
1

Mechanized verification of type systems using Iris

Robbert Krebbers

Radboud University Nijmegen, The Netherlands

January 31, 2024 @ Dagstuhl, Germany

5

The old problem of proving “type safety”:
“Well-typed programs cannot go wrong”

Goal of this talk:

▶ Introduce the “logical approach in Iris” as an alternative to the standard
progress/preservation approach to type safety

▶ Show that this approach makes it possible to type “unsafe” code

▶ Show that this approach is well-suited for mechanization of challenging type
systems in the Coq proof assistant

5

The old problem of proving “type safety”:
If ⊢ e : A then safe(e)

Goal of this talk:

▶ Introduce the “logical approach in Iris” as an alternative to the standard
progress/preservation approach to type safety

▶ Show that this approach makes it possible to type “unsafe” code

▶ Show that this approach is well-suited for mechanization of challenging type
systems in the Coq proof assistant

5

The old problem of proving “type safety”:
If ⊢ e : A then safe(e)

Goal of this talk:

▶ Introduce the “logical approach in Iris” as an alternative to the standard
progress/preservation approach to type safety

▶ Show that this approach makes it possible to type “unsafe” code

▶ Show that this approach is well-suited for mechanization of challenging type
systems in the Coq proof assistant

6

Recap: Progress and preservation [Wright and Felleisen, simplified by Harper]

Safety is defined in terms of a small-step operational semantics:

safe(e) ≜ ∀e ′. (e →∗ e ′) ⇒ e ′ ∈ Val ∨ reducible(e ′)

1. Progress: If ⊢ e : A then e ∈ Val or reducible(e)

2. Preservation: If ⊢ e : A and e → e ′ then ⊢ e ′ : A

Proof of type safety: If ⊢ e : A then safe(e)
Obtain ⊢ e ′ : A by induction on length of e →∗ e ′ and preservation,
conclude by progress

6

Recap: Progress and preservation [Wright and Felleisen, simplified by Harper]

Safety is defined in terms of a small-step operational semantics:

safe(e) ≜ ∀e ′. (e →∗ e ′) ⇒ e ′ ∈ Val ∨ reducible(e ′)

1. Progress: If ⊢ e : A then e ∈ Val or reducible(e)

2. Preservation: If ⊢ e : A and e → e ′ then ⊢ e ′ : A

Proof of type safety: If ⊢ e : A then safe(e)
Obtain ⊢ e ′ : A by induction on length of e →∗ e ′ and preservation,
conclude by progress

6

Recap: Progress and preservation [Wright and Felleisen, simplified by Harper]

Safety is defined in terms of a small-step operational semantics:

safe(e) ≜ ∀e ′. (e →∗ e ′) ⇒ e ′ ∈ Val ∨ reducible(e ′)

1. Progress: If ⊢ e : A then e ∈ Val or reducible(e)

2. Preservation: If ⊢ e : A and e → e ′ then ⊢ e ′ : A

Proof of type safety: If ⊢ e : A then safe(e)
Obtain ⊢ e ′ : A by induction on length of e →∗ e ′ and preservation,
conclude by progress

7

Problems of progress and preservation

Progress and preservation are extremely effective and simple to teach, but:

▶ It becomes much more complicated when considering a language with a state

Preservation: If Σ ⊢ e : A and Σ ⊢h σ and (σ, e) → (σ, e ′) then
there exists Σ′ ⊇ Σ such that Σ′ ⊢ e ′ : A and Σ′ ⊢h σ′

▶ Even more tricky once you consider a substructural type system
Disjointness conditions show up everywhere
(And Coq does not accept “left as an exercise for the reader”)

▶ Unsuitable to reason about “unsafe” code
unsafe in Rust, Obj.magic in OCaml, unsafePerformIO in Haskell

7

Problems of progress and preservation

Progress and preservation are extremely effective and simple to teach, but:

▶ It becomes much more complicated when considering a language with a state

Preservation: If Σ ⊢ e : A and Σ ⊢h σ and (σ, e) → (σ, e ′) then
there exists Σ′ ⊇ Σ such that Σ′ ⊢ e ′ : A and Σ′ ⊢h σ′

▶ Even more tricky once you consider a substructural type system
Disjointness conditions show up everywhere
(And Coq does not accept “left as an exercise for the reader”)

▶ Unsuitable to reason about “unsafe” code
unsafe in Rust, Obj.magic in OCaml, unsafePerformIO in Haskell

7

Problems of progress and preservation

Progress and preservation are extremely effective and simple to teach, but:

▶ It becomes much more complicated when considering a language with a state

Preservation: If Σ ⊢ e : A and Σ ⊢h σ and (σ, e) → (σ, e ′) then
there exists Σ′ ⊇ Σ such that Σ′ ⊢ e ′ : A and Σ′ ⊢h σ′

▶ Even more tricky once you consider a substructural type system
Disjointness conditions show up everywhere
(And Coq does not accept “left as an exercise for the reader”)

▶ Unsuitable to reason about “unsafe” code
unsafe in Rust, Obj.magic in OCaml, unsafePerformIO in Haskell

7

Problems of progress and preservation

Progress and preservation are extremely effective and simple to teach, but:

▶ It becomes much more complicated when considering a language with a state

Preservation: If Σ ⊢ e : A and Σ ⊢h σ and (σ, e) → (σ, e ′) then
there exists Σ′ ⊇ Σ such that Σ′ ⊢ e ′ : A and Σ′ ⊢h σ′

▶ Even more tricky once you consider a substructural type system
Disjointness conditions show up everywhere
(And Coq does not accept “left as an exercise for the reader”)

▶ Unsuitable to reason about “unsafe” code
unsafe in Rust, Obj.magic in OCaml, unsafePerformIO in Haskell

8

Semantic typing

Define “semantic typing judgment” ⊨ e : A in terms of language semantics
Not as an inductive relation!

