) + assign(&x, 4);
return x;

}

Sequence points before function calls, as well as sequence points as part of state-
ments such as if (e) s1 else s2, are described in Section 6.5.

Our operational semantics of expressions is influenced by Norrish [Nor98] who also
uses evaluation contexts to describe non-determinism in C expressions. Evaluation
contexts themselves were introduced by Felleisen et al. [FFKD87] in the context of
λ-calculus with control operators. In order to describe the sequence point restriction,
Norrish also keeps track of memory areas that have been modified. However, he did
not integrate locks into a more general permission system.

Similar to Norrish’s C++ semantics [Nor08] and Ellison and Roşu [ER12b], we
implicitly use non-determinism to describe all undefined behaviors caused by sequence
point violations. For example, in x + (x = 10) only one execution order (executing
the read after the assignment) leads to a sequence point violation. Both execution
orders lead to a sequence point violation in Norrish’s C semantics [Nor98] because he
also keeps track of a set of memory locations that have been read.

We assign undefined behavior to more sequence point violations than Ellison and
Roşu [ER12b] and the C11 standard [ISO12, 5.1.2.3] do. Ellison and Roşu release the
locks of all objects at each sequence point, whereas we just release the locks that have
been created by the subexpression in which the sequence point occurs. For example,
we assign undefined behavior to the following program:

int assign(int *p, int y) { return *p = y; }
int main() {

int x;
(x = 3) + assign(&x, 4);
return x;

}

The execution order that leads to undefined behavior is: (a) x = 3, which locks
x (b) call assign(&x, 4), which releases just the locks that have been created by the
subexpressions &x and 4 (i.e. the empty set) (c) the assignment *p = y, in which
p points to the locked object x. Ellison and Roşu assign defined behavior to the
above program. They let the sequence point before assign(&x, 4) release all locks,
including the lock of x that belongs to another subexpression.

We believe that our treatment of the sequence point restriction has some advan-
tages over the treatment by the C11 standard and that by Ellison and Roşu:
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• Our treatment of the sequence point restriction gives rise to strictly more un-
defined behavior, but only in artificial corner cases. More undefined behavior
allows for more effective optimizations by compilers.

• Dealing with sequence points locally instead of globally provides a more conve-
nient metatheory. In particular, it brings the operational semantics closer to
separation logic because separation logic operates on local parts of the memory
instead of the whole memory (see Section 8.4).

We believe that only artificial programs become illegal because different function
calls in the same expression are still allowed to write to a shared part of the memory
(which is useful for memoization). For example:

int f(int y) {
static int map[MAP_SIZE];
if (map[y]) { return map[y]; }
return (map[y] = expensive_function(y));

}

In the context of this example, the expression f(3) + f(3) has still defined be-
havior according to CH2O semantics.

An optimization that may be allowed by our treatment of sequence points, but that
is not allowed by the C11 standard nor by Ellison and Roşu, is by reference passing
of struct and union values through expressions. CompCert passes struct and union
values through expressions by reference, and even describes it as such in its semantics.
Only at assignments and function calls, struct and union values are actually copied.
Let us consider an example:

struct S { int x; } s1 = { 1 }, s2 = { 2 };
int f() { if (s1.x == 2) { s2.x = 40; } return 0; }
int g(struct S s, int z) { return s.x; }
int main() { return g(s1 = s2, f()); }

This code has different behaviors in CompCert, the semantics of Ellison and Roşu,
and the CH2O semantics, namely:

• It is guaranteed to return {2, 40} according to the non-deterministic semantics
of CompCert C.

• It returns 40 when compiled with CompCert.
• It is guaranteed to return {2} according to the semantics of Ellison and Roşu.
• It has undefined behavior in the CH2O semantics.
Let us analyze the execution order by which the program yields 40 in CompCert.

We start with the body of the function main:
1. The initial expression in the initial memory:

g(s1 = s2, f()) in s1 7→ {1}, s2 7→ {2}.
2. After the assignment s1 = s2 is executed:

g(s2, f()) in s1 7→ {2}, s2 7→ {2}.
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3. After the function f is called, which modifies s2 because s1.x == 2:
g(s2,0) in s1 7→ {2}, s2 7→ {40}.

4. After the function f is called, which returns the field x of the struct, the return
values of main becomes 40.

Step (2) is problematic because s1 = s2 yields a reference to s2 instead of the
actual value {struct S){ 2 } of s2. Step (3) changes the value of s2, and step (4)
thus uses the updated value of the struct. Step (3) has undefined behavior because
it attempts to access s1 which has been locked in step (2).

It would be interesting to investigate whether our semantics of the sequence point
restriction justifies by reference passing of struct and union values through expres-
sions in general. We conjecture so because by reference passing of struct an union
values relies of being able to delay computations. Delaying of computations is exactly
what the sequence point restriction in combination with non-deterministic expression
execution should allow. However, if the sequence point before a function call releases
all locks, fewer computations can be delayed.

6.5 Operational semantics

This section defines the reduction S1 _ S2 on program states. Program states are
tuples S(P, φ, m) where m is the memory and (P, φ) is a zipper-like data structure
that describes the part of the program that is being executed. Execution of statements
is modeled by traversal through the zipper in the directions down ↘, up ↗, goto y,
throw ↑ or return ↑↑ corresponding to the current form of (non-local) control. Let us
reconsider the example from Section 2.5.1:

int *p = NULL;
l: if (p) {

return (*p);
} else {

int j = 10; p = &j; goto l;
}

Figure 6.1 displays a part of the reduction sequence corresponding to the execution
of this program. The sequence starts after the assignment p = &j has been performed.
When the goto l statement is reached, the direction is changed to y l in step S2 _ S3,
which invokes a subsequent small-step traversal to search for the label l. During this
traversal, the variable j is deallocated in step S5 _ S6.

The pair (P, φ), which is part of a program state S(P, φ, m), is not an ordinary
zipper. We adapt Huet’s zipper data structure [Hue97] by annotating each block scope
local variable in the context P with its associated memory index (see the annotation
o in the localo:τ 2 construct in the example), and we also let P keep track of the full
control stack (i.e. which functions have been called). Our adaptation of the zipper
can also be seen as a generalization of continuations, as for example being used in
CompCert [AB07, Ler09a]. However, there are some notable differences:
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P1 = (2 ; goto l)
(x0 := intsigned int 10 ; 2)
(localoj :signed int 2)
(if (load x0)

return (load (&(load x0)))
else 2)

(l : ; 2)
(x0 :=

ptr (NULL signed int) ; 2)
(localop:signed int∗ 2)

φ1 = (↗, x1 := x0)
S1 = S(P1, φ1, m)

P2 = (x1 := x0 ; 2)
(x0 := intsigned int 10 ; 2)
(localoj :signed int 2)
(if (load x0)

return (load (&(load x0)))
else 2)

(l : ; 2)
(x0 :=

ptr (NULL signed int) ; 2)
(localop:signed int∗ 2)

φ2 = (↘, goto l)
S2 = S(P2, φ2, m)

P3 = (x1 := x0 ; 2)
(x0 := intsigned int 10 ; 2)
(localoj :signed int 2)
(if (load x0)

return (load (&(load x0)))
else 2)

(l : ; 2)
(x0 :=

ptr (NULL signed int) ; 2)
(localop:signed int∗ 2)

φ3 = (y l, goto l)
S3 = S(P3, φ3, m)

P4 = (x0 := intsigned int 10 ; 2)
(localoj :signed int 2)
(if (load x0)

return (load (&(load x0)))
else 2)

(l : ; 2)
(x0 :=

ptr (NULL signed int) ; 2)
(localop:signed int∗ 2)

φ4 = (y l, x1 := x0 ; goto l)
S4 = S(P4, φ4, m)

P5 = (localoj :signed int 2)
(if (load x0)

return (load (&(load x0)))
else 2)

(l : ; 2)
(x0 :=

ptr (NULL signed int) ; 2)
(localop:signed int∗ 2)

φ5 = (y l, x0 := intsigned int 10 ;
x1 := x0 ; goto l)

S5 = S(P5, φ5, m)

P6 = (if (load x0)
return (load (&(load x0)))

else 2)
(l : ; 2)
(x0 :=

ptr (NULL signed int) ; 2)
(localop:signed int∗ 2)

φ6 = (y l, localsigned int (
x0 := intsigned int 10 ;
x1 := x0 ; goto l))

S6 = S(P6, φ6, free oj m)

Figure 6.1: An example reduction. The reduction S1 _ S2 is by rule 4b, S2 _∗ S5
by rule 6c and S5 _ S6 by rule 7b of Definition 6.5.8.

• Our zipper implicitly contains the local stack, which assigns memory indices to
local variables, see Definition 6.1.10, whereas a semantics based on continuation
typically stores the local stack separately.

• Our zipper preserves the part of the statement that already has been executed,
whereas a continuation only contains the part that remains to be done.

• Since the complete program is preserved, looping constructs such as our loop
statement do not have to duplicate code.

In order to describe the interaction between non-local control flow and block scope
variables, it is essential that we not only keep track of the part of the statement that
remains to be executed, but also preserve the part that has been executed already.
Occurrences of non-local control flow invoke a small-step traversal through the zipper
during which we can perform the required allocations and deallocations in a natural
way. The point of this traversal is thus not so much to search for the label, but to
incrementally calculate the required allocations and deallocations.

Definition 6.5.1. Statement contexts are inductively defined as:

Ss ∈ sctxs ::= catch 2 | 2 ; s2 | s1 ; 2 | loop 2 | if (e) 2 else s2 | if (e) s1 else 2

Given a statement context Ss and a statement s, substitution of s for the hole 2 in
Ss, notation Ss[ s ], is defined as usual.
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Definition 6.5.2. The judgment Γ,∆, ~τ ` Ss : (α, τ ?) � (β, σ?) describes that Ss
is a valid statement context of type τ ? with a hole 2 of type σ? . It is inductively
defined as:

Γ,∆, ~τ ` catch 2 : (β, σ?)� (false, σ?)
Γ,∆, ~τ ` s2 : (β2, τ ?

2 ) τ ?
1 ; τ ?

2 � σ?

Γ,∆, ~τ ` 2 ; s2 : (β2, τ ?
1 )� (β2, σ?)

Γ,∆, ~τ ` s1 : (β1, τ ?
1 ) τ ?

1 ; τ ?
2 � σ?

Γ,∆, ~τ ` s1 ; 2 : (β2, τ ?
2 )� (β2, σ?) Γ,∆, ~τ ` loop 2 : (β, σ?)� (true, σ?)

Γ,∆, ~τ r̀ e : τb locks e = ∅ Γ,∆, ~τ ` s2 : (β2, τ ?
2 ) τ ?

1 ; τ ?
2 � σ?

Γ,∆, ~τ ` if (e) 2 else s2 : (β1, τ ?
1 )� (β1 ∧ β2, σ?)

Γ,∆, ~τ r̀ e : τb τb , void locks e = ∅ Γ,∆, ~τ ` s1 : (β1, τ ?
1 ) τ ?

1 ; τ ?
2 � σ?

Γ,∆, ~τ ` if (e) s1 else 2 : (β2, τ ?
2 )� (β1 ∧ β2, σ?)

A pair (~Ss, s) of a list of statement contexts ~Ss and a focused substatement s forms
a zipper for statements without block scope variables. That means, ~Ss is a statement
turned inside-out that represents a path from the focused substatement s to the top
of the whole statement. In the subsequent definitions we will extend the context ~Ss
to account for the local stack as well as the whole call stack.

Definition 6.5.3. Expression statement contexts are inductively defined as:

Se ∈ sctxe ::= 2 | return 2 | if (2) s1 else s2

Given an expression statement context Se and an expression e, substitution of e for
the hole 2 in Se, notation Se[ e ], is defined as usual.

Definition 6.5.4. The judgment Γ,∆, ~τ ` Se : τ � (β, σ?) describes that Se is a
valid expression statement context of type (β, σ?) with a hole 2 of type τ . It is
inductively defined as:

Γ,∆, ~τ ` 2 : τ � (false, ⊥) Γ,∆, ~τ ` return 2 : τ � (true, τ)
τb , void Γ,∆, ~τ ` s1 : (β1, τ ?

1 ) Γ,∆, ~τ ` s2 : (β2, τ ?
2 ) τ ?

1 ; τ ?
2 � σ?

Γ,∆, ~τ ` if (2) s1 else s2 : τb � (β1 ∧ β2, σ?)

Definition 6.5.5. Program contexts, directions, focuses and program states are
inductively defined as:

Ps ∈ ctxs ::= Ss | localo:τ 2 | (Se, e) | resume E | params f # »oτ

P ∈ ctx := list ctxs

d ∈ direction ::= ↘ | ↗ | y l | ↑n | ↑↑ v
φU ∈ undef ::= E E〈e〉 | ESe〈[v]Ω〉
φ ∈ focus ::= (d, s) | e | call f ~v | return f v | undef φU
S ∈ state ::= S(P, φ, m)

The projection mem : state→ mem is defined as expected.
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Program states S(P, φ, m) contain a zipper (P, φ) where the context P describes
the location of the focused part φ in the program that is being executed. The essential
difference with a traditional zipper is that each localτ :o 2 construct is annotated with
its block scope variable. The construct resume E delimits a callee from its caller, and
the construct params f # »oτ associate a list ~o of memory indices to the parameters of
a function. Since a program context thereby implicitly contains the stack, we define
an erasure function to extract the stack from it.

Definition 6.5.6. The function locals : ctx → stack yields the corresponding local
stack of a program context. It is defined as:

locals ε := ε

locals (Ss P) := locals P
locals ((localo:τ 2)P) := (o, τ) (locals P)

locals ((Se, e)P) := locals P
locals ((resume E)P) := ε

locals ((params f # »oτ)P) := # »oτ (locals P)

We define locals (resume E P) as ε instead of locals P to ensure that a callee cannot
refer to the local variables of its caller.

Before we will consider the actual definition of the reduction relation S1 _ S2 in
Definition 6.5.8), we describe the different forms of program execution by represen-
tative rules.

• Statements. The state S(P, (d, s), m) describes execution of a statement s
in direction d. The direction describes the current form of (non-local) control.
For example, when a goto l statement is reached, the direction is changed into
y l, and a small-step traversal through the zipper is performed until the label
l has been reached where normal control flow is resumed. This is described by
the following rules:

S(P, (↘, goto l), m) _ S(P, (y l, goto l), m)
S(P, (y l, Ss[ s ]), m) _ S(Ss P, (y l, s), m) if l ∈ labels s

S(Ss P, (y l, s), m) _ S(P, (y l, Ss[ s ]), m) if l < labels s
S(P, (y l, localτ s), m) _ S((localτ :o 2)P, (y l, s), allocΓ o (newΓ τ) false m)

if o < dom m and l ∈ labels s
S((localo:τ 2)P, (y l, s), m) _ S(P, (y l, localτ s), free o m) if l < labels s

S(P, (y l, l :), m) _ S(P, (↗, l :), m)

The construct localo:τ 2 associates the block scope variable with an object iden-
tifier o that refers its object in memory. Local variables are initialized with the
indeterminate value newΓ τ (Definition 5.5.14 on page 84).

• Undefined behavior. The state S(P, undef φU , m) describes an occurrence
of undefined behavior. The annotation φU indicates the source of the undefined
behavior.
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• Expressions. The state S(P, e, m) describes execution of an expression e.
Most notably, provided Γ, locals P ` (e1,m1)_h (e2,m2), we have:

S(P, E [ e1 ], m1) _ S(P, E [ e2 ], m2).

Non-deterministic decomposition of an expression into an expression context E
and subexpression e1 models the unspecified order of expressions evaluation.
If the expression e1 is an unsafe redex (a redex that cannot be _h-reduced due
to undefined behavior, see Definitions 6.4.6 and 6.4.7), we have:

S(P, E [ e1 ], m) _ S(P, undef (E E〈e1〉), m).

• Function calls. The state S(P, call f ~v, m) describes calling a function f with
arguments ~v. For function calls we have the following rules:

S(P, E [ [f~τ 7→τ ]Ω([~v]~Ω) ], m) _ S((resume E)P, call f ~v, unlock (Ω ∪
⋃

~Ω) m)

S(P, call f ~v, m) _ S((params f # »oτ)P, (↘, s), allocΓ ~o ~v false m)

The construct resume E keeps track of the expression context of the caller and
delimits the local stack of the callee from the one of the caller.
The second rule allocates the function arguments ~v of type ~τ in memory. The
construct params f # »oτ associates the object identifiers ~o to the function argu-
ments. The statement s is the body of f , that is δ f = s.
When a function f returns with value v, the control is given back to the caller,
which continue execution of the expression E [ [v]∅ ]. Returning from a function
involves the intermediate state S(P, return f v, m). The corresponding rules are
as follows:

S((params f # »oτ)P, (↑↑ v, s), m) _ S(P, return f v, free ~o m)
S((resume E)P, return f v, m) _ S(P, E [ [v]∅ ], m)

We have adapted the approach of distinguishing different kinds of program states
that correspond to different kinds of program execution from Leroy [Ler09a]. Our
treatment of statement execution is entirely different from Leroy’s.

Definition 6.5.7. The judgments (d, s) in and (d, s) out denote whether the direction
d is inwards or outwards in the statement s. These are inductively defined as:

(↘, s) in
l ∈ labels s
(y l, s) in (↗, s) out

l < labels s
(y l, s) out (↑n, s) out (↑↑ v, s) out

Definition 6.5.8. The small-step reduction Γ, δ ` S1 _ S2 is inductively defined by
the following rules:

1. For simple statements:
a) S(P, (↘, skip), m) _ S(P, (↗, skip), m)
b) S(P, (↘, goto l), m) _ S(P, (y l, goto l), m)
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c) S(P, (↘, throw n), m) _ S(P, (↑n, throw n), m)
d) S(P, (↘, l :), m) _ S(P, (↗, l :), m)
e) S(P, (↘, Se[ e ]), m) _ S((Se, e)P, e, m)

2. For expressions:
a) S(P, E [ e1 ], m1) _ S(P, E [ e2 ], m2)

for any e2 and m2 with Γ, locals P ` (e1,m1)_h (e2,m2)
b) S(P, E [ [f~τ 7→τ ]Ω([~v]~Ω) ], m) _ S(resume E P, call f ~v, unlock (Ω ∪

⋃
~Ω) m)

c) S(P, E [ e ], m) _ S(P, undef (E E〈e〉), m)
if e is a redex with Γ, locals P 0 (m, e) safe

3. For finished expressions:
a) S((2, e)P, [v]Ω, m) _ S(P, (↗, e), unlock Ω m)
b) S((return 2, e)P, [v]Ω, m) _ S(P, (↑↑ v, return e), unlock Ω m)
c) S((if (2) s1 else s2, e)P, [vb]Ω, m) _ S((if (e) 2 else s2)P, (↘, s1), unlock Ω m)

if m ` (zero vb) defined and ¬zero vb

d) S((if (2) s1 else s2, e)P, [vb]Ω, m) _ S((if (e) s1 else 2)P, (↘, s2), unlock Ω m)
if zero vb

e) S((if (2) s1 else s2, e)P, [vb]Ω, m) _ S(P, undef (E (if (2) s1 else s2)〈[vb]Ω〉), m)
if m 0 (zero vb) defined

4. For compound statements:
a) S(P, (↘, s1 ; s2), m) _ S((2 ; s2)P, (↘, s1), m)
b) S((2 ; s2)P, (↗, s1), m) _ S((s1 ; 2)P, (↘, s2), m)
c) S((s1 ; 2)P, (↗, s2), m) _ S(P, (↗, s1 ; s2), m)
d) S(P, (↘, catch s), m) _ S((catch 2)P, (↘, s), m)
e) S((catch 2)P, (↗, s), m) _ S(P, (↗, catch s), m)
f) S(P, (↘, loop s), m) _ S((loop 2)P, (↘, s), m)
g) S((loop 2)P, (↗, s), m) _ S(P, (↘, loop s), m)
h) S((if (e) 2 else s2)P, (↗, s1), m) _ S(P, (↗, if (e) s1 else s2), m)
i) S((if (e) s1 else 2)P, (↗, s2), m) _ S(P, (↗, if (e) s1 else s2), m)

5. For function calls:
a) S(P, call f ~v, m) _ S((params f # »oτ)P, (↘, s), allocΓ ~o ~v false m)

for the s with δ f = s, and any object identifiers ~o without duplicates and types
~τ , satisfying |~o| = |~v| = |~τ |, ~oi < dom m and τi = typeof vi for each i < |~v|

b) S((params f # »oτ)P, (↗, s), m) _ S(P, return f nothing, free ~o m)
c) S((params f # »oτ)P, (↑↑ v, s), m) _ S(P, return f v, free ~o m)
d) S((resume E)P, return f v, m) _ S(P, E [ [v]∅ ], m)

6. For non-local control flow:
a) S(P, (y l, l :), m) _ S(P, (↘, l :), m)
b) S(P, (y l, Ss[ s ]), m) _ S(Ss P, (y l, s), m) if l ∈ labels s
c) S(Ss P, (y l, s), m) _ S(P, (y l, Ss[ s ]), m) if l < labels s
d) S((catch 2)P, (↑ 0, s), m) _ S(P, (↗, catch s), m)
e) S((catch 2)P, (↑ (1 + n), s), m) _ S(P, (↑n, catch s), m)
f) S(Ss P, (↑n, s), m) _ S(P, (↑n, Ss[ s ]), m) if Ss , catch 2
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g) S(Ss P, (↑↑ v, s), m) _ S(P, (↑↑ v, Ss[ s ]), m)

7. For block scopes:
a) S(P, (d, localτ s), m) _ S((localo:τ 2)P, (d, s), allocΓ o (newΓ τ) false m)

if (d, s) in, for any o < dom m

b) S((localo:τ 2)P, (d, s), m) _ S(P, (d, localτ s), free o m) if (d, s) out

Note that the selection of head redexes in rules 2a, 2b and 2c, and the splitting of
Ss[ s ] into Ss and s in rule 6b is non-deterministic. Arbitrary unused object identifiers
are used for local variables in rules 5a and 7a.

Definition 6.5.9. The P-restricted small-step reduction Γ, δ ` S1 _P S2 is defined
as Γ, δ ` S1 _ S2 provided that P is a suffix of the program context of S2.

Lemma 6.5.10. Small-step reduction behaves as a zipper. That is:

Γ, δ ` S(P, (d, s), m) _∗P S(P, (d′, s′), m′) implies s = s′

The above lemma shows that the small-step semantics indeed behaves as traversing
through a zipper. Its proof is not entirely trivial due to the presence of function calls,
which add the statement of the callee to the state. This is shown in the picture:

P

s

_∗P P1

s1

_∗P P2

s2

. . . _∗P . . . P

sn
implies s = sn

6.6 Type preservation and progress

Well-typedness according to the C type system does not ensure the absence of run-
time errors. Even well-typed programs may crash due to undefined behaviors such as
dereferences of the NULL pointer and sequence point violations.

Despite the absence of full type safety, the CH2O core C type system nonetheless
enjoys some useful properties. It enjoys type preservation, a weak form of progress,
and a weak form of type safety. This weak form of type safety guarantees that each
well-typed program can keep on reducing, while possibly eventually reaching a final
or undef state. From a programmer’s point of view, weak type safety does not provide
useful guarantees because a program may still crash due to a run-time error. However,
from a formalist’s point of view, it ensures that the semantics is well behaved and
that we have not forgotten any reductions. In the formalization of LLVM by Zhao et
al. [ZNMZ12] a similar property is proven.

The type preservation and progress properties deal with arbitrary program states
during program execution. We therefore define typing judgments for all components
of program states. The main part of a program state S(P, φ, m) is the focus φ, for
which we define corresponding focus types.
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Definition 6.6.1. Focus types are defined as:

τf ∈ focustype ::= (β, τ ?) | τ | f

Definition 6.6.2. The judgment Γ,∆ ` d : (β, σ?) describes that a direction d has
type (β, σ?). It is inductively defined as:

Γ,∆ ` ↗ : (false, σ?)
Γ,∆ ` v : τ

Γ,∆ ` ↑↑ v : (β, τ)
d ∈ {↘,y l, ↑n}

Γ,∆ ` d : (β, σ?)

Definition 6.6.3. The judgment Γ,∆, ~τ ` φ : τf describes that a focus φ has type τf .
It is inductively defined as:

Γ,∆, ~τ ` s : (β, σ?) Γ,∆ ` d : (β, σ?)
Γ,∆, ~τ ` (d, s) : (β, σ?)

Γ,∆, ~τ r̀ e : τ
Γ,∆, ~τ ` e : τ

Γ f = (~σ, τ) Γ,∆ ` ~v : ~σ
Γ,∆, ~τ ` call f ~v : f

Γ f = (~σ, τ) Γ,∆ ` v : τ
Γ,∆, ~τ ` return f v : f

Γ,∆, ~τ ` e : τlr Γ,∆, ~τ ` E : τlr � σr

Γ,∆, ~τ ` undef (E E〈e〉) : σ
Γ,∆ ` Ω Γ,∆ ` v : τ Γ,∆, ~τ ` Se : τ � (β, σ?)

Γ,∆, ~τ ` undef (ESe〈[v]Ω〉) : (β, σ?)

The focus type (β, τ ?) is for statement (s, d) execution, the focus type is τ for ex-
pression execution e, and the focus types f for calling call f ~v and returning return f v
from functions. The focus for undefined behavior undef φU may have either statement
or expression type, depending on the source φU of the undefined behavior.

Definition 6.6.4. The judgment Γ,∆, ~τ ` Ps : τf � σf describes that Ps is a valid
singular context of type σf with a hole 2 of type τf . It is inductively defined as:

Γ,∆, ~τ ` Ss : (β1, σ?
1)� (β2, σ?

2)
Γ,∆, ~τ ` Ss : (β1, σ?

1)� (β2, σ?
2)

∆ ` o : τ
Γ,∆, ~τ ` localo:τ 2 : (β, σ?)� (β, σ?)

Γ,∆, ~τ r̀ e : τ locks e = ∅ Γ,∆, ~τ ` Se : τ � (β, σ?)
Γ,∆, ~τ ` (Se, e) : τ � (β, σ?)

Γ f = (~σ, τ) Γ,∆, ~τ ` E : τ r � σr

Γ,∆, ~τ ` resume E : f � σ

Γ f = (~σ, τ) ∆ ` ~o : ~σ (β, σ?) � τ
Γ,∆, ~τ ` params f # »oσ : (β, σ?)� f

Definition 6.6.5. The judgment Γ,∆, ~τ ` P : τf � σf describes that P is a valid
context of type σf with a hole 2 of type τf . It is inductively defined as:

Γ,∆ ` ε : σf � σf

Γ,∆, types (locals P) ` Ps : τf � σf Γ,∆ ` P : σf � υf

Γ,∆ ` Ps P : τf � υf
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Fact 6.6.6. Valid contexts P have a valid corresponding local stack locals P. That
means, if Γ,∆ ` P : τf � σf , then ∆ ` locals P.

The typing judgment for states has the shape Γ ` S : gmain where gmain ∈ funname
is the name of the function that started the computation that led to S. For concrete
C programs, gmain is typically the main function.

Definition 6.6.7. The judgment Γ ` S : gmain describes that the state S is valid with
respect to an initial function gmain. It is inductively defined as:

Γ,m, types (locals P) ` φ : τf Γ,m ` P : τf � gmain Γ ` m
Γ ` S(P, φ, m) : gmain

Type preservation ensures that if a state S1 is well-typed, then each subsequent
state S2 after a reduction S1 _ S2 is also well-typed. Type preservation is proven by
case analysis on the derivation of the reduction S1 _ S2 and uses the fact that all
memory operations preserve typing. The proof is reasonably straightforward with a
minor complication.

The compilation is due to the memory environment m, which appears in the typing
judgments Γ,m, types (locals P) ` φ : τf and Γ,m ` P : τf � gmain, and is changed
into m′ by a reduction S(P, φ, m) _ S(P, φ, m′).

Although the contents of a memory m may change arbitrarily during each reduc-
tion, the memory environment m may not. Only new objects may be allocated and
existing objects may be deallocated. Memory indices of deallocated objects cannot
be reused for new objects. This evolution is captured by the following relation.

Definition 6.6.8. A memory environment ∆2 is forward of ∆1, notation ∆1 ⇒ ∆2,
if the following conditions hold:

1. If ∆1 ` o : τ , then ∆2 ` o : τ .
2. If ∆1 ` o : τ and ∆2 ` o alive, then ∆1 ` o alive.

Fact 6.6.9. The relation ⇒ is reflexive and transitive.

Lemma 6.6.10. All memory operations are forward. That is:

m⇒ allocΓ o v β m m⇒ free o m m = m〈a := v〉Γ
m = forceΓ a m m = lockΓ a m m = unlock Ω m

Fact 6.6.11. All typing judgments are closed under weakening of typing environments
and forwardness of memory typing environments.

Lemma 6.6.12. If Γ ` m1 and m1 ` ρ : ~τ and Γ,m1, ~τ ` e1 : τlr, then:

Γ, ρ ` (e1,m1)_h (e2,m2) implies Γ ` m2, Γ,m2, ~τ ` e2 : τlr and m1 ⇒ m2.

Proof. By case analysis on the derivation of Γ, ρ ` (e1,m1)_h (e2,m2). For each case,
we use Lemma 6.6.10 and the fact that the memory operations preserve typing. �
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Theorem 6.6.13 (Type preservation). If Γ,memS1 ` δ and Γ ` S1 : gmain, then:

Γ, δ ` S1 _ S2 implies Γ ` S2 : gmain.

Proof. By case analysis on the derivation of Γ ` S1 : gmain. We use Lemma 6.6.12 for
head reduction. Lemma 6.6.10 and Fact 6.6.11 are used to weaken enclosing parts of
the state under changes to the memory. �

Theorem 6.6.14 (Weak progress). If Γ,memS1 ` δ and Γ ` S1 : gmain, then either:
1. Further reduction is possible, that is S1 _ S2 for some S2.
2. An undefined state is reached, that is S1 = S(P, undef φU , m).
3. A final state is reached, that is S1 = S(ε, return g v, m).
4. A label is incorrect, that is S1 = S(P, (y l, s), m) with l < labels s ∪ labels P.
5. A throw does not have a matching catch, that is S1 = S(P, (↑ i, s), m) where
P contains fewer surrounding catches than i.

Proof. By case analysis on the derivation Γ ` S1 : gmain. �

The judgment Γ ` S1 : gmain does not ensure the validity of gotos and throws. As
a result, the progress theorem includes the cases 4 and 5 to account for stuck non-local
control. However, the judgment Γ,∆ ` δ for function environments (Definition 6.2.9)
does ensure that all gotos and throws have a corresponding label and catch. So if
we start from an initial state, stuck non-local control cannot occur.

Definition 6.6.15. The initial state initial m gmain ~v of a main function gmain with
arguments ~v in memory m is defined as:

initial m gmain ~v := S(ε, call gmain ~v, m).

Corollary 6.6.16 (Weak type safety). Suppose Γ ` m and Γ,m ` δ and Γ gmain =
(~σ, τ) and Γ,m ` ~v : ~σ. Now if:

Γ, δ ` initial m gmain ~v _∗ S

then we have either:
1. Further reduction is possible, that is S _ S′ for some S′.
2. An undefined state is reached, that is S = S(P, undef φU , m).
3. A final state is reached, that is S = S(ε, return g v, m).

Proof. Using Theorems 6.6.14 and 6.6.13, and the fact that _ preserves validity of
gotos and throws. �

All typing judgments in this thesis have a corresponding type inference function.
These type inference functions have been formally defined in the Coq development but
are not used explicitly in this thesis. After all, the translation from CH2O abstract
C into CH2O core C (Section 7.2) ensures that each CH2O core C program that we
obtain from C sources is well-typed by construction (Theorem 7.2.5 on page 137).
Since these type inference functions either yield a unique type in case the input is
typeable or fail otherwise, they give rise to uniqueness of typing.
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Lemma 6.6.17. All typing judgments satisfy uniqueness of typing and have a cor-
responding type inference function.

Proof. Since all typing judgments are defined in a syntax directed way, type inference
functions can be defined in the obvious way. Uniqueness of typing is a corollary. �

6.7 Invariance under memory refinements

We show that the operational semantics is invariant under memory refinements. This
is a good sanity check to ensure that the operational semantics does not expose inter-
nal properties of the memory representation. Besides, it opens the door to reasoning
about other kind of program transformations in future work.

To prove invariance of the operational semantics under memory refinements, we
lift memory refinements m1 vfΓ m2 (Section 5.8) to state refinements S1 vfΓ S2 : gmain
where gmain denotes the main function. Refinement invariance is stated in terms of a
backward simulation because of non-determinism.

Theorem 6.7.1 (Refinement invariance). If Γ, δ ` S1 _ S2 and S′1 v
f
Γ S1 : gmain

and S1 is not an undef state, then there exists an f ′ ⊇ f and S′2 with:

S′1 S′2

S1 S2

vf
Γ vf′

Γ

Proof. By case analysis on the derivation of S1 _ S2. Steps involving memory
operations require invariance properties of the memory model. �

When considering the correctness proof of a compiler, the reductions on the bot-
tom of the diagram correspond to those of the target program, and the reductions on
the top correspond to those of the source program. The backward simulation has the
desired consequence that if the target program can make a step, then either:

• The source program is already in an undef state due to prior undefined behavior.
Since undefined behavior subsumes all behaviors, the target program may do
anything in this case.

• The source program can make a corresponding step.
The relation vfΓ goes from the top to the bottom because a compiler is allowed to

make the memory more defined. For example, it is allowed to assign a concrete value
to an object that has an indeterminate value in the source.

6.8 Executable semantics

The operational semantics of CH2O core C is defined as an inductively defined reduc-
tion relation Γ, δ ` _ : state→ state→ Prop. Since this relation is not executable,
we define a function execΓ,δ : state→ Pfin(state) that computes a corresponding finite
set of subsequent states up to renaming of object identifiers.
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Given that we have already defined basic operations, such as accessing the memory
and performing an operator, as Coq functions that are effectively executable, creating
an executable version of our operational semantics is largely straightforward. How-
ever, non-determinism makes the situation more complicated.

• Execution of expressions is non-deterministic. For example, the two assignments
in (*p = 1) + (*q = 2) may be executed in any order. This is described by
the following rule (rule 2a of Definition 6.5.8):

S(P, E [ e1 ], m1) _ S(P, E [ e2 ], m2)

Here, an expression is decomposed non-deterministically in an evaluation con-
text E and a subexpression e1.

• The choice of picking an unused object identifier for newly allocated memory
is non-deterministic. For example, this occurs in the rule for entering a block
scope with a local variable (rule 7a of Definition 6.5.8):

S(P, (↘, localτ s), m) _ S((localo:τ 2)P, (↘, s), allocΓ o (newΓ τ) false m)

Here, any unused object identifier o < dom m may be chosen.
The first source of non-determinism is finitary as expressions can only be decom-

posed in a finite number of ways. However, there is an infinite choice of picking fresh
object identifiers.

In order to deal with the first source of non-determinism, we define a function
redexes : expr → Pfin(ectx × expr) that decomposes an expression into a finite set of
all possible combinations of evaluation contexts and redexes. This function is defined
as expected, so we just state its defining property.

Lemma 6.8.1 (Soundness and completeness of redex splitting). We have:

(E , e) ∈ redexes e′ iff e′ = E [ e ] and e is a redex.

The notion of a redex is defined in Definition 6.4.6.

The second source of non-determinism is more difficult to deal with. Since there is
an infinite choice of fresh object identifiers, we cannot enumerate them all. Instead, we
will just pick one and prove that the semantics is invariant under renaming of object
identifiers. The corresponding clause of the executable semantics thus becomes:

execΓ,δ (S(P, (↘, localτ s),m)) := let o := fresh m in
{S((localτ :o 2)P, (↘, s), allocΓ o (newΓ τ) false m)}

By using a canonical object identifier for newly allocated memory, we have re-
moved the second source of non-determinism entirely.

Since the operational semantics is defined in an almost syntax directed fashion, the
exact definition of the executable semantics is very close to the operational semantics.
In the Coq development, we have implemented it in monadic style [Mog89, Wad90]
using the finite set monad.

Reducing the amount of non-determinism by using a canonical object identifier
for each newly allocated object does not affect the soundness theorem.
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6. CH2O core C

Theorem 6.8.2 (Soundness of the executable semantics). If S2 ∈ execΓ,δ S1, then
Γ, δ ` S1 _ S2.

Proof. By case analysis on S1 using Lemma 6.8.1. �

The converse of this theorem is not true. Given a reduction Γ, δ ` S1 _ S2 in the
operational semantics, we do not necessarily have S2 ∈ execΓ,δ S1 in the executable
semantics as well. That is because a different object identifier than the canonical one
could have been used. To prove completeness, we show that the semantics is invariant
under this choice.

Definition 6.8.3. A state S1 is an f -permutation of state S2, notation S1 ∼f S2,
if S2 is obtained by renaming the object identifiers in S1 with respect to f : index →
option index.

Fact 6.8.4. We have the following properties:
1. Identity: S ∼f S for any f with f x = x for each x ∈ dom S.
2. Composition: If S1 ∼f S2 and S2 ∼f ′ S3, then S1 ∼f ′◦f S3.
3. Symmetry: If S1 ∼f S2, then S2 ∼f−1 S1.
4. Weakening: If S1 ∼f S2 and f ′ ⊇ f , then S1 ∼f ′ S2.

We first prove that the operational semantics is invariant under permutations
(Lemma 6.8.5). Completeness is then obtained using this result combined with the
fact that a single step in the executable semantics yields a permutation (Lemma 6.8.6).

Lemma 6.8.5. If Γ, δ ` S1 _ S2 and S′1 ∼f S1, then there exists an f ′ ⊇ f and S′2
such that:

S′1 S′2

S1 S2

∼f ∼f′

Proof. By case analysis on the derivation of S1 _ S2. Steps involving memory
operations require commuting properties with respect to permutations. �

In our Coq development, permutations and memory refinements (Section 5.8) are
generalized to a single notion in order to avoid duplication of code. The previous
theorem therefore becomes an instance of Theorem 6.7.1. In this thesis we present
both notions separately for brevity’s sake.

Lemma 6.8.6. If Γ, δ ` S1 _ S2, then there exists an f and S′2 such that:

S′2

S1 S2

∼f
exec

Here, S1
exec
_ S′2 denotes S′2 ∈ execΓ,δ S1.
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Proof. By case analysis on the derivation of S1 _ S2. Lemma 6.8.1 is used for
expression steps, and steps involving allocation require properties about preservation
of allocΓ with respect to permutations. �

Theorem 6.8.7 (Completeness of the executable semantics). If Γ, δ ` S1 _∗ S2,
then there exists an f and S′2 such that:

S′2

S1 S2

∼f
exec

∗

∗

Proof. By induction from right to left on the derivation of S1 _∗ S2. The inductive
case is depicted in the following diagram:

S′′3

S′2 S′3

S1 S2 S3

∼f2

∼f1◦f2

∼f

exec

Lemma 6.8.6

∼f1

Lemma 6.8.4

exec

∗

∗IH
Lemma 6.8.5

�

Related work. There have been many efforts to define an executable version of
the semantics of a real-life programming language in a proof assistant.

Campbell has defined an executable semantics for CompCert C [Cam12]. He has
proven soundness and completeness with respect to a deterministic left-to-right oper-
ational semantics of CompCert C. Campbell’s executable semantics has been reimple-
mented by Leroy and is currently part of the official CompCert distribution. Leroy’s
reimplementation handles non-determinism and is thereby able to compute all possi-
ble behaviors of a given program. Our completeness proof is more complicated than
CompCert’s because our operational semantics involves infinitary branching whereas
non-determinism in CompCert C is at most finitarily branching.

Furthermore, Zhao et al. have created an executable semantics for a deterministic
fragment of LLVM [ZNMZ12], Bodin et al. have created an executable semantics
for Javascript [BCF+14], and Lochbihler and Bulwahn have created an executable
semantics for Java [LB11]. Lochbihler and Bulwahn use code extraction to generate
an executable semantics from an inductive definition. We have written our executable
semantics by hand due to excessive non-determinism in C.

There has also been related work on tool support for writing down programming
languages definitions in a domain specific language that can be automatically trans-
lated into an executable semantics, a formal definition in some proof assistant or a
LATEX document. See for example the OTT [SNO+07] and Lem [OBNS11] tools.
Since we wish to use advanced features of Coq, we have not used such tools.
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6.9 Evaluation of pure expressions

Expressions of CH2O core C contain constructs that involve side-effects. Side-effects
include assignments e1 α e2, function calls e(~e), and allocation allocτ e and dealloca-
tion free e of dynamically obtained memory. In this section we consider the subset of
expressions that is side-effect free. These expressions are called pure.

Pure expressions have three essential properties: they do not modify the memory,
they have a unique result, and their executions always terminate. These properties
allow us to define an evaluator [[ ]]Γ,ρ,m : expr → option lrval that fails in case of
undefined behavior, and yields the resulting address or value otherwise.

The pure expression evaluator will be used for two rather different purposes in
this thesis:

• Is will be used for constant expression evaluation during the translation from
CH2O abstract C into CH2O core C (Section 7.2). Constant expressions appear
for example in initializers of global variables and array sizes [ISO12, 6.6].

• It will be used to relate expressions to their results in our separation logic for
CH2O core C (Chapter 8). The assertion e ⇓ ν expresses that an expression e
evaluates to ν (Definition 8.2.7 on page 151).

In this section we will prove soundness and completeness of the expression evalua-
tor with respect to the operational semantics. Soundness is essential for the soundness
proof of separation logic. Soundness and completeness are desirable sanity properties
of constant expressions evaluation.

The evaluator is defined by structural recursion over the structure of expressions.
It yields ⊥ if the given expression is not pure or if it has undefined behavior.

Definition 6.9.1. Evaluation of constant expressions [[ ]]Γ,ρ,m : expr → option lrval
is defined as:

[[ xi ]] := topτ o if ρ(i) = (o, τ)
[[ [ν]∅ ]] := ν

[[ ∗e ]] := p if [[ e ]] = ptr p and m ` p alive
[[ &e ]] := ptr p if [[ e ]] = p

[[ load e ]] := m〈a〉Γ if [[ e ]] = a and forceΓ a m = m

[[ e .l r ]] := a〈r〉Γ if [[ e ]] = a and Γ ` a strict
[[ e .r r ]] := v[r]Γ if [[ e ]] = v

[[ e1[~r := e2] ]] := v1[~r := v2]Γ if [[ e1 ]] = v1, [[ e2 ]] = v2 and v1[~r]Γ , ⊥
[[}u e ]] := }u v if [[ e ]] = v and m ` (}u v) defined

[[ e1 } e2 ]] := v1 } v2 if [[ e1 ]] = v1, [[ e2 ]] = v2 and Γ,m ` (v1 } v2) defined
[[ (e1, e2) ]] := [[ e2 ]] if [[ e1 ]] , ⊥

[[ e1 ? e2 : e3 ]] :=
{

[[ e2 ]] if [[ e1 ]] = vb, m ` (zero vb) defined and ¬zero vb

[[ e3 ]] if [[ e1 ]] = vb, m ` (zero vb) defined and zero vb
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Evaluation of a load e expression has the side-condition forceΓ a m = m that arises
from the fact that a load is not necessarily pure. Although a load does not change
the memory contents, it may still affect the effective types and thereby change the
variants of unions in memory (see Definition 5.4.13 on page 78). The side-condition
forceΓ a m = m thus ensures that the given load is pure.

Soundness (Theorem 6.9.5) and completeness (Theorem 6.9.7) with respect to the
operational semantics correspond to the following statement:

[[ e ]]Γ,locals P,m = ν iff Γ, δ ` S(P, e, m) _∗P S(P, [ν]∅, m).

Soundness (left to right) holds unconditionally. If an expression e is not covered
by the evaluator, for example if it contains an assignment or a function call, we have
[[ e ]]Γ,locals P,m = ⊥, and so the statement holds trivially.

Completeness (right to left) only holds if the given expression is actually pure. For
example, expressions that contain an assignment may have a corresponding reduction
in the operational semantics, but are not covered by the evaluator. To that end, we
define a predicate that carves out the set of pure expressions.

Definition 6.9.2. The judgment e pure denotes that an expression e is considered
pure. It is inductively defined as:

xi pure [ν]∅ pure
e pure

(∗e) pure
e pure

(&e) pure
e pure

(e .r r) pure

e pure
(e .l r) pure

e1 pure e2 pure
e1[~r := e2] pure

e pure
}u e pure

e1 pure e2 pure
(e1 } e2) pure

e pure
(τ)e pure

e1 pure e2 pure
(e1, e2) pure

e1 pure e2 pure e3 pure
(e1 ? e2 : e3) pure

Fact 6.9.3. For each expression e, we have either:
1. It is a value, that is e = [ν]Ω.
2. It contains a redex, that is e = E [ e′ ] where e′ a redex.

Lemma 6.9.4. Given a redex e1 with [[ E [ e1 ] ]]Γ,ρ,m = ν, then there exists an e2 with:

Γ, ρ ` (e1,m)_h (e2,m) and [[ E [ e2 ] ]]Γ,ρ,m = ν

Theorem 6.9.5 (Soundness of expression evaluation). For each expression e we have:

[[ e ]]Γ,locals P,m = ν implies Γ, δ ` S(P, e, m) _∗P S(P, [ν]∅, m).

Proof. We use well-founded induction on the size of e. By Fact 6.9.3 we know that
e is either a value or contains a redex. In the first case, we are done. In the second
case, we use Lemma 6.9.4 to perform a reduction in the operational semantics and
proceed by induction. �

Lemma 6.9.6. If Γ, ρ ` (e1,m1)_h (e2,m2) and e1 pure, then:

m1 = m2 and [[ e1 ]]Γ,ρ,m1
= [[ e2 ]]Γ,ρ,m2

and e2 pure.
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6. CH2O core C

Theorem 6.9.7 (Completeness of pure expression evaluation). For each expression
e with e pure we have:

Γ, δ ` S(P, e, m) _∗P S(P, [ν]∅, m) implies [[ e ]]Γ,locals P,m = ν.

Proof. We use induction on the derivation Γ, δ ` S(P, e, m) _∗P S(P, [ν]∅, m). We
use Lemma 6.9.6 in each step. �
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Chapter 7
CH2O abstract C

This chapter describes the language CH2O abstract C whose syntax closely resembles
the structure of C source files. This language bridges the gap between our simplified
C language CH2O core C and actual C abstract syntax trees. CH2O abstract C uses
named variables instead of De Bruijn indices, supports global and static variables,
initializers, enum types, typedefs, and C-like looping statements. The semantics of
CH2O abstract C is specified by translation into CH2O core C.

This chapter furthermore presents an ‘interpreter’ based on our executable seman-
tics that allows one to test the CH2O semantics. This is not an ordinary interpreter
that executes a given program according to one interpretation of the C11 standard
and has arbitrary behavior when undefined behavior occurs. Instead, our interpreter
calculates all behaviors of a given program. When the program has undefined behav-
ior, our interpreter will explicitly state this undefinedness.

The CH2O interpreter is also different from compilers and interpreters that insert
tests for undefined behaviors as a protection. Those compilers and interpreters tend
to follow one specific execution order. Instead, the CH2O interpreter is not primarily
meant to be a debugging tool, but instead is considered an exploration tool, intended
to explore the implications of the C11 standard.

The CH2O interpreter consists of four phases to transform C source code into a
corresponding CH2O core C program:

C sources
Pre-

processed
C sources

FrontC
abstract
syntax

CH2O
abstract C

CH2O
core C

cpp

C
FrontC
OCaml

§ 7.4

OCaml

§ 7.2

Coq

The first phase uses the GNU C preprocessor (called cpp in the diagram) to per-
form macro expansion and inclusion of header files. The second phase then uses the
FrontC parser to transform the preprocessed C sources into an OCaml representation
of an abstract syntax tree.

The third phase is a thin layer of OCaml glue that transforms the abstract syntax
tree into a CH2O abstract C program. In turn, the fourth phase transforms the CH2O
abstract C program into a CH2O core C program. This CH2O core C program is run
using the executable semantics.
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7. CH2O abstract C

From a semanticist’s point of view, the interesting work is performed by the fourth
phase, which is written fully in Coq. Program extraction from Coq into OCaml [Let04]
is used to combine it with the other phases into a standalone tool.

Since the fourth phase is written in Coq, it is guaranteed to be well-defined.
That means, it always terminates and failure is tightly controlled by an error monad.
Moreover, we have used Coq to prove that whenever it succeeds to produce a CH2O
core C program, this program is well-typed.

Before we will present CH2O abstract C and its translation into CH2O core C we
consider a small example:
struct S { char c; short h; } s = { .h = CHAR_BIT };
static int i = sizeof(s);
int main() {

int j = 2L, *k = 0;
return j = (i = j++);

}

After parsing and the translation of the AST into CH2O abstract C, we obtain a
sequence of declarations Θ. These declarations correspond closely to the C sources
and still contain implementation-defined constructs such as the sizeof expression:

Θ := (S, struct [ char c, short h ]),
(s, global {.h := char bits} : struct S),
(i, global (sizeof (typeof s)) : static int),
(main, fun (

int j := constlong 2 ; int k := constint 0 ;
return j := (i := (j + := constint 1))

) : ε→ int)

The translation from CH2O abstract C transforms the declarations Θ into a typing
environment Γ, an initial memory m and a CH2O core C program δ:

Γ := S : [ signed char, signed short ], main : (ε, signed int)
m := 0 7→ ofvalΓ (♦(0, 1)32) (structS [ intsigned char 0, intsigned short 8 ]),

1 7→ ofvalΓ (♦(0, 1)32) (intsigned int 4)

δ := main 7→


localsigned int (x0 := intsigned long 2 ;

localsigned int∗ (x0 := ptr (NULL (signed int)) ;
return (x1 := (topsigned int 1 := (x1 + := intsigned int 1)))

)
)


As shown, global variables are translated into memory indices, named variables

are translated into De Bruijn indices, and various type annotations have been added.
Moreover, implementation-defined constructs such as the signedness of char and the
value of the sizeof have been concretized. Type soundness of the translation guaran-
tees that we have ` Γ and Γ ` m and Γ,m ` δ.
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7.1 Syntax

This section defines the language CH2O abstract C, which is called that way because
its syntax is very close to C abstract syntax trees. The semantics will be defined in
Section 7.2 through a translation into CH2O core C.

Definition 7.1.1. CH2O abstract C integer types are inductively defined as:

k ∈ cintrank ::= char | short | int | long | long long | ptr
si ∈ signedness ::= signed | unsigned
τi ∈ cinttype ::= si? k

These integer types differ in two ways from the ones of CH2O core C. Signedness
is optional and ranks are syntactic instead of abstract entities of an implementation
environment. Integer types are signed by default [ISO12, 6.2.5p4], with the exception
of char, whose signedness is implementation-defined [ISO12, 6.2.5p15].

Definition 7.1.2. CH2O abstract C types, expressions, reference segments and ini-
tializers are mutually inductively defined as:

τ ∈ ctype ::= void | def x | τi | τ∗ |
#     »
τ x? → τ | τ [e]

| struct x | union x | enumx | typeof e
e ∈ cexpr ::= x | constτi z | string ~z (variables, integer and string constants)

| sizeof τ | alignof τ | offsetof τ x
| τ min | τ max | τ bits (implementation-defined constants)
| &e | ∗e (address of and dereference operator)
| e . x (indexing of structs and unions)
| e1 α e2 (assignments)
| e(~e) | (function calls)
| allocτ e | free e (allocation and deallocation)
| }u e | e1 } e2 | (τ)I (unary, binary and cast operators)
| e1 && e2 | e1 || e2 | (e1, e2) | e1 ? e2 : e3 (sequenced operators)

r ∈ crefseg ::= [e] | .x
I ∈ cinit ::= e | { #            »

#»r := I}

Types and expressions of CH2O abstract C are mutually inductive. Most notably,
the size of an array type τ [e] may be specified by an expression rather than an integer
literal. These expressions are constant expressions [ISO12, 6.6] and are replaced by
their actual values during the translation into CH2O core C.

Typedefs are abbreviations of types that can be declared throughout the program.
The following code introduces string as an abbreviation of char*:

typedef char *string;
int length(string p);
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The type construct def x is used to refer to a typedef named x. The CH2O abstract
C type of the function length is thus [ (def string) p ]→ int.

Enum types are lists of integer constants. For example:

enum color {
red, green, // red has value 0, green has value 1
blue = green + 3, // blue has value 4
yellow // yellow has value 5

} x = red;

The enum declaration introduces integer constants red, green, blue and yellow.
The first constant has value 0, the second 1, and so on. Constants can be given an
explicit value after which the progression continues.

Expressions contain constants that denote implementation-defined integer values.
These constants are as follows:

CH2O C11 Value it denotes
sizeof τ sizeof(τ) size of a type τ
alignof τ _Alignof(τ) alignment of a type τ
offsetof τ x offsetof(τ, x) offset of a field x in a struct or union τ
τ min SHRT_MIN, INT_MIN, etc. minimal value of an integer type τ
τ max INT_MAX, UINT_MAX, etc. maximal value of an integer type τ
τ bits CHAR_BIT number of bits of an integer type τ

We do not use the preprocessor to substitute these constructs for concrete values,
but instead let the translation into CH2O core C handle this. This translation fetches
the concrete value from the used implementation environment.

In CH2O abstract C, as well as in actual C, the integer literal constτi 0 is overloaded
to denote both the NULL pointer and the integer constant 0 [ISO12, 6.3.2.3p3]. A string
literal string ~z designates a character arrays with read only permission.

Definition 7.1.3. CH2O abstract C statements are inductively defined as:

sto ∈ cstorage ::= static | extern | auto
s ∈ cstmt ::= e | return e? (expression and return statements)

| goto x | x : s (goto and label)
| break | continue (break and continue)
| {s} (block scope)
| #  »
sto τ x := I? ; s (local variable declaration)
| typedef x := τ ; s (local typedef declaration)
| skip | s1 ; s2 (the skip statement and composition)
| while(e) s | do s while(e) (while loops)
| for(e1 ; e2 ; e3) s (for loop)
| if (e) s1 else s2 (conditional statement)
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The intended semantics of most statements is as expected. Block scopes {s} are
related to scoping of local variable and typedef declarations. These declarations may
be shadowed, but only if a new scope is opened.

Variable declarations with extern storage bring a global variable into the current
scope. These declarations do not have to be in the right order:

int f(int x) {
{ extern int x;

printf("%d\n", x); // x refers to the global variable
}
return x; // x refers to the function parameter

}
int x = 10;

Definition 7.1.4. CH2O abstract C declarations are inductively defined as:

d ∈ decl ::= struct #  »τ x | union #  »τ x (struct and union declarations)
| enum #             »

x := e? : τi (enum declaration)
| typedef τ (global typedef declaration)
| global I? : #  »

sto τ (global variable declaration)
| fun s : #  »

sto τ (function declaration)

Definition 7.1.5. CH2O abstract C programs are defined as:

Θ ∈ decls := list (string × decl).

Similar to C source files, a CH2O abstract C program consists of a mixed sequence
of declarations:

• The declarations (s, struct #  »τ x) and (u, union #  »τ x) introduce a struct or union
type with fields ~x of type ~τ .

• The declaration (t, typedef τ) introduces a typedef named t that abbreviates τ .
• The declaration (u, enum #             »

x := e? : τi) introduces an enum type named u that
designates an integer type τi. This declaration furthermore introduces integer
constants ~x whose values are specified by optional constant expressions ~e? . The
type τi is made explicit because it is implementation-defined and may differ for
each declared enum type [ISO12, 6.7.2.2p4].

• The declaration (x, global I? : #  »
sto τ) introduces a global variable named x

whose value is specified by the initializer I? .
• The declaration (f, fun s : #  »

sto τ) introduces a function named f of type τ with
body s. An incomplete function should be declared as a global variable without
an initializer.

Struct, union and enum types have a different namespace than other declarations.
Note that C allows struct, union and enum declarations intermingled with expressions
and statements whereas CH2O abstract C does not support that yet.
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7.2 Translation into CH2O core C

This section describes the translation from CH2O abstract C into CH2O core C. This
translation turns a sequence of declarations Θ ∈ decls into:

• An environment Γ ∈ env that assigns fields to struct and union names, as well
as argument and return types to function names.

• An initial memory m ∈ mem that contains the global and static variables, as
well as only storage for each string literal.

• A CH2O core C program δ ∈ funenv that assigns function bodies to all declared
functions.

The translation will fail with an error message in case the given CH2O abstract
C program is ill-typed, uses undeclared variables, or has other kinds of errors. Type
soundness of the translation guarantees that we have ` Γ and Γ ` m and Γ,m ` δ in
case the translation succeeds. The translation into CH2O core C is defined using a
combined error state monad.

Definition 7.2.1. Given a set of states S and a set of errors E, the combined error
state monad EES is defined as:

EES (A) := S → E + (A× S).

The monadic operations are defined as expected.

Statefulness is used to keep track of the initial memory among other things. For
example, statements may contain static variable declarations that require the initial
memory to be extended. Consider the following program:
int f() { static int x = 10; return x++; } // x retains its value
int main() { return (f(), f(), f()); } // returns 12

The static variable x acts like a global variable that is scoped to the function f.
The translation of static variable declarations therefore extends the initial memory
with an object for the static variable.

Definition 7.2.2. A translation state S ∈ tstate consists of:
1. A finite map tag→fin typedecl of type declarations, where:

typedecl ::= struct #  »τ x | union #  »τ x | enum τi.

2. An initial memory m ∈ mem.
3. A finite map string→fin globaldecl of global declarations, where:

globaldecl ::= global sto o τ β | fun sto ~τ τ s? | typedef τp | enumval τi z.

The Boolean β denotes whether a global variable has been initialized or not.

Definition 7.2.3. The CH2O abstract C translation monad M is defined as:

M(A) := E string
tstate(A).
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In the Coq development we have defined the following monadic translations for
each syntactical category of CH2O abstract C:

to expr : localenv→ cexpr→M(expr × lrtype)
to initexpr : localenv→ type→ cinit→M(expr)

to type : localenv→ ctype→M(type)
to ptrtype : localenv→ ctype→M(ptrtype)

to stmt : localenv→ type→ cstmt→M(stmt× (bool× option type))

These functions add necessary declarations to the translation state and yield the
corresponding CH2O core C construct. The type localenv describes local variable and
typedef declarations.

The function to expr infers the type of an expression and determines whether it is
an l-value or r-value. Evaluation of constant expressions [ISO12, 6.6] is performed to
convert size expressions of arrays such as unsigned char[10 * sizeof(int)] into
integer values, among other things. This conversion is performed using the evaluator
for pure expressions (Section 6.9), which is proven sound and complete with respect
to the operational semantics (Theorems 6.9.5 on page 129 and 6.9.7 on page 130).

The function to stmt takes the return type of the C function and inserts casts
to make return statements well-typed when necessary. Whenever a block scope or
local declaration is occurred, it will extend the local environment. Static and external
variable declarations extend the initial memory.

In the Coq development we have defined the following functions to translate entire
CH2O abstract C programs:

alloc decls : decls→M(1)
alloc program : decls→M(1)

The function alloc decls processes a sequence of declarations and adds each decla-
ration to the translation state. In turn, the function alloc program also checks whether
no functions are left without a corresponding body.

Definition 7.2.4. The functions env : tstate → env, mem : tstate → mem and
funenv : tstate→ funenv extract the typing environment, initial memory, and function
environment from a given translation state.

Theorem 7.2.5 (Type soundness). If the translator succeeds, then the results are
well-typed. That is, if alloc program Θ = return () S, then we have:

` env S and env S ` mem S and env S,mem S ` funenv S.

7.3 Machine architectures

The entire CH2O semantics is parameterized by an arbitrary implementation envi-
ronment that describes implementation-defined attributes such as the sizes and en-
dianness of integers, and the layout of struct and union types (see Definition 3.4.1
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on page 48). However, to use the CH2O semantics to execute a concrete program we
have to assign concrete values to implementation-defined attributes.

The CH2O interpreter provides various flags that can be used to execute a program
using different implementation-defined attributes. These flags are:

1. Big or little endian.
2. ILP32, LLP64 (64 bit Windows) or LP64 (64 bit Unix-derivatives) data model.
3. Signed or unsigned char.
Based on these flags we construct a corresponding implementation environment.

The most interesting part of this construction is the layout of types. The alignment
and size of each base type is specified by the following table:

char short int long long long Pointers
ILP32 1 2 4 4 8 4
LLP64 1 2 4 4 8 8
LP64 1 2 4 8 8 8

These constants are lifted to full types following standard application binary inter-
faces (ABI) conventions [MHJM13]. Structs and unions have the alignment of their
most strictly aligned field, and each field of a struct or union has the lowest available
offset that is correctly aligned.

7.4 The CH2O interpreter

In order to compute the behaviors of a C program, we lift the single step executable
semantics exec : state → Pfin(state) to a function that computes all execution orders
of a given program, and to a function that computes a specific execution order of a
given program. Executions are represented as streams.

Definition 7.4.1. The function allΓ;δ : Pfin(state)→ (Pfin(state)× Pfin(state))ω com-
putes the stream of reachable states. It is coinductively defined as:

allΓ;δ S := (S′, N) (allΓ;δ S′)

where S′ := {S′ | S′ ∈ execΓ,δ S, S ∈ S} and N := {S | execΓ,δ S = ∅, S ∈ S}.

The nth element (S, N) of the stream (allΓ;δ I) contains the intermediate states
S ⊆ state and normal forms N ⊆ state after n steps starting in initial states I ⊆ state.

Definition 7.4.2. Given a selection function f : P,∅fin (state) → state with f S ∈ S
for each ∅ , S ⊆ state, the function someΓ;δ f : state → (state + state)ω computes a
specific execution stream. It is coinductively defined as:

someΓ;δ f S :=
{
Sr Sr . . . if execΓ,δ S = ∅
(f S)l (someΓ;δ f (f S)) if S = execΓ,δ S , ∅
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7.4. The CH2O interpreter

Given a selection function f : P,∅fin (state)→ state that specifies which redex should
be chosen, the stream (someΓ;δ f I) represents a trace starting in I ∈ state. In the
disjoint union (state + state), the left variant is an intermediate state, while the right
variant is a normal form. Once in normal form, the stream stays constant.

The translator from CH2O abstract C into CH2O core C, the executable seman-
tics, and the above functions are all implemented in Coq. We use Coq’s extraction
mechanism [Let04] to extract these functions into OCaml. The extracted code is used
as part of an interpreter that consists of the following phases:

C sources
Pre-

processed
C sources

FrontC
abstract
syntax

CH2O
abstract C

CH2O
core C

cpp

C
FrontC
OCaml

§ 7.4

OCaml

§ 7.2

Coq

Since the syntax of CH2O abstract C is reasonably close to the FrontC abstract
syntax, the translation from FrontC abstract syntax trees to CH2O abstract C is
extremely straightforward. If the given program uses a feature that is not supported
by CH2O abstract C, it produces an error message.

The interpreter, called ch2o, has three modes: first execution order, random
execution order (-r), and all possible execution orders (-t). Consider:

int f(int *p, int z) { return *p = z; }
int main() {

int x, y = f(&x, 3) + f(&x, 4) + f(&x, 3);
return x;

}

The output of this program using ch2o -t is:

......+;!|???***%%%%%%%****??|||?????|||||!;:::;;!!;::++++--,,,,,,
,,,,,,,,
"" 3
"" 4

In the output, the density of the symbols indicate the size of the reachable state
sets. For example, “,” means 2 states, and “%” means between 1025 and 4096 states.
The strings ""3 and ""4 indicate the possible behaviors of the program: it either has
the empty output and returns 3, or it has the empty output and returns 4. Although
x is modified multiple times in the same expression, this program has defined behavior
because function calls have a sequence point.

If a given program has undefined behavior, ch2o will explicitly state this undefined
behavior. Consider:

int main() {
int x = 10;
(x = 1) + x;
return printf("%d\n", x);

}
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The output of this program using ch2o -t is:

....,......,-,,
undef
.............,......-+++-,,,,,,,,-::;;;::-,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,-++-,,,,,,,,,,,,,,,.....................
"1\n" 2

This program has two possible behaviors. Either the assignment x = 1 is executed
first, in which case reading from x has undefined behavior due to a sequence point
violation. Alternatively, the assignment is executed after the read, in which case the
string "1\n" is printed and 2 is returned.

Although C is not confluent, the size of the reachable state set reduces quickly in
the absence of function calls. Consider a (simplified) reduction of *p + *p:

S0 = { *p + *p }

S1 = { 10 + *p *p + 10 }

S2 = { 20 }

Contrary to λ-calculus and functional programming languages, redexes cannot be
duplicated in C. Hence, it is easy to observe that the number of steps on the left hand
side is equal to the number of steps on the right hand side.

Consequently, in order to allow for feasible exploration of non-determinism we do
not need to keep track of the entire reachable state set but just of the set of reachable
states Sn in exactly n steps. In the Coq development we have implemented allΓ;δ
using verified hashsets to filter out duplicates in our representation of finite sets. The
implementation of hashsets in Coq will be described in Chapter 9.

7.5 Benchmarks

The CH2O interpreter makes it possible to test the CH2O semantics against actual C
source files. Our interpreter is meant to be an exploration tool, intended to explore the
implications of the C11 standard, instead of being a debugging tool meant to execute
large programs written in C. For exploration purposes, one typically considers small
programs that exercise corner cases. This section describes the results of testing our
semantics against a small test suite for both defined and undefined behavior, and
compares the efficiency of the CH2O interpreter against similar tools.

In order to test the CH2O semantics we need the printf function, which prints
a string to the standard output and returns the length of the printed string [ISO12,
7.21.6.3]. Since variadic function and I/O are not yet part of the CH2O semantics, we
have temporarily implemented printf using a trick in the OCaml layer that translates
FrontC abstract syntax into CH2O abstract C.

The OCaml layer introduces a separate function declaration for each printf call.
The introduced function computes the length of the resulting string without actual
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side-effects. When a call to the introduced function occurs during program execution,
the OCaml loop handles the actual print. Consider:

int f(int x) { return printf("%d %d\n", x, x*x); }

The above excerpt is translated into the following sequence of CH2O abstract C
declarations where i is a unique identifier for the particular printf:

(printf i, fun (compute the length of “x1 x2\n”) : [ intx1, intx2 ]→ int),
(f, fun (return printf i(x, x * x)) : intx→ int)

The function printf i does not have side-effects in terms of the CH2O semantics.
Whenever the state S(P, call printf i ~v, m) occurs in the stream of intermediate
states, the OCaml loop will perform the actual print. We furthermore made a small
modification to the interpreter, as we store the printed results with the CH2O states.
This has not affected the CH2O core semantics.

We have tested the CH2O semantics against a small test suite for both defined and
undefined behavior1. This test suite is partially based on subtle examples from the
C standard [ISO12], C defect reports [ISO], and tests by Ellison and Roşu [ER12b].
For the tests by Ellison and Roşu we have obtained the following results:

Agree Disagree Unsupported
Defined behavior 181 9 undefined in CH2O 65
Undefined behavior 123 0 defined in CH2O 66

Unsupported programs make use of features not supported by CH2O like floats,
bitfields, threads, the register, const or volatile keyword.

The CH2O semantics assigns undefined behavior to eight tests for defined behav-
ior. The reasons for these differences between Ellison and Roşu and us include:

• Casting an integer to a signed type that cannot represent the result of the cast
yields implementation-defined or undefined behavior in CH2O whereas Ellison
and Roşu assign a specific value. The C11 standard states that either a signal
is raised, or that the resulting value is implementation-defined [ISO12, 6.3.1.3].

• CH2O assigns undefined behavior to corner cases related to the sequence point
restriction that have defined behavior in the semantics of Ellison and Roşu. We
have discussed these differences in Section 6.4.

Since we have formally proven many properties of our language as part of published
papers [KW13, Kre13, Kre14a, Kre14b] before we implemented the interpreter, it
comes to no surprise that we we did not discover many fundamental bugs. Bugs that
we discovered were mostly related to forgotten implicit casts, too lenient restrictions
on integer operations, or absent checks in the translation to CH2O core C.

Although our executable semantics is a naive implementation that enumerates all
paths through the operational semantics, and reuses our inefficient memory model,
it is still efficient enough explore the entire state space of small programs. It is much

1Available online at https://github.com/robbertkrebbers/ch2o/tree/master/tests/.
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faster than the semantics of Ellison and Roşu. For example, calculating all execution
orders of the following seemingly innocent but very non-deterministic program takes
7s using our semantics and 16m using the semantics of Ellison and Roşu.

int x = 10, *p = &x;
return *p + *p + *p + *p + *p + *p;

This major difference is explained by the fact that we avoid the overhead of a
rewriting framework like the K-framework. Our interpreter is a functional program
written in Coq, extracted to OCaml using Coq’s extraction mechanism, and then
compiled to native code using the optimizing OCaml compiler.

The executable semantics of CompCert is also written in Coq and extracted to
OCaml. We compared the efficiency on the programs display in Figure 7.1:

CH2O CompCert
fib_5.c 0.6s 64.0s
fib_6.c 10.4s 241.0m
subexprs_6.c 7.4s 0.7s
subexprs_4_100.c 6.6s 2.7s
subexprs_4_1000.c 60.5s 43.4s
big_array_1000.c, first execution order 7.5s 0.0s
big_array_1000.c, all execution orders 58.1s 0.7s

The differences in efficiency can be explained as follows:
• Program states of CH2O are bigger than those of CompCert. This is because we

tag each individual byte in memory with a rich permission whereas CompCert
tags each byte with a much coarser permission. Bigger program states seem to
make CH2O overall slower.

• Due to the complex nature of the CH2O memory model, our interpreter is slower
than CompCert’s on programs with large arrays such as big_array_1000.c. We
represent arrays using lists, whereas CompCert uses maps that have operations
with logarithmic time complexity.

• CompCert keeps track of the entire reachable state set, whereas we only keep
track of the reachable states after n steps. Since redexes cannot be duplicated
in C (unlike languages based on λ-calculus), our approach is a better choice.
The program fib_n.c is an example where our approach performs an order
of magnitude better. Bigger values for n in subexprs_4_n.c introduce more
non-determinism and bring the timings of CH2O closer to those of CompCert.

There are many directions for future research to improve the efficiency. First of
all, our executable semantics uses a memory model that is defined with clarity instead
of efficiency in mind. It would therefore be useful to define an isomorphic version of
our memory model that uses more efficient data structures. Since we use a proof
assistant, both versions can coexist and can be proven to be isomorphic.

Second of all, in both CompCert and CH2O, non-constant expressions without
side-effects are executed non-deterministically as well as in small-steps. It would be
interesting to investigate whether we could use a deterministic evaluator to reduce
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The files fib_n.c for any n ∈ N:

int x;
int set_x(int y) { x = 1; return y; }
int two_unspec() { x = 0; return x + set_x(1); }
int add_zero(int y) { x = 0; return y - x + set_x(0); }
int fib(int y) {

if (y > 3) return fib(y - 2) + add_zero(fib(y - 1));
else if (y == 3) return two_unspec();
else return 1;

}
int main() { printf("Fibonacci n = %d\n", fib(n)); return 0; }

(By Jones, see http://lists.cs.uiuc.edu/pipermail/c-semantics/2011-June/
000034.html)

The file subexprs_6.c:

int main() {
int x = 10, *p = &x;
return *p + *p + *p + *p + *p + *p;

}

The files subexprs_4_n.c for any n ∈ N:

int main() {
int x = 10, *p = &x;
for (int i = 0; i < n; i++) *p + *p + *p + *p;
return 0;

}

The file big_array_1000.c:

int main() {
int a[1000];
for (int i = 0; i < 1000; i++) a[i] = i;
return a[10];

}

Figure 7.1: Overview of benchmark programs.

subexpressions without side-effects. Confluence results for other classes of C expres-
sions as proven by Norrish [Nor99] may be helpful too.

Third of all, one may apply ordinary program transformations that preserve all
behaviors (that is, do not remove undefined behaviors).
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Chapter 8
Separation logic

This chapter describes an axiomatic semantics in the form of a separation logic for
CH2O core C, which has been proven sound with respect to the operational seman-
tics (Theorem 8.6.13). It correctly deals with features of C that are not considered
by others, such as non-deterministic expressions evaluation in the presence of side-
effects and block scope local variables in the presence of non-local control flow. Our
treatment of the former is inspired by concurrent separation logic [O’H04].

Judgments of a conventional axiomatic semantics for partial program correctness
are Hoare triples {P} s {Q} where s is a statement, and P and Q are assertions called
the pre- and postcondition. The intuitive reading of a Hoare triple {P} s {Q} is: if P
holds for the memory before executing s, and execution of s terminates, then Q holds
for the memory afterwards. As is common in separation logic [ORY01], our Hoare
triples also ensure the absence of undefined behavior.

The axiomatic semantics for CH2O core C has separate judgments for expressions
(Definition 8.4.4) and statements (Definition 8.5.3). Expression judgments are triples
`Γ,δ {P} e {Q} where Γ ∈ env is a type environment and δ ∈ funenv contains the
bodies of all declared functions. The postcondition Q is a function from values to
assertions to account for the fact that an expression not only performs side-effects,
but primarily yields a value. The judgment `Γ,δ {P} e {Q} ensures that if e yields an
address or value ν ∈ lrval, then Qν holds afterwards.

Statement judgments are sextuples R, J, T `Γ,δ {P} s {Q}. The right hand side is
a traditional Hoare triple, and the environments deal with non-local control:

• The environment R specifies the conditions for returns.
• The environment J specifies the conditions for gotos.
• The environment T specifies the conditions for break and continue.
We define the assertions of our axiomatic semantics through a shallow embedding

(Sections 8.2 and 8.3). In order to do so, we show that the CH2O memory model is a
separation algebra (Section 8.1). We then present the inference rules for expressions
(Section 8.4) and statements (Section 8.5) and prove soundness with respect to the
operational semantics (Section 8.6). Finally, we extend our separation logic with some
additional features to make it more suitable for program verification (Section 8.7) and
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conclude the chapter by verifying the C source code of a version of Euclid’s algorithm
for computing the greatest common divisor (Section 8.8).

In the Coq development, we have also defined the judgments `Γ,δ {P} e {Q} and
R, J, T `Γ,δ {P} s {Q} through a shallow embedding. For clarity of presentation, we
explicitly present these judgments as an inference system in this thesis.

8.1 The memory as a separation algebra

In this section we show that the CH2O memory model is a separation algebra, and that
the separation algebra operations interact appropriately with the memory operations
that we have defined in Chapter 5.

Section 8.2 will represent the assertions of our separation logic through a shallow
embedding, which roughly means that assertions P,Q : mem → Prop are predicates
over memory states1. Recall that using a shallow embedding the separating conjunc-
tion ∗ of separation logic is defined as follows [ORY01]:

P ∗ Q := λm .∃m1m2 .m = m1 ∪ m2 ∧m1 ⊥ m2 ∧ P m1 ∧Qm2.

The separating conjunction P ∗ Q allows one to subdivide the memory into two
disjoint parts such that P holds in one part and Q in the other part. Subdivision
is described using the separation algebra operation ∪ : mem → mem → mem. This
operation should enjoy two important properties:

• It should allow one to subdivide individual objects into multiple copies of the
same object with lower permissions. In terms of the singleton assertion this
means (see Lemma 8.3.6 for the actual result):

(a γ1∪γ27−−−−→ v) ↔ (a γ17−→ v) ∗ (a γ27−→ v)

The singleton assertion a
γ7−→ v denotes that the memory consists of exactly one

object with value v at address a that has permission γ (Definition 8.3.3). The ∪
operation corresponds to the separation algebra on permissions, which we have
defined in Chapter 4.

• It should allow one to subdivide compound objects such as arrays, structs and
unions into multiple parts. In terms of the singleton assertion this means for
the case of arrays (see Lemma 8.3.5 for the actual result):

(a γ7−→ array [ v0, . . . , vn−1 ]) ↔ (a[0] γ7−→ v0) ∗ · · · ∗ (a[n− 1] γ7−→ vn−1).

In order to define the separation algebra relations and operations on memories,
we first define these on memory trees. Memory trees do not form a separation algebra
themselves due to the absence of a unique ∅ element (memory trees have a distinct
identity element newτΓ for each type τ , see Definition 5.4.9 on page 76). The separation
algebra of memories is then defined by lifting the definitions on memory trees to
memories (which are basically finite functions to memory trees).

1The actual definition is more complicated because we also have to deal with typing environments
and the stack, see Definition 8.2.1.
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Definition 8.1.1. The predicate valid : mtree→ Prop is inductively defined as:

valid ~b
valid (baseτb

~b)
valid ~w

valid (arrayτ ~w)
valid ~w valid

#»

~b
valid (structt

#   »

w~b)

valid w valid ~b ¬unmapped (w ~b)
valid (uniont (i, w, ~b))

valid ~b

valid (uniont ~b)
Fact 8.1.2. If Γ,∆ ` w : τ , then valid w.

The valid predicate specifies the subset of memory trees on which the separation
algebra structure is defined. The definition basically lifts the valid predicate from the
leaves to the trees. The side-condition ¬unmapped (w ~b) on uniont (i, w, ~b) memory
trees ensures canonicity, unions whose permissions are unmapped cannot be accessed
and are thus kept in unspecified variant. Unmapped unions uniont ~b can be combined
with other unions using ∪. The rationale for doing so will become clear in Section 8.3
where we define the singleton assertion.

Definition 8.1.3. The relation ⊥ : mtree→ mtree→ Prop is inductively defined as:

~b1 ⊥ ~b2

baseτb
~b1 ⊥ baseτb

~b2

~w1 ⊥ ~w2
arrayτ ~w1 ⊥ arrayτ ~w2

~w1 ⊥ ~w2
# »

~b1 ⊥
# »

~b2

structt
#        »

w1~b1 ⊥ structt
#        »

w2~b2

w1 ⊥ w2 ~b1 ⊥ ~b2 ¬unmapped (w1 ~b1) ¬unmapped (w2 ~b2)
uniont (i, w1, ~b1) ⊥ uniont (i, w2, ~b2)

~b1 ⊥ ~b2

uniont ~b1 ⊥ uniont ~b2

w1 ~b1 ⊥ ~b2 valid w1 ¬unmapped (w1 ~b1) unmapped ~b2

uniont (i, w1, ~b1) ⊥ uniont ~b2

~b1 ⊥ w2 ~b2 valid w2 unmapped ~b1 ¬unmapped (w2 ~b2)
uniont ~b1 ⊥ uniont (i, w2, ~b2)

Definition 8.1.4. The operation ∪ : mtree→ mtree→ mtree is defined as:

baseτb
~b1 ∪ baseτb

~b2 := baseτb (~b1 ∪ ~b2)
arrayτ ~w1 ∪ arrayτ ~w2 := arrayτ (~w1 ∪ ~w2)

structt
#        »

w1~b1 ∪ structt
#        »

w2~b2 := structt (
#        »

w1~b1 ∪
#        »

w2~b2)
uniont (i, w1, ~b1) ∪ uniont (i, w2, ~b2) := uniont (i, w1 ∪ w2, ~b1 ∪ ~b2)

uniont ~b1 ∪ uniont ~b1 := uniont (~b1 ∪ ~b2)
uniont (i, w1, ~b1) ∪ uniont ~b2 := uniont (i, w1, ~b1) ∪̂ ~b2

uniont ~b1 ∪ uniont (i, w2, ~b2) := uniont (i, w2, ~b2) ∪̂ ~b1

In the last two clauses, w ∪̂ ~b is a modified version of the memory tree w in which
the elements on the leaves of w are zipped with ~b using the ∪ operation on permission
annotated bits (see Definitions 5.4.16 on page 79 and 4.4.3 on page 57).
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The definitions of valid, ⊥ and ∪ on memory trees satisfy all laws of a separation
algebra (see Definition 4.2.1 on page 52) apart from those involving ∅. We prove the
cancellation law explicitly as it involves the aforementioned side-conditions on unions.

Lemma 8.1.5. If w3 ⊥ w1 and w3 ⊥ w2 then:

w3 ∪ w1 = w3 ∪ w2 implies w1 = w2.

Proof. By induction on the derivations w3 ⊥ w1 and w3 ⊥ w2. We consider one case:

uniont (i, w3, ~b3) ⊥ uniont (i, w1, ~b1) uniont (i, w3, ~b3) ⊥ uniont ~b2

uniont (i, w3, ~b3) ∪ uniont (i, w1, ~b1) = uniont (i, w3, ~b3) ∪ uniont ~b2

uniont (i, w1, ~b1) = uniont ~b2

Here, we have w3 ~b3 ∪ w1 ~b1 = w3 ~b3 ∪ ~b2 by assumption, and therefore w1 ~b1 = ~b2
by the cancellation law of a separation algebra. However, by assumption we also have
¬unmapped (w1 ~b1) and unmapped ~b2, which contradicts w1 ~b1 = ~b2. �

Definition 8.1.6. The separation algebra of memories is defined as:

valid m := ∀ow µ .mo = (w, µ)→ (valid w and not w all (∅, E))
m1 ⊥ m2 := ∀o . P m1m2 o

m1 ∪ m2 := λo . f m1m2 o

P : mem → mem → index → Prop and f : mem → mem → index → option mtree are
defined by case analysis on m1 o and m2 o:

m1 o m2 o P m1m2 o f m1m2 o

(w1, µ) (w1, µ) w1 ⊥ w2, not w1 all (∅, E) and not w2 all (∅, E) (w1 ∪ w2, µ)
(w1, µ) ⊥ valid w1 and not w1 all (∅, E) (w1, µ)
⊥ (w2, µ) valid w2 and not w2 all (∅, E) (w2, µ)
τ1 ⊥ True τ1
⊥ τ2 True τ2
⊥ ⊥ True ⊥

otherwise False ⊥

The definitions of the omitted relations and operations are as expected.

The emptiness conditions ensure canonicity. Objects that solely consist of inde-
terminate bits with ∅ permission are meaningless and should not be kept at all. These
conditions are needed for cancellativity.

Fact 8.1.7. If Γ,∆ ` m, then valid m.

Lemma 8.1.8. If m1 ⊥ m2, then:

Γ,∆ ` m1 ∪ m2 iff Γ,∆ ` m1 and Γ,∆ ` m2.
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Notice that the memory typing environment ∆ is not subdivided among m1 and
m2. Consider the memory state corresponding to int x = 10, *p = &x:

ox 7→ w, op 7→ • = ox 7→ w ∪ op 7→ •

Here, w is the memory tree that represents the integer value 10. The pointer on
the right hand side is well-typed in the memory environment ox 7→ w, op 7→ • of the
whole memory, but not in op 7→ •.

We prove some essential properties about the interaction between the separation
algebra operations and the memory operations. These properties will be used in the
soundness proof of our separation logic in Section 8.6.

Lemma 8.1.9 (Preservation of lookups). If Γ,∆ ` m1 and m1 ⊆ m2, then:

m1〈a〉Γ = v implies m2〈a〉Γ = v

writableΓ a m1 implies writableΓ a m2

The relation ⊆ is part of a separation algebra (see Definition 4.2.1 on page 52). We
have m1 ⊆ m2 iff there is an m3 with m1 ⊥ m3 and m2 = m1 ∪ m3.

Lemma 8.1.10 (Preservation of disjointness). If Γ,∆ ` m then:

m ≤⊥forceΓ a m if Γ,∆ ` a : τ and m〈a〉Γ , ⊥
m ≤⊥m〈a := v〉Γ if Γ,∆ ` a : τ and writableΓ a m

m ≤⊥lockΓ a m if Γ,∆ ` a : τ and writableΓ a m

m ≤⊥unlock Ω m if Ω ⊆ locks m

The relation ≤⊥ is defined in Definition 4.6.3 on page 59. If m ≤⊥ m′, then each
memory that is disjoint to m is also disjoint to m′.

As a corollary of the previous lemma and Fact 4.6.4 on page 60 we obtain that
m1 ⊥ m2 implies disjointness of the memory operations:

forceΓ a m1 ⊥ m2 m1〈a := v〉Γ ⊥ m2

lockΓ a m1 ⊥ m2 unlock Ω m1 ⊥ m2

Lemma 8.1.11 (Unions distribute). If Γ,∆ ` m and m1 ⊥ m2 then:

forceΓ a (m1 ∪ m2) = forceΓ a m1 ∪ m2 if Γ,∆ ` a : τ and m1〈a〉Γ , ⊥
(m1 ∪ m2)〈a := v〉Γ = m1〈a := v〉Γ ∪ m2 if Γ,∆ ` {a, v} : τ and writableΓ a m1

lockΓ a (m1 ∪ m2) = lockΓ a m1 ∪ m2 if Γ,∆ ` a : τ and writableΓ a m1

unlock Ω (m1 ∪ m2) = unlock Ω m1 ∪ m2 if Ω ⊆ locks m1

Memory trees and memories can be generalized to contain elements of an arbitrary
separation algebra as leaves instead of just permission annotated bits [Kre14b]. These
generalized memories form a functor that lifts the separation algebra structure on the
leaves to entire trees. We have taken this approach in the Coq development, but for
brevity’s sake, we have refrained from doing so in this thesis.
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8. Separation logic

8.2 Separation logic assertions

We use a shallow embedding [WN04] to represent the assertions of our separation
logic. A shallow embedding avoids the indirection of first having to define a syntax
and then a semantic interpretation of that syntax. It thus eliminates some tedious
work, especially in the context of our Coq development. It furthermore makes it easy
to introduce new connectives, as we will do throughout this chapter.
Definition 8.2.1. Assertions P,Q ∈ assert are predicates:

P,Q ∈ env→ memenv→ funenv→ stack→ mem→ Prop
that are closed under weakening of typing environments, forwardness of memory typ-
ing environments and weakening of function environments. Formally, that means:

P Γ ∆ δ ρ m implies P Γ′ ∆′ δ′ ρ m
for any Γ ⊆ Γ′, ∆ ⇒ ∆′ and δ ⊆ δ′ with ` Γ′, ∆′ ` ρ and Γ′,∆′ ` m. The relation
⇒ of forwardness of memory typing environments is defined in Definition 6.6.8 on
page 122.

Assertions do not merely ensure that a property is true for a given typing envi-
ronment Γ, memory typing environment ∆ and function environment δ, but also for
any extensions Γ ⊆ Γ′, ∆ ⇒ ∆′ and δ ⊆ δ′. This is closely related to an intuitionis-
tic Kripke semantics [Kri65]. A Kripke semantics is commonly used in higher-order
separation logic with step-indexed assertions, which we discuss in Section 8.7.

Closure under weakening of typing environments Γ ensures that an assertion re-
mains true if the program is extended with additional struct, union or function dec-
larations. Closure under weakening of memory typing environments ∆ ensures that
an assertion remains true during program execution (which may cause the memory
typing environment ∆ to grow, see Theorem 6.6.13 on page 123).
Definition 8.2.2. An assertion P entails Q, notation P |=Γ,δ Q, if:

P Γ′ ∆ δ′ ρ m implies Q Γ′ ∆ δ′ ρ m

for any Γ ⊆ Γ′, ∆, δ ⊆ δ′, ρ and m with ` Γ′ and ∆ ` ρ and Γ′,∆ ` m.
Notation 8.2.3. We let P ≡Γ,δ Q denote P |=Γ,δ Q and Q |=Γ,δ P .
Definition 8.2.4. The logical connectives are defined as:

True := λΓ ∆ δ ρ m .True
False := λΓ ∆ δ ρ m .False

P → Q := λΓ ∆ δ ρ m . ∀Γ′ ∆′ δ′ .Γ ⊆ Γ′ → ∆⇒ ∆′ → δ ⊆ δ′
` Γ′ → Γ′,∆′ ` δ′ → Γ′,∆′ ` m →
P Γ′ ∆′ δ′ ρ m → Q Γ′ ∆′ δ′ ρ m

P ∧ Q := λΓ ∆ δ ρ m .P Γ ∆ δ ρ m ∧ Q Γ ∆ δ ρ m

P ∨ Q := λΓ ∆ δ ρ m .P Γ ∆ δ ρ m ∨ Q Γ ∆ δ ρ m

∀x . P x := λΓ ∆ δ ρ m . ∀x . (P x) Γ ∆ δ ρ m

∃x . P x := λΓ ∆ δ ρ m . ∃x . (P x) Γ ∆ δ ρ m
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8.2. Separation logic assertions

We often lift these connectives to functions A → assert. For example, given P,Q :
A→ assert we write P ∧ Q instead of λz . P z ∧ Qz.

We now define the separation logic connectives [ORY01]. The assertion emp as-
serts that the memory is empty. The separating conjunction P ∗ Q asserts that the
memory can be subdivided into two disjoint parts such that P holds in one part and
Q in the other (due to the use of permissions, these parts may partially overlap as
long as their permissions are disjoint and their values agree). The magic wand P −∗ Q
assert that if a given memory is extended with a disjoint part in which P holds, then
Q holds in the extended memory.

Definition 8.2.5. The connectives of separation logic are defined as:

pAq := λΓ ∆ δ ρ m .m = ∅ ∧ A

emp := pTrueq
P ∗ Q := λΓ ∆ δ ρ m . ∃m1m2 .m = m1 ∪ m2 ∧ m1 ⊥ m2 ∧

P Γ ∆ δ ρ m1 ∧ Q Γ ∆ δ ρ m2

P −∗ Q := λΓ ∆ δ ρ m2 .∀Γ′ ∆′ δ′ m1 .Γ ⊆ Γ′ → ∆⇒ ∆′ → δ ⊆ δ′ →
` Γ′ → Γ′,∆′ ` δ′ → m1 ⊥ m2 →
Γ′,∆′ ` m1 → Γ′,∆′ ` m2 →
P Γ′ ∆′ δ′ ρ m1 → Q Γ′ ∆′ δ′ ρ (m1 ∪ m2)

Notation 8.2.6. We let ~i<n[Pi ] := P0 ∗ . . . ∗ Pn−1.

Using the separation algebra laws, it is trivial to prove that our assertions form a
complete bunched implications (BI) algebra [Pym02]. That is, they form a complete
Heyting algebra in which the separating conjunction ∗ is associative, commutative,
monotone, emp is neutral for ∗, and the magic wand enjoys the following introduction
and elimination rules:

P ∗ Q |=Γ,δ R

P |=Γ,δ Q −∗ R P ∗ (P −∗ Q) |=Γ,δ Q

In order to state properties of expressions in assertions, we define the evaluation
assertion e ⇓ ν, which asserts that a pure expression e yields an address or value ν.

Definition 8.2.7. The evaluation assertion is defined as:

e ⇓ ν := λΓ ∆ δ ρ m . ∃τlr .Γ,∆, types ρ ` e : τlr ∧ [[ e ]]Γ,ρ,m = ν

e ⇓ – := ∃ν . e ⇓ ν

The evaluator for pure expressions [[ e ]]Γ,ρ,m is defined in Definition 6.9.1 on page 128.

The evaluation assertion e ⇓ ν implicitly guarantees that the expression e is well-
typed. This is required to ensure that the assertion e ⇓ ν is closed under weakening
of typing environments. By including typing judgments in assertions, some proofs
also become more convenient, as details about typing are hidden.
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8. Separation logic

8.3 The singleton assertion

The purpose of this section is to define the singleton assertion and prove that it enjoys
the intended properties. The shape of the singleton assertion is:

e1
γ7−→
µ
e2 : τ .

This assertion describes that the memory consists of exactly one object at address
e1 whose value e2 has type τ and permission γ. The Boolean µ denotes whether the
object has been obtained via malloc. As is common in separation logic, e1 and e2
are expressions instead of an address and value for flexibility’s sake.

In order to give the definition of the singleton assertion, we will first define the sin-
gleton memory {a 7→ w}µΓ, which is the memory that consists of exactly the memory
tree w at address a. The singleton memory {a 7→ w}µΓ is depicted as follows:

w

refΓ a

∅ ∅

µ
index a

This picture indicates the need for the ∅ permission. It is used to fill up the unused
parts of the singleton memory with indeterminate bits (∅, E).

Definition 8.3.1. The singleton memory tree {~r 7→ w}Γ is defined as:

{ε 7→ w}Γ := w

{(
τ [n]
↪−−→ i)~r 7→ w}Γ := arrayτ ((newτΓ ∅)i {~r 7→ w}Γ (newτΓ ∅)n−i−1)

{( struct t
↪−−−→ i)~r 7→ w}Γ := structt

newτ0Γ ∅ (∅, E)z0 . . . newτi−1
Γ ∅ (∅, E)zi−1

{~r 7→ w}Γ (∅, E)zi

newτi+1
Γ ∅ (∅, E)zi+1 . . . newτn−1

Γ ∅ (∅, E)zn−1


where Γ t = ~τ , n := |~τ |
and zi := (fieldbitsizesΓ ~τ)i − bitsizeofΓ τi

{( union t
↪−−−→q i)~r 7→ w}Γ :=

{
uniont ({~r 7→ w}Γ (∅, E)z) if unmapped w
uniont (i, {~r 7→ w}Γ, (∅, E)z) otherwise

where Γ t = ~τ and z := bitsizeofΓ (union t)− bitsizeofΓ τi

The indeterminate memory tree newτΓ : perm → mtree is defined in Definition 5.4.9
on page 76. Recall that newτΓ ∅ consists of permission bits (∅, E).

Definition 8.3.2. The singleton memory {a 7→ w}µΓ is defined as:

{a 7→ w}µΓ := {(index a, (µ, {refΓ a 7→ w}Γ))}
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8.3. The singleton assertion

The singleton memory {a 7→ w}µΓ is merely defined for addresses a that are strict
(i.e. not end-of-array) and that refer to actual objects rather than individual bytes.
Singletons for individual bytes are left for future work.

The expression e2 in the singleton assertion e1
γ7−→
µ
e2 : τ denotes an abstract value,

which contains mathematical integers and pointers as leaves rather than a memory
tree that contains bits as leaves. The encoding of abstract values as memory trees is
implicit in the definition of the singleton assertion, and it therefore avoids the need
to deal with bit representations explicitly. The definition is rather lengthy as it hides
many details about typing and permissions.

Definition 8.3.3. The singleton assertion is defined as:

e1
γ7−→
µ
e2 : τ := λΓ ∆ δ ρ m . ∃aw .Γ,∆, types ρ `l e1 : τ

∧ [[ e1 ]]Γ,ρ,∅ = a

∧ Γ,∆, types ρ r̀ e2 : τ
∧ [[ e2 ]]Γ,ρ,∅ = tovalΓ w
∧ m = {a 7→ w}µΓ
∧ Γ,∆ ` w : τ
∧ all w have permission γ
∧ a is not a byte address
∧ Γ ` a strict
∧ γ , ∅

e1
γ7−→
µ

– : τ := ∃v . e1
γ7−→
µ
v : τ

In the remainder of this section we show that the singleton assertion enjoys the
intended properties that we have described in Section 4.1. First of all, we show that
the singleton assertion interacts appropriately with the evaluation assertion.

Lemma 8.3.4. If Readable ⊆ kind γ, then:

(e γ7−→
µ
v : τ) |=Γ,δ load e ⇓ v.

A singleton denoting an array value arrayτ ~v can be subdivided into multiple sin-
gletons corresponding to each element vi of the array.

Lemma 8.3.5 (Subdivision of arrays). If |~v| = n , 0, then:

(e γ7−→
µ

arrayτ ~v : τ [n]) ≡Γ,δ ~i<n[ (e .l
τ [n]
↪−−→ i) γ7−→

µ
vi : τ ]

Proof. The lemma follows from the following property of singleton memory trees:

arrayτ

w0
· · ·

wn−1

=

arrayτ

w0
· · ·

∅

∪ · · · ∪

arrayτ

∅
· · ·

wn−1
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In order to prove this auxiliary property, we use the fact that the permission ∅ is
a neutral element for ∪, from which we obtain that the indeterminate memory tree
newτΓ ∅ is a neutral element for ∪ on memory trees of type τ . �

One could furthermore prove similar results for subdivision of structs and union
values, but then apart from the fields there will also be a leftover part that corresponds
to the padding bytes of the struct or union.

The singleton assertion allows one to subdivide individual objects into multiple
copies of the same object with lower permissions.

Lemma 8.3.6 (Subdivision of permissions). If γ1 ⊥ γ2, then:

(e1
γ1∪γ27−−−−→
µ

e2 : τ) ≡Γ,δ (e1
γ17−→
µ

e2 : τ) ∗ (e1
γ27−→
µ

e2 : τ)

provided ¬unmapped γ1 and ¬unmapped γ2.

Proof. The lemma follows from the following property of singleton memory trees:

{~r 7→ w1 ∪ w2}Γ = {~r 7→ w1}Γ ∪ {~r 7→ w2}Γ �

As a corollary of this lemma we have that a writable singleton can be subdivided
into read only parts. Given a permission γ with Readable ⊆ kind γ we have:

(e1
γ7−→
µ
e2 : τ)︸              ︷︷              ︸

Writable or read only

≡Γ,δ (e1

1
2γ7−−→
µ

e2 : τ)︸                ︷︷                ︸
Read only

∗ (e1

1
2γ7−−→
µ

e2 : τ)︸                ︷︷                ︸
Read only

The situation is slightly different in case of unmapped permissions because then
the contents of the object is not subdivided among both parts. In particular, if we
wish to subdivide a writable singleton into an existing and writable part we should
have the following for each γ with Readable ⊆ kind γ:

(e1
γ7−→
µ
e2 : τ)︸              ︷︷              ︸

Writable or read only

≡Γ,δ (e1
token7−−−→
µ

– : τ)︸                ︷︷                ︸
Existing

∗ (e1
γ\token7−−−−→
µ

e2 : τ)︸                     ︷︷                     ︸
Writable or read only

Note that the existing part has an arbitrary value. The above property is a trivial
corollary of the following lemma.

Lemma 8.3.7 (Subdivision of unmapped permissions). If γ1 ⊥ γ2, then:

(e1
γ1∪γ27−−−−→
µ

e2 : τ) ≡Γ,δ (e1
γ17−→
µ

– : τ) ∗ (e1
γ27−→
µ

e2 : τ)

provided that γ1 , ∅ and ¬unmapped γ2.

This lemma is the cause of the restrictions on unions that we have introduced in
the separation algebra relation ⊥ and operation ∪ on memory trees (Definition 8.1.4).
Without these restrictions on unions, the above lemma would not hold.
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These restrictions ensure that a writable union could only be subdivided into an
existing and writable part as follows:

uniont

Writable part
.i =

uniont

Existing part

∪
uniont

Writable part
.i

As shown, the existing part has an unspecified variant rather than variant i. The
reason for doing so is that the variant of the writable part may change at run-time in
case the union is accessed via a pointer to another variant. We thus require unions
with unmapped permissions to have an unspecified variant. Unions with unspecified
variant are neutral elements for ∪ with respect to any other union.

8.4 Separation logic for expressions

This section defines the judgment `Γ,δ {P} e {Q} for expressions. Like Von Ohe-
imb [Ohe01], we let the postcondition Q be a function from values to assertions to
account for the fact that an expression not only performs side-effects but primarily
yields a value. The judgment `Γ,δ {P} e {Q} should be read as follows: if P holds
for the memory beforehand, and execution of e yields an address or value ν, then Qν
holds for the resulting memory afterwards.

The key observation that led to the inference rules of our judgment for expressions
is a correspondence between non-determinism in expressions and concurrency. In-
spired by the rule for the parallel composition of concurrent separation logic [O’H04],
we have rules for each operator } that are of the following shape:

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 } e2 {Q1 ∗ Q2}

The intuitive idea of this rule is that if the memory can be subdivided into two
parts in which the subexpressions e1 and e2 can be executed safely, then the expression
e1 } e2 can be executed safely in the whole memory. Non-interference of the side-
effects of e1 and e2 is guaranteed by the separating conjunction. We thus effectively
rule out expressions with undefined behavior due to a sequence point violation such
as (x = 3) + (x = 4) (see Sections 2.5.9 and 4.1 for discussion).

The actual rules of our expression judgment are more complicated than the rule
sketched above because we have to deal with the values of expressions and we have
to make sure that no undefined behavior due to for example integer overflow occurs.
Before considering the actual rules in Definition 8.4.4, we discuss some representative
rules. The actual rule for binary operators is:

`Γ,δ {P1} e1 {Q1} `Γ,δ {P2} e2 {Q2}
∀v1 v2 . (Q1 v1 ∗ Q2 v2 |=Γ,δ ∃v′ . (v1 } v2) ⇓ v′ ∧ Q′ v′)

`Γ,δ {P1 ∗ P2} e1 } e2 {Q′}

The side-condition ensures that for each value v1 of e1 and value v2 of e2, the binary
operator can be evaluated safely to a resulting value v′ for which the postcondition
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Q′ v′ of the whole expression holds. To express that a binary operator can be evaluated
safely we use the evaluation assertion (v1 } v2) ⇓ v′ (Definition 8.2.7).

In order to ensure the absence of sequence point violations, the rule for assignments
changes the permission γ of the assigned object into lock γ. Subsequent accesses are
therefore no longer possible. The rule for the simple assignments is:

`Γ,δ {P1} e1 {Q1} `Γ,δ {P2} e2 {Q2} Writable ⊆ kind γ
∀p v .

(
Q1 p ∗ Q2 v |=Γ,δ ∃v′ . (τ)v ⇓ v′ ∧(

(p γ7−→
µ

– : τ) ∗ ((p lock γ7−−−→
µ
| v′ |◦ : τ) −∗ Q′ v′)

))
`Γ,δ {P1 ∗ P2} e1 := e2 {Q′}

The assertion (p γ7−→
µ

– : τ) ∗ ((p lock γ7−−−→
µ
| v′ |◦ : τ) −∗ Q′ v′) ensures that each pointer

p obtained from e1 is writable. The magic wand is then used to replace the value of
p by | v′ |◦ and to lock the permission. The stored value | v′ |◦ is frozen.

At constructs that have a sequence point, we have to release the locks of objects
that have been locked due to previous assignments. We define the assertion P ♦ that
releases all locks in P and thereby makes future reads and writes possible again. The
rule for the comma expression is as follows:

`Γ,δ {P} e1 {λ . P ′ ♦} `Γ,δ {P ′} e2 {Q}
`Γ,δ {P} (e1, e2) {Q}

Definition 8.4.1. The unlocking assertion P ♦ is defined as:

P ♦ := λΓ ∆ δ ρ m .P Γ ∆ δ ρ (unlock (locks m) m).

Lemma 8.4.2. For each permission γ we have:

(e1
lock γ7−−−→
µ

e2 : τlr) |=Γ,δ (e1
γ7−→
µ
e2 : τlr) ♦ if Writable ⊆ kind γ

(e1
γ7−→
µ
e2 : τlr) |=Γ,δ (e1

γ7−→
µ
e2 : τlr) ♦ if kind γ , Locked

Moreover, ♦ distributes over all logical connectives:

P ♦→ Q ♦ |=Γ,δ (P → Q) ♦ ∀x . (P x) ♦ |=Γ,δ (∀x . P x) ♦ pAq |=Γ,δ pAq ♦

P ♦ ∧ Q ♦ |=Γ,δ (P ∧ Q) ♦ ∃x . (P x) ♦ |=Γ,δ (∃x . P x) ♦ P ♦ ∗ Q ♦ |=Γ,δ (P ∗ Q) ♦

In order to define the assignment rule in its full generality, we have to deal with all
forms of assignments. The following definition describes an assertion that corresponds
to Definition 6.3.7 on page 104, which is its counterpart in the operational semantics.

Definition 8.4.3. The assertion (p α v : τ) ⇓ass (va, v′) describes the assigned value
va and resulting r-value v′ of an assignment a α v of type τ . It is defined as:

(τ)v ⇓ va (τ)v ⇓ v′

(p := v : τ) ⇓ass (va, v′)
(τ)(load a } v) ⇓ va (τ)(load a } v) ⇓ v′

(p } := v : τ) ⇓ass (va, v′)

(τ)(load a } v) ⇓ va load a ⇓ v′

(p :=} v : τ) ⇓ass (va, v′)
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We now give the full set of the rules of the expression judgments. These cover all
expression constructs apart from function calls, which are discussed in Section 8.7.
The rules of most expression constructs are similar to those we have demonstrated
above. We will comment on some specific rules after the definition.

In the Coq formalization we have defined the judgment using a shallow embedding.
The inference rules are there just lemmas.

Definition 8.4.4. The judgment `Γ,δ {P} e {Q} of the axiomatic semantics for ex-
pressions is inductively defined as:

`Γ,δ {P} e {Q}
`Γ,δ {A ∗ P} e {A ∗ Q}

∀x . (`Γ,δ {P x} e {Q})
`Γ,δ {∃x . P x} e {Q}

P ′ |=Γ,δ P `Γ,δ {P} e {Q} ∀ν . (Qν |=Γ,δ Q
′ ν)

`Γ,δ {P ′} e {Q′}
P |=Γ,δ e ⇓ ν ∧ Qν
`Γ,δ {P} e {Q}

`Γ,δ {P} e {Q}
∀v . (Qv |=Γ,δ ∃p′ . (∗v) ⇓ p′ ∧ Q′ p′)

`Γ,δ {P} ∗e {Q′}

`Γ,δ {P} e {Q}
∀p . (Qp |=Γ,δ ∃v′ . (&p) ⇓ v′ ∧ Q′ v′)

`Γ,δ {P}&e {Q′}

`Γ,δ {P} e {Q}
∀p . (Qp |=Γ,δ ∃p′ . (p .l r) ⇓ p′ ∧ Q′ p′)

`Γ,δ {P} e .l r {Q′}

`Γ,δ {P} e {Q}
∀v . (Qv |=Γ,δ ∃v′ . (v .r r) ⇓ v′ ∧ Q′ v′)

`Γ,δ {P} e .r r {Q′}

`Γ,δ {P1} e1 {Q1} `Γ,δ {P2} e2 {Q2}
∀v1 v2 . (Q1 v1 ∗ Q2 v2 |=Γ,δ ∃v′ . (v1[~r := v2]) ⇓ v′ ∧ Q′ v′)

`Γ,δ {P1 ∗ P2} e1[~r := e2] {Q′}

`Γ,δ {P1} e1 {Q1} `Γ,δ {P2} e2 {Q2} Writable ⊆ kind γ
∀p v .

(
Q1 p ∗ Q2 v |=Γ,δ ∃va v′ . (p α v : τ) ⇓ass (va, v′) ∧(

(p γ7−→
µ

– : τ) ∗ ((p lock γ7−−−→
µ
| va |◦ : τ) −∗ Q′ v′)

))
`Γ,δ {P1 ∗ P2} e1 α e2 {Q′}

`Γ,δ {P} e {Q} ∀p . (Qp |=Γ,δ ∃v′ . (load p) ⇓ v′ ∧ Q′ v′)
`Γ,δ {P} load e {Q′}

`Γ,δ {P} e {Q}

∀o vb .
(
Qvb |=Γ,δ ∃n τi . pvb = intτi nq ∗ p0 < nq ∗(

(topτ [n] o
♦(0, 1)7−−−−→true – : τ [n]) −∗ Q′ ((topτ o)〈

τ [n]
↪−−→ 0〉Γ)

))
`Γ,δ {P} allocτ e {Q′}
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`Γ,δ {P} e {Q}

∀p .
(
Qa |=Γ,δ ∃n o τp . pp = (o : τ [n],

τ [n]
↪−−→ 0, 0)τ>∗τpq ∗

(topτ [n] o
♦(0, 1)7−−−−→true – : τ [n]) ∗ Q′ nothing)

)
`Γ,δ {P} free e {Q′}

`Γ,δ {P1} e1 {Q1} `Γ,δ {P2} e2 {Q2}
∀v1 v2 . (Q1 v1 ∗ Q2 v2 |=Γ,δ ∃v′ . (v1 } v2) ⇓ v′ ∧ Q′ v′)

`Γ,δ {P1 ∗ P2} e1 } e2 {Q′}

`Γ,δ {P} e {Q}
∀v . (Qv |=Γ,δ ∃v′ . (}u v) ⇓ v′ ∧ Q′ v′)

`Γ,δ {P} }u e {Q′}

`Γ,δ {P} e {Q}
∀v . (Qv |=Γ,δ ∃v′ . ((τ)v) ⇓ v′ ∧ Q′ v′)

`Γ,δ {P} (τ)e {Q′}

`Γ,δ {P} e {P ′} ∀vb . (P ′ vb |=Γ,δ (! vb) ⇓ –)
`Γ,δ {P1} e1 {Q} ∀vb . (¬zero vb → P ′ vb |=Γ,δ P1 ♦)
`Γ,δ {P2} e2 {Q} ∀vb . (zero vb → P ′ vb |=Γ,δ P2 ♦)

`Γ,δ {P} e ? e1 : e2 {Q}

`Γ,δ {P} e1 {λ . P ′ ♦}
`Γ,δ {P ′} e2 {Q}
`Γ,δ {P} (e1, e2) {Q}

The expression judgment has a frame, weaken, and exist rule. The weaken and
exist rule are similar to their traditional counterparts in Hoare logic. The conventional
frame rule of separation logic [ORY01] includes a side-condition modifies e ∩ freeA = ∅
on the free variables of the expression e and assertion A. We do not need such a side-
condition as our local variables are (immutable) references into the memory.

The rules for allocτ e and free e constructs, which are used to allocate and deallo-
cate dynamically obtained memory, are somewhat complicated. This complication is
caused by the fact that allocτ e yields a pointer to the first element of the allocated
array whereas the singleton in the postcondition ranges over the entire array. In the
Coq development we have defined some auxiliary notions to make these rules more
tractable, but for clarity’s sake, we have expanded these notions here. For simplicity
we presuppose that allocτ e will never return a NULL pointer in this thesis2.

The rule for the conditional e ? e1 : e2 contains the condition P ′ vb |=Γ,δ (! vb) ⇓ –,
which ensures that the result vb of e is not indeterminate. We use that the condition
m ` (! vb) defined of the negation operator (Definition 6.3.5 on page 104) is the same
as the one m ` (zero vb) defined of the conditional (Definition 6.3.6 on page 104).

8.5 Separation logic for statements

This section defines the judgment R, J, T `Γ,δ {P} s {Q} for statements. The right
hand side of the judgment is a conventional Hoare triple. That is, if P holds for the
memory beforehand, and execution of s terminates, then Q holds for the resulting
memory afterwards. The judgment furthermore guarantees the absence of undefined
behavior. The environments R, J and T deal with non-local control:

2The implementation environments in our Coq development have a flag alloc_can_fail, which
describes if allocτ e may fail. If set, the allocτ e rule contains a conjunct to account for failure.
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8.5. Separation logic for statements

• The environment R : val→ assert specifies the conditions for return statements.
The assertion Rv should hold when executing a return e for each value v that
can be obtained by executing e.

• The environment J : labelname→ assert specifies the conditions for gotos. The
assertion J l is the jumping condition that should hold when executing a goto l
statement.

• The environment T : N → assert specifies the conditions for throw statements
(which generalize break and continue). The assertion T n is the jumping
condition that should hold when executing a throw n statement.

Our treatment of return, throw and catch statements is adapted from Appel
and Blazy [AB07]. Let us consider the rules for throw and catch:

R, J, T `Γ,δ {T n} throw n {Q}
R, J,Q · T `Γ,δ {P} s {Q}
R, J, T `Γ,δ {P} catch s {Q}

As shown, the environment T is used to relate the precondition of each throw to
the postcondition of its corresponding catch. The assertion (Q · T ) : N → assert is
defined as (Q ·T ) 0 := Q and (Q ·T ) (n+ 1) := T n. Since the throw statement leaves
the normal control flow, its postcondition is arbitrary. We have extended Appel and
Blazy’s treatment with gotos in the expected way:

R, J, T `Γ,δ {J l} goto l {Q} R, J, T `Γ,δ {J l} l : {J l}
Non-local control flow becomes more interesting in the presence of block scope lo-

cal variables. Jumping into a block scope results in allocation of a new local variable,
to which pointers can be created. Likewise, when jumping out of a block scope, the
corresponding local variable will be deallocated, and pointers to it become indeter-
minate. This symmetry becomes clear in the following rule:

(x0
♦(0, 1)7−−−−→false – : τ) ∗ R ↑, (x0

♦(0, 1)7−−−−→false – : τ) ∗ J ↑, (x0
♦(0, 1)7−−−−→false – : τ) ∗ T ↑

`Γ,δ {(x0
♦(0, 1)7−−−−→false – : τ) ∗ P ↑} s {(x0

♦(0, 1)7−−−−→false – : τ) ∗ Q ↑}

R, J, T `Γ,δ {P} localτ s {Q}

When entering a block scope the De Bruijn indexes are lifted using the assertion
( ) ↑ (defined below) and in turn the memory is extended in a way that the variable
x0 refers to the newly allocated object. Allocation is described using the separating
conjunction. When leaving a block, the inverse takes place. This symmetry is impor-
tant for gotos, which can jump into block scopes as well as out of block scopes. Note
that the use of De Bruijn indexes avoids having to deal with shadowing.

In the above rule for block scopes, we need to lift an assertion such that the De
Bruijn indexes of its variables are increased. We define the lifting P ↑ of an assertion
P semantically, and prove that it indeed behaves as expected.

Definition 8.5.1. The lifting assertion P ↑ is defined as:

P ↑ := λΓ ∆ δ ρ m .P Γ ∆ δ (tail ρ) m.

159



8. Separation logic

Lemma 8.5.2. The operation ( ) ↑ distributes over the defined assertions:

(P → Q) ↑ ≡Γ,δ P ↑ → Q ↑ (∀x . P x) ↑ ≡Γ,δ ∀x . (P x) ↑ pAq ↑ ≡Γ,δ pAq

(P ∧ Q) ↑ ≡Γ,δ P ↑ ∧ Q ↑ (∃x . P x) ↑ ≡Γ,δ ∃x . (P x) ↑ (P ∗ Q) ↑ ≡Γ,δ P ↑ ∗ Q ↑

Apart from that, we have:

(e ⇓ ν) ↑ ≡Γ,δ (e↑) ⇓ ν (e1
γ7−→
µ
e2 : τ) ↑ ≡Γ,δ (e1 ↑)

γ7−→
µ

(e2 ↑) : τ

where the expression e↑ is obtained by replacing each variable xi by xi+1.

Definition 8.5.3. The judgment R, J, T `Γ,δ {P} s {Q} of the axiomatic semantics
for statements is inductively defined as:

R, J, T `Γ,δ {P} s {Q}
A ∗ R,A ∗ J,A ∗ T `Γ,δ {A ∗ P} s {A ∗ Q}

∀x . (R, J, T `Γ,δ {P x} s {Q})
R, J, T `Γ,δ {∃x . P x} s {Q}

∀v . (Rv |=Γ,δ R
′ v) ∀l ∈ labels s . (J ′ l |=Γ,δ J l) ∀l < labels s . (J l |=Γ,δ J

′ l)
∀n . (T n |=Γ,δ T

′ n) P ′ |=Γ,δ P R, J, T `Γ,δ {P} s {Q} Q |=Γ,δ Q
′

R′, J ′, T ′ `Γ,δ {P ′} s {Q′}

`Γ,δ {P} e {λ .Q ♦}
R, J, T `Γ,δ {P} e {Q}

`Γ,δ {P} e {Q} ∀v . (Qv |=Γ,δ (Rv) ♦)
R, J, T `Γ,δ {P} return e {Q′}

R, J, T `Γ,δ {J l} goto l {Q} R, J, T `Γ,δ {J l} l : {J l}

R, J, T `Γ,δ {T n} throw n {Q}
R, J,Q · T `Γ,δ {P} s {Q}
R, J, T `Γ,δ {P} catch s {Q}

R, J, T `Γ,δ {P} skip {P}
R, J, T `Γ,δ {P} s1 {P ′} R, J, T `Γ,δ {P ′} s2 {Q}

R, J, T `Γ,δ {P} s1 ; s2 {Q}

(x0
♦(0, 1)7−−−−→false – : τ) ∗ R ↑, (x0

♦(0, 1)7−−−−→false – : τ) ∗ J ↑, (x0
♦(0, 1)7−−−−→false – : τ) ∗ T ↑

`Γ,δ {(x0
♦(0, 1)7−−−−→false – : τ) ∗ P ↑} s {(x0

♦(0, 1)7−−−−→false – : τ) ∗ Q ↑}

R, J, T `Γ,δ {P} localτ s {Q}

R, J, T `Γ,δ {P} s {P}
R, J, T `Γ,δ {P} loop s {False}

`Γ,δ {P} e {P ′} ∀vb . (P ′ vb |=Γ,δ (! vb) ⇓ –)
R, J, T `Γ,δ {P1} s1 {Q} ∀vb . (¬zero vb → P ′ vb |=Γ,δ P1 ♦)
R, J, T `Γ,δ {P2} s2 {Q} ∀vb . (zero vb → P ′ vb |=Γ,δ P2 ♦)

R, J, T `Γ,δ {P} if (e) s1 else s2 {Q}
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8.6. Soundness of the separation logic

The assertions P , Q, J , R and T correspond to the directions ↘, ↗, y, ↑↑ and ↑ of
the operational semantics in which traversal through a statement is performed (see
Definition 6.5.5 on page 116). We therefore introduce a shorthand.

Notation 8.5.4. The triple R, J, T `Γ,δ {P} s {Q} is sometimes denoted as P̄ `Γ,δ s,
where P̄ : direction→ assert is defined as:

P̄ ↘ := P P̄ ↗ := Q P̄ (y l) := J l P̄ (↑↑ v) := Rv P̄ (↑n) := T n.

Being able to write sextuples in a shorter way is convenient while proving metathe-
oretical results, such as soundness of the axiomatic semantics in Section 8.6. The
frame rule and the rule for block scope local variables can be abbreviated since these
are uniform in all assertions:

P̄ `Γ,δ s

A ∗ P̄ `Γ,δ s

(x0
♦(0, 1)7−−−−→false – : τ) ∗ P̄ ↑ `Γ,δ s

P̄ `Γ,δ localτ s

8.6 Soundness of the separation logic

This section defines the judgments |=Γ,δ {P} e {Q} and J,R, T |=Γ,δ {P} s {Q}. These
judgments describe partial program correctness in terms of the CH2O core C seman-
tics. Soundness of the separation logic means that (Theorem 8.6.13):

`Γ,δ {P} e {Q} implies |=Γ,δ {P} e {Q}
J,R, T `Γ,δ {P} s {Q} implies J,R, T |=Γ,δ {P} s {Q}

In the Coq development we have used a shallow embedding, and therefore did
not define the judgments `Γ,δ {P} e {Q} and J,R, T `Γ,δ {P} s {Q} explicitly. The
inference rules that we have defined in Definitions 8.4.4 and 8.5.3 are there thus just
lemmas involving the shallow embedding.

The definition of the judgments |=Γ,δ {P} e {Q} and J,R, T |=Γ,δ {P} s {Q} is not
so simple. Before we will consider the actual definitions, we consider a naive attempt
to define the judgment |=Γ,δ {P} e {Q}:

Attempt 8.6.1. For each well-typed context P and memory m1 in which the pre-
condition P Γ m1 δ (locals P) m1 holds, and for each reduction:

Γ, δ ` S(P, e, m1) _∗ S

to some state S, we have either:
1. S = S(P, [ν]Ω, m2) and the postcondition (Qν) Γ m2 δ (locals P) m2 holds
2. S can reduce further (no undefined behavior has occurred)

This definition quantifies over too many reductions and does not provide suffi-
ciently strong guarantees to prove soundness of each inference rule. We discuss three
problems of this definition:
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8. Separation logic

1. Escape of the current context. We quantify over arbitrary reductions start-
ing in a state whose context is P and require these reductions to end in a state
whose context is P too. We therefore also quantify over reductions in which
execution of the expression e itself is finished, and then in turn a part of the
surrounding statement in P is executed. For example:

e

P

loop

We should thus quantify only over reductions Γ, δ ` S(P, e, m1) _∗ S that do
not traverse in upward direction into the context P. These reductions should
solely use the corresponding local stack locals P of P.

2. Interleaving of subexpressions. Due to non-deterministic expression eval-
uation, we have to account for interleaved reductions of the subexpressions e1
and e2 of binary operators such as e1 } e2:

e1 e′1 e′1 [v1]Ω1

} } } } [v2 } v2]Ω2∪Ω2

e2 e2 e′2 [v2]Ω2

+ +

+ +

The proposed definition only provides guarantees about the end result of exe-
cuting a single expression in isolation, whereas in fact multiple subexpressions
may be executed in parallel.

3. Deallocated memory. Deallocated objects are kept in the formal memory
(see the definition of free in Definition 5.6.5 on page 85) whereas they disappear
from the postcondition (see the rule for allocτ e in Definition 8.4.4 and the
rule for local variables localτ s in Definition 8.5.3). For example, we have the
following reduction corresponding to {emp} localτ skip {emp}:

∅ {o 7→ (false, new♦(0, 1)
Γ τ)} {o 7→ τ}

{emp} {topo Γ ♦(0, 1)7−−−−→false – : τ} {emp}

enter block leave block

The top row denotes the actual memory states whereas the bottom row denotes
the corresponding assertion. The last step contains a mismatch.

In order to deal with the issue of context escape, we define a variant of the small-
step operational semantics Γ, δ, ρ ` S1 _ S2 in which the local stack is extended
with a part ρ described by the precondition. We first define a variant of the function
locals : ctx → stack that yields the corresponding stack (Definition 6.5.6 on page 117).

162



8.6. Soundness of the separation logic

Definition 8.6.2. The function localsρ : ctx → stack yields the ρ-extended corre-
sponding local stack of a program context. It is defined as:

localsρ ε := ρ

localsρ (Ss P) := localsρ P
localsρ ((localo:τ 2)P) := (o, τ) (localsρ P)

localsρ ((Se, e)P) := localsρ P
localsρ ((resume E)P) := ε

localsρ ((params f # »oτ)P) := # »oτ (localsρ P)

The difference with Definition 6.5.6 is the localsρ ε clause, which yields ρ instead
of the empty stack. Note that we do not have localsρ P = ρ (locals P).

Definition 8.6.3. The ρ-extended small-step reduction Γ, δ, ρ ` S1 _ S2 is a variant
of Γ, δ ` S1 _ S2 (Definition 6.5.8) in which the following rules are modified:

2a) Γ, δ, ρ ` S(P, E [ e1 ], m1) _ S(P, E [ e2 ], m2)
for any e2 and m2 with Γ, localsρ P ` (e1,m1)_h (e2,m2)

2c) Γ, δ, ρ ` S(P, E [ e ], m) _ S(P, undef (E E〈e〉), m)
if e is a redex with Γ, localsρ P 0 (m, e) safe

Fact 8.6.4. We have Γ, δ, ε ` S1 _ S2 iff Γ, δ ` S1 _ S2.

Fact 8.6.5. We have Γ, δ, localsρ P ` S(P1, φ1, m1) _ S(P2, φ2, m2) iff:

Γ, δ, ρ ` S(P P1, φ1, m1) _ S(P P2, φ2, m2).

In order to deal with the issue of deallocated memory, we define an erasure function
that removes deallocated memory objects. We require the pre- and postcondition to
hold in the erased version |m| of the memory m.

Definition 8.6.6. The deallocation erasure |m| of a memory m is defined as:

|m| := λo .

{
(w, µ) if mo = (w, µ)
⊥ if mo = τ or mo = ⊥

Since the definitions of |=Γ,δ {P} e {Q} and J,R, T |=Γ,δ {P} s {Q} have a lot in
common, we define a more general judgment to factor out similarities:

Γ, δ, ρ |=n (P, φ, m : ∆) {Q̂}

The intuitive meaning of this judgment is that all Γ,∆, ρ ` S(P, φ, m ∪ mf ) _∗ S
reductions of at most n steps satisfy the following properties:

• They do not get stuck and do never reach an undef state.
• The end-state satisfies the generalized postcondition Q̂, which ensures that the

actual postcondition holds as well as that the end-result has the correct shape
and is well-typed (see Definitions 8.6.8 and 8.6.10).
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8. Separation logic

• The framing memory mf may be changed arbitrarily during each individual step
to deal with interleaving of subexpressions. The framing memory mf accounts
for memory that has been framed out using the frame rule as well as memory
that belongs to other subexpressions.

Definition 8.6.7. Let Q̂ : env → memenv → funenv → stack → focus → mem →
Prop be an upward closed predicate under weakening of typing environments and mem-
ory typing environments. The judgment Γ, δ, ρ |=n (P, φ, m : ∆) {Q̂} is inductively
defined as:

Γ, δ, ρ |=0 (P, φ, m : ∆) {Q̂}
Q̂ Γ ∆ δ ρ φ m

Γ, δ, ρ |=n (ε, φ, m : ∆) {Q̂}

∀∆′ n′mf .∆⇒ ∆′ → n > n′ → m ⊥ mf → Γ,∆′ ` m ∪ mf →
(1) ∃S′ .Γ, δ, ρ ` S(P, φ, m ∪ mf ) _ S′

(2) ∀P ′ φ′m′ .Γ, δ, ρ ` S(P, φ, m ∪ mf ) _ S(P ′, φ′, m′)→
dom m′ \ dom (m ∪ mf ) ∩ dom ∆′ = ∅ → ∃m′′∆′′ .
(a) m′′ ⊥ mf

(b) m′ = m′′ ∪ mf

(c) ¬∃φU . φ′ = undef φU
(d) (∀e . φ′ = e→ locks e ⊆ locks m′′)
(e) ∆′ ⇒ ∆′′
(f) Γ,∆′′ ` m′
(g) ∀∆′′′ .∆′ ⇒ ∆′′′ → Γ,∆′′′ ` m′ → ∆′′ ⇒ ∆′′′
(h) Γ, δ, ρ |=n′ (P ′, φ′, m′′ : ∆′′) {Q̂}

Γ, δ, ρ |=n (P, φ, m : ∆) {Q̂}

Definition 8.6.8. The generalized postcondition Q̂τlr : env → memenv → funenv →
stack → focus → mem → Prop of an expression with postcondition Q : lrval → assert
and type τlr is defined as:

Q̂τlr := λΓ ∆ δ ρ φ m .∃ν Ω . (1) φ = [ν]Ω
(2) Γ,∆ ` ν : τlr
(3) locks m = Ω
(4) (Qν) Γ ∆ δ ρ |m|.

Definition 8.6.9. The judgment |=Γ,δ {P} e {Q} of partial correctness of an expres-
sion e is defined as follows. For each n ∈ N, Γ ⊆ Γ′, ∆, δ ⊆ δ′, m, ρ and τlr with ` Γ′
and Γ′,∆ ` δ′ and Γ′,∆ ` m and locks m = ∅ and ∆ ` ρ and Γ′,∆, types ρ ` e : τlr
and locks e = ∅:

P Γ′ ∆ δ′ ρ |m| implies Γ′, δ′, ρ |=n (ε, e, m : ∆) {Q̂τlr}.

The judgment Γ, δ, ρ |=n (P, φ, m : ∆) {Q̂} uses step-indexing [AM01] so we can
conveniently prove properties by induction on the number of steps n. Step-indexing
is essential to deal with (mutually) recursive functions in Section 8.7.3.
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The judgment Γ, δ, ρ |=n (P, φ, m : ∆) {Q̂} quantifies over reductions Γ, δ, ρ `
S(P, φ, m ∪ mf ) _ S(P ′, φ′, m′) in which the initial memory m is extended with
an arbitrary framing part mf for which we have Γ,∆′ ` m ∪ mf . The side-condition
dom m′ \ dom (m ∪ mf ) ∩ dom ∆′ = ∅ ensures that no object identifiers are used
that are already in use by ∆′.

After each reduction step Γ, δ, ρ ` S(P, φ, m ∪ mf ) _ S(P ′, φ′, m′) we have to
establish that the resulting memory has the shape m′ = m′′ ∪ mf . Moreover, we
have to show that there exists a memory environment ∆′′ with Γ,∆′′ ` m′. The
condition ∆′ ⇒ ∆′′ ensures that ∆′′ is forward (see Definition 6.6.8 on page 122) and
the condition ∀∆′′′ .∆′ ⇒ ∆′′′ → Γ,∆′′′ ` m′ → ∆′′ ⇒ ∆′′′ ensures that ∆′′ is the
least forward memory environment. The condition locks e ⊆ locks m′′ ensures that
the accumulated locks are separated.

The judgment P̄ |=Γ,δ s for statements is defined in the same way as the expression
judgment. Recall that the function P̄ : direction → assert bundles the conditions of
the judgment J,R, T `Γ,δ {P} s {Q} (see Definition 8.5.4).

Definition 8.6.10. The generalized postcondition Q̂s:(β, τ? ) : env → memenv →
stack→ focus→ mem→ Prop of a statement with postcondition Q and type (β, τ ?)
is defined as:

Q̂s:(β, τ? ) := λΓ ∆ δ ρ φ m .∃d . (1) φ = (d, s)
(2) (d, s) out
(3) Γ,∆ ` d : (β, τ ?)
(4) locks m = ∅
(5) (P̄ d) Γ ∆ δ ρ |m|.

The predicate (d, s) out is defined in Definition 6.5.7 on page 118. It states that
traversal through the zipper goes in outward direction.

Definition 8.6.11. The judgment P̄ |=Γ,δ s of partial correctness of a statement s
is defined as follows. For each n ∈ N, Γ ⊆ Γ′, ∆, δ ⊆ δ′, m, ρ, d and (β, τ ?) with
` Γ′ and Γ′,∆ ` δ′ and Γ′,∆ ` m and locks m = ∅ and ∆ ` ρ and Γ′,∆, types ρ ` s :
(β, τ ?) and (d, s) in:

(P̄ d) Γ′ ∆ δ′ ρ |m| implies Γ′, δ′, ρ |=n (ε, (d, s), m : ∆) {Q̂s:(β, τ? )}.

The predicate (d, s) in is defined in Definition 6.5.7 on page 118. It states that
traversal through the zipper goes in upward direction.

The above definition shows the advantage of bundling the conditions as a function
P̄ : direction → assert. Instead of having to separately treat 8 combinations corre-
sponding to the directions {↘,y} × {↗, ↑↑, ↑,y} in which a statement can be entered
and exited, we have just one case that covers all of these combinations.

Our approach extends easily to other forms of non-local control flow. For example,
in the Coq development we have added an (unstructured) switch statement, and that
had little impact on the soundness proof of the separation logic.

We now show that the judgment P̄ |=Γ,δ s enjoys the intended property of partial
program correctness.
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Theorem 8.6.12 (Adequacy). Suppose we have ` Γ and Γ,m ` δ and Γ ` m and
locks m = ∅ and Γ,m, ε ` s : (τ ? , β). Now if:

R,False,False |=Γ,δ {P} s {Q} and P Γ m δ ε |m|

then for each reduction Γ, δ ` S(ε, (↘, s), m) _∗ S we have either:
1. The postcondition holds: S = S(ε, (↘, s), m′) with Q Γ m′ δ ε |m′|.
2. The returning condition holds: S = S(ε, (↑↑ v, s), m′) with Rv Γ m′ δ ε |m′|.
3. Further reduction is possible: Γ, δ ` S _ S′ for some S′.

Theorem 8.6.13 (Soundness of the separation logic). We have:

`Γ,δ {P} e {Q} implies |=Γ,δ {P} e {Q}
P `Γ,δ s implies P |=Γ,δ s

The above theorem is proven by induction on the derivations of `Γ,δ {P} e {Q}
(Definition 8.4.4) and J,R, P `Γ,δ {T} s {Q} (Definition 8.5.3), so we have to show
that each inference rule holds in the interpretation. For the details about these proofs,
we refer to the Coq development, but we discuss some key points here:

• We have proven abstract versions of the frame and weakening rule for the judg-
ment Γ, δ, ρ |=n (P, φ, m : ∆) {Q̂}. The frame and weakening rule for the
expression and statement judgment are corollaries of these more general rules.

• In order to prove the inference rules of binary expressions constructs we have to
account for interleaving of the subexpression. We have proven a more general
result for the judgment Γ, δ, ρ |=n (P, φ, m : ∆) {Q̂}.

• The inference rules for statements involve quite some cases due to non-local
control flow. Using the (d, s) in and (d, s) out predicates we avoid a blowup in
the number of cases we have to consider.

We consider the rule for composition as an example.

Lemma 8.6.14. The rule for composition holds:
R, J, T |=Γ,δ {P} s1 {P ′} R, J, T |=Γ,δ {P ′} s2 {Q}

R, J, T |=Γ,δ {P} s1 ; s2 {Q}

Proof. This lemma is proven by induction on the number of steps and involves chasing
all possible reduction paths. The following reduction paths may occur:

;

s1 s2

↘

y l

↗

y l

↘

y l

y ly l

↗
↑↑ v

↑n
y l

↑↑ v
↑n
y l

y l

�
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It is important to note that one does not need to trust the construction of the
judgments `Γ,δ {P} e {Q} and J,R, P `Γ,δ {T} s {Q} in order to believe that our sep-
aration logic is indeed sound. One only has to trust the statements of Theorems 8.6.12
and 8.6.13.

8.7 Extensions of the separation logic

In the previous sections we have omitted some features of our separation logic to make
the presentation more comprehensible. This section describes the features that are left
out, but that have been formalized in Coq. These features make our separation logic
more powerful and more practical to use. The separation logic and proofs described
in the previous sections are an instance of the full system formalized in Coq.

8.7.1 Expression invariants
We extend the expression judgment `Γ,δ {P} e {Q} with a shared invariant B that
can be used by all subexpressions:

B `Γ,δ {P} e {Q}

The key feature of this extension is that one can shift all read-only memory into
the shared invariant B, and use the pre- and postcondition solely for writable memory.
One thus does not have to subdivide the entire pre- and post condition into two parts
at each occurrence of a binary expression construct. The pre- and post condition can
thus be emp for expressions without assignments and function calls.

This extension involves modifications of the expression judgment (Definition 8.4.4)
as well as an adaptation of the soundness proof. We present some representative rules
in this thesis and refers to the Coq development for all details and proofs.

The following frame rule can be used to shift a part of the shared invariant into
the pre- and postcondition:

A ∗ B `Γ,δ {P} e {Q}
B `Γ,δ {A ∗ P} e {A ∗ Q}

In order to prove an individual subexpression, one may use the shared invariant
to show that the result is well-defined. For example:

B `Γ,δ {P1} e1 {Q1} B `Γ,δ {P2} e2 {Q2}
∀v1 v2 . (Q1 v1 ∗ Q2 v2 |=Γ,δ ∃v′ . (B −∗ (v1 } v2) ⇓ v′) ∧ Q′ v′)

B `Γ,δ {P1 ∗ P2} e1 } e2 {Q′}

B `Γ,δ {P} e {Q} ∀p . (Qp |=Γ,δ ∃v′ . (B −∗ (load p) ⇓ v′) ∧ Q′ v′)
B `Γ,δ {P} load e {Q′}

Statement judgments are not extended with shared invariants. The shared invari-
ant should thus be emp in order to prove a statement judgment:

emp `Γ,δ {P} e {λ .Q ♦}
R, J, T `Γ,δ {P} e {Q}
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In order to prove soundness, we have defined a variant B |=Γ,δ {P} e {Q} of the
judgment for partial program correctness of expressions (Definition 8.6.9). The judg-
ment B |=Γ,δ {P} e {Q} quantifiers over reductions in which the memory is subdivided
in three parts m ∪mB ∪mf . These parts are used as follows:

• The part m belongs exclusively to the subexpression e and is thus fully con-
trolled by the precondition P and postcondition Q.

• The part mB is controlled by the shared invariant B. This part may change
arbitrarily during each reduction step of e and during each interleaved reduc-
tion step of any other subexpression. The sole requirement is that the shared
invariant B remains to hold.

• The framing part mf corresponds to memory controlled by other subexpressions
and memory that has been framed out. Other subexpressions may change this
part arbitrarily, but e should preserve it as if.

8.7.2 Simple expressions
The postcondition Q of the expression judgment B `Γ,δ {P} e {Q} of our separation
logic is a function Q : lrval→ assert that ranges over return values. The postcondition
Q can thus capture the results of expressions whose value cannot be determined from
just the precondition P . Although this approach is very general, it comes at the cost
of making the inference rules (Definition 8.4.4) rather complicated with an abundance
of universal and existential quantifiers.

For all expression constructs apart from the allocτ e construct and function calls
(which we treat in Section 8.7.3), the resulting value can actually be determined from
just P . We therefore define a variant of the expression judgment.

Definition 8.7.1. The judgment B `Γ,δ {P} e {ν | Q} is defined as follows:

B `Γ,δ {P} e {ν | Q} := B `Γ,δ {P} e {λν′ . pν′ = νq ∗ Q}

Here we have ν ∈ lrval and Q ∈ assert.

The postcondition Q now no longer binds the resulting value. Albeit less general,
this variant of the expression judgment has much simpler derivation rules.

Lemma 8.7.2. We have the following admissible rules:

B ∗ Q1 ∗ Q2 |=Γ,δ v1 } v2 ⇓ v′ B `Γ,δ {P1} e1 {v1 | Q1} B `Γ,δ {P2} e2 {v2 | Q2}
B `Γ,δ {P1 ∗ P2} e1 } e2 {v′ | Q1 ∗ Q2}

B ∗ Q |=Γ,δ load a ⇓ v′ B `Γ,δ {P} e {a | Q}
B `Γ,δ {P} load e {v′ | Q}

Proof. These rules follow from the rules of the judgment B `Γ,δ {P} e {Q}. �

In the Coq development we have proven similar rules for all expression constructs
apart from function calls and the allocτ e construct.
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8.7.3 Function calls
In previous work [Kre14a] we extended the judgments of our separation logic with an
environment of function specifications that assigns pre- and postconditions to function
names. This approach is adapted from Von Oheimb [Ohe01, vON02] and involves the
following two inference rules:

• The first rule allows one to extend the environment with a collection of mutually
recursive functions. One has to prove that each function is correct with respect
to its respective pre- and postcondition.

• The second rule allows one to call a function that is in the environment. This
function has thus already been proven correct using the first rule.

In this thesis we pursue a more modern approach based on higher-order separation
logic. Higher-order separation logic [BBT05, BJSB11] allows function specifications
as part of the assertions. This extension requires a modified definition of assertions
(Definition 8.2.1) and extends the expression judgment (Definition 8.4.4) with a rule
for function calls.

As usual in higher-order separation logic, we use step-indexed assertions [AM01,
AMRV07] to deal with mutually recursive functions. Assertions P,Q ∈ assert become
predicates over natural numbers, where the natural number counts the number of
remaining reduction steps:

P,Q ∈ env→ memenv→ funenv→ stack→ N→ mem→ Prop

We extend the assertion language with the following assertion that describes the
specification of a function f of type ~τ → τ :

(f~τ 7→τ 7→ ∀~y ~v . {P ~y ~v} {Q~y ~v})

Universal quantification over the function parameters ~v and logical variables ~y
can be used to relate the precondition P ~y ~v : assert and postcondition Q~y ~v : val →
assert. The pre- and postcondition should furthermore be stack independent (that is,
P ~y ~v |=Γ,δ (P ~y ~v) ↑ and likewise for Q) because local variables will have a different
meaning at the caller than at callee.

In order to prove the specification of a function f , one has to establish that the
function body δ f is correct with respect to the precondition P ~y ~v and postcondition
Q~y ~v for all values of the function parameters ~v and for all instantiations of the logical
variables ~y. The inference rule is as follows:

Γ f = (~τ , τ) δ f = s

∀~y ~v .
(
`Γ,δ {~i[ xi

♦(0, 1)7−−−−→false | vi |◦ : τi ] ∗ P} s {~i[ xi
♦(0, 1)7−−−−→false – : τi ] ∗ Q}

)
emp |=Γ,δ (f~τ 7→τ 7→ ∀~y ~v . {P ~y ~v} {Q~y ~v})

where we use the following shorthand for P ∈ assert and Q : val→ assert:

`Γ,δ {P} s {Q} := Q, (λl .False), (λn .False) `Γ,δ {P} s {Q nothing}
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We use the later modality . to reason about (mutually) recursive functions [Nak00,
AMRV07, BJSB11]. This modality enjoys the following laws, where the middle is the
so called Löb rule:

P |=Γ,δ .P .P → P |=Γ,δ P . (P ∧ Q) |=Γ,δ .P ∧ .Q

The assertion .P describes that P holds after a step of execution. When calling
a function, it is sufficient that the function specification holds later:

B `Γ,δ {P} e {Q ♦} ∀i .
(
B `Γ,δ {Pi} ei {Qi ♦}

)
∀v ~v .

(
B ∗ Qv ∗ ~i[Qi vi ] |=Γ,δ ∃f . pv = ptr f~τ 7→τq ∗

. (f~τ 7→τ 7→ ∀~y ~v . {Pf ~y ~v} {Qf ~y ~v}) ∗
Pf ~y ~v ∗

(
∀vr . Qf ~y ~v vr −∗ (B ∗ Q′ vr)

))
B `Γ,δ {P ∗ ~i[Pi ]} e(~e) {Q′}

The rule for calling a function allows one to use the shared invariant B to prove
the precondition Pf ~y ~v, and in the end, the shared invariant B has to be reobtained
from the postcondition Qf ~y ~v vr. The invariant allows one to describe shared-memory
among multiple function calls in the same expression (for example a buffer or hash-
table). Note that our axiomatic semantics is not complete. Consider:

int x = 0;
int f(int y) { return (x = y); }
int main() { f(3) + f(4); return x; }

Since the invariant B should hold before, after, and in between each function call
in the expression f(3) + f(4), the best choice for it is x 7−→ 0 ∨ x 7−→ 3 ∨ x 7−→ 4.
Hence, one can only prove that the program returns 0, 3 or 4, whereas it is actually
guaranteed to return always 3 or 4.

8.8 Example: verification of gcd

In order to demonstrate our separation logic, we verify Euclid’s algorithm for com-
puting the greatest common divisor. The C code of this algorithm is as follows:

int gcd(unsigned int y, unsigned int z) {
l: if (z) {

int tmp;
z = (tmp = y % z, y = z, tmp);
goto l;

}
return y;

}

The code is written in a non-idiomatic way to demonstrate interesting features of
our semantics. It contains a goto that jumps out of a scope as well as an expression
with multiple side-effects. We verify the function body without the return statement.
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Notation 8.8.1. We abbreviate uint := unsigned int.

Theorem 8.8.2. The following Hoare triple is derivable:

R, J, T `Γ,δ{(x0 7−→ y : uint) ∗ (x1 7−→ z : uint)}

l : if (load x1) (
localuint (
x2 := (x0 := (load x1 % load x2), x1 := load x2, load x0) ;
goto l

)
) else skip

{(x0 7−→ (gcd y z) : uint) ∗ (x1 7−→ 0 : uint)}

provided J l = ∃y′ z′ . (gcd y′ z′ = gcd y z ∗ (x0 7−→ y′ : uint) ∗ (x1 7−→ z′ : uint)).

Proof. An outline of the derivation of the Hoare triple is as follows:

{(x0 7−→ y : uint) ∗ (x1 7−→ z : uint)}
l :

{J l}
{gcd y′ z′ = gcd y z ∗ (x0 7−→ y′ : uint) ∗ (x1 7−→ z′ : uint)}

if (load x1) (
{z′ , 0 ∗ (x0 7−→ y′ : uint) ∗ (x1 7−→ z′ : uint)}

localuint (
{(x0 7−→ – : uint) ∗ (x1 7−→ y′ : uint) ∗ (x2 7−→ z′ : uint)}
x2 := (x0 := (load x1 % load x2), x1 := load x2, load x0) ;

{(x0 7−→ (y′ mod z′) : uint) ∗ (x1 7−→ z′ : uint) ∗ (x2 7−→ (y′ mod z′) : uint)}
{J l}

goto l
{(x0 7−→ – : uint) ∗ (x1 7−→ (gcd y z) : uint) ∗ (x2 7−→ 0 : uint)}

)
{(x0 7−→ (gcd y z) : uint) ∗ (x1 7−→ 0 : uint)}

) else (
{z′ = 0 ∗ (x0 7−→ y′ : uint) ∗ (x1 7−→ z′ : uint)}

skip
{gcd y′ 0 = gcd y z ∗ (x0 7−→ y′ : uint) ∗ (x1 7−→ 0 : uint)}

)
{(x0 7−→ (gcd y z) : uint) ∗ (x1 7−→ 0 : uint)}

�

In the proof, we only displayed logical conditions (marked blue) in the precondition
where they occurred first and have treated them implicitly consecutively. In the Coq
development we have extended the separation logic with the following rule to make
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8. Separation logic

this informal treatment of logical conditions formal.

∀l ∈ labels s . (J l |=Γ,δ pAq ∗ True) A→ (R, J, T `Γ,δ {P} s {Q})
R, J, T `Γ,δ {pAq ∗ P} s {Q}

The Coq proof of Theorem 8.8.2 amounts to 115 lines of code. We currently apply
the inference rules of the separation logic by hand and hardly use any form of proof
automation. See also the discussion of future work in Section 11.2.4.
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Chapter 9
Formalization in Coq

Real-world programming language have a large number of features that require large
formal descriptions. As this thesis has shown, the C programming language is not
different in this regard. On top of that, the C semantics is very subtle due to an abun-
dance of delicate corner cases. Designing a semantics for C and proving properties
about such a semantics therefore inevitably requires computer support.

For these reasons, we have used the Coq proof assistant [Coq15] to formalize all
definitions and theorems in this thesis. Although Coq does not guarantee the absence
of mistakes in our definitions, it provides a rigorous set of checks on our definitions.
Already Coq’s type checking of definitions provides an effective sanity check. On top
of that, we have used Coq to prove all metatheoretical results stated in this thesis.
These results include correspondences between different kinds of semantics. Last but
not least, using Coq’s program extraction facility we have extracted an exploration
tool to test our semantics on small example programs.

This chapter describes the formalization as well as our Coq support library de-
veloped as part of it. This library has a great number of definitions and theory on
common data structures such as lists, finite sets, finite maps and hashsets that were
essential for the described formalization efforts.

9.1 The Coq proof assistant

The Coq proof assistant [Coq15, BC04] is based on the calculus of inductive con-
structions [CH88, CP90], a dependent type theory with (co)inductive types. Coq is
both a pure functional programming language with an expressive type system, and a
language for mathematical statements and proofs. We highlight some aspects of Coq
that have been essential to the CH2O development.

Type classes Type classes [WB89], as popularized by the Haskell functional pro-
gramming language, provide a means for organization of abstract structures. We have
used type classes in Coq [SO08] for a number of purposes:

• Type classes are used to overload commonly used notations such as those for
typing judgments (we have 25 different typing judgments).
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• Type classes are used to organize algebraic structures such as separation alge-
bras. Also, they are used to organize multiple implementation of abstract data
structures such as finite sets and finite maps.

• Type classes are used to parameterize the whole Coq development by an imple-
mentation environment (Definition 3.4.1 on page 48).

Notations Coq has an extensible mechanism for defining complex notations. We
have used this mechanism in conjunction with unicode symbols and type classes to
obtain notations that are close to those used in this thesis.

Program extraction. Coq provides a facility called program extraction that auto-
matically translates a functional program written in Coq into corresponding OCaml
code [Pau89, Let04]. We have used extraction to obtain an executable version of the
interpreter described in Chapter 7, which itself is written directly in Coq.

We have not used program extraction in the traditional sense where it is used to
extract algorithms from proofs. Instead, we have used it on programs that are close
to those one would write in an ML-like language. Program extraction just removes
logical parts that are computationally irrelevant such as invariants of data structures
and termination arguments of functions that are not structurally recursive.

The Ltac tactic language. Coq proofs are built using a number of tactics. Coq
provides tactics for elementary proof steps (such as ∀-introduction) as well as more
advanced procedures such as Prolog-style inference (the eauto tactic) and solving
Presburger arithmetic (the lia tactic). Coq’s domain specific language Ltac [Del00]
allows one to program more complex tactics and decision procedures. Ltac is used
heavily in the CH2O development, in particular, it is used to automatically discharge
‘boring’ cases of large proofs by induction.

9.2 The CH2O support library

A fair amount of operations and theory on data structures common in programming
was needed during the development of the CH2O formalization. Most of these oper-
ations and corresponding theory were absent in the Coq standard library.

In particular, the definitions corresponding to the memory model involve an abun-
dance of list surgery to translate between bit sequences and tree representations (see
for example Definitions 5.4.16, 5.4.8, 5.5.7 and 5.5.11). Manipulation of finite maps
is frequent to define the memory operations (see Definition 5.6.5) and the separation
algebra operations on memories (see Definition 8.1.6). The formalization also involves
monadic programming: the set monad is used to compute all behaviors of a program
(see Section 6.8), and the combined error state monad is used in the translation from
CH2O abstract C into CH2O core C (see Section 7.2).

For these reasons, we have developed a support library of with results on common
data structures and abstractions used in programming. This library contains ∼12.500
lines of code. Its main parts are as follows:
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• Lists. This part of the library describes numerous operations on lists. Common
properties about these operations, as well as properties about the interaction of
these operations, are proven.
Notable operations: append, length, lookup, update at position, delete at po-
sition, alter at position, replicate, resize with padding, take, drop, filter, left
fold, right fold, point-wise lifting of functions, lifting of predicates and relations
to lists, prefix and suffix inclusion, permutations, treatment of lists as sets,
operations on sublists, and the monadic structure of lists.

• Finite maps. This part of the library describes an abstract interface for finite
maps and provides various implementations of this interface. The abstract
interface provides common theory and automation.
Instances: finite maps represented as lists with Coq’s type of unary natural
numbers nat as keys, finite maps represented as uncompressed radix-2 search
trees with Coq’s type of binary positive natural numbers positive, binary
natural numbers N, binary integers Z and strings string as keys, finite maps
represented as association lists with an arbitrary lexicographic order as keys.
Notable operations: empty map, lookup, singleton, insert, delete, a generalized
alter operation, point-wise lifting of functions, lifting of predicates and relations
to maps, inclusion, operations to combine maps such as disjoint union, intersec-
tion and difference, conversion to and from lists, and extraction of the domain
of a finite map.

• Finite sets. This part of the library describes an abstract interface for finite
sets and provides various implementations of this interface.
Instances: any finite map (with elements of type unit), lists, and hashsets based
on radix-2 search trees, see also Section 9.2.1.
Notable operations: empty set, inclusion, union, intersection, difference, size,
filter, the monad structure of sets, and choice from non-empty finite sets.

• Monads. This part of the library provides overloaded notations for monads, in
particular the do notation. We do not treat the monad laws, but provide more
powerful tactics specific to the option, finite set, and error state monad.
Instances: option monad, list monad, finite set monad, and a combined error
state monad (Definition 7.2.1 on page 136).

We have used type classes to overload notations and to provide abstract interfaces
for finite maps and finite sets. Our approach to abstract interfaces is inspired by the
unbundled approach of Spitters and van der Weegen [SvdW11].

9.2.1 Radix-2 search trees and hashsets
The entire CH2O development makes frequent use of finite sets and finite maps. Since
we have to execute parts of the development, we have implemented these using radix-
2 search trees to obtain logarithmic time operations. Our implementation of radix-2
search trees is based on CompCert’s [Ler09a].

Contrary to CompCert’s implementation of finite maps as radix-2 search trees, we
ensure that extensional equality and Leibniz equality coincide. This means that given
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finite maps m1 and m2, we have m1 = m2 iff m1 x = m2 x for all x. This property
does not hold in CompCert’s implementation because different trees representing the
same finite map are allowed. We have equipped our radix-2 search trees with a proof
of canonicity to remedy this shortcoming.

Having an extensional equality on finite sets and finite maps reduces the need for
setoids (types equipped with an equivalence relation) and therefore reduces formal-
ization overhead. In particular, setoid equality on finite maps and finite sets causes
considerable overhead because finite sets appear deeply throughout the CH2O syntax
(for example the locksets Ω in expressions [ν]Ω, see Definition 6.1.4 on page 95).

Radix-2 search trees are also used to implement hashsets, which are used to filter
out duplicates in the implementation of the reachable state set of the interpreter (see
Section 7.4). Since the correctness proofs of operations on hashsets do not rely on
any properties of the hash function (in the worst case all elements end up in the same
hash bucket, but that just affects efficiency), we can use the efficient OCaml standard
library function Hashtbl.hash after extraction.

9.2.2 Monads
We have used type classes to provide overloaded notations for monadic operations.
For example, we provide Haskell-like notations for the monadic bind:

Class MBind (M : Type → Type) :=
mbind : ∀ {A B}, (A → M B) → M A → M B.

Notation "m�= f" := (mbind f m).
Notation "x← y ; z" := (y�= (λ x, z)).
Notation "’ ( x1 , x2 )← y ; z" :=

(y�= (λ x, let ’(x1, x2) := x in z)).

Instances are defined in the expected way:

Instance option_bind: MBind option := λ A B f x,
match x with Some a => f a | None => None end.

Instance list_bind : MBind list := λ A B f,
fix go l := match l with [] => [] | x :: l => f x ++ go l end.

We have used type classes solely for notations and not to organize abstract prop-
erties of monads such as the monad laws. Custom tactics for specific monads turned
out to be much more useful. For the case of the option monad, we use a tactic that
repeatedly decomposes assumptions using among the following result.

Lemma bind_Some {A B} (f : A → option B) (x : option A) b :
x�= f = Some b↔ ∃ a, x = Some a ∧ f a = Some b.

We have similar tactics that repeatedly simplify the goal using similar lemmas for
the other monads such as the set and combined error state monad.

The code below in an excerpt of the Coq definition corresponding to the executable
semantics execΓ,δ : state→ Pfin(state).
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Definition cexec (Γ: env K) (δ : funenv K) (S : state K) : listset (state K) :=
let ’State k φ m := S in
match φ with
| Expr e =>

match maybe2 EVal e with
| None =>

’(E,e’)← expr_redexes e;
match maybe_ECall_redex e’ with
| Some (Ω, f, _, _, Ωs, vs) =>

{[ State (CFun E :: k) (Call f vs) (mem_unlock (Ω ∪
⋃

Ωs) m) ]}
| None =>

let es := ehexec Γ k e’ m in
if decide (es ≡ ∅) then {[ State k (Undef (UndefExpr E e’)) m ]}
else ’(e2,m2)← es; {[ State k (Expr (subst E e2)) m2 ]}

end
| ...
end

| ...
end.

The function expr_redexes decomposes an expression e into a finite set of all pos-
sible combinations (E,e’) of evaluation contexts and redexes. The monadic structure
is used to collect the subsequent states for each redex. The subsequent states depend
on whether the redex e’ is stuck, a head redex or a function call.

The code below in an excerpt of the Coq definition corresponding to the translation
of statements of CH2O abstract C into statements of CH2O core C.
Definition to_stmt (τret : type K) :

local_env K → cstmt → M (stmt K * rettype K) :=
fix go ∆l cs {struct cs} :=
match cs with
| CSReturn (Some ce) =>

guard (τret , voidT) with
"return with expression in function returning void";

’(e,τ)← to_R_NULL τret <$> to_expr ∆l ce;
Γ← gets to_env;
guard (cast_typed τ τret) with "return expression has incorrect type";
mret (ret (cast{τret} e), (true, Some τret))

| CSWhile ce cs =>
’(e,τ)← to_R <$> to_expr ∆l ce;
τb ← error_of_option (maybe TBase τ)

"conditional argument of while statement of non-base type";
guard (τb , TVoid) with

"conditional argument of while statement of void type";
’(s,cmσ)← go ∆l cs;
mret (catch (loop (if{e} skip else throw 0 ;; catch s)),

(false, cmσ.2))
| ...
end.
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9.2.3 Comparison with other Coq libraries
There are some other Coq libraries available that provide functionality similar to the
CH2O support library. We will briefly compare these libraries.

The Coq standard library [Coq15] provides abstract interfaces for finite sets and
finite maps, and efficient implementations based on AVL and red-black trees. Albeit
being more general, these implementations inherently require setoid equality. Fur-
thermore, Coq’s module system is used, which due to its second class nature does not
allow decent overloading of notations.

The Ssreflect library by Gonthier et al. [GM10] provides many operations on lists,
finite sets and finite functions together with a large collection of corresponding theo-
rems. Overloaded notations and generic theory are provided through use of canonical
structures (an alternative type class mechanism for Coq) and Leibniz equality is used
nearly everywhere. However, the Ssreflect library is not developed for computational
efficiency. Most constructions rely on generic encodings as unary natural numbers,
which are general, but inherently inefficient.

The Coq extended library coq-ext-lib by Malecha [Mal15] provides abstract inter-
faces for finite sets, finite maps and monads based on type classes. Albeit being more
abstract than the CH2O library, only a limited number of concrete instances and a
limited collection of lemmas is provided.

9.3 Overloaded typing judgments

Type classes are used to overload notations for typing judgments (we have 25 different
typing judgments). We use the same approach as we have used for monads: we declare
a type class and bind a notation to it. The class Valid is used for judgments without
a type, such as ` Γ and Γ,∆ ` m.

Class Valid (E A : Type) := valid: E → A → Prop.
Notation "X{ Γ }" := (valid Γ).
Notation "X{ Γ }*" := (Forall (X{Γ})).

We use product types to represent judgments with multiple environments such as
Γ,∆ ` m. The notation X{Γ}* is used to lift the judgment to lists. The class Typed
is used for judgments such as Γ,∆ ` v : τ and Γ,∆, ~τ ` e : τlr.

Class Typed (E T V : Type) := typed: E → V → T → Prop.
Notation "Γ ` v : τ" := (typed Γ v τ).
Notation "Γ `* vs :* τs" := (Forall2 (typed Γ) vs τs).

9.4 Implementation-defined behavior

Type classes are used to parameterize the whole Coq development by implementation-
defined parameters such as integer sizes. For example, Lemma 5.5.13 on page 83 looks
like:
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Lemma to_of_val ‘{EnvSpec K} Γ ∆ γs v τ :
X Γ → (Γ,∆) ` v : τ → length γs = bit_size_of Γ τ →
to_val Γ (of_val Γ γs v) = freeze true v.

The parameter EnvSpec K is a type class describing an implementation environ-
ment with ranks K (Definition 3.4.1 on page 48). Just as in this thesis, the type K of
integer ranks is a parameter of the inductive definition of types (see Definition 3.1.1
on page 40) and is propagated through all syntax.

Inductive signedness := Signed | Unsigned.
Inductive int_type (K: Set) := IntType { sign: signedness; rank: K }.

The definition of the type class EnvSpec is based on the approach of Spitters and
van der Weegen [SvdW11]. We have a separate class Env for the operations that is
an implicit parameter of the whole class and all lemmas.

Class Env (K: Set) := {
env_type_env :> IntEnv K;
size_of : env K → type K → nat;
align_of : env K → type K → nat;
field_sizes : env K → list (type K) → list nat;
alloc_can_fail : bool

}.
Class EnvSpec (K: Set) ‘{Env K} := {

int_env_spec :>> IntEnvSpec K;
size_of_ptr_ne_0 Γ τp : size_of Γ (τp .*) , 0;
size_of_int Γ τi : size_of Γ (intT τi ) = rank_size (rank τi );
...

}.

Note that the class EnvSpec contains just logical parts that are computationally
irrelevant. It will therefore not appear in the extracted OCaml code.

9.5 Partial functions

Although many operations in CH2O are partial, we have formalized many such op-
erations as total functions that assign an appropriate default value. We followed
the approach presented in Section 4.2 where operations are combined with a validity
predicate that describes in which case they may be used. For example, part (2) of
Lemma 8.1.11 on page 149 is stated in the Coq development as follows:

Lemma mem_insert_union ‘{EnvSpec K} Γ ∆ m1 m2 a1 v1 τ1 :
X Γ → X{Γ,∆} m1 → m1 ⊥ m2 →
(Γ,∆) ` a1 : TType τ1 → mem_writable Γ a1 m1 → (Γ,∆) ` v1 : τ1 →
<[a1:=v1]{Γ}>(m1 ∪ m2) = <[a1:=v1]{Γ}>m1 ∪ m2.

Here, m1 ⊥ m2 is the side-condition of m1 ∪ m2, and mem_writable Γ a1 m1 the
side-condition of <[a1:=v1]{Γ}>m1. Alternatives approaches include using the option
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monad or dependent types, but our approach proved more convenient. In particular,
since most validity predicates are given by an inductive definition, various proofs
could be done by induction on the structure of the validity predicate. The cases one
has to consider correspond exactly to the domain of the partial function.

Admissible side-conditions, such as in the above example <[a1:=v1]{Γ}>m1 ⊥ m2
and mem_writable Γ a1 (m1 ∪ m2), do not have to be stated explicitly and follow
from the side-conditions that are already there. By avoiding the need to state admis-
sible side-conditions, we avoid a blow-up in the number of side-conditions of many
lemmas. We thus reduce the proof effort needed to use such a lemma.

Our proofs of type preservation (Theorem 6.6.13 on page 123) and stability under
memory refinements (Theorem 6.7.1 on page 124) give confidence that we have not
forgotten any side-conditions in the operational semantics.

9.6 Automation

The proof style deployed in the CH2O development combines interactive proofs with
automated proofs. Proof automation is used for three main purposes:

• To automatically solve side-conditions of lemmas. For example, most lemmas
related to separation algebras have side-conditions involving disjointness.

• To simplify hypotheses. For example, hypotheses involving specific monads,
finite set containment, typing judgments, and some ad-hoc problems, etc.

• To discharge uninteresting cases in large inductive proofs. For example, in the
case of inductive proofs over the small-step operational semantics, or in proofs
over the various typing judgments.

In this section we describe some tactics and forms of proof automation deployed
in the CH2O development.

Small inversions. Coq’s inversion tactic has two serious shortcomings on induc-
tively defined predicates with many constructors (such as the small-step operational
semantics, Definition 6.5.8 on page 118). It is slow and its way of name control for
variables and hypotheses is deficient. Hence, we often used the technique of small
inversions by Monin and Shi [MS13] that improves on both shortcomings.

Solving disjointness. We have used Coq’s setoid machinery [Soz10] to enable
rewriting using the relations ≤⊥ and ≡⊥ (Definition 4.6.3 on page 59). Using this
machinery, we have implemented a tactic that automatically solves entailments of the
form:

H0 :⊥ ~x0, . . . , Hn :⊥ ~xn−1 ` ⊥ ~x

where ~x and ~xi (for i < n) are arbitrary Coq expressions built from ∅, ∪ and
⋃

. This
tactic works roughly as follows:

1. Simplify hypotheses using Theorem 4.6.6 on page 60.
2. Solve side-conditions by simplification using Theorem 4.6.6 and a solver for list

containment (implemented by reflection).
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3. Repeat these steps until no further simplification is possible.
4. Finally, solve the goal by simplification using Theorem 4.6.6 and list contain-

ment.
This tactic is not implemented using reflection, but that is something we intend

to do in future work to improve its performance.

First-order logic. Many side-conditions we have encountered involve simple entail-
ments of first-order logic such as distributing logical quantifiers combined with some
propositional reasoning. Coq does not provide a solver for first-order logic apart from
the firstorder tactic whose performance is already insufficient on small goals.

We have used Ltac to implemented an ad-hoc solver called naive_solver, which
performs a simple breath-first search proof search. Although this tactic is inherently
incomplete and suffers from some limitations, it turned out to be sufficient to solve
many uninteresting side-conditions (without the need for classical axioms).

9.7 Overview of the Coq development

The Coq development, which is entirely constructive and axiom free, consists of the
following parts:

Component Chapters LOC
Support library Section 9.2 12 524
Types & Integers Chapter 3 1 928
Permissions & separation algebras Chapter 4 1 811
Memory model Chapter 5 8 736
CH2O core C Chapter 6 6 979
Refinements Section 5.8 and 6.7 6 036
CH2O abstract C Chapter 7 2 739
Separation logic Chapter 8 8 467
Total 49 220

Apart from that, the translation from C source files to CH2O abstract C involves
the GNU C preprocessor, the FrontC parser, and a small layer of handwritten OCaml
glue (987 LOC).
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Chapter 10
Related work

There is a lot of successful work on the formalization of a wide variety of programming
languages, ranging from ‘clean’ mathematically oriented programming languages to-
wards real-life programming languages with many ‘dirty’ constructs.

Formalization has been particularly successful in the area of ‘clean’ mathemati-
cally oriented programming languages. A groundbreaking example is the functional
programming language Standard ML whose official semantics is given in the form of
typing rules and an operational semantics [MTHM97]. Initiatives such as the POPL-
mark challenge [ABF+05] have been important to stimulate the formalization of the
metatheory of programming languages using proof assistants. There have also been a
lot of projects on the formalization of high-level imperative programming languages
such as Java [JP04, KN06, BCG+08, Loc12].

Formalization has also been successful in the area of ‘dirty’ low-level programming
languages. For example, there are comprehensive formalizations of real-life assembly
languages such as ARM [Fox03] and x86 [KWAH12]. Another interesting example
is the formalization of the fragment of the C and C++ memory model for shared-
memory concurrency [BOS+11] where the formalization efforts have led to numerous
improvements of the actual texts of the C and C++ standards.

Formalization of C is rather different from the aforementioned areas because C
combines low-level aspects such as pointers and object representations with high-level
aspects that allow for efficient compilation. Besides, in formalizations of higher-level
programming languages, there is a significant interest in features such as algebraic
data types, polymorphism, higher-order functions, module systems and object orien-
tation. These features are absent in C. In this chapter we therefore limit ourselves to
formalizations of the C language.

10.1 Formalization of the C standard

This section gives a chronological overview of formalizations of the C standard. For-
malizations that only treat the C memory model are discussed in Section 10.2. Our
formalization, called CH2O, distinguishes itself from all discussed works by providing
all of the following features:
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• CH2O treats a large fragment of the language.
• CH2O is faithful to the C11 standard and is therefore compiler independent.
• CH2O contains a formalization of the C type system and a formalized translation

from abstract syntax into a principled core language.
• CH2O has a corresponding executable and axiomatic semantics.
• CH2O is fully formalized in a proof assistant.
• CH2O has been used for a large number of proofs of metatheoretical results.
Figure 10.1 displays a chart of the features covered by the discussed formalizations.

This chart is intended to serve both as an indication and as a summary of the more
detailed description of related work on C formalizations in this section. The displayed
items are not equally difficult and are subject to interpretation. We have based this
chart on the comparison of formalizations by Ellison [Ell12, Figure 2.1].

Gurevich and Huggins (1993) The first attempt to give a mathematically precise
semantics of C is due to Gurevich and Huggins [GH93]. Their semantics is based on
the description of C in second edition of the book by Kernighan and Ritchie [KR88]
and is defined in terms of the formalism of evolving algebras [Gur91]. They have not
used any form of computer assistance such as a proof assistant.

Gurevich and Huggins have covered a reasonable part of the C language including
some aspects of underspecification. Most notably, non-determinism in expressions is
modeled using external oracles. However, as pointed out by Norrish [Nor98], they are
missing interleaved evaluation orders. Consider:

printf("a") + (printf("b") + printf("c"));

Evaluation of this expression may print bac according to the C standard (and
CH2O), whereas Gurevich and Huggins have missed out on that behavior.

Gurevich and Huggins did not consider an executable or axiomatic semantics, and
did not prove any metatheoretical properties.

Cook and Subramanian (1994) The first attempt to formalize C using a proof
assistant is due to Cook and Subramanian [CS94]. Their semantics is defined in
terms of a Lisp function in the proof assistant Nqthm (the predecessor of ACL2).
Since their semantics is essentially an interpreter, it is by definition executable. The
logic of Nqthm is used both to prove properties of simple programs and to prove some
basic metatheoretical results.

The fragment of C89 treated by Cook and Subramanian includes a very limited set
of types (integers, pointers to integers, arrays of integers, and functions returning an
integer or void) and a limited set of expression constructs. Recursive functions are not
supported, expression evaluation is assumed to go left-to-right, and implementation-
defined properties (such as the size of integers) have fixed values.

C abstract syntax is translated into a smaller language. However, unlike us, they
have not formalized this translation in the proof assistant itself.
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GH CS Nor Pap Ler ER/Hat CH2O

First publication 1993 1994 1998 1998 2006 2012 2013
Standard K&R C89 C89 C89 C99 C11 C11
System - Nqthm HOL4 Haskell Coq K Coq

Formalism evolution
algebra

exec-
utable

big/small-
step

denota-
tional

small-
step rewriting small-

step
Executable semantics #  #     
Axiomatic semantics # # G# # G# #  
Formalized preprocessor # # # # # # #
Formalized parser # # # #  # #
Formalized frontend # # # # #   
Formalized compiler # # # #  # #
Typing judgments # #   G# #  
Proof assistant #   #  #  
Metatheory # G#  #  #  
Faithful to standard # #   G#   
Implementation-defined # #   G#   

Enum types G# # #  G#   
Floating point arithmetic # # #    #
Bitfields  # # G# G#  #
Struct/unions as value # #  # #   
Effective types # # # # # #  
Restrictions on padding # # # # # G#  
Integer conversions G# G#      
Non-determinism G# #      
Sequence point restriction G# #   #   
break/continue G# G#      
goto G# # #     
switch G# # #  G#   
setjmp/longjmp # # # # #  #
malloc/free # # # # G#  G#
Variadic functions # # # # G#  #
External functions # # # #  # #
Concurrency/atomics # # # # G# G# #

 fully described G# partially described/part of informal translation # not described

Figure 10.1: Overview of formalizations of the C standard. The top rows describe
properties of the formalization whereas the bottom rows describe which features of
the language are covered by the formalization.
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Norrish (1998) Norrish has formalized a significant fragment of the C89 standard
using the proof assistant HOL4 [Nor98, Nor99]. He has considered a fragment of C
with more features than earlier work, treated underspecification, and was the first to
describe non-determinism and sequence points formally.

Norrish has used a big-step semantics for statements and a small-step semantics
for expressions. The use of a small-step semantics was essential to describe all possible
behaviors due to non-deterministic expression evaluation, but the combination proved
less fruitful. In the conclusion of his PhD thesis [Nor98, Section 7.1], Norrish states
that he regrets having used a big-step semantics for statements. Our treatment of
non-determinism and sequence points is inspired by Norrish’s, see Section 6.4.

Apart from the operational semantics, Norrish has also formalized the type system
of C and proven type preservation. Norrish has omitted some features of C that can
be handled by translation (such as static local variables, typedefs and enum types)
but has explicitly treated other features that we handle by translation (such as l-value
conversion). He has not formalized the translation that simplifies these features.

Norrish has proven the validity of Hoare rules for statements and confluence results
for sequence point free expressions in order to facilitate reasoning about concrete C
programs. Although his confluence results do not hold in our formalization, variants
of his proofs may also be useful for more efficient symbolic evaluation of expressions.
He has left reasoning about arbitrary C expressions as an open problem.

Contrary to our work, Norrish has used an unstructured memory model based on
sequences of bytes. Since he has considered the C89 standard in which effective types
(and similar notions) were not introduced yet, his choice is appropriate. For C99 and
beyond, a more detailed memory model like ours is needed, see also Section 2.5 and
Defect Report #260 and #451 [ISO].

Another interesting difference is that Norrish represents abstract values (integers,
pointers and structs) as sequences of bytes instead of mathematical values. Due to
this, padding bytes retain their value while structs are copied. This is not faithful to
the C99 standard and beyond.

Papaspyrou (1998) Papaspyrou has defined a denotational semantics for a signifi-
cant fragment of the C89 standard in the form of a Haskell program [Pap98]. Monads
and monad transformers are used to model different aspects of computations, includ-
ing more difficult aspects of C such as non-determinism and sequence points.

Papaspyrou’s goal is similar to Norrish’s, namely to describe the C89 as accurately
as possible. However, his approach is entirely different from Norrish’s. Most notably,
he uses a denotational semantics instead of an operational semantics and considers a
larger fragment of the C language. For example, his fragment includes floats, unions,
gotos and switch statements, whereas Norrish has omitted these features. On the
other hand, Norrish has used a proof assistant to define his semantics and is therefore
able to formally prove metatheoretical results.

Papaspyrou has described the C semantics using monads. Since all parts of his
semantics are defined in Haskell, the semantics is by definition executable. Similar to
our interpreter (Chapter 7) it can be used to compute the set of all possible behaviors

186



10.1. Formalization of the C standard

of a program. However, as observed by Ellison [Ell12], Papaspyrou’s interpreter is of
little use due to performance problems.

Leroy et al. (2006) Leroy et al. have formalized a significant part of C using the
Coq proof assistant [Ler06, Ler09b]. Their part of C, called CompCert C, covers most
major features of C and can be compiled into assembly (PowerPC, ARM and x86)
using a compiler written in Coq. Their compiler, called CompCert, has been proven
correct with respect to the CompCert C and assembly semantics.

The goal of CompCert is essentially different from CH2O’s. What can be proven
with respect to the CompCert semantics does not have to hold for any C11 compiler,
it just has to hold for the CompCert compiler. CompCert is therefore in its semantics
allowed to restrict implementation-defined behaviors to be very specific (for example,
it uses 32-bit ints since it targets only 32-bit computing architectures) and allowed
to give a defined semantics to various undefined behaviors of C11 (such as sequence
point violations, violations of effective types, and certain uses of dangling pointers).
Let us consider a simple example:
int *p;
{ int x = 10; p = &x; }
printf("%d\n", *p);

This code has undefined behavior according to the C11 standard as well as CH2O
because the value of the dangling pointer p is used. However, in CompCert this code
is guaranteed to print 10 because all local variables have function scope. As discussed
in Section 2.3, CompCert is allowed to do so. Other differences between CompCert,
CH2O and C11 are discussed in Section 2.3.

CompCert uses a small-step semantics for the source language CompCert C, the
intermediate languages used in the compiler, and the targeted assembly languages
(PowerPC, ARM and x86). Earlier versions of CompCert have used a big-step opera-
tional semantics with a coinductive counterpart for non-terminating programs [LG09].
However, the big-step semantics has been replaced by a small-step semantics to de-
scribe non-local flow such as goto statements.

Apart from the operational semantics, CompCert has also formalized typing judg-
ments and a proof of type preservation. Compared to the typing judgments of CH2O
there are some differences:

• Our typing judgments are stronger. For example, we guarantee that all pointers
refer to objects that actually exist in memory, that the memory is well-formed,
and that gotos have a corresponding label.

• Our semantics enjoys a progress property.
• Our translation from abstract syntax is written in Coq and is proven to be type

sound in Coq. CompCert’s translation from abstract syntax mainly consists of
unverified OCaml code. It uses some verified helper functions that are obtained
by extraction from Coq.

The parser of CompCert is formally verified [JPL12]. That means, it has a formal
definition of the C grammar and its parser has been proven sound and complete with
respect to that definition of the C grammar.
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CompCert has significantly influenced this thesis. Most notably, the foundations
of our memory model are based on the CompCert memory model [LB08, LABS12],
and our notion of memory refinements (Section 5.8) is an adaptation of CompCert’s
notion of memory injections. But whereas CompCert uses an untyped memory model
that consists of arrays of bytes, our memory model consists of well-typed trees in order
to faithfully describe the C11 standard.

CompCert has been used for numerous applications. Appel et al. have developed
a separation logic for CompCert [App14], which for example has been used to verify
an implementation of SHA [App15]. Jourdan et al. have developed a formally verified
static analyzer for CompCert’s intermediate language C]-minor [JLB+15]. Shao et al.
have verified a microkernel operating system against a variant of the CompCert se-
mantics [GVF+11]. Furthermore, various extensions of both the CompCert compiler
as well as the CompCert semantics have been developed. For example:

• Dargaye has developed a compiler from a subset of ML to an intermediate
language of CompCert [Dar09].

• Barthe et al. have developed a Static Single Assignment (SSA) based middle-
end for CompCert [BDP12].

• Sevćık et al. have extended CompCert with shared-memory concurrency and
atomics [SVN+13]. Their extension is based on their x86-TSO model [SSO+10]
and is thus called CompCert TSO. They have extended many intermediate
languages and proofs of compilation phases.

• Carbonneaux et al. [CHRS14] have developed an extension of CompCert, called
Quantitative CompCert, that takes bounds on stack usage into account. On top
of that, they provide a Hoare logic to establish bounds on stack usage, and a
verified stack usage analyzer.

• Beringer et al. have developed an extension of CompCert, called Compositional
CompCert, for separate compilation [BSDA14, SBCA15]. Separate compilation
is the process of compiling individual modules of a program separately while
preserving the correctness of the whole program. They have proposed a seman-
tical approach for modeling the interaction between different modules, which
themselves may be written in different languages. They have successfully ap-
plied their approach to extend the CompCert semantics and compiler proofs
with support for separate compilation.

• Kang and Hur have also developed a version of CompCert suitable for separate
compilation [KH15]. Contrary to Beringer et al., they use a syntactical method
instead of a semantical one.

Ellison and Roşu (2012) Ellison and Roşu [ER12b, Ell12] have developed an
executable semantics of the C11 standard using the K-framework1. Their semantics
is very comprehensive and describes all features of a freestanding C implementa-
tion [ISO12, 4p6] including some parts of the standard library. It furthermore has

1This work has been superseded by Hathhorn et al. [HER15], which is described below. Table 10.1
therefore only includes Hathhorn et al..
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been thoroughly tested against test suites (such as the GCC torture test suite), and
has been used as an oracle for compiler testing [RCC+12].

Ellison and Roşu support more C features than we do, but they do not have
infrastructure for formal proofs, and thus have not established any metatheoretical
properties about their semantics. Their semantics, despite being written in a formal
framework, should more be seen as a debugger, a state space search tool, or possibly,
as a model checker. It is unlikely to be of practical use in proof assistants because
it is defined on top of a large C abstract syntax and uses a rather ad-hoc execution
state that contains over 90 components.

Similar to our work, Ellison and Roşu’s goal is to exactly describe the C11 stan-
dard. However, for some programs their semantics is less precise than ours, which is
mainly caused by their memory model, which is less principled than ours. Their mem-
ory model is based on CompCert’s: it is essentially a finite map of objects consisting
of unstructured arrays of bytes.

Ellison and Roşu provide a comprehensive treatment of the operational semantics
but do not treat the type system. Type checking is performed during execution only
whenever necessary. Also, some parts of the static semantics such as name binding
are handled dynamically. This has some strange consequences, for example:

int main() {
if(0) { return x; } else { return 12; }

}

The C11 standard requires compilers to produce a diagnostic in case an undeclared
variable is used [ISO12, 5.1.1.3p1, 6.5.1p2], but Ellison and Roşu require this program
to return 12. In fact, it seems they allow unreachable parts of the program to contain
any syntactically valid blob of code. The above program is statically rejected by the
type system of CompCert and CH2O.

Hathhorn et al. (2015) Hathhorn et al. [HER15] have extended the work of
Ellison and Roşu to handle more underspecification of C11. Most importantly, the
memory model has been extended, support for the type qualifiers const, restrict
and volatile has been added, and the static semantics (which includes linking and
type checking) is now handled as part of the formal semantics. This extension in-
creased the size of their semantics, in terms of lines of code, by a factor of two.

Hathhorn et al. have extended the original memory model (which was based
on CompCert’s) with decorations to handle effective types, restrictions on padding
and the restrict qualifier. Effective types are modeled by a map that associates
a type to each object. Their approach is less fine-grained than ours and is unable
to account for active variants of unions. It thus does not assign undefined behavior
to important violations of effective types and in turn does not allow compilers to
perform optimizations based on type-based alias analysis. For example:

// Undefined behavior in case f is called with aliased
// pointers due to effective types
int f(short *p, int *q) { *p = 10; *q = 11; return *p; }
int main() {
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union { short x; int y; } u = { .y = 0 };
return f(&u.x, &u.y);

}

The above program has undefined behavior due to a violation of effective types.
This is captured by our tree based memory model, but Hathhorn et al. require the
program to return the value 11. When compiled with GCC or Clang with optimization
level -O2, the compiled program returns the value 10.

Hathhorn et al. handle restrictions on padding bytes in the case of unions, but
not in the case of structs. For example, the following program returns the value 1
according to their semantics, whereas it has unspecified behavior according to the
C11 standard [ISO12, 6.2.6.1p6] (see also Section 2.5.3):

struct S { char a; int b; } s;
((unsigned char*)(&s))[1] = 1;
s.a = 10; // Makes the padding bytes of ’s’ indeterminate
return ((unsigned char*)(&s))[1];

The restrictions on paddings bytes are implicit in our memory model based on
structured trees, and thus handled correctly. The above examples provide evidence
that a structured approach, especially combined with metatheoretical results, is more
reliable than depending on ad-hoc decorations.

Hathhorn et al. have furthermore extended their original semantics with a formal-
ized translation phase that performs type checking and translation of static constructs
(such as initializers and array sizes). The example in the paragraph Ellison and Roşu
(2012) therefore no longer applies to this version.

An interesting feature of this translation phase is support for linking of multiple
.c source files, whereas CH2O only supports individual source files. The approach
of Hathhorn et al. to linking is syntactical and thus essentially different from the se-
mantical approach of Beringer et al. in the context of CompCert [BSDA14, SBCA15].
Ideally, one would like to consider a notion of syntactic and semantic linking that are
proven to correspond with each other.

Memarian et al. (2015) Cerberus is an ongoing project by Memarian et al.,
described in the draft paper [MNM+15], that aims at developing a semantics of a
de facto version of C 2. Instead of formalizing C as described by the official ISO C11
standard, their formalization is based on the way C is used in practice. Their goal is
thus different from ours.

As a first step to investigate how C is used in practice, Memarian and Sewell have
undertaken a web survey [MS15]. They have received around 300 responses, including
many responses by systems programmers and compiler writers. The survey consisted
of 15 questions and focused on issues related to pointers and memory, similar to those
that we have discussed in Section 2.5.

The responses to the survey display a wide diversity of answers. Although some
constructs considered in certain questions are clearly undefined according to the C11

2Since the paper is an unpublished draft, we have not included it in Table 10.1.
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standard (and thus also in CH2O), many respondents note that widely used code relies
on these constructs, whereas others note that these may be miscompiled. Cerberus
intends to provide switchable options for different behaviors of such constructs.

A draft paper by Memarian et al. [MNM+15] describes an initial version of the
Cerberus formalization. Similar to out work, actual C programs are translated into a
core language. This translation performs type checking. Similar to CH2O core C, the
Cerberus core language has an executable semantics, but is also very different from
CH2O core C. For example:

• The Cerberus core language is an imperative strongly typed functional language
with first-order recursive functions. It is thus further away from C than both
CH2O core C and CompCert C.

• All C-style loops are modeled using labeled statements and gotos. This reduces
the size of the core language, but at the cost of having to deal with freshness
conditions of labels for already simple loops.

• It has explicit constructs to deal with the lifetime of objects. These constructs
are for example used when a goto leaves a block scope containing local variables.
CH2O core C implicitly deals with the lifetime of objects.

• It has explicit constructs for undefined behavior. For example, division of x by
y is encoded as if y = 0 then undef(Division by zero) else x / y.
CH2O core C has a similar expression for undefined behavior, but it is only used
to capture undefined behavior due to control reaching the end of a non-void
function. Other undefined behavior is implicit in CH2O core C.

• Whereas CH2O does not consider concurrency at all, Cerberus uses a concurrent
memory model based on the work by Batty et al. [BOS+11]. Non-determinism
in expressions (as well as undefined behavior due to sequence point violations)
is modeled using concurrency primitives.

The current version of the Cerberus formalization does not deal with byte repre-
sentations, unions, and other issues related to the memory and pointers. This is left
for future work based on the results of the survey.

10.2 Formalization of the C memory model

The memory model is arguably the most challenging part of a formalized C semantics.
This is mainly caused by the very subtle interaction between low-level and high-level
memory access. In this thesis we have proposed a structured memory model based
on well-typed trees to close the gap between these two levels.

The idea of using a memory model based on trees instead of arrays of plain bits,
and the idea of using pointers based on paths instead of offsets, has already been used
for object oriented languages. It goes back at least to Rossie and Friedman [RF95],
and has been used by Ramananandro et al. [RDRL11] for C++. Furthermore, many
researchers have considered connections between unstructured and structured views
of data in C [TKN07, CMTS09, AS14, GLAK14] in the context of program logics.
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However, a memory model that combines an abstract tree based structure with
low-level object representations in terms of bytes has not been explored before. In
this section we will describe other formalizations of the C memory model.

Leroy and Blazy (2008) The CompCert memory model is used by all languages
(from C until assembly) of the CompCert compiler [LB08, LABS12]. The CompCert
memory is a finite partial function from object identifiers to objects. Each local,
global and static variable, and invocation of malloc is associated with a unique object
identifier of a separate object in memory. This approach is well-suited for reasoning
about memory transformations because it separates unrelated objects. We have used
the same approach in CH2O.

In the first version of the CompCert memory model [LB08], objects were repre-
sented as arrays of type-annotated fragments of base values. Examples of bytes are
thus “the 2nd byte of the short 13” or “the 3rd byte of the pointer (o, i)”. Pointers
were represented as pairs (o, i) where o is an object identifier and i the byte offset
into the object o.

Since bytes are annotated with types and could only be retrieved from memory
using an expression of matching type, effective types on the level of base types are
implicitly described. However, this does not match the C11 standard. For example,
Leroy and Blazy do assign defined behavior to the following program:

struct S1 { int x; };
struct S2 { int y; };
int f(struct S1 *p, struct S2 *q) {

p->x = 10;
q->y = 11;
return p->x;

}
int main() {

union U { struct S1 s1; struct S2 s2; } u;
printf("%d\n", f(&u.s1, &u.s2));

}

This code strongly resembles example [ISO12, 6.5.2.3p9] from the C11 standard,
which is stated to have undefined behavior3. GCC and Clang optimize this code to
print 10, which differs from the value assigned by Leroy and Blazy’s memory model.

Apart from assigning too much defined behavior, Leroy and Blazy’s treatment of
effective types also prohibits any form of “bit twiddling”.

Leroy and Blazy have introduced the notion of memory injections in [LB08]. This
notion allows one to reason about memory transformations in an elegant way. Our
notion of memory refinements (Section 5.8) generalize the approach of Leroy and
Blazy to a tree based memory model.

3We have modified the example from the standard slightly in order to trigger optimizations by
GCC and Clang.
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Leroy et al. (2012) The second version of CompCert memory model [LABS12] is
entirely untyped and is extended with permissions. Symbolic bytes are only used for
pointer values and indeterminate storage, whereas integer and floating point values
are represented as numerical bytes (integers between 0 and 28 − 1).

We have extended this approach by analogy to bit-representations, representing
indeterminate storage and pointer values using symbolic bits, and integer values using
concrete bits. This choice is detailed in Section 5.3.

Besson et al. (2014) Besson et al. have proposed an extension of the Comp-
Cert memory model that assigns a defined semantics to operations that rely on the
numerical values of uninitialized memory and pointers [BBW14].

Objects in their memory model consist of lazily evaluated values described by
symbolic expressions. These symbolic expressions are used to delay the evaluation of
operations on uninitialized memory and pointer values. Only when a concrete value
is needed (for example in case of the controlling expression of an if-else, for, or
while statement), the symbolic expression is normalized. Consider:

int x, *p = &x;
int y = ((unsigned char*)p)[1] | 1;
// y has symbolic value "2nd pointer byte of p" | 1
if (y & 1) printf("one\n"); // unique normalization -> OK
if (y & 2) printf("two\n"); // no unique normalization -> bad

The value of ((unsigned char*)p)[1] | 1 is not evaluated eagerly. Instead, the
assignment to y stores a symbolic expression denoting this value in memory. During
the execution of the first if statement, the actual value of y & 1 is needed. In this case
y & 1 has the value 1 for any possible numerical value of ((unsigned char*)p)[1].
As a result, the string one is printed.

The semantics of Besson et al. is deterministic by definition. Normalization of
symbolic expressions has defined behavior if and only if the expression can be normal-
ized to a unique value under any choice of numeral values for pointer representations
and uninitialized storage. In the second if statement this is not the case.

The approach of Besson et al. gives a semantics to some programming techniques
that rely on the numerical representations of pointers and uninitialized memory. For
example, it gives an appropriate semantics to pointer tagging in which unused bits of
a pointer representation are used to store additional information.

However, as already observed by Kang et al. [KHM+15], Besson et al. do not give a
semantics to many other useful cases. For example, printing the object representation
of a struct, or computing the hash of a pointer value, is inherently non-deterministic.
The approach of Besson et al. assigns undefined behavior to these use cases.

The goal of Besson et al. is inherently different from ours. Our goal is to describe
the C11 standard faithfully whereas Besson et al. focus on de facto versions of C.
They intentionally assign defined behavior to many constructs involving uninitial-
ized memory that are clearly undefined according to the C11 standard, but that are
nonetheless faithfully compiled by specific compilers.
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Kang et al. (2015) Kang et al. [KHM+15] have proposed a memory model that
gives a semantics to pointer to integer casts. Their memory model uses a combination
of numerical and symbolic representations of pointer values (whereas CompCert and
CH2O always represent pointer values symbolically). Initially each pointer is repre-
sented symbolically, but whenever the numerical representation of a pointer is needed
(due to a pointer to integer cast), it is non-deterministically realized.

The memory model of Kang et al. gives a semantics to pointer to integer casts
while allowing common compiler optimizations that are invalid in a naive low-level
memory model. They provide the following motivating example:
void g(void) { ... }
int f(void) {

int a = 0;
g();
return a;

}

In a concrete memory model, there is the possibility that the function g is able
to guess the numerical representation of &a, and thereby access or even modify a.
This is undesirable, because it prevents the widely used optimization of constant
propagation, which optimizes the variable a out.

In the CompCert and CH2O memory model, where pointers are represented sym-
bolically, it is guaranteed that f has exclusive control over a. Since &a has not been
leaked, g can impossibly access a. In the memory model of Kang et al. a pointer will
only be given a numerical representation when it is cast to an integer. In the above
code, no such casts appear, and g cannot access a.

The goal of Kang et al. is to give a unambiguous mathematical model for pointer to
integer casts, but not necessarily to comply with C11 or existing compilers. Although
we think that their model is a reasonable choice, it is unclear whether it is faithful to
the C11 standard in the context of Defect Report #260 [ISO]. Consider:
int x = 0, *p = 0;
for (uintptr_t i = 0; ; i++) {

if (i == (uintptr_t)&x) {
p = (int*)i;
break;

}
}
*p = 15;
printf("%d\n", x);

Here we loop through the range of integers of type uintptr_t until we have found
the integer representation i of &x, which we then assign to the pointer p.

When compiled with gcc -O2 (version 4.9.2), the generated assembly no longer
contains a loop, and the pointers p and &x are assumed not to alias. As a result, the
program prints the old value of x, namely 0. In the memory model of Kang et al. the
pointer obtained via the cast (int*)i is exactly the same as &x. In their model the
program thus has defined behavior and is required to print 15.
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We have reported this issue to the GCC bug tracker4. However it unclear whether
the GCC developers consider this a bug or not. Some developers seem to believe that
this program has undefined behavior and that GCC’s optimizations are thus justified.
Note that the cast (intptr_t)&x is already forbidden by the type system of CH2O.

10.3 Program logics for C

This section compares our axiomatic semantics with other program logics for C. Our
axiomatic semantics distinguishes itself from all existing work by taking all forms of
underspecification of C seriously. In particular, we correctly treat non-deterministic
expressions evaluation in the presence of side-effects and block scope local variables
in the presence of non-local control flow.

The idea of using a separate Hoare judgment for statements and expressions is not
new. Von Oheimb [Ohe01, vON02] has used a Hoare judgment for expressions in the
context of an axiomatic semantics for Java in Isabelle. The shape of his judgments
for expressions is similar to ours, but his inference rules are not. Since Von Oheimb
considered Java, he was able to rely on left-to-right expression evaluation, which one
cannot do in C. Hoare judgments whose postcondition is a function from values to
assertions are also used in Hoare and separation logics for type theories and functional
languages, see for example [Kri11].

Black and Windley (1996) Black and Windley have developed an axiomatic se-
mantics for C and have used it to verify a simple web server using the HOL proof
assistant [BW96]. They have defined inference rules to factor out side-effects of
expressions by translating these into semantically equivalent expressions. Their ax-
iomatic semantics supports a limited set of expression constructs and soundness has
not been proven with respect to an operational semantics.

Appel and Blazy (2007) Appel and Blazy have developed a separation logic for
a subset of C [AB07]. Most notably, their separation logic supports return, catch
and throw statements. Our treatment of these constructs is based on theirs.

The axiomatic semantics of Appel and Blazy is a shallow embedding on top of a
small-step operational semantics for the intermediate language Cminor of CompCert.
In Cminor, expressions have been determinized and side-effects have been pulled out.
Their axiomatic semantics is thus limited to verification of programs compiled with
CompCert, and will not provide reliable guarantees if the program is compiled using
another compiler.

Appel et al. (2011) The Verified Software Toolchain (VST) by Appel et al. pro-
vides a higher-order separation logic for Verifiable C, which is a variant of CompCert’s
intermediate language Clight [App11, App14]. The VST has for example been used
to verify an implementation of SHA [App15].

4 See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65752 .
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The VST is intended to be used together with the CompCert compiler. It gives
very strong guarantees when done so. The soundness proof of the VST in conjunction
with the correctness proof of the CompCert compiler ensure that the proven properties
also hold for the generated assembly.

In case the verified program is compiled with a compiler different from CompCert,
the trust in the program is still increased, but no full guarantees can be given. That
is caused by the fact that CompCert’s intermediate language Clight uses a specific
evaluation order and assigns defined behavior to many undefined behaviors of the
C11 standard. For example, Clight assigns defined behavior to violations of effective
types, sequence point violations, and overflow of signed integers. The VST inherits
these defined behaviors from CompCert and allows one to use them in proofs.

The VST provides a type system based on static analysis to reduce the number of
side-conditions when applying separation logic rules [DA13]. Contrary to the CH2O
type system, it gives stronger guarantees about run-time properties. For example, it
keeps track of whether variables are known to be initialized. It would be interesting to
investigate whether a similar type system can be applied to the CH2O separation logic.
In particular, whether it can be extended to keep track of non-aliasing properties
related to effective types and multiple side-effects in expressions.

Since the VST is tightly linked to CompCert, it uses CompCert’s coarse permission
system on the level of the operational semantics. Stewart and Appel [App14, Chapter
42] have introduced a way to use a more fine grained permission system at the level
of the separation logic without having to modify the Clight operational semantics.
Their approach shows its merits when used for concurrency, in which case the memory
model contains ghost data related to the conditions of locks [Hob08, HAN08].

Herms (2013) Herms has formalized a verification condition generation in the style
of Why3 and Jessie in Coq [Her13]. His verification condition generator can be used
as a standalone tool via Coq’s extraction mechanism. Herms has proven soundness
with respect to an intermediate language of CompCert.

Affeldt et al. (2013) Affeldt et al. have formalized an operational semantics and
separation logic for a small fragment of C using the Coq proof assistant [AM13, AS14].
They have applied their separation logic to verify a part of an implementation of the
Transport Layer Security (TLS) protocol.

The interests of Affeldt et al. lie in the verification of particular algorithms. For
that reason, they have considered essentially a while language with side-effect free
C-like expressions. Their language supports undefined behavior of integer arithmetic
and casts, as well as pointers, alignment, and struct types.

Objects in their memory model consist of unstructured sequences of bytes, but to
provide an abstract view of values in their separation logic, they make use of a special
singleton connective. Their singleton connective has similarities with ours.

Their expressions have been represented in a dependently typed fashion. That
means, expressions are indexed by types, and that way, untyped expressions cannot
be constructed by definition. This approach is appealing from a mathematical per-
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spective, but due to the absence of proof irrelevance and dependent pattern matching
in Coq, we are not convinced it scales to a large part of a language like C.

Most problematically, in our formalization many typing judgments, including the
expression judgment Γ,∆, ~τ ` e : τlr, depend on a memory typing environment ∆,
which describes the layout of the memory (see Definition 5.2.2 on page 64). When
one tries to encode our typing judgments into the syntax using dependent types, the
Coq type of each expression will depend on the memory typing environment ∆. Since
memory typing environment evolve during program execution, this thus also means
that the Coq types of expressions change during program execution.

Greenaway et al. (2014) The AutoCorres tool by Greenway et al. provides an
approach to C verification that is rather different from the aforementioned related
work [GLAK14]. AutoCorres translates C source code into monadic definitions inside
the Isabelle proof assistant, which can then be verified using separation logic or any
other form of verification condition generation. It has been used in the L4.verified
project by Klein et al. [K+09] to verify a microkernel operating system.

The translation of C sources into monadic definitions uses Norrish’s C to Isabelle
parser [TKN07] to translate C sources into an intermediate language. Various verified
translations are performed to translate programs in this intermediate language into a
monadic shallow embedding. Their approach allows one to reason about C programs
while abstracting from some low-level details.

The fragment of C supported by Greenway et al. is intentionally kept small. For
instance, pointers to local variables, function pointers, union types and expressions
with side-effects are not supported. AutoCorres takes undefined behavior of integer
overflow seriously, but makes compiler and architecture specific assumptions about
the memory model. These assumptions are not faithful with respect to the C11
standard. However, they have used translation validation to establish correctness of
the assembly produced by GCC [SMK13]. That means, for concrete programs they
have an automatic means to establish that the semantics of the assembly matches the
semantics of the C sources in the proof assistant.

The AutoCorres approach is interesting and we see no fundamental reason why
it cannot be incorporated with a memory model like ours that is faithful to the C11
standard. Given that each local, global and static variable, and result of malloc is
implicitly separated in our memory model, it may even provide some simplifications.
Handling non-deterministic expression evaluation in a monadic style in a way that it
allows for convenient reasoning seems more challenging.
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Chapter 11
Conclusion and future work

In this thesis we have given a formal description of a significant part of the C11 stan-
dard. This formal description embodies the type system, an operational, executable,
and axiomatic semantics, and a comprehensive collection of metatheoretical results.
All of these results have been formalized using the Coq proof assistant. Our results
confirm that proof assistants are well-suited to describe and reason about non-trivial
real-life programming languages.

“Keep the language small and simple” is one of the design choices from the ratio-
nale of the C standard [ISO03]. Although C99 and C11 have kept C relatively small
in terms of number of features (especially compared to languages such as C++), C is
clearly not kept simple. The standard committee’s desire to exploit C as a low-level
systems programming language, as well as a high-level language that allows effective
optimizations, complicates the semantics of features that are expected to be simple.
This complication is witnessed by the many examples of subtle corner cases that we
have presented. These examples expose discrepancies between the standard, the com-
mittee’s judgment in defect reports, compilers, and what many programmers expect.
These discrepancies are not only of academic interest since widely used C compilers
optimize programs in ways that may be unexpected to the naive user.

The CH2O semantics is formulated in a mathematically precise way and thus
does not suffer from any ambiguities. It should provide a benefit to compiler writers
and programmers, who will get the means to establish how the standard needs to be
understood without having to deal with ambiguities of prose style natural language.
Our executable semantics even allows one to compute all behaviors of a given program
without the need to understand the mathematical formalism.

It would have been impossible to achieve the presented results without the support
of a proof assistant. Prose style natural language, as used in conventional standard
texts, is prone to errors, but informal mathematics suffers from that problem as well,
especially when applied to real life programming languages such as C. The ability of
proof assistants to formally state definitions and to reason about these definitions in
a unified framework is essential to describe real-life programming languages. Without
the support of a proof assistant to reason about one’s definitions, one will inevitably
forget about corner cases.
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This chapter gives an overview of possible directions for future work, and describes
general prospects on formal C verification. In particular, we argue how proof assis-
tants and the results in this thesis can improve the current state of the art in program
verification and programming language development.

11.1 Formalization and standardization

We believe that proof assistants are powerful tools that should be part of the devel-
opment of programming language specifications. This is not to say that programming
languages standards should be replaced entirely by definitions in a proof assistant,
but it is to say that prose style definitions and formal definitions should be developed
hand in hand.

11.1.1 Feature interaction
Feature interaction is the biggest source of problems in the standardization process of
a programming language. When using a prose style definition, features are introduced
by adding various paragraphs to the text while modifying other paragraphs. Although
such extensions are typically reviewed extensively, there is no rigorous way to estab-
lish that an extension does not introduce unwanted feature interaction and does not
introduce other kinds of inconsistencies. Formal definitions in a proof assistant do
not suffer from these problems.

First of all, in a formal definition one has to be explicit about the data structures
that describe the program state. In order to extend the language with a new feature,
one has to explicitly reconsider the data structures involved, and modify definitions
accordingly. This level of explicitness already provides a stringent sanity check.

In prose style definitions such as the C standard, already the description of the
memory state is left implicit. This is especially troublesome in the case of extensions
of the language such as effective types [ISO12, 6.5p6-7] and the standard committee’s
judgment in Defect Reports #260 and #451 [ISO] that require major modifications
to the traditional K&R and C90 memory model. Such changes have never been made
explicit in the standard text, and it is therefore very difficult to establish how these
interact with already existing features.

The real advantage of a proof assistant is that it enables one to prove metatheo-
retical results about the language specification. Relatively simple properties such as
type preservation already provide a decent sanity check. But most importantly, by
developing different versions of the semantics (CH2O has an operational, executable
and axiomatic semantics) one considers the language from different perspectives and
problems are easily spot. A crucial sanity check is to ensure that the different versions
of the semantics correspond and keep on corresponding while new features are added.
Without a proof assistant it would be infeasible to do so.

11.1.2 Executable semantics
An executable semantics is a crucial artifact to communicate the formal definition of
a programming language semantics to a user. It allows one to evaluate the semantics
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without having to understand the definitions to their full extent. Proof assistants pro-
vide a means to implement an executable semantics that is guaranteed to correspond
to the operational semantics.

11.1.3 Improve the C standard
The goal of this thesis was to take the C11 standard and existing compilers as given,
and thus to ensure that whenever one proves something about a given program with
respect to our semantics, the proven property holds when the program has been
compiled with any C11 compliant compiler. So, we have assigned undefined behavior
in case the C11 standard is unclear, or in case a construct is compiled in an unexpected
way by a widely used compiler such as GCC and Clang.

It would be interesting to investigate whether our semantics can be used to help the
standard committee to improve future versions of the standard. For example, whether
it could help to improve the standard’s prose description of effective types. As in-
dicated in Section 2.5.5, the standard’s description is not only ambiguous, but also
does not cover its intent to make type-based alias analysis possible. A formal seman-
tics such as CH2O is unambiguous and allows one to express intended consequences
formally. We have formally proven soundness of an abstract version of type-based
alias analysis with respect to our memory model (Theorem 5.7.2 on page 87).

It would be interesting to investigate a formal semantics that addresses the issues
regarding integer representations of indeterminate memory and pointers as explained
in Sections 2.6.1 and 2.6.2. Given that the standard committee seems not to know
how to clarify the prose text related to these issues (see their discussion in Defect
Report #451 [ISO]), formalization may provide prospects for improvements. The
recent work by Kang et al. [KHM+15] provides a step into that direction, but in the
context of a much smaller language than the entire C language.

11.2 Future work

11.2.1 Features of the language
An obvious direction for future work is to extend CH2O with additional features. We
give an overview of some features of C11 that are absent in CH2O.

• Formalized parser and preprocessor. We currently use the FrontC parser,
which is written in OCaml. It would be interesting to use the C parser by
Jourdan et al. [JPL12], which has been implemented and verified with respect
to the C grammar in Coq. The use of a formalized parser also opens the door
to a formal description of the C preprocessor.

• Floating point arithmetic. Representations of floating point numbers and
the behaviors of floating point arithmetic are subject to a considerable amount
of implementation-defined behavior [ISO12, 5.2.4.2.2].
First of all, one could restrict to IEEE-754 floating point arithmetic, which has
a clear specification [IEE08] and a comprehensive formalization in Coq [BM11].
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Boldo et al. have taken this approach in the context of CompCert [BJLM13]
and we see no fundamental problems applying it to CH2O as well.
Alternatively, one could consider formalizing all implementation-defined aspects
of the description of floating arithmetic in the C11 standard.

• Bitfields. Bitfields are fields of struct types that occupy individual bits [ISO12,
6.7.2.1p9]. We do not foresee fundamental problems adding bitfields to CH2O
as bits already constitute the smallest unit of storage in our memory model.

• Untyped malloc. CH2O supports dynamic memory allocation via an operator
allocτ e close to C++’s new operator. The allocτ e operator yields a τ∗ pointer
to storage for a τ -array of length e. This is different from C’s malloc function
that yields a void* pointer to storage of unknown type [ISO12, 7.22.3.4].
Dynamic memory allocation via the untyped malloc function is closely related
to unions and effective types. Only when dynamically allocated storage is actu-
ally used, will it receive an effective type. We expect one could treat malloced
objects as unions that range over all possible types that fit.

• Variadic functions. The C11 standard supports functions with a variable
number of arguments of varying types [ISO12, 7.16]. The prototypical example
is the printf function [ISO12, 7.21.6].
Giving a correct and elegant formal treatment of variadic functions that is both
faithful to the C11 standard and allows for formal proofs seems difficult. The
operations provided by C11 to access values of variadic arguments are low-level,
not type safe, and constrained by tricky side-conditions.

• Register storage class. The register storage class is a hint that recommends
the compiler to place a variable in a register.
The register storage class obviously affects the static semantics which has to
ensure that pointers to register variables cannot be created. More surprisingly,
it also affects the operational semantics. Register variables are subject to stricter
rules when left uninitialized [ISO12, 6.3.2.1p2]. These rules also apply in case a
given variable has not been explicitly declared with register storage class, but
could have been declared so.
The register storage class is currently not supported by CH2O, and we therefore
miss out on some undefined behaviors related to variables that could have been
declared with it. We do not not foresee fundamental problems adding it.

• Type qualifiers. The const, restrict and volatile type qualifiers [ISO12,
6.7.3] are currently unsupported by CH2O.
The const qualifier can be applied to any type to indicate that the values do
not change. Given that C does not enjoy const safety1, const is not just part
of the static type system but is also part of the memory model and operational
semantics. Since the CH2O permission system already supports const qualified
permissions, we do not foresee fundamental problems.

1For example, the standard library function strstr takes a const qualified string pointer and
returns a non-const qualified pointer within the given string.
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The restrict qualifier can be applied to any pointer type to express that the
pointers do not alias. Since the description in the C11 standard [ISO12, 6.7.3.1]
is ambiguous (most notably, it is unclear how it interacts with nested pointers
and data types), formalization may provide prospects for clarification.
The volatile qualifier can be applied to any type to indicate that its value may
be changed by an external process. It is meant to prevent compilers from op-
timizing away data accesses or reordering these [ISO12, footnote 134]. Volatile
accesses should thus be considered as a form of I/O.

• External functions and I/O. An important direction for future work is to
consider C programs that interact with an outside world.
Whereas the CH2O small-step operational semantics is just a relation between
states, CompCert uses a labeled transition system. The labels represent inter-
actions with the outside world such as calls to external functions (printing, file
access, etc.) and accesses to volatile qualified storage. CompCert’s treatment
of external functions suffers from some limitations, most notably, it requires each
external function to terminate.
In order to remedy the shortcomings of CompCert’s treatment of external func-
tions, Beringer et al. [BSDA14, SBCA15] have proposed a general framework
in which multiple operational semantics can communicate with each other via
external functions. They have applied their framework to nearly all languages
and compilation phases of CompCert.
Although the framework of Beringer et al. allows operational semantics of dif-
ferent languages to communicate, all of these languages should have a common
memory model, namely the CompCert memory model. It would be interesting
to investigate whether their framework can be generalized to support different
memory models for the different languages involved. That way, the CH2O mem-
ory model could be used on the level of the C sources and a low-level memory
model on the level of the assembly.

• Concurrency and atomics. Shared-memory concurrency and atomic oper-
ations are the main omission from the C11 standard in the CH2O semantics.
Although shared-memory concurrency is a relatively new addition to the C and
C++ standards, there is already a large body of ongoing work in this direction,
see for example [SSO+10, BOS+11, SVN+13, VBC+15, BMN+15]. These works
have led to improvements of the standard text.
There are still important open problems in the area of concurrent memory
models, even for small sublanguages of C [BMN+15]. Current memory mod-
els for these sublanguages involve just features specific to threads and atomic
operations whereas we have focused on structs, unions, effective types and in-
determinate memory. We hope that both directions are largely orthogonal and
will eventually merge into a fully fledged C11 semantics.
There is a strong correspondence between non-deterministic expression evalua-
tion and concurrency as also indicated by our separation logic for expressions. It
would be interesting to investigate non-deterministic evaluation in the context
of a concurrent semantics for C, as being done by Memarian et al. in ongoing
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work [MNM+15]. Notice that concurrency in expressions is very weak, nearly
any form of interference between subexpressions yields undefined behavior. This
is different from shared-memory concurrency, where a semantics should provide
stronger guarantees about interference between threads.

11.2.2 Correspondence with CompCert
The semantics of a programming language forms a contract between the programmer
and the compiler. It would therefore be useful to investigate whether the results in
this thesis could be applied to compiler verification, for example by formally relating
the CompCert and CH2O semantics. We discuss two possible directions.

First of all, it would be useful to establish a correspondence between the semantics
of CH2O core C and CompCert C. This correspondence should indicate that Comp-
Cert does not assign too many (undefined) behaviors and that CH2O does not assign
too few behaviors. For this approach it is important that the behaviors described by
CompCert are indeed a subset of the behaviors described by CH2O. In [KLW14] we
have therefore described two extensions of CompCert based on CH2O that succeed
in giving a semantics to behaviors that were previously undefined in CompCert. As
discussed in Section 6.4, it remains an open problem whether CompCert’s treatment
of struct and union values matches up with the CH2O semantics.

A more challenging direction is to implement and verify a compiler frontend that
translates CH2O core C into an intermediate language of CompCert. This compiler
frontend should perform more aggressive optimizations based on undefined behaviors
related to effective types and sequence points.

11.2.3 Executable semantics
In this thesis we have presented an executable semantics written in Coq. We have
used Coq’s extraction mechanism to turn it into an interpreter that can compute all
behaviors of a given program according to the C11 standard.

Although the majority of our interpreter has been implemented in Coq, it still
uses some glue written in OCaml. Most notably, the translation of string literals and
printf (that is currently just present for debugging purposes) is inaccurate. In order
to implement these features properly, we need variadic functions and I/O.

We have tested our executable semantics on all examples in this thesis and a small
test suite involving subtle corner cases of the C11 standard. The fact that we did not
find any fundamental bugs in our semantics gives a strong indication that developing
a semantics using a proof assistant is solid. Nonetheless, it would be interesting to
test the CH2O semantics against a more extensive test suite such as the GCC torture
tests [GCC] or using a tool like CSmith [YCER11].

Our current executable semantics implements the operational semantics in a rather
naive way. Most notably, the representation of the memory state is based on inefficient
data structures (for example, array objects are represented as lists). In order to make
the interpreter more robust, it would be useful to optimize the executable semantics
by using more efficient data structures, or by contracting more redexes in one step.
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Since we have implemented and proven correct the executable semantics in Coq, we
can do so without sacrificing reliability.

11.2.4 Separation logic
We have presented a separation logic for C that has been proven sound with respect
to the CH2O operational semantics. Our separation logic correctly deals with features
not considered by others such as expressions with side-effects, effective types, and the
correct life-time of block scope local variables. In this section we list some directions
for future work on our separation logic.

First of all, our separation logic currently abstracts away from object represen-
tations. It provides primitives that operate on the level of abstract values (mathe-
matical integers, arrays, structs, etc.) rather than on the level of individual bytes or
bits. This abstraction is desirable because it relieves one from having to deal with
low-level details. However, in some situations one needs to reason about object rep-
resentations explicitly. Since the granularity of our separation algebra for memories
(Definition 8.1.6 on page 148) is already on the level of bits, we expect that one can
extend our separation logic with primitives for object representations.

Secondly, in Section 8.7.3 we have presented a higher-order variant of our separa-
tion logic. We currently use higher-order separation logic solely to describe function
specifications and to deal with recursion. It would be interesting to extend our sepa-
ration logic with other higher-order features such as existential types to model data
abstraction [BBT05] and recursive specifications as described in [DAH08, BRS+11].
We do not foresee fundamental difficulties to add such higher-order features, since we
expect these to be orthogonal to the features we have addressed in this thesis.

In order to make our separation logic practical for program verification, we need
to implement a verification condition generator, which takes a program with logical
annotations and generates a set of verification conditions that need to be verified. For
traditional Hoare logic one often uses a variant of Dijkstra’s weakest precondition cal-
culus [Dij75] whereas for separation logic one often uses symbolic execution [BCO05].
We expect the extension of our separation logic as presented in Section 8.7 to pro-
vide opportunities for symbolic execution (possibly combined with a static analysis
to determine the writable and read-only parts).

In traditional separation logic, there is a distinction between local variables and
allocated storage [ORY01]. The value of each local variable is stored directly on the
stack, whereas the memory is only used for allocated storage. As C supports pointers
to local variables, our stack contains a reference to the actual value of each variable in
memory. An advantage of distinguishing local variables from allocated storage is that
assertions involving local variables can be written more compactly as the separating
conjunction does not deal with those. It does not seem difficult to remove this level of
indirection for the special case of local variables whose address is never taken. Also,
since these variables cannot be accessed through pointers, one can statically decide if
they could have been modified twice in the same expression and thereby if they could
have caused undefined behavior due to a sequence point violation.

We also need automation to solve entailments involving assertions of separation
logic in order to make our separation logic practically usable. Specific to formaliza-
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tions of separation logic in Coq there has been work in this direction by for example
Appel [App14], Chlipala [Chl11], and Bengtson et al. [BJB12].

11.3 Concluding remarks

Ritchie, who invented the C language with Thompson, once wrote [Rit93]:

C is quirky, flawed, and an enormous success.

More than 20 years after Ritchie wrote the above, C and C++ remain among the
most widely used programming languages in the world despite their flaws, and there
is a good reason for that. C provides a good balance between low-level programming
languages that allow for high portability and close control over the hardware, and
high-level languages that allow for sophisticated compiler optimizations.

Although we believe that more modern functional programming languages are
the preferred choice for many applications, we do not think they will replace C as a
dominant general purpose programming language. It is thus important to pursue the
use of proof assistants to get a better understanding of the C semantics and to apply
proof assistants to verification of C programs.
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Appendix A
Syntax

A.1 Operators

}c ∈ compop ::= == | <= | <

}b ∈ bitop ::= & | | | ˆ

}a ∈ arithop ::= + | - | * | / | %

}s ∈ shiftop ::= << | >>

} ∈ binop ::= }c | }b | }a | }s
}u ∈ unop ::= - | ˜ | !

α ∈ assign ::= := | } := | :=}

A.2 Types

k ∈ K := Set of integer ranks
t ∈ tag := Strings denoting struct/union names

f ∈ funname := Strings denoting of function names
si ∈ signedness ::= signed | unsigned

τi ∈ inttype ::= si k

τb, σb ∈ basetype ::= τi | τp∗ | void
τp, σp ∈ ptrtype ::= τ | any | ~τ → τ

τ, σ ∈ type ::= τb | τ [n] | struct t | union t
Γ ∈ env := (tag→fin list type) × (types of struct/union fields)

(funname→fin (list type× type)) (types of functions)

A.3 Permissions

L(A) := {�, ♦} ×A (lockable separation algebra)
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A. Syntax

C(A) := Q×A (counting separation algebra)
T tT (A) := A× T with t ∈ T (tagged separation algebra)

γ ∈ perm := L(C(Q)) + Q

A.4 Memory model

o ∈ index := Set of memory indices
∆ ∈ memenv := index →fin (type× bool)

r ∈ refseg ::=
τ [n]
↪−−→ i | struct t

↪−−−→ i | union t
↪−−−→q i with q ∈ {◦, •}

~r ∈ ref := list refseg
a ∈ addr ::= (o : τ, ~r, i)σ>∗σp

p ∈ ptr ::= NULL σp | a | f~τ 7→τ

b ∈ bit ::= E | 0 | 1 | (ptr p)i
b ∈ pbit := T Ebit(perm)

w ∈ mtree ::= baseτb
~b | arrayτ ~w | structt

#   »

w~b | uniont (i, w, ~b) | uniont ~b
m ∈ mem := index →fin (mtree× bool + type)

vb ∈ baseval ::= indet τb | nothing | intτi x | ptr p | byte~b
v ∈ val ::= vb | arrayτ ~v | structt ~v | uniont (i, v) | uniont ~v

Ω ∈ lockset := Pfin(index × N)

A.5 CH2O core C

l ∈ labelname := Strings denoting labels
ν ∈ lrval := ptr + val
e ∈ expr ::= xi | [ν]Ω (variables and constants)

| ∗e | &e (l-value and r-value conversion)
| e .l r | e .r r (indexing of arrays, structs and unions)
| e1[~r := e2] (altering arrays, structs and unions)
| e1 α e2 | load e (assignments and loading from memory)
| e(~e) | abort τ (function calls and undefined behavior)
| allocτ e | free e (allocation and deallocation)
| }u e | e1 } e2 | (τ)e (unary, binary and cast operators)
| (e1, e2) | e1 ? e2 : e3 (comma and sequenced conditional)

s ∈ stmt ::= e | return e (expression and return statements)
| goto l | l : (goto and label)
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A.6. CH2O core C states

| throw n | catch s (throw and catch)
| skip | s1 ; s2 (the skip statement and composition)
| localτ s (block scope local variable declaration)
| loop s (infinite loop)
| if (e) s1 else s2 (conditional statement)

δ ∈ funenv := funname→fin stmt

A.6 CH2O core C states

Es ∈ ectxs ::= ∗2 | &2 | 2 .l r | 2 .r r | 2[~r := e2] | e1[~r := 2]
| 2 α e2 | e1 α 2 | load 2 | 2(~e) | e(~e1 2~e2) | allocτ 2 | free 2

| }u 2 | 2 } e2 | e1 }2 | (τ)2 | 2 ? e2 : e3 | (2, e2)
E ∈ ectx := list ectxs

Ss ∈ sctxs ::= catch 2 | 2 ; s2 | s1 ; 2 | loop 2 | if (e) 2 else s2 | if (e) s1 else 2

Se ∈ sctxe ::= 2 | return 2 | if (2) s1 else s2

Ps ∈ ctxs ::= Ss | localo:τ 2 | (Se, e) | resume E | params f # »oτ

P ∈ ctx := list ctxs

ρ ∈ stack := list (index × type)
d ∈ direction ::= ↘ | ↗ | y l | ↑n | ↑↑ v
φU ∈ undef ::= E E〈e〉 | ESe〈[v]Ω〉
φ ∈ focus ::= (d, s) | e | call f ~v | return f v | undef φU
S ∈ state ::= S(P, φ, m)

A.7 CH2O abstract C

x ∈ string := Set of strings
k ∈ cintrank ::= char | short | int | long | long long | ptr

si ∈ signedness ::= signed | unsigned
τi ∈ cinttype ::= si? k

τ ∈ ctype ::= void | def x | τi | τ∗ |
#     »
τ x? → τ | τ [e]

| struct x | union x | enumx | typeof e
e ∈ cexpr ::= x | constτi z | string ~z (variables, integer and string constants)

| sizeof τ | alignof τ | offsetof τ x
| τ min | τ max | τ bits (implementation-defined constants)
| &e | ∗e (address of and dereference operator)
| e . x (indexing of structs and unions)
| e1 α e2 (assignments)
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| e(~e) | (function calls)
| allocτ e | free e (allocation and deallocation)
| }u e | e1 } e2 | (τ)I (unary, binary and cast operators)
| e1 && e2 | e1 || e2 | (e1, e2) | e1 ? e2 : e3 (sequenced operators)

r ∈ crefseg ::= [e] | .x
I ∈ cinit ::= e | { #            »

#»r := I}
sto ∈ cstorage ::= static | extern | auto

s ∈ cstmt ::= e | return e? (expression and return statements)
| goto x | x : s (goto and label)
| break | continue (break and continue)
| {s} (block scope)
| #  »
sto τ x := I? ; s (local variable declaration)
| typedef x := τ ; s (local typedef declaration)
| skip | s1 ; s2 (the skip statement and composition)
| while(e) s | do s while(e) (while loops)
| for(e1 ; e2 ; e3) s (for loop)
| if (e) s1 else s2 (conditional statement)

d ∈ decl ::= struct #  »τ x | union #  »τ x (struct and union declarations)
| enum #             »

x := e? : τi (enum declaration)
| typedef τ (global typedef declaration)
| global I? : #  »

sto τ (global variable declaration)
| fun s : #  »

sto τ (function declaration)
Θ ∈ decls := list (string × decl)
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Summary

This thesis describes a formal specification of the sequential fragment of the C pro-
gramming language based on the official description of the C language, the C11
standard. Our formal specification of C, which is named CH2O, is used for the devel-
opment of technology that enables verification of C programs in a standards compliant
and compiler independent way.

The C programming language is addressed in this thesis because it is both among
the most widely used and among the most bug-prone programming languages. C is
widely used because of the performance of programs, the control over system resources
such as memory, and the fact that C programs run on nearly any computer platform.
On the other hand, C is bug-prone due to its weak type system and the absence of
run-time checks. Our formal specification of C can be used as the basis for formal
verification of C programs. This way, one can develop reliable C programs without
sacrificing the benefits of C.

All parts of our formal specification of C are defined in the Coq proof assistant.
Coq ensures that all definitions comprising the formal specification (the semantics)
are mathematically well-formed and enjoy desirable properties. Most importantly,
Coq allows us to define multiple versions of the C semantics and to prove that these
versions correspond to each other. By developing multiple versions of the semantics,
we have considered C from different perspectives and have thereby obtained a higher
confidence in the correctness of our specification. We have, based on the C11 standard,
defined the following kinds of semantics for C in Coq and proved that these correspond
to each other.

• Operational semantics. An operational semantics describes the behavior of
programs using individual computational steps. It is generally used to reason
about program transformations and to prove metatheoretical properties.

• Executable semantics. An executable semantics is an algorithmic version of
the operational semantics that allows one to compute the set of behaviors of a
given program. It is generally used for debugging and testing purposes.

• Axiomatic semantics. An axiomatic semantics allows one to reason about
programs in a structured fashion. It is generally used to reason about concrete
C programs. Our axiomatic semantics is based on separation logic, a variant
of Hoare logic which allows one to reason effectively about programs that use
pointers. Pointers are commonplace in programs written in C.
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Numerous metatheoretical properties of the formal semantics are proven in order
to validate the formal definitions. The code extraction mechanism of Coq is used to
turn the executable semantics into an interpreter, which is able to run the semantics
on a test suite that comprises actual C programs.

Our formal version of C11 covers a large part of the C language including delicate
features such as the C type system, arrays and pointers, structs and unions, typedefs
and enums, implicit type conversions, object representations, expressions with side-
effects in the presence of non-deterministic expression evaluation, local variables in
the presence of non-local control (goto, break, continue, return and unstructured
switch) and initializers.

Formalizing C is challenging not just because of the number of features, but also
because C is oriented towards being efficiently implementable rather than being ab-
stract in a mathematical sense. Not only does the behavior of each C program depend
on implementation-defined properties such as sizes and endianness of integers, but in
order to abstract even further from implementation specific choices, the C11 standard
assigns a set of possible behaviors to each program instead of a unique behavior. In
case of semantically illegal programs (those that have undefined behavior in C termi-
nology) this set contains all possible behaviors (including letting the program crash).
Surprisingly, correctly describing the set of programs that have undefined behavior
in a formal manner is the hardest part of formalizing C.

Many difficulties in describing undefined behavior are due to the interaction be-
tween low-level and high-level data access in C. Low-level data access involves unstruc-
tured and untyped byte representations, and high-level data access involves abstract
values such as structs and unions. Compilers often use a high-level view of data access
to justify optimizations whereas many programmers expect data access to behave in
a low-level way. Optimizations based on type-based alias analysis (effective types in C
terminology) are examples thereof. The semantics in this thesis is therefore built on
top of a novel typed memory model based on trees to correctly model the interaction
between the low-level and high-level view of data access.

Our formal specification of C is faithful to the C11 standard, which means it de-
scribes all undefined behaviors of C11. As a consequence, when one proves something
about a given program with respect to our semantics, it should behave that way with
any ostensibly C11 compliant compiler such as GCC or Clang.
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Samenvatting

Dit proefschrift beschrijft een formele specificatie van het sequentiële gedeelte van de
programmeertaal C. Deze specificatie, genaamd CH2O, is gebaseerd op de officiële
beschrijving van de C taal, namelijk de C11 standaard. In dit proefschrift hebben we
onze specificatie van C gebruikt voor de ontwikkeling van verificatietechnologieën om
C programma’s op een compileronafhankelijke manier te verifiëren.

Dit proefschrift beschouwt de programmeertaal C omdat C zowel een van de meest
gebruikte als een van de meest onveilige programmeertalen is. Het wordt veel gebruikt
vanwege de snelheid van de programma’s, de controle over systeembronnen zoals het
geheugen, en het feit dat C programma’s op alle computerplatformen draaien. Aan
de andere kant is C zeer onveilig vanwege het zwakke typesysteem en de afwezigheid
van veiligheidscontroles tijdens het uitvoeren van programma’s. Onze specificatie van
C kan worden gebruikt als basis voor formele verificatie van C programma’s. Op deze
manier kan men betrouwbare C programma’s ontwikkelen zonder in te hoeven leveren
op de voordelen van C.

Onze formele specificatie van C is volledig beschreven middels het Coq bewijssys-
teem. Coq garandeert dat onze specificatie van C (de semantiek) wiskundig correct
is en aan zekere eisen voldoet. In het bijzonder maakt Coq het mogelijk om meerdere
semantieken voor C te definiëren en deze aan elkaar gelijk te bewijzen. Door meerdere
semantieken te ontwikkelen hebben we C vanuit meerdere standpunten bekeken en een
groter vertrouwen in de correctheid van onze specificatie verkregen. Met behulp van
Coq hebben we de volgende semantieken voor C, alle gebaseerd op de C11 standaard,
ontwikkeld en aan elkaar gelijk bewezen.

• Operationele semantiek. Een operationele semantiek beschrijft het gedrag
van programma’s in termen van losse berekeningsstappen. Het wordt veelal ge-
bruikt om te redeneren over programmatransformaties en om metatheoretische
eigenschappen van de taal vast te stellen.

• Executeerbare semantiek. Een executeerbare semantiek is een algoritmische
versie van de operationele semantiek die het mogelijk maakt om alle gedragingen
van een programma uit te rekenen. Het wordt veelal gebruikt voor het testen
en ‘debuggen’ van de formele specificatie.

• Axiomatische semantiek. Een axiomatische semantiek maakt het mogelijk
om op een structurele manier over programma’s te redeneren. Het wordt veelal
gebruikt om programma’s correct te bewijzen. Onze axiomatische semantiek
is gebaseerd op separatielogica, een variant van Hoare logica die het mogelijk
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maakt te redeneren over programma’s die gebruik maken van pointers. Pointers
zijn gemeengoed in C programma’s.

Om deze semantieken te valideren hebben we veel metatheoretische eigenschappen
bewezen. Daarnaast hebben we de faciliteit voor code-extractie van Coq gebruikt om
onze executeerbare semantiek te testen op een collectie van echte C programma’s.

Onze specificatie van C11 omvat een groot gedeelte van de C taal. Dit gedeelte be-
vat lastige aspecten zoals het typesysteem, arrays en pointers, structs en unions, type-
defs en enums, impliciete type-conversies, object-representaties, expressies met zij-
effecten in combinatie met nondeterministische expressie-evaluatie, lokale variabelen
in combinatie met ongestructureerde besturingsinstructies (goto, break, continue,
return en ongestructureerde switch) en ‘initialisers’.

Het ontwikkelen van een formele specificatie van C is niet slechts uitdagend van-
wege de vele aspecten van C, maar ook omdat C ontstaan is met het oog op efficiëntie
in plaats van wiskundige abstractie. Het gedrag van elk C programma is afhankelijk
van zogenaamde implementation-defined eigenschappen zoals de afmetingen van in-
tegers. Om verder te abstraheren van implementatie-specifieke keuzes beschrijft de
C11 standaard voor elk programma niet één uniek gedrag, maar een verzameling van
mogelijke gedragingen. In het geval van semantisch verkeerde programma’s (degene
die undefined behavior hebben) zijn - in overeenstemming met de C11 standaard - alle
gedragingen toegestaan, inclusief het vastlopen van het programma. Het is verrassend
dat het correct en formeel beschrijven van undefined behavior het meest uitdagende
onderdeel van een formele specificatie van C is

Veel moeilijkheden bij het beschrijven van undefined behavior in C komen voort
uit het samenspel tussen het low-level en high-level gegevensperspectief in C. Het low-
level gegevensperspectief omvat ongestructureerde en getypeerde byte-representaties,
en het high-level gegevensperspectief omvat abstracte waarden zoals structs en unions.
Compilers maken gebruik van het high-level gegevensperspectief om optimalisaties te
rechtvaardigen terwijl veel programmeurs verwachten dat C programma’s zich volledig
op een low-level manier gedragen. Dit probleem speelt bijvoorbeeld bij optimalisaties
die op type-gebaseerde alias-analyse gebaseerd zijn (effective types in C terminologie).
De semantiek in dit proefschrift is gebouwd op een nieuw geheugenmodel gebaseerd op
getypeerde bomen om het samenspel tussen het low-level en high-level gegevensper-
spectief correct formeel te beschrijven.

Onze formele specificatie van de C taal is trouw aan de C11 standaard en beschrijft
dus alle undefined behaviors van C11. Dit heeft als gevolg dat als men iets bewijst
over een programma met betrekking tot onze semantiek, het programma zich op de
voorgeschreven manier zou moeten gedragen met elke officiële C11 compiler zoals
GCC of Clang.
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