Mechanized verification of type systems using Iris

Robbert Krebbers

Radboud University Nijmegen, The Netherlands

January 31, 2024 @ Dagstuhl, Germany

The old problem of proving “type safety”:
“Well-typed programs cannot go wrong”

The old problem of proving “type safety”:
If - e : A then safe(e)

The old problem of proving “type safety”:
If - e : A then safe(e)

Goal of this talk:

» Introduce the “logical approach in Iris” as an alternative to the standard
progress/preservation approach to type safety
» Show that this approach makes it possible to type “unsafe” code

» Show that this approach is well-suited for mechanization of challenging type
systems in the Coq proof assistant

Recap: Progress and preservation [Wright and Felleisen, simplified by Harper]

Safety is defined in terms of a small-step operational semantics:

safe(e) £ Ve'. (e =" ') = €' € Val V reducible(e’)

Recap: Progress and preservation [Wright and Felleisen, simplified by Harper]

Safety is defined in terms of a small-step operational semantics:

safe(e) £ Ve'. (e =" ') = €' € Val V reducible(e’)

1. Progress: If - e : A then e € Val or reducible(e)
2. Preservation: If -e: Aand e — € then €' : A

Recap: Progress and preservation [Wright and Felleisen, simplified by Harper]

Safety is defined in terms of a small-step operational semantics:

safe(e) £ Ve'. (e =" ') = €' € Val V reducible(e’)

1. Progress: If - e : A then e € Val or reducible(e)
2. Preservation: If -e: Aand e — € then €' : A

Proof of type safety: If - e : A then safe(e)
Obtain I ¢’ : A by induction on length of e —* €’ and preservation,
conclude by progress

Problems of progress and preservation

Progress and preservation are extremely effective and simple to teach, but:

Problems of progress and preservation

Progress and preservation are extremely effective and simple to teach, but:

» It becomes much more complicated when considering a language with a state

Preservation: If Z e : Aand X Iy, o and (o,e) — (o, €’) then
there exists ¥’ D ¥ such that X'~ e’ : Aand ¥/ Iy, o’

Problems of progress and preservation

Progress and preservation are extremely effective and simple to teach, but:

» It becomes much more complicated when considering a language with a state

Preservation: If Z e : Aand X Iy, o and (o,e) — (o, €’) then
there exists ¥’ D ¥ such that X'~ e’ : Aand ¥/ Iy, o’

» Even more tricky once you consider a substructural type system
Disjointness conditions show up everywhere
(And Coq does not accept “left as an exercise for the reader”)

Problems of progress and preservation

Progress and preservation are extremely effective and simple to teach, but:

» It becomes much more complicated when considering a language with a state

Preservation: If Z e : Aand X Iy, o and (o,e) — (o, €’) then
there exists ¥’ D ¥ such that X'~ e’ : Aand ¥/ Iy, o’

» Even more tricky once you consider a substructural type system
Disjointness conditions show up everywhere
(And Coq does not accept “left as an exercise for the reader”)

» Unsuitable to reason about “unsafe” code
unsafe in Rust, Obj.magic in OCaml, unsafePerformI0 in Haskell

Semantic typing

Define “semantic typing judgment” = e : A in terms of language semantics
Not as an inductive relation!

Semantic typing

Define “semantic typing judgment” = e : A in terms of language semantics
Not as an inductive relation!

1. Adequacy: If E e : A then safe(e)

2. Fundamental theorem: If - e: AthenkEe: A

Semantic typing

Define “semantic typing judgment” = e : A in terms of language semantics
Not as an inductive relation!

1. Adequacy: If E e : A then safe(e)

2. Fundamental theorem: If - e: AthenkEe: A

Proof of type safety: If - e : A then safe(e)
Modus ponens with fundamental theorem and adequacy

Semantic typing

Define “semantic typing judgment” = e : A in terms of language semantics
Not as an inductive relation!

1. Adequacy: If E e : A then safe(e)
Usually the easy part, since safety is part of the definition of Fe: A

2. Fundamental theorem: If - e: AthenkEe: A

Proof of type safety: If - e : A then safe(e)
Modus ponens with fundamental theorem and adequacy

Semantic typing

Define “semantic typing judgment” = e : A in terms of language semantics
Not as an inductive relation!

1. Adequacy: If E e : A then safe(e)
Usually the easy part, since safety is part of the definition of Fe: A

2. Fundamental theorem: If - e: AthenkEe: A
Induction on the derivation of Fe: A

The work is in proving a semantic version (F) of each syntactic typing rule ()

Fe:A— B Fe: A
Fe e: B

Proof of type safety: If - e : A then safe(e)
Modus ponens with fundamental theorem and adequacy

Semantic typing

Define “semantic typing judgment” = e : A in terms of language semantics
Not as an inductive relation!

1. Adequacy: If E e : A then safe(e)
Usually the easy part, since safety is part of the definition of Fe: A

2. Fundamental theorem: If - e: AthenkEe: A
Induction on the derivation of Fe: A

The work is in proving a semantic version (F) of each syntactic typing rule ()

Fe:A— B Fe:A
Fee: B

Proof of type safety: If - e : A then safe(e)
Modus ponens with fundamental theorem and adequacy

Key challenge: Define F e : A so that:

» |t is rich enough to support challenging PL features

» |t allows for a concise proof of the fundamental theorem

A bit of history

» Milner's original type safety proof (1978) was a semantic one

» It remained an open challenge for a long time to scale the semantic approach to
languages with polymorphism, recursive types, and ML-style references

A bit of history

» Milner's original type safety proof (1978) was a semantic one

» It remained an open challenge for a long time to scale the semantic approach to
languages with polymorphism, recursive types, and ML-style references

P> A breakthrough was the work on step-indexing by Appel, Ahmed and
collaborators (2001-2004)

» More abstract versions developed by Appel et al. (2007) and Dreyer et al. (2011)

A bit of history

» Milner's original type safety proof (1978) was a semantic one
» It remained an open challenge for a long time to scale the semantic approach to
languages with polymorphism, recursive types, and ML-style references

P> A breakthrough was the work on step-indexing by Appel, Ahmed and
collaborators (2001-2004)

» More abstract versions developed by Appel et al. (2007) and Dreyer et al. (2011)

» Iris provides a modern logical approach in which concurrent separation logic
hides reasoning about state and which is well-suited for mechanized proofs

In what follows, | will show the simplest semantic proof for
simply-typed lambda calculus (STLC)

11

In what follows, | will show the simplest semantic proof for
simply-typed lambda calculus (STLC)

And then change some conjunctions into separation
conjunctions to scale to a substructural type system with
channels implemented as an “unsafe” library

11

Semantic typing for STLC

Semantic interpretation of types (“logical relation™):

[: Type — SemType where SemType £ Val — Prop

Semantic typing for STLC

Semantic interpretation of types (“logical relation™):

[: Type — SemType where SemType £ Val — Prop
Z| & \.vezZ
[

Semantic typing for STLC

Semantic interpretation of types (“logical relation™):
[: Type — SemType where SemType = Val — Prop
[Z] 2 Av.veZ
[Ax B] & Av.3vi, va. v = (vi,v2) A [A] vi A [B] vz

Semantic typing for STLC

Semantic interpretation of types (“logical relation™):

[: Type — SemType where SemType = Val — Prop
[Z] 2 Av.veZ
[Ax B] & Av.3vi, va. v = (vi,v2) A [A] vi A [B] vz
[A— B] £ Av.Vw. [A]w = [B] (v w)

Semantic typing for STLC

Semantic interpretation of types (“logical relation™):

[: Type — SemType where SemType = Val — Prop
[Z] 2 Av.veZ
[Ax B] & Av.3vi, va. v = (vi,v2) A [A] vi A [B] vz
[A— B] £ Av.Vw. [A]w = [B] (v w)

[application is not a value, we need to talk about its resultj

Semantic typing for STLC
Semantic interpretation of types (“logical relation™):
[: Type — SemType where SemType = Val — Prop
[Z] 2 Av.veZ
[Ax B] & Av.3vi, va. v = (vi,v2) A [A] vi A [B] vz
[A— B] £ Av.Vw. [A]w = wp (v w) {[B]}
Weakest precondition:

wp _{_} : Expr — (Val — Prop) — Prop
wp e {®} = safe(e) A (Vv.e =" v =& V)

Semantic typing for STLC

Semantic interpretation of types (“logical relation™):

[: Type — SemType where SemType = Val — Prop
[Z] 2 Av.veZ
[Ax B] & Av.3vi, va. v = (vi,v2) A [A] vi A [B] vz

[A— B] £ Av.Vw. [A]w = wp (v w) {[B]}

Weakest precondition:
wp _{_} : Expr — (Val — Prop) — Prop

wp e {®} = safe(e) A (Vv.e =" v =& V)

Semantic typing judgment:

Fe:A2wpel{[A]}

Semantic typing for STLC

Semantic interpretation of types (“logical relation™):

[: Type — SemType where SemType = Val — Prop
[Z] 2 Av.veZ
[Ax B] & Av.3vi, va. v = (vi,v2) A [A] vi A [B] vz
[A— B] £ Av.Vw. [A]w = wp (v w) {[B]}

Weakest precondition:

wp _{_} : Expr — (Val — Prop) — Prop

wn e {dY 2 cafele) A (Yv e —* v b v
[closing substitution, | will ignore those most of the timej

Semantic typing Judgmery

FEe: A2y [y = wpr(e) {[A]}

Proofs of key properties

1. Adequacy: If E e : A then safe(e)

2. Fundamental theorem: If - e: AthenkFe: A

Proofs of key properties

1. Adequacy: If E e : A then safe(e)

Holds by definition Fe: A = wp e {[A]} = safe(e) A ...

2. Fundamental theorem: If - e: AthenkFe: A

Proofs of key properties

1. Adequacy: If E e : A then safe(e)
Holds by definition Fe: A = wp e {[A]} = safe(e) A ...
2. Fundamental theorem: If - e: AthenkFe: A
Induction on the derivation of - e : A
The work is in proving a semantic version (F) of each syntactic typing rule ()

Fe:A— B Fe: A
Fe e: B

Proofs of key properties

1. Adequacy: If E e : A then safe(e)
Holds by definition Fe: A = wp e {[A]} = safe(e) A ...
2. Fundamental theorem: If - e: AthenkFe: A
Induction on the derivation of - e : A
The work is in proving a semantic version (F) of each syntactic typing rule ()

Fe:A— B Fe:A
Fe e: B

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

WP-VAL WP-BIND
D v wp e {V} (Vv. W v=wpK[v]{D})

wp v {P} wp K[e] {2}

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

ey wpe U} (v v = wp K[v] {3})
wp v {®} wp K[e] {2}

Example: Proof of the semantic typing rule for application

Fee:A— B
Fe:A

|=e1e2:B

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

ey wpe U} (v v = wp K[v] {3})
wp v {®} wp K[e] {2}

Example: Proof of the semantic typing rule for application

Fee:A— B
Fe:A

wp (e1) {[B]}
Fe e:B

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

ey wpe U} (v v = wp K[v] {3})
wp v {®} wp K[e] {2}

Example: Proof of the semantic typing rule for application

Fee:A— B
Fe: A

wp e {[A]} [Alva = wp (e1 v2) {[B]}

wp (e1) {[B]}
Fe e:B

WP-BIND

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

ey wpe U} (v v = wp K[v] {3})
wp v {®} wp K[e] {2}

Example: Proof of the semantic typing rule for application

Fee:A— B
Fe: A wpei {[A—= B]} [A— B]lvi=[A]lva=wp (v v2){[B]}
wp e {[A]} [Alva = wp (e1 v2) {[B]}

wp (e1 e) {[B]}
= €1 € B

WP-BIND

WP-BIND

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

ey wpe U} (v v = wp K[v] {3})
wp v {®} wp K[e] {2}

Example: Proof of the semantic typing rule for application

Fee:A— B
Fe:A wpe {[A—=B]} [A = Blvi = [Alve = wp (v1 vo) {[B]} WP-BIND
wp e {[A]} [A]v2 A% wp (e1 v2) {[B]} WP-BIND
wp (e1 &) {[BI} \
Fe e: B

[recall [A— B] £ Av.Vw. [A] w = wp (v w) {[[B]]}]

An “unsafe” fixpoint combinator

Consider a strict version of Curry's fixpoint operator:

fix = M. (Ax. f (Av. x x v)) (Ax. f (Av. x x v))

An “unsafe” fixpoint combinator

Consider a strict version of Curry's fixpoint operator:

fix = M. (Ax. f (Av. x x v)) (Ax. f (Av. x x v))

Do we have?
Ffix: (A—B)—» (A— B)) = (A— B)

An “unsafe” fixpoint combinator

Consider a strict version of Curry's fixpoint operator:

fix = M. (Ax. f (Av. x x v)) (Ax. f (Av. x x v))

Do we have?
Ffix: (A—B)—» (A— B)) = (A— B)

X No. The rules of STLC cannot type check fix

An “unsafe” fixpoint combinator

Consider a strict version of Curry's fixpoint operator:

fix = M. (Ax. f (Av. x x v)) (Ax. f (Av. x x v))

Do we have?
Ffix: (A—B)—» (A— B)) = (A— B)

X No. The rules of STLC cannot type check fix

Do we have?
Ffix: ((A—B)—(A—B))— (A— B)

An “unsafe” fixpoint combinator

Consider a strict version of Curry's fixpoint operator:

fix = M. (Ax. f (Av. x x v)) (Ax. f (Av. x x v))

Do we have?
Ffix: (A—B)—» (A— B)) = (A— B)

X No. The rules of STLC cannot type check fix

Do we have?
Ffix: ((A—B)—(A—B))— (A— B)

v~ Yes. We can prove that fix is semantically safe

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

[] : Type — SemType where SemType = Val — Prop
[Z) = v.vez
[Ax B] £ Av.3vi, va. v = (vi,v2) A [A] vi A [B] va
[A— B] £ Av.Vw. [A] w = wp (v w) {[B]}

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

[] : Type — SemType where SemType = Val — Prop
[Z) = v.vez
[Ax B] £ Av.3vi, va. v = (vi,v2) A [A] vi A [B] va
[A— B] £ Av.Vw. [A] w = wp (v w) {[B]}

Important observations:

» Each type is given a semantic interpretation following the Curry-Howard
correspondence

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

[] : Type — SemType where SemType = Val — Prop
[Z) = v.vez
[Ax B] £ Av.3vi, va. v = (vi,v2) A [A] vi A [B] va
[A— B] £ Av.Vw. [A] w = wp (v w) {[B]}

Important observations:
» Each type is given a semantic interpretation following the Curry-Howard
correspondence

» Instead of Coq's Prop we can use a logic with more fancy connectives to
interpret more challenging types

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

[] : Type — SemType where SemType = Val — Prop
[Z) = v.vez
[Ax B] £ Av.3vi, va. v = (vi,v2) A [A] vi A [B] va
[A— B] £ Av.Vw. [A] w = wp (v w) {[B]}

Important observations:
» Each type is given a semantic interpretation following the Curry-Howard
correspondence

» Instead of Coq's Prop we can use a logic with more fancy connectives to
interpret more challenging types

{separation Iogicj

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

[] : Type — SemType where SemType = Val — Prop
[Z) = v.vez
[Ax B] £ Av.3vi, va. v = (vi,v2) A [A] vi A [B] va
[A— B] £ Av.Vw. [A] w = wp (v w) {[B]}

Important observations:
» Each type is given a semantic interpretation following the Curry-Howard
correspondence

» Instead of Coq's Prop we can use a logic with more fancy connectives to
interpret more challenging types

{concurrent separation Iogicj

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

[] : Type — SemType where SemType = Val — Prop
[Z) = v.vez
[Ax B] £ Av.3vi, va. v = (vi,v2) A [A] vi A [B] va
[A— B] £ Av.Vw. [A] w = wp (v w) {[B]}

Important observations:
» Each type is given a semantic interpretation following the Curry-Howard
correspondence

» Instead of Coq's Prop we can use a logic with more fancy connectives to
interpret more challenging types

[higher—order concurrent separation Iogicj

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

[] : Type — SemType where SemType = Val — Prop
[Z) = v.vez
[Ax B] £ Av.3vi, va. v = (vi,v2) A [A] vi A [B] va
[A— B] £ Av.Vw. [A] w = wp (v w) {[B]}

Important observations:
» Each type is given a semantic interpretation following the Curry-Howard
correspondence

» Instead of Coq's Prop we can use a logic with more fancy connectives to
interpret more challenging types

Iris

Separation |OgiC [O'Hearn, Reynolds, Yang; CSL'01]

Propositions P, Q denote ownership of resources

Separating conjunction P x Q:
The resources consists of separate parts satisfying P and Q

Basic example:

{El = Vv ok £2 — v2}swap fl Ez{fl = Vp % 62 — Vl}

Separation |OgiC [O'Hearn, Reynolds, Yang; CSL'01]

Propositions P, Q denote ownership of resources

Separating conjunction P x Q:
The resources consists of separate parts satisfying P and Q

Basic example:

{El = Vv ok €2 — v2}swap fl 62{51 = Vp % 62 — Vl}

[the x ensures that ¢ and /> are different memory Iocations}

Separation |OgiC [O'Hearn, Reynolds, Yang; CSL'01]

Propositions P, Q denote ownership of resources

Separating conjunction P x Q:
The resources consists of separate parts satisfying P and Q

Slightly less basic example:

I4 il
isList £ v £ o o .
3¢'. ¢ — cons v ¢ xisList £ %

Separation |OgiC [O'Hearn, Reynolds, Yang; CSL'01]

Propositions P, Q denote ownership of resources

Separating conjunction P x Q:
The resources consists of separate parts satisfying P and Q

Slightly less basic example:

¢+ nil if V=[]

isList £ v £ o)
30 .0 cons vy ¢ xisList &/ vo if V=W

{isList £1 V4 = isList (5 v»}append ¢1 £p{isList /1 (Vi ++ V2)}

Separation |OgiC [O'Hearn, Reynolds, Yang; CSL'01]

Propositions P, Q denote ownership of resources

Separating conjunction P x Q:
The resources consists of separate parts satisfying P and Q

Slightly less basic example:

¢+ nil if V=[]

isList £ v £ o)
30 .0 cons vy ¢ xisList &/ vo if V=W

{isList £1 V4 = isList £ v»}append ¢y £p{isList (1 (Vi ++ V2)}

{the * ensures that all nodes of 1 and ¢> are disjointj

The simple model of separation logic

The semantic domains:
{eloc: N

o € Heap £ Loc fin /gl

P, Q € heapProp £ Heap — Prop

The simple model of separation logic

The semantic domains:
{eloc: N

o € Heap £ Loc fin /gl
P, Q € heapProp £ Heap — Prop

Entailment:
P Q2Vo. Po— Qo

The simple model of separation logic

The semantic domains:
{eloc: N

o € Heap £ Loc i val
P, Q € heapProp £ Heap — Prop
Entailment:
P Q2Vo. Po— Qo

The connectives of separation logic:

(s vENgo(l)=v

PAQ=2 Mo PoA Qo

Px Q% \o.301,00.0 =01 Woo A Pop A Qoo
(Ix: A.P) = Xo.3x : A Po

The simple model of separation logic

The semantic domains:
{eloc: N

o € Heap £ Loc i val
P, Q € heapProp £ Heap — Prop
Entailment:
P Q2Vo. Po— Qo

The connectives of separation logic:

(s vENgo(l)=v
PAQ=2 Mo PoA Qo
Px Q% \o.301,00.0 =01 Woo A Pop A Qoo
(Ix: A.P) = Xo.3x : A Po

[disjointness of heaps, hidden by *]

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

[: Type — SemType where SemType = Val — heapProp

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

[: Type — SemType where SemType = Val — heapProp
[Z] 2 Av.veZ

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

[]: Type — SemType where SemType = Val — heapProp
[Z] 2 Av.veZ
[A x B] & Av.3vi, va. v = (vi, v2) * [A]v1 * [B] vz

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

[]: Type — SemType where SemType = Val — heapProp
[Z) £ v.veZ
[A x B] & Av.3vi, va. v = (vi, v2) * [A]v1 * [B] vz
[A — B] = Av.Vw. [A]lw — wp (v w) {[B]}

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

[]: Type — SemType where SemType = Val — heapProp
[Z) £ v.veZ
[A x B] & Av.3vi, va. v = (vi, v2) * [A]v1 * [B] vz
[A — B] = Av.Vw. [A]lw — wp (v w) {[B]}

(Weakest precondition of separation logic:

wp _{_} : Expr — (Val — heapProp) — heapProp
wp e {@} ~ \o.safe(o,e) A (Vv,0'. (0,e) = (v,0') = @ v o)

(Modulo “frame baking”)

N

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

[]: Type — SemType where SemType = Val — heapProp
[Z) £ v.veZ
[A x B] & Av.3vi, va. v = (vi, v2) * [A]v1 * [B] vz
[A — B] = Av.Vw. [A]lw — wp (v w) {[B]}
[refuniq(A)] = Av. v € Locx Iw. v i+ w * [A]w

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

[]: Type — SemType where SemType = Val — iProp
[Z) £ v.veZ
[A x B] & Av.3vi, va. v = (vi, v2) * [A]v1 * [B] vz
[A — B] = Av.Vw. [A]lw — wp (v w) {[B]}
[refuniq(A)] = Av. v € Locx Iw. v i+ w * [A]w

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

[]: Type — SemType where SemType = Val — iProp
[Z) £ v.veZ
[A x B] & Av.3vi, va. v = (vi, v2) * [A]v1 * [B] vz
[A — B] = Av.Vw. [A]lw — wp (v w) {[B]}
[refuniq(A)] = Av. v € Locx Iw. v i+ w * [A]w
[refsh (A)] £ Av.v € Loc*| Iw. v — w * [A]w|

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

[]: Type — SemType where SemType = Val — iProp
[Z) £ v.veZ
[A x B] & Av.3vi, va. v = (vi, v2) * [A]v1 * [B] vz
[A — B] = Av.Vw. [A]lw — wp (v w) {[B]}
[refuniq(A)] = Av. v € Locx Iw. v i+ w * [A]w
[refsh (A)] £ Av.v € Loc*| Iw. v — w * [A]w|

[Iris invariant | P| ~ knowledge that P holds at all times (invariantly)}

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

[]: Type — SemType where SemType = Val — iProp
[Z] 2 Av.veZ
[A x B] & Av.3vi, va. v = (vi, v2) * [A]v1 * [B] vz
[A — B] = Av.Vw. [A]lw — wp (v w) {[B]}
[refuniq(A)] = Av. v € Locx Iw. v i+ w * [A]w
[refsh (A)] £ Av.v € Loc*| Iw. v — w * [A]w|

This scales—pick the right Iris features to interpret your favorite types

Typing “unsafe” code: One-shot channels

We can implement one-shot channels instead of adding them as primitives to our
language (akin to using unsafe in Rust):

new () £ let ¢ = ref(None) in (c, ¢)

L

sendcv = c:=Some Vv

recvc £ match!cwith
None = recvc
| Some v = free(c); v
end

Typing “unsafe” code: One-shot channels

We can implement one-shot channels instead of adding them as primitives to our
language (akin to using

= ref(None) in (c.c)
One-shot channels + recursive types allow one to embed the
whole of higher-order binary session types [Jacobs, ECOOP'22]

I'eCv (e — IIdilCII TC WILIL

None = recvc
| Some v = free(c); v
end

Typing “unsafe” code: One-shot channels

We can implement one-shot channels instead of adding them as primitives to our
language (akin to using unsafe in Rust):

new () £ let ¢ = ref(None) in (c, ¢)

L

sendcv = c:=Some Vv

recvc £ match!cwith
None = recvc
| Some v = free(c); v
end

What would be good typed API for one-shot channels?

Typing “unsafe” code: One-shot channels

We can implement one-shot channels instead of adding them as primitives to our
language (akin to using unsafe in Rust):

new () £ let ¢ = ref(None) in (c, ¢)

A
sendcv = c:=Some Vv

recvc £ match!cwith
None = recvc
| Some v = free(c); v
end

What would be good typed API for one-shot channels?

Fnew: () o!Ax?A Fsend:!A—oA—() Frecv:?7A— A

Typing “unsafe” code: Recipe

1. Provide a separation logic API for the unsafe operations
Used to give a logical interpretation [_] of the typed API

2. Prove Hoare style specifications for the unsafe operations
Used to prove the semantic typing rules

Separation logic API for one-shot channels

Recall the desired typing rules:

Fnew: () o!Ax?7A
Fsend:!A—oA—|()
Frecv:7A—A

The separation logic API:

{True} new () {(c1,). IsChan(ci, Send, @) * IsChan(cy, Recv,)}
{IsChan(c,Send, ®) « ® v} send c v {True}
{IsChan(c, Recv, ®)} recv c {w. ® w}

Separation logic API for one-shot channels

Recall the desired typing rules:

Fnew: () o!Ax?7A
Fsend:!A—oA—|()
Frecv:7A—A

The separation logic API:

{True} new () {(c1,). IsChan(ci, Send, @) * IsChan(cy, Recv,)}
{IsChan(c,Send, ®) « ® v} send c v {True}
{IsChan(c, Recv, ®)} recv c {w. ® w}

{@ : Val — iProp, so we can transfer resourcesj

Logical typing for one-shot channels

Semantic interpretation of types (“logical relation™):

[] : Type — SemType where SemType = Val — iProp
['A] £ Xc.IsChan(c, Send, [A])
[?A] £ Ac. IsChan(c, Recv, [A])

The semantic typing rules for channels follow immediately from the Hoare rules

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

Send Recv

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS) o .

2. Define an invariant as a disjunction of the states @ e @

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS) o .

2. Define an invariant as a disjunction of the states @ e @

\)V)V ()

e . vV Vv
(1) initial state (2) message sent, but not yet received (3) final state

chan_inv 2 (

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

Send Recv
2. Define an invariant as a disjunction of the states
3. Determine resource ownership of each state
. A
chan_inv = \Y V
() 5 V)
(1) initial state (2) message sent, but not yet received (3) final state

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

Send Recv
2. Define an invariant as a disjunction of the states
3. Determine resource ownership of each state
chan_inv c = (¢ None)V (3v.c+ Somev)V ()
e . vV Vv
(1) initial state (2) message sent, but not yet received (3) final state

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

Send Recv
2. Define an invariant as a disjunction of the states
3. Determine resource ownership of each state
chan_inv c® = (crrNone)V (Iv.c+ Somev*P v)V ()
e . vV Vv
(1) initial state (2) message sent, but not yet received (3) final state

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

Model behavior as a state transition system (STS)

1. . Send Recv
2. Define an invariant as a disjunction of the states
3. Determine resource ownership of each state
4. Encode STS transition permissions with ghost state
chan_inv c® = (crrNone)V (Iv.c+ Somev P v)V ()
e . VT Vv
(1) initial state (2) message sent, but not yet received (3) final state

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

Model behavior as a state transition system (STS)

1. . Send Recv
2. Define an invariant as a disjunction of the states
3. Determine resource ownership of each state
4. Encode STS transition permissions with ghost state
chan_inv s c@é(cHNone)v(Hv.cHSomei*@ v * tokys) V (g)
(1) initial state (2) message sent, but not yet received (3) final state

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:
Model behavior as a state transition system (STS) o .

Define an invariant as a disjunction of the states
Determine resource ownership of each state

Encode STS transition permissions with ghost state

e

chan_inv ys v, ¢ @ 2 (¢+ None)V (Iv. c > Some v * @ v x tok ys) V (tok s * tok,)

e . VT Vv
(1) initial state (2) message sent, but not yet received (3) final state

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

Model behavior as a state transition system (STS) e .
Define an invariant as a disjunction of the states
Determine resource ownership of each state

Encode STS transition permissions with ghost state

ARSI A

Give concurrent actors access to the invariant and their respective ghost state

chan_inv ys v, ¢ @ 2 (¢+ None)V (Iv. c > Some v * @ v x tok ys) \V (tok s * tok,)

e . vV Vv
(1) initial state (2) message sent, but not yet received (3) final state

IsChan(c, tag, ®) = ...

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

Model behavior as a state transition system (STS) e .
Define an invariant as a disjunction of the states
Determine resource ownership of each state

Encode STS transition permissions with ghost state

ARSI A

Give concurrent actors access to the invariant and their respective ghost state

chan_inv ys v, ¢ @ 2 (¢+ None)V (Iv. c > Some v * @ v x tok ys) \V (tok s * tok,)

e . vV Vv
(1) initial state (2) message sent, but not yet received (3) final state

IsChan(c, tag, #) £ 3vs,7,.|chan_inv v v, ¢ &]. ..

Verification of one-shot channel separation logic API
One-shot channel ownership defined using standard Iris methodology:

Model behavior as a state transition system (STS) e .
Define an invariant as a disjunction of the states
Determine resource ownership of each state

Encode STS transition permissions with ghost state

ARSI A

Give concurrent actors access to the invariant and their respective ghost state

chan_inv ys v, ¢ @ 2 (¢+ None)V (Iv. c > Some v * @ v x tok ys) \V (tok s * tok,)

e . vV Vv
(1) initial state (2) message sent, but not yet received (3) final state

tok s if tag = Send

IsChan(c, tag, #) £ 3vs,7,.|chan_inv s v, ¢ & |* _
tok~y, if tag = Recv

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language
2. Build a program logic using lIris, i.e., define WP, —, etc.

3. Verify separation logic APlIs for your “unsafe” libraries

4. Define a logical relation and semantic typing judgment

5. Prove semantic typing rules/fundamental theorem

6. Profit

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language
Decide what operations should be primitives or implemented as “unsafe”
2. Build a program logic using lIris, i.e., define WP, —, etc.
3. Verify separation logic APlIs for your “unsafe” libraries
4. Define a logical relation and semantic typing judgment

5. Prove semantic typing rules/fundamental theorem

6. Profit

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language
Decide what operations should be primitives or implemented as “unsafe”

2. Build a program logic using lIris, i.e., define WP, —, etc.

Iris provides reusable building blocks for defining and verifying program logics
3. Verify separation logic APlIs for your “unsafe” libraries
4. Define a logical relation and semantic typing judgment

5. Prove semantic typing rules/fundamental theorem

6. Profit

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language
Decide what operations should be primitives or implemented as “unsafe”

2. Build a program logic using lIris, i.e., define WP, —, etc.
Iris provides reusable building blocks for defining and verifying program logics

3. Verify separation logic APlIs for your “unsafe” libraries
Make use of invariants and ghost state provided by Iris
4. Define a logical relation and semantic typing judgment

5. Prove semantic typing rules/fundamental theorem

6. Profit

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language
Decide what operations should be primitives or implemented as “unsafe”

2. Build a program logic using lIris, i.e., define WP, —, etc.
Iris provides reusable building blocks for defining and verifying program logics

3. Verify separation logic APlIs for your “unsafe” libraries
Make use of invariants and ghost state provided by Iris

4. Define a logical relation and semantic typing judgment
Interpret type formers using suitable logical connectives through Curry-Howard

5. Prove semantic typing rules/fundamental theorem

6. Profit

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language

Decide what operations should be primitives or implemented as “unsafe”
2. Build a program logic using lIris, i.e., define WP, —, etc.

Iris provides reusable building blocks for defining and verifying program logics
3. Verify separation logic APlIs for your “unsafe” libraries

Make use of invariants and ghost state provided by Iris
4. Define a logical relation and semantic typing judgment

Interpret type formers using suitable logical connectives through Curry-Howard
5. Prove semantic typing rules/fundamental theorem

Most of the heavy lifting is done by the Hoare/WP rules in Iris

6. Profit

The logical approach in Iris scales

Perennial DimSum Cerise RustBelt RelLoC
Melocoton ~ VMSL RefinedC Aneris
Diaframe Iris-Wasm
Simuliris * Compass
Iris-Tini Ir (S RustHornBelt
Cosmo CQS SelLoC
iGPS Hazel gDOT GoJournal
OCPL Islaris Actris lron IRC11

The logical approach in Iris crucially depends on using
separation logic as a meta theory: both to prove the
fundamental theorem and to verify “unsafe” code

28

The logical approach in Iris crucially depends on using
separation logic as a meta theory: both to prove the
fundamental theorem and to verify “unsafe” code

How to do mechanized proofs in separation logic?

28

How to do mechanized proofs in separation logic

Suppose we want to prove P x (Ja. ®a) x Q + Q % (Ja. P x Pa)

How to do mechanized proofs in separation logic

Suppose we want to prove P x (Ja. ®a) x Q + Q % (Ja. P x Pa)

1. Unfold definitions of the model: Vo.(Jo102.0 =01 Woa APor A...) — ...

» Defeats the purpose of separation logic to hide reasoning about disjointness
» Does not scale to larger goals or step-indexing

How to do mechanized proofs in separation logic

Suppose we want to prove P x (Ja. ®a) * Q F Q x (Ja. P x ®a)

1. Unfold definitions of the model: Vo.(Jo102.0 =01 Woa APor A...) — ...

» Defeats the purpose of separation logic to hide reasoning about disjointness
» Does not scale to larger goals or step-indexing
2. Use the laws of separation logic: associativity/commutativity of x,
distributivity of 3 over x, ...
» Too low-level, already small proofs require many steps
» Also rather slow in a proof assistant

How to do mechanized proofs in separation logic

Suppose we want to prove P x (Ja. ®a) * Q F Q x (Ja. P x ®a)

1. Unfold definitions of the model: Vo.(Jo102.0 =01 Woa APor A...) — ...

» Defeats the purpose of separation logic to hide reasoning about disjointness
» Does not scale to larger goals or step-indexing
2. Use the laws of separation logic: associativity/commutativity of x,
distributivity of 3 over x, ...

» Too low-level, already small proofs require many steps
» Also rather slow in a proof assistant

3. Use Iris Proof Mode
» Topic of today's talk

|riS PrOOf MOde (IPM) [Krebbers et al.; POPL'17, ICFP'18]

Embedding of a proof assistant for separation logic in Coq

> Extend Coq with named proof contexts for separation logic
» Tactics for introduction and elimination of all connectives of separation logic . ..
» .. .that can be used in Coq's mechanisms for automation/tactic programming

» Implemented without modifying Coq (using reflection, type classes and Ltac)

. f+§?

Why use Coq and not build a standalone proof
assistant for separation logic?

Prove soundness of embedded proof assistant
Reuse infrastructure of host proof assistant
Users do not need to learn new tool

31

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (® : A — iProp)

Px (Jda ®a)«QF-QxJa, Pxoba.
Proof.

iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

— iAssumption.

- iExists x.

iFrame.

Qed.

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (® : A — iProp) :
x (Ja, da) *QFQxJa, Pxda,.

Proof.

LLemma in separatlon Ioglc}

TOUI UG U Iz oo N4y

iSplitL "H3".
— iAssumption.
- iExists x.
iFrame.
Qed.

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (¢ : A — iProp) : 1 subgoal
Px (Jda ®a)«QF-Q«Ja, Pxoba. A : Type
Proof. P, Q : iProp
iIntros "[H1 [H2 H3]]". ® : A — iProp
?Des?ruct "H2" as (x) "H2". PrGa. a0 a)4<Q(1/1)
iSplitl "H3". FQx«(3a:A Pxoda)
— iAssumption.
- iExists x.
iFrame.

Qed.

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (¢ : A — iProp) : 1 subgoal
Px (Jda ®a)«QF-Q«Ja, Pxoba. A : Type
Proof. P, Q : iProp
iIntros "[H1 [H2 H3]]". ® : A — iProp
iDestruct "H2" as (x) "H2". i p (1/1)
iSplitL "H3". V2" - 3a A ba
- iAssumption. "H3" : Q

- iExists x. "
iFrame. Qx (Fa:A Pxda)

Qed.

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (® : A — iProp)

Px (Jda ®a)«QF-Q«Ja, Pxoba.
Proof.

iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

— iAssumption.

- iExists x.

iFrame.

Qed.

1 subgoal

A : Type

P, Q : iProp
¢ : A — iProp
x : A

(1/1)

"Hi" ;P
"H2" D x
I|H3|| Q

Qx (Ja:A Pxda)

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (¢ : A — iProp) : 1 subgoal

Px (Jda ®a)«QF-Q«Ja, Pxoba. A : Type
Proof. P, Q : iProp

iIntros "[H1 [H2 H3]]". ®: A — iProp

iDestruct "H2" as (x) "H2". x A (1/1)

iSplitL "H3". WHiY - P

— iAssumption. "H2Y - b x

- iExists x. "H3" : Q

iFrame. :
Qed. Qx (3a:A Pxda)
e
—

[* means: resources should be split]

|

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (¢ : A — iProp) : 1 subgoal

Px (Jda ®a)«QF-Q«Ja, Pxoba. A : Type
Proof . P, Q : iProp

ilntros "[H1 [H2 H3]]". A aprop

iDestruct "H2" as (x) "H2". * (1/1)

lSplltL "H3". "Hi" - P

- iAssumpti "H2" : P x

. I|H3|| Q

[The hypotheses for the left conjunctj ;

Qed. Qx(Ja:A Pxda)
.
—

[* means: resources should be split]

|

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (® : A — iProp)

Px (Jda ®a)«QF-Q«Ja, Pxoba.
Proof.

iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

— iAssumption.

- iExists x.

iFrame.

Qed.

2 subgoals
Type

A

P, Q :

b

X

A
A

iProp
— iProp

(1/2)

IIH3II :

(2/2)

lIHlII :
IIH2II

da :

A, Pxda

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (® : A — iProp) :

Px (Jda ®a)«QF-Q«Ja, Pxoba.
Proof.

iIntros "[H1 [H2 H3]]".

by iFrame.
Qed.

We can also solve this
goal automatically

1 subgoal

A : Type

P, Q : iProp
¢ : A — iProp
x : A

(1/1)

"Hi" P
"H2" : J a, d a
IIH3|| Q

Qx (FTa:A Pxda)

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (® : A — iProp) :

Px (Jda ®a)«QF-Q«Ja, Pxoba.
Proof.

iIntros "[H1 [H2 H3]]".

by iFrame.
Qed.

We can also solve this
goal automatically

No more subgoals.

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (® : A — iProp) :
Px (Jda ®a)«QF-Q«Ja, Pxoba.
Proof.
iIntros "[$ [? $11 //".
Qed.

[Or use intro patterns}

Features of the Iris Proof Mode

» Proofs have the look and feel of ordinary Coq proofs
For many Coq tactics tac, we have a variant iTac

I'(S

Features of the Iris Proof Mode

» Proofs have the look and feel of ordinary Coq proofs
For many Coq tactics tac, we have a variant iTac

> Support for advanced features of separation logic
Higher-order quantification, modalities, invariants, ghost
state, ...

I'(S

Features of the Iris Proof Mode

» Proofs have the look and feel of ordinary Coq proofs
For many Coq tactics tac, we have a variant iTac

> Support for advanced features of separation logic
Higher-order quantification, modalities, invariants, ghost
state, ...

> Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions

I'(S

Features of the Iris Proof Mode

» Proofs have the look and feel of ordinary Coq proofs
For many Coq tactics tac, we have a variant iTac

> Support for advanced features of separation logic
Higher-order quantification, modalities, invariants, ghost
state, ...

> Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions

» Tactic programming
One can combine/program with IPM tactics using Coq's
Ltac like ordinary Coq tactics

I'(S

Changes since the POPL'17 paper on Iris Proof Mode

» Generalized to any Bunched Implications (BI) logic (Krebbers et al., ICFP'18)
» Many usability improvements:
Smarter tactics, better error messages, improved robustness and performance

» Proof automation: RefinedC (Sammler et al. PLDI'21), Diaframe (Mulder et al.
PLDI'22, PLDI'23, OOPSLA'23), BedRock Systems (proprietary)

Changes since the POPL'17 paper on Iris Proof Mode

» Generalized to any Bunched Implications (BI) logic (Krebbers et al., ICFP'18)

» Many usability improvements:
Smarter tactics, better error messages, improved robustness and performance

» Proof automation: RefinedC (Sammler et al. PLDI'21), Diaframe (Mulder et al.
PLDI'22, PLDI'23, OOPSLA'23), BedRock Systems (proprietary)

Most importantly: Iris (Proof Mode) got users:

» Coq became essential to teach Iris / concurrent separation logic
13 PhD theses
98 publications

3 editions of the Iris workshop

>
>
>
>

Used by researchers at companies: BedRock Systems, Meta, Jetbrains

Future work: Going beyond safety

» Applying the logical approach to deadlock freedom, resource leak freedom,
liveness, non-interference remains challenging

» Different models of concurrent separation logic/Iris need to be explored: linear
(instead of affine), transfinite, etc.

» We have initial versions for specific languages

> But we do not have the right Iris-style abstractions to build these logics modularly

v

Nor to easily combine different PL features in one type safety proof

Read more?

Our overview: Session types: Deadlock freedom: Rust:

A Logical Approach to Type Soundness

.) UNDERSTANDING AND EVOLVING
Sessions and Separation THE RUST PROGRAMMING LANGUAGE

Jonas Kastberg Hinrichsen
PhD Dissertation GUARANTEES BY CONSTRUCTION

IT University of Copenhagen

“Types for deadlock and leak free concurrency + separation logics
for verified message passing + general and eficient coalgebraic

March 2021

JULES JACOBS

Sarbricen, Avgt 220

https://iris-project.org/

https://iris-project.org/