1. Adequacy: If ⊨ e : A then safe(e)

Usually the easy part, since safety is part of the definition of ⊨ e : A

2. Fundamental theorem: If ⊢ e : A then ⊨ e : A

Induction on the derivation of ⊢ e : A
The work is in proving a semantic version (⊨) of each syntactic typing rule (⊢)

⊢ e1 : A → B ⊢ e2 : A

⊢ e1 e2 : B

Proof of type safety: If ⊢ e : A then safe(e)
Modus ponens with fundamental theorem and adequacy

8

Semantic typing

Define “semantic typing judgment” ⊨ e : A in terms of language semantics
Not as an inductive relation!

1. Adequacy: If ⊨ e : A then safe(e)

Usually the easy part, since safety is part of the definition of ⊨ e : A

2. Fundamental theorem: If ⊢ e : A then ⊨ e : A

Induction on the derivation of ⊢ e : A
The work is in proving a semantic version (⊨) of each syntactic typing rule (⊢)

⊢ e1 : A → B ⊢ e2 : A

⊢ e1 e2 : B

Proof of type safety: If ⊢ e : A then safe(e)
Modus ponens with fundamental theorem and adequacy

8

Semantic typing

Define “semantic typing judgment” ⊨ e : A in terms of language semantics
Not as an inductive relation!

1. Adequacy: If ⊨ e : A then safe(e)

Usually the easy part, since safety is part of the definition of ⊨ e : A

2. Fundamental theorem: If ⊢ e : A then ⊨ e : A

Induction on the derivation of ⊢ e : A
The work is in proving a semantic version (⊨) of each syntactic typing rule (⊢)

⊢ e1 : A → B ⊢ e2 : A

⊢ e1 e2 : B

Proof of type safety: If ⊢ e : A then safe(e)
Modus ponens with fundamental theorem and adequacy

8

Semantic typing

Define “semantic typing judgment” ⊨ e : A in terms of language semantics
Not as an inductive relation!

1. Adequacy: If ⊨ e : A then safe(e)
Usually the easy part, since safety is part of the definition of ⊨ e : A

2. Fundamental theorem: If ⊢ e : A then ⊨ e : A

Induction on the derivation of ⊢ e : A
The work is in proving a semantic version (⊨) of each syntactic typing rule (⊢)

⊢ e1 : A → B ⊢ e2 : A

⊢ e1 e2 : B

Proof of type safety: If ⊢ e : A then safe(e)
Modus ponens with fundamental theorem and adequacy

8

Semantic typing

Define “semantic typing judgment” ⊨ e : A in terms of language semantics
Not as an inductive relation!

1. Adequacy: If ⊨ e : A then safe(e)
Usually the easy part, since safety is part of the definition of ⊨ e : A

2. Fundamental theorem: If ⊢ e : A then ⊨ e : A
Induction on the derivation of ⊢ e : A
The work is in proving a semantic version (⊨) of each syntactic typing rule (⊢)

⊢ e1 : A → B ⊢ e2 : A

⊢ e1 e2 : B

Proof of type safety: If ⊢ e : A then safe(e)
Modus ponens with fundamental theorem and adequacy

8

Semantic typing

Define “semantic typing judgment” ⊨ e : A in terms of language semantics
Not as an inductive relation!

1. Adequacy: If ⊨ e : A then safe(e)
Usually the easy part, since safety is part of the definition of ⊨ e : A

2. Fundamental theorem: If ⊢ e : A then ⊨ e : A
Induction on the derivation of ⊢ e : A
The work is in proving a semantic version (⊨) of each syntactic typing rule (⊢)

⊨ e1 : A → B ⊨ e2 : A

⊨ e1 e2 : B

Proof of type safety: If ⊢ e : A then safe(e)
Modus ponens with fundamental theorem and adequacy

9

Key challenge: Define ⊨ e : A so that:

▶ It is rich enough to support challenging PL features

▶ It allows for a concise proof of the fundamental theorem

10

A bit of history

▶ Milner’s original type safety proof (1978) was a semantic one

▶ It remained an open challenge for a long time to scale the semantic approach to
languages with polymorphism, recursive types, and ML-style references

▶ A breakthrough was the work on step-indexing by Appel, Ahmed and
collaborators (2001–2004)

▶ More abstract versions developed by Appel et al. (2007) and Dreyer et al. (2011)

▶ Iris provides a modern logical approach in which concurrent separation logic
hides reasoning about state and which is well-suited for mechanized proofs

10

A bit of history

▶ Milner’s original type safety proof (1978) was a semantic one

▶ It remained an open challenge for a long time to scale the semantic approach to
languages with polymorphism, recursive types, and ML-style references

▶ A breakthrough was the work on step-indexing by Appel, Ahmed and
collaborators (2001–2004)

▶ More abstract versions developed by Appel et al. (2007) and Dreyer et al. (2011)

▶ Iris provides a modern logical approach in which concurrent separation logic
hides reasoning about state and which is well-suited for mechanized proofs

10

A bit of history

▶ Milner’s original type safety proof (1978) was a semantic one

▶ It remained an open challenge for a long time to scale the semantic approach to
languages with polymorphism, recursive types, and ML-style references

▶ A breakthrough was the work on step-indexing by Appel, Ahmed and
collaborators (2001–2004)

▶ More abstract versions developed by Appel et al. (2007) and Dreyer et al. (2011)

▶ Iris provides a modern logical approach in which concurrent separation logic
hides reasoning about state and which is well-suited for mechanized proofs

11

In what follows, I will show the simplest semantic proof for

simply-typed lambda calculus (STLC)

And then change some conjunctions into separation

conjunctions to scale to a substructural type system with

channels implemented as an “unsafe” library

11

In what follows, I will show the simplest semantic proof for

simply-typed lambda calculus (STLC)

And then change some conjunctions into separation

conjunctions to scale to a substructural type system with

channels implemented as an “unsafe” library

12

Semantic typing for STLC

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAKw ⇒ JBK (v w)

Weakest precondition:

wp { } : Expr → (Val → Prop) → Prop

wp e {Φ} ≜ safe(e) ∧ (∀v . e →∗ v ⇒ Φ v)

Semantic typing judgment:

Γ

⊨ e : A ≜ wp e {JAK}

12

Semantic typing for STLC

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z

JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2
JA → BK ≜ λv . ∀w . JAKw ⇒ JBK (v w)

Weakest precondition:

wp { } : Expr → (Val → Prop) → Prop

wp e {Φ} ≜ safe(e) ∧ (∀v . e →∗ v ⇒ Φ v)

Semantic typing judgment:

Γ

⊨ e : A ≜ wp e {JAK}

12

Semantic typing for STLC

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAKw ⇒ JBK (v w)

Weakest precondition:

wp { } : Expr → (Val → Prop) → Prop

wp e {Φ} ≜ safe(e) ∧ (∀v . e →∗ v ⇒ Φ v)

Semantic typing judgment:

Γ

⊨ e : A ≜ wp e {JAK}

12

Semantic typing for STLC

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAKw ⇒ JBK (v w)

Weakest precondition:

wp { } : Expr → (Val → Prop) → Prop

wp e {Φ} ≜ safe(e) ∧ (∀v . e →∗ v ⇒ Φ v)

Semantic typing judgment:

Γ

⊨ e : A ≜ wp e {JAK}

12

Semantic typing for STLC

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAKw ⇒ JBK (v w)

Weakest precondition:

wp { } : Expr → (Val → Prop) → Prop

wp e {Φ} ≜ safe(e) ∧ (∀v . e →∗ v ⇒ Φ v)

Semantic typing judgment:

Γ

⊨ e : A ≜ wp e {JAK}

application is not a value, we need to talk about its result

12

Semantic typing for STLC

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAKw ⇒ wp (v w) {JBK}

Weakest precondition:

wp { } : Expr → (Val → Prop) → Prop

wp e {Φ} ≜ safe(e) ∧ (∀v . e →∗ v ⇒ Φ v)

Semantic typing judgment:

Γ

⊨ e : A ≜ wp e {JAK}

12

Semantic typing for STLC

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAKw ⇒ wp (v w) {JBK}

Weakest precondition:

wp { } : Expr → (Val → Prop) → Prop

wp e {Φ} ≜ safe(e) ∧ (∀v . e →∗ v ⇒ Φ v)

Semantic typing judgment:

Γ

⊨ e : A ≜ wp e {JAK}

12

Semantic typing for STLC

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAKw ⇒ wp (v w) {JBK}

Weakest precondition:

wp { } : Expr → (Val → Prop) → Prop

wp e {Φ} ≜ safe(e) ∧ (∀v . e →∗ v ⇒ Φ v)

Semantic typing judgment:

Γ ⊨ e : A ≜ ∀γ. JΓK γ ⇒ wp γ(e) {JAK}

closing substitution, I will ignore those most of the time

13

Proofs of key properties

1. Adequacy: If ⊨ e : A then safe(e)

Holds by definition ⊨ e : A = wp e {JAK} = safe(e) ∧ . . .

2. Fundamental theorem: If ⊢ e : A then ⊨ e : A

Induction on the derivation of ⊢ e : A
The work is in proving a semantic version (⊨) of each syntactic typing rule (⊢)

⊢ e1 : A → B ⊢ e2 : A

⊢ e1 e2 : B

13

Proofs of key properties

1. Adequacy: If ⊨ e : A then safe(e)
Holds by definition ⊨ e : A = wp e {JAK} = safe(e) ∧ . . .

2. Fundamental theorem: If ⊢ e : A then ⊨ e : A

Induction on the derivation of ⊢ e : A
The work is in proving a semantic version (⊨) of each syntactic typing rule (⊢)

⊢ e1 : A → B ⊢ e2 : A

⊢ e1 e2 : B

13

Proofs of key properties

1. Adequacy: If ⊨ e : A then safe(e)
Holds by definition ⊨ e : A = wp e {JAK} = safe(e) ∧ . . .

2. Fundamental theorem: If ⊢ e : A then ⊨ e : A
Induction on the derivation of ⊢ e : A
The work is in proving a semantic version (⊨) of each syntactic typing rule (⊢)

⊢ e1 : A → B ⊢ e2 : A

⊢ e1 e2 : B

13

Proofs of key properties

1. Adequacy: If ⊨ e : A then safe(e)
Holds by definition ⊨ e : A = wp e {JAK} = safe(e) ∧ . . .

2. Fundamental theorem: If ⊢ e : A then ⊨ e : A
Induction on the derivation of ⊢ e : A
The work is in proving a semantic version (⊨) of each syntactic typing rule (⊢)

⊨ e1 : A → B ⊨ e2 : A

⊨ e1 e2 : B

14

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

wp-val
Φ v

wp v {Φ}

wp-bind
wp e {Ψ} (∀v .Ψ v ⇒ wp K [v] {Φ})

wp K [e] {Φ}

Example: Proof of the semantic typing rule for application

⊨ e2 : A

wp e2 {JAK}

⊨ e1 : A → B

wp e1 {JA → BK} JA → BK v1 ⇒ JAK v2 ⇒ wp (v1 v2) {JBK}
wp-bind

JAKv2 ⇒ wp (e1 v2) {JBK}
wp-bind

wp (e1 e2) {JBK}

⊨ e1 e2 : B

14

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

wp-val
Φ v

wp v {Φ}

wp-bind
wp e {Ψ} (∀v .Ψ v ⇒ wp K [v] {Φ})

wp K [e] {Φ}

Example: Proof of the semantic typing rule for application

⊨ e2 : A

wp e2 {JAK}

⊨ e1 : A → B

wp e1 {JA → BK} JA → BK v1 ⇒ JAK v2 ⇒ wp (v1 v2) {JBK}
wp-bind

JAKv2 ⇒ wp (e1 v2) {JBK}
wp-bind

wp (e1 e2) {JBK}

⊨ e1 e2 : B

14

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

wp-val
Φ v

wp v {Φ}

wp-bind
wp e {Ψ} (∀v .Ψ v ⇒ wp K [v] {Φ})

wp K [e] {Φ}

Example: Proof of the semantic typing rule for application

⊨ e2 : A

wp e2 {JAK}

⊨ e1 : A → B

wp e1 {JA → BK} JA → BK v1 ⇒ JAK v2 ⇒ wp (v1 v2) {JBK}
wp-bind

JAKv2 ⇒ wp (e1 v2) {JBK}
wp-bind

wp (e1 e2) {JBK}
⊨ e1 e2 : B

14

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

wp-val
Φ v

wp v {Φ}

wp-bind
wp e {Ψ} (∀v .Ψ v ⇒ wp K [v] {Φ})

wp K [e] {Φ}

Example: Proof of the semantic typing rule for application

⊨ e2 : A

wp e2 {JAK}

⊨ e1 : A → B

wp e1 {JA → BK} JA → BK v1 ⇒ JAK v2 ⇒ wp (v1 v2) {JBK}
wp-bind

JAKv2 ⇒ wp (e1 v2) {JBK}
wp-bind

wp (e1 e2) {JBK}
⊨ e1 e2 : B

14

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

wp-val
Φ v

wp v {Φ}

wp-bind
wp e {Ψ} (∀v .Ψ v ⇒ wp K [v] {Φ})

wp K [e] {Φ}

Example: Proof of the semantic typing rule for application

⊨ e2 : A

wp e2 {JAK}

⊨ e1 : A → B

wp e1 {JA → BK} JA → BK v1 ⇒ JAK v2 ⇒ wp (v1 v2) {JBK}
wp-bind

JAKv2 ⇒ wp (e1 v2) {JBK}
wp-bind

wp (e1 e2) {JBK}
⊨ e1 e2 : B

14

Proof of the fundamental theorem

Reasoning about the operational semantics is encapsulated by the WP rules

wp-val
Φ v

wp v {Φ}

wp-bind
wp e {Ψ} (∀v .Ψ v ⇒ wp K [v] {Φ})

wp K [e] {Φ}

Example: Proof of the semantic typing rule for application

⊨ e2 : A

wp e2 {JAK}

⊨ e1 : A → B

wp e1 {JA → BK} JA → BK v1 ⇒ JAK v2 ⇒ wp (v1 v2) {JBK}
wp-bind

JAKv2 ⇒ wp (e1 v2) {JBK}
wp-bind

wp (e1 e2) {JBK}
⊨ e1 e2 : B

recall JA → BK ≜ λv . ∀w . JAK w ⇒ wp (v w) {JBK}

15

An “unsafe” fixpoint combinator

Consider a strict version of Curry’s fixpoint operator:

fix ≜ λf . (λx . f (λv . x x v)) (λx . f (λv . x x v))

Do we have?
⊢ fix : ((A → B) → (A → B)) → (A → B)

✗ No. The rules of STLC cannot type check fix

Do we have?
⊨ fix : ((A → B) → (A → B)) → (A → B)

✓ Yes. We can prove that fix is semantically safe

15

An “unsafe” fixpoint combinator

Consider a strict version of Curry’s fixpoint operator:

fix ≜ λf . (λx . f (λv . x x v)) (λx . f (λv . x x v))

Do we have?
⊢ fix : ((A → B) → (A → B)) → (A → B)

✗ No. The rules of STLC cannot type check fix

Do we have?
⊨ fix : ((A → B) → (A → B)) → (A → B)

✓ Yes. We can prove that fix is semantically safe

15

An “unsafe” fixpoint combinator

Consider a strict version of Curry’s fixpoint operator:

fix ≜ λf . (λx . f (λv . x x v)) (λx . f (λv . x x v))

Do we have?
⊢ fix : ((A → B) → (A → B)) → (A → B)

✗ No. The rules of STLC cannot type check fix

Do we have?
⊨ fix : ((A → B) → (A → B)) → (A → B)

✓ Yes. We can prove that fix is semantically safe

15

An “unsafe” fixpoint combinator

Consider a strict version of Curry’s fixpoint operator:

fix ≜ λf . (λx . f (λv . x x v)) (λx . f (λv . x x v))

Do we have?
⊢ fix : ((A → B) → (A → B)) → (A → B)

✗ No. The rules of STLC cannot type check fix

Do we have?
⊨ fix : ((A → B) → (A → B)) → (A → B)

✓ Yes. We can prove that fix is semantically safe

15

An “unsafe” fixpoint combinator

Consider a strict version of Curry’s fixpoint operator:

fix ≜ λf . (λx . f (λv . x x v)) (λx . f (λv . x x v))

Do we have?
⊢ fix : ((A → B) → (A → B)) → (A → B)

✗ No. The rules of STLC cannot type check fix

Do we have?
⊨ fix : ((A → B) → (A → B)) → (A → B)

✓ Yes. We can prove that fix is semantically safe

16

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAK w ⇒ wp (v w) {JBK}

Important observations:

▶ Each type is given a semantic interpretation following the Curry-Howard
correspondence

▶ Instead of Coq’s Prop we can use a logic with more fancy connectives to
interpret more challenging types

separation logic

16

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAK w ⇒ wp (v w) {JBK}

Important observations:

▶ Each type is given a semantic interpretation following the Curry-Howard
correspondence

▶ Instead of Coq’s Prop we can use a logic with more fancy connectives to
interpret more challenging types

separation logic

16

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAK w ⇒ wp (v w) {JBK}

Important observations:

▶ Each type is given a semantic interpretation following the Curry-Howard
correspondence

▶ Instead of Coq’s Prop we can use a logic with more fancy connectives to
interpret more challenging types

separation logic

16

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAK w ⇒ wp (v w) {JBK}

Important observations:

▶ Each type is given a semantic interpretation following the Curry-Howard
correspondence

▶ Instead of Coq’s Prop we can use a logic with more fancy connectives to
interpret more challenging types

separation logic

16

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAK w ⇒ wp (v w) {JBK}

Important observations:

▶ Each type is given a semantic interpretation following the Curry-Howard
correspondence

▶ Instead of Coq’s Prop we can use a logic with more fancy connectives to
interpret more challenging types

concurrent separation logic

16

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAK w ⇒ wp (v w) {JBK}

Important observations:

▶ Each type is given a semantic interpretation following the Curry-Howard
correspondence

▶ Instead of Coq’s Prop we can use a logic with more fancy connectives to
interpret more challenging types

higher-order concurrent separation logic

16

Towards “logical typing”

Recall the semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → Prop

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∧ JAK v1 ∧ JBK v2

JA → BK ≜ λv . ∀w . JAK w ⇒ wp (v w) {JBK}

Important observations:

▶ Each type is given a semantic interpretation following the Curry-Howard
correspondence

▶ Instead of Coq’s Prop we can use a logic with more fancy connectives to
interpret more challenging types

17

Separation logic [O’Hearn, Reynolds, Yang; CSL’01]

Propositions P,Q denote ownership of resources

Separating conjunction P ∗ Q:
The resources consists of separate parts satisfying P and Q

Basic example:

{ℓ1 7→ v1 ∗ ℓ2 7→ v2}swap ℓ1 ℓ2{ℓ1 7→ v2 ∗ ℓ2 7→ v1}

the ∗ ensures that ℓ1 and ℓ2 are different memory locations

18

Separation logic [O’Hearn, Reynolds, Yang; CSL’01]

Propositions P,Q denote ownership of resources

Separating conjunction P ∗ Q:
The resources consists of separate parts satisfying P and Q

Basic example:

{ℓ1 7→ v1 ∗ ℓ2 7→ v2}swap ℓ1 ℓ2{ℓ1 7→ v2 ∗ ℓ2 7→ v1}

the ∗ ensures that ℓ1 and ℓ2 are different memory locations

18

Separation logic [O’Hearn, Reynolds, Yang; CSL’01]

Propositions P,Q denote ownership of resources

Separating conjunction P ∗ Q:
The resources consists of separate parts satisfying P and Q

Slightly less basic example:

isList ℓ v⃗ ≜

{
ℓ 7→ nil if v⃗ = []

∃ℓ′. ℓ 7→ cons v1 ℓ
′ ∗ isList ℓ′ v⃗2 if v⃗ = v1 :: v⃗2

{isList ℓ1 v⃗1 ∗ isList ℓ2 v⃗2}append ℓ1 ℓ2{isList ℓ1 (v⃗1 ++ v⃗2)}

the ∗ ensures that all nodes of ℓ1 and ℓ2 are disjoint

18

Separation logic [O’Hearn, Reynolds, Yang; CSL’01]

Propositions P,Q denote ownership of resources

Separating conjunction P ∗ Q:
The resources consists of separate parts satisfying P and Q

Slightly less basic example:

isList ℓ v⃗ ≜

{
ℓ 7→ nil if v⃗ = []

∃ℓ′. ℓ 7→ cons v1 ℓ
′ ∗ isList ℓ′ v⃗2 if v⃗ = v1 :: v⃗2

{isList ℓ1 v⃗1 ∗ isList ℓ2 v⃗2}append ℓ1 ℓ2{isList ℓ1 (v⃗1 ++ v⃗2)}

the ∗ ensures that all nodes of ℓ1 and ℓ2 are disjoint

18

Separation logic [O’Hearn, Reynolds, Yang; CSL’01]

Propositions P,Q denote ownership of resources

Separating conjunction P ∗ Q:
The resources consists of separate parts satisfying P and Q

Slightly less basic example:

isList ℓ v⃗ ≜

{
ℓ 7→ nil if v⃗ = []

∃ℓ′. ℓ 7→ cons v1 ℓ
′ ∗ isList ℓ′ v⃗2 if v⃗ = v1 :: v⃗2

{isList ℓ1 v⃗1 ∗ isList ℓ2 v⃗2}append ℓ1 ℓ2{isList ℓ1 (v⃗1 ++ v⃗2)}

the ∗ ensures that all nodes of ℓ1 and ℓ2 are disjoint

19

The simple model of separation logic
The semantic domains:

ℓ ∈ Loc ≜ N
σ ∈ Heap ≜ Loc

fin−⇀ Val

P,Q ∈ heapProp ≜ Heap → Prop

Entailment:
P ⊢ Q ≜ ∀σ. Pσ → Qσ

The connectives of separation logic:

ℓ 7−→ v ≜ λσ. σ(ℓ) = v

P ∧ Q ≜ λσ. Pσ ∧ Qσ

P ∗ Q ≜ λσ. ∃σ1, σ2. σ = σ1 ⊎ σ2 ∧ Pσ1 ∧ Qσ2

(∃x : A. P) ≜ λσ. ∃x : A. Pσ
disjointness of heaps, hidden by ∗

19

The simple model of separation logic
The semantic domains:

ℓ ∈ Loc ≜ N
σ ∈ Heap ≜ Loc

fin−⇀ Val

P,Q ∈ heapProp ≜ Heap → Prop

Entailment:
P ⊢ Q ≜ ∀σ. Pσ → Qσ

The connectives of separation logic:

ℓ 7−→ v ≜ λσ. σ(ℓ) = v

P ∧ Q ≜ λσ. Pσ ∧ Qσ

P ∗ Q ≜ λσ. ∃σ1, σ2. σ = σ1 ⊎ σ2 ∧ Pσ1 ∧ Qσ2

(∃x : A. P) ≜ λσ. ∃x : A. Pσ
disjointness of heaps, hidden by ∗

19

The simple model of separation logic
The semantic domains:

ℓ ∈ Loc ≜ N
σ ∈ Heap ≜ Loc

fin−⇀ Val

P,Q ∈ heapProp ≜ Heap → Prop

Entailment:
P ⊢ Q ≜ ∀σ. Pσ → Qσ

The connectives of separation logic:

ℓ 7−→ v ≜ λσ. σ(ℓ) = v

P ∧ Q ≜ λσ. Pσ ∧ Qσ

P ∗ Q ≜ λσ. ∃σ1, σ2. σ = σ1 ⊎ σ2 ∧ Pσ1 ∧ Qσ2

(∃x : A. P) ≜ λσ. ∃x : A. Pσ

disjointness of heaps, hidden by ∗

19

The simple model of separation logic
The semantic domains:

ℓ ∈ Loc ≜ N
σ ∈ Heap ≜ Loc

fin−⇀ Val

P,Q ∈ heapProp ≜ Heap → Prop

Entailment:
P ⊢ Q ≜ ∀σ. Pσ → Qσ

The connectives of separation logic:

ℓ 7−→ v ≜ λσ. σ(ℓ) = v

P ∧ Q ≜ λσ. Pσ ∧ Qσ

P ∗ Q ≜ λσ. ∃σ1, σ2. σ = σ1 ⊎ σ2 ∧ Pσ1 ∧ Qσ2

(∃x : A. P) ≜ λσ. ∃x : A. Pσ
disjointness of heaps, hidden by ∗

20

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → heapProp

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∗ JAKv1 ∗ JBKv2

JA ⊸ BK ≜ λv . ∀w . JAKw −∗ wp (v w) {JBK}
Jrefuniq(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Jrefshr(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

This scales—pick the right Iris features to interpret your favorite types

20

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → heapProp

JZK ≜ λv . v ∈ Z

JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∗ JAKv1 ∗ JBKv2
JA ⊸ BK ≜ λv . ∀w . JAKw −∗ wp (v w) {JBK}

Jrefuniq(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Jrefshr(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

This scales—pick the right Iris features to interpret your favorite types

20

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → heapProp

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∗ JAKv1 ∗ JBKv2

JA ⊸ BK ≜ λv . ∀w . JAKw −∗ wp (v w) {JBK}
Jrefuniq(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Jrefshr(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

This scales—pick the right Iris features to interpret your favorite types

20

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → heapProp

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∗ JAKv1 ∗ JBKv2

JA ⊸ BK ≜ λv . ∀w . JAKw −∗ wp (v w) {JBK}

Jrefuniq(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Jrefshr(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

This scales—pick the right Iris features to interpret your favorite types

20

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → heapProp

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∗ JAKv1 ∗ JBKv2

JA ⊸ BK ≜ λv . ∀w . JAKw −∗ wp (v w) {JBK}

Jrefuniq(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Jrefshr(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Weakest precondition of separation logic:

wp { } : Expr → (Val → heapProp) → heapProp

wp e {Φ} ≈ λσ. safe(σ, e) ∧ (∀v , σ′. (σ, e) →∗ (v , σ′) ⇒ Φ v σ′)

(Modulo “frame baking”)

This scales—pick the right Iris features to interpret your favorite types

20

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → heapProp

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∗ JAKv1 ∗ JBKv2

JA ⊸ BK ≜ λv . ∀w . JAKw −∗ wp (v w) {JBK}
Jrefuniq(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Jrefshr(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

This scales—pick the right Iris features to interpret your favorite types

20

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → iProp

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∗ JAKv1 ∗ JBKv2

JA ⊸ BK ≜ λv . ∀w . JAKw −∗ wp (v w) {JBK}
Jrefuniq(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Jrefshr(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

This scales—pick the right Iris features to interpret your favorite types

20

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → iProp

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∗ JAKv1 ∗ JBKv2

JA ⊸ BK ≜ λv . ∀w . JAKw −∗ wp (v w) {JBK}
Jrefuniq(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Jrefshr(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

This scales—pick the right Iris features to interpret your favorite types

20

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → iProp

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∗ JAKv1 ∗ JBKv2

JA ⊸ BK ≜ λv . ∀w . JAKw −∗ wp (v w) {JBK}
Jrefuniq(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Jrefshr(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Iris invariant P ≈ knowledge that P holds at all times (invariantly)

This scales—pick the right Iris features to interpret your favorite types

20

Semantic typing for a substructural type system

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → iProp

JZK ≜ λv . v ∈ Z
JA× BK ≜ λv . ∃v1, v2. v = (v1, v2) ∗ JAKv1 ∗ JBKv2

JA ⊸ BK ≜ λv . ∀w . JAKw −∗ wp (v w) {JBK}
Jrefuniq(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

Jrefshr(A)K ≜ λv . v ∈ Loc ∗ ∃w . v 7→ w ∗ JAKw

This scales—pick the right Iris features to interpret your favorite types

21

Typing “unsafe” code: One-shot channels

We can implement one-shot channels instead of adding them as primitives to our
language (akin to using unsafe in Rust):

new () ≜ let c = ref(None) in (c , c)

send c v ≜ c := Some v

recv c ≜ match ! c with
None ⇒ recv c

| Some v ⇒ free(c); v
end

What would be good typed API for one-shot channels?

⊨ new : () ⊸ !A× ?A ⊨ send : !A ⊸ A ⊸ () ⊨ recv : ?A ⊸ A

21

Typing “unsafe” code: One-shot channels

We can implement one-shot channels instead of adding them as primitives to our
language (akin to using unsafe in Rust):

new () ≜ let c = ref(None) in (c , c)

send c v ≜ c := Some v

recv c ≜ match ! c with
None ⇒ recv c

| Some v ⇒ free(c); v
end

One-shot channels + recursive types allow one to embed the
whole of higher-order binary session types [Jacobs, ECOOP’22]

What would be good typed API for one-shot channels?

⊨ new : () ⊸ !A× ?A ⊨ send : !A ⊸ A ⊸ () ⊨ recv : ?A ⊸ A

21

Typing “unsafe” code: One-shot channels

We can implement one-shot channels instead of adding them as primitives to our
language (akin to using unsafe in Rust):

new () ≜ let c = ref(None) in (c , c)

send c v ≜ c := Some v

recv c ≜ match ! c with
None ⇒ recv c

| Some v ⇒ free(c); v
end

What would be good typed API for one-shot channels?

⊨ new : () ⊸ !A× ?A ⊨ send : !A ⊸ A ⊸ () ⊨ recv : ?A ⊸ A

21

Typing “unsafe” code: One-shot channels

We can implement one-shot channels instead of adding them as primitives to our
language (akin to using unsafe in Rust):

new () ≜ let c = ref(None) in (c , c)

send c v ≜ c := Some v

recv c ≜ match ! c with
None ⇒ recv c

| Some v ⇒ free(c); v
end

What would be good typed API for one-shot channels?

⊨ new : () ⊸ !A× ?A ⊨ send : !A ⊸ A ⊸ () ⊨ recv : ?A ⊸ A

22

Typing “unsafe” code: Recipe

1. Provide a separation logic API for the unsafe operations
Used to give a logical interpretation J K of the typed API

2. Prove Hoare style specifications for the unsafe operations
Used to prove the semantic typing rules

23

Separation logic API for one-shot channels

Recall the desired typing rules:

⊨ new : () ⊸ !A× ?A

⊨ send : !A ⊸ A ⊸ ()

⊨ recv : ?A ⊸ A

The separation logic API:

{True} new () {(c1, c2). IsChan(c1, Send, Φ) ∗ IsChan(c2,Recv, Φ)}
{IsChan(c ,Send, Φ) ∗ Φ v} send c v {True}

{IsChan(c ,Recv, Φ)} recv c {w . Φw}

23

Separation logic API for one-shot channels

Recall the desired typing rules:

⊨ new : () ⊸ !A× ?A

⊨ send : !A ⊸ A ⊸ ()

⊨ recv : ?A ⊸ A

The separation logic API:

{True} new () {(c1, c2). IsChan(c1, Send, Φ) ∗ IsChan(c2,Recv, Φ)}
{IsChan(c ,Send, Φ) ∗ Φ v} send c v {True}

{IsChan(c ,Recv, Φ)} recv c {w . Φw}

Φ : Val → iProp, so we can transfer resources

24

Logical typing for one-shot channels

Semantic interpretation of types (“logical relation”):

J K : Type → SemType where SemType ≜ Val → iProp

J!AK ≜ λc . IsChan(c, Send, JAK)

J?AK ≜ λc . IsChan(c,Recv, JAK)

The semantic typing rules for channels follow immediately from the Hoare rules

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology

:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv

γs γr c Φ

≜ (

c 7→ None

︸ ︷︷ ︸
(1) initial state

) ∨ (

∃v . c 7→ Some v ∗ Φ v ∗ tok γs

︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (

tok γs ∗ tok γr

︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv

γs γr c Φ

≜ (

c 7→ None

︸ ︷︷ ︸
(1) initial state

) ∨ (

∃v . c 7→ Some v ∗ Φ v ∗ tok γs

︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (

tok γs ∗ tok γr

︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv

γs γr c Φ

≜ (

c 7→ None

︸ ︷︷ ︸
(1) initial state

) ∨ (

∃v . c 7→ Some v ∗ Φ v ∗ tok γs

︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (

tok γs ∗ tok γr

︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv

γs γr c Φ

≜ (

c 7→ None

︸ ︷︷ ︸
(1) initial state

) ∨ (

∃v . c 7→ Some v ∗ Φ v ∗ tok γs

︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (

tok γs ∗ tok γr

︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv

γs γr c Φ

≜ (

c 7→ None

︸ ︷︷ ︸
(1) initial state

) ∨ (

∃v . c 7→ Some v ∗ Φ v ∗ tok γs

︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (

tok γs ∗ tok γr

︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv

γs γr c Φ

≜ (

c 7→ None

︸ ︷︷ ︸
(1) initial state

) ∨ (

∃v . c 7→ Some v ∗ Φ v ∗ tok γs

︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (

tok γs ∗ tok γr

︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv

γs γr

c

Φ

≜ (c 7→ None︸ ︷︷ ︸
(1) initial state

) ∨ (∃v . c 7→ Some v

∗ Φ v ∗ tok γs

︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (

tok γs ∗ tok γr

︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv

γs γr

c Φ ≜ (c 7→ None︸ ︷︷ ︸
(1) initial state

) ∨ (∃v . c 7→ Some v ∗ Φ v

∗ tok γs

︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (

tok γs ∗ tok γr

︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv

γs γr

c Φ ≜ (c 7→ None︸ ︷︷ ︸
(1) initial state

) ∨ (∃v . c 7→ Some v ∗ Φ v

∗ tok γs

︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (

tok γs ∗ tok γr

︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv γs

γr

c Φ ≜ (c 7→ None︸ ︷︷ ︸
(1) initial state

) ∨ (∃v . c 7→ Some v ∗ Φ v ∗ tok γs︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (

tok γs ∗ tok γr

︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv γs γr c Φ ≜ (c 7→ None︸ ︷︷ ︸
(1) initial state

) ∨ (∃v . c 7→ Some v ∗ Φ v ∗ tok γs︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (tok γs ∗ tok γr︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv γs γr c Φ ≜ (c 7→ None︸ ︷︷ ︸
(1) initial state

) ∨ (∃v . c 7→ Some v ∗ Φ v ∗ tok γs︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (tok γs ∗ tok γr︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv γs γr c Φ ≜ (c 7→ None︸ ︷︷ ︸
(1) initial state

) ∨ (∃v . c 7→ Some v ∗ Φ v ∗ tok γs︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (tok γs ∗ tok γr︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ ∃γs , γr . chan inv γs γr c Φ . . .

25

Verification of one-shot channel separation logic API

One-shot channel ownership defined using standard Iris methodology:

1. Model behavior as a state transition system (STS)

2. Define an invariant as a disjunction of the states

3. Determine resource ownership of each state

4. Encode STS transition permissions with ghost state

5. Give concurrent actors access to the invariant and their respective ghost state

Initial Sent Recv’d

Send Recv

chan inv γs γr c Φ ≜ (c 7→ None︸ ︷︷ ︸
(1) initial state

) ∨ (∃v . c 7→ Some v ∗ Φ v ∗ tok γs︸ ︷︷ ︸
(2) message sent, but not yet received

) ∨ (tok γs ∗ tok γr︸ ︷︷ ︸
(3) final state

)

IsChan(c , tag , Φ) ≜ ∃γs , γr . chan inv γs γr c Φ ∗

{
tok γs if tag = Send

tok γr if tag = Recv

26

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language

Decide what operations should be primitives or implemented as “unsafe”

2. Build a program logic using Iris, i.e., define WP, 7→, etc.

Iris provides reusable building blocks for defining and verifying program logics

3. Verify separation logic APIs for your “unsafe” libraries

Make use of invariants and ghost state provided by Iris

4. Define a logical relation and semantic typing judgment

Interpret type formers using suitable logical connectives through Curry-Howard

5. Prove semantic typing rules/fundamental theorem

Most of the heavy lifting is done by the Hoare/WP rules in Iris

6. Profit

26

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language
Decide what operations should be primitives or implemented as “unsafe”

2. Build a program logic using Iris, i.e., define WP, 7→, etc.

Iris provides reusable building blocks for defining and verifying program logics

3. Verify separation logic APIs for your “unsafe” libraries

Make use of invariants and ghost state provided by Iris

4. Define a logical relation and semantic typing judgment

Interpret type formers using suitable logical connectives through Curry-Howard

5. Prove semantic typing rules/fundamental theorem

Most of the heavy lifting is done by the Hoare/WP rules in Iris

6. Profit

26

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language
Decide what operations should be primitives or implemented as “unsafe”

2. Build a program logic using Iris, i.e., define WP, 7→, etc.
Iris provides reusable building blocks for defining and verifying program logics

3. Verify separation logic APIs for your “unsafe” libraries

Make use of invariants and ghost state provided by Iris

4. Define a logical relation and semantic typing judgment

Interpret type formers using suitable logical connectives through Curry-Howard

5. Prove semantic typing rules/fundamental theorem

Most of the heavy lifting is done by the Hoare/WP rules in Iris

6. Profit

26

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language
Decide what operations should be primitives or implemented as “unsafe”

2. Build a program logic using Iris, i.e., define WP, 7→, etc.
Iris provides reusable building blocks for defining and verifying program logics

3. Verify separation logic APIs for your “unsafe” libraries
Make use of invariants and ghost state provided by Iris

4. Define a logical relation and semantic typing judgment

Interpret type formers using suitable logical connectives through Curry-Howard

5. Prove semantic typing rules/fundamental theorem

Most of the heavy lifting is done by the Hoare/WP rules in Iris

6. Profit

26

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language
Decide what operations should be primitives or implemented as “unsafe”

2. Build a program logic using Iris, i.e., define WP, 7→, etc.
Iris provides reusable building blocks for defining and verifying program logics

3. Verify separation logic APIs for your “unsafe” libraries
Make use of invariants and ghost state provided by Iris

4. Define a logical relation and semantic typing judgment
Interpret type formers using suitable logical connectives through Curry-Howard

5. Prove semantic typing rules/fundamental theorem

Most of the heavy lifting is done by the Hoare/WP rules in Iris

6. Profit

26

Summary: Recipe for verifying a type system in Iris

1. Define the syntax and operational semantics for your language
Decide what operations should be primitives or implemented as “unsafe”

2. Build a program logic using Iris, i.e., define WP, 7→, etc.
Iris provides reusable building blocks for defining and verifying program logics

3. Verify separation logic APIs for your “unsafe” libraries
Make use of invariants and ghost state provided by Iris

4. Define a logical relation and semantic typing judgment
Interpret type formers using suitable logical connectives through Curry-Howard

5. Prove semantic typing rules/fundamental theorem
Most of the heavy lifting is done by the Hoare/WP rules in Iris

6. Profit

27

The logical approach in Iris scales

Cerise RustBelt ReLoCDimSumPerennial

RefinedC AnerisVMSLMelocoton

Iris-WasmDiaframe

CompassSimuliris

RustHornBeltIris-Tini

CQS SeLoCCosmo

Hazel gDOT GoJournaliGPS

Actris Iron iRC11IslarisOCPL

A verification framework, implemented in the Coq proof

assistant, for developing and deploying

advanced forms of separation logic, especially for

higher-order and concurrent programs

28

The logical approach in Iris crucially depends on using

separation logic as a meta theory: both to prove the

fundamental theorem and to verify “unsafe” code

How to do mechanized proofs in separation logic?

28

The logical approach in Iris crucially depends on using

separation logic as a meta theory: both to prove the

fundamental theorem and to verify “unsafe” code

How to do mechanized proofs in separation logic?

29

How to do mechanized proofs in separation logic

Suppose we want to prove P ∗ (∃a. Φa) ∗ Q ⊢ Q ∗ (∃a. P ∗ Φa)

1. Unfold definitions of the model: ∀σ. (∃σ1 σ2. σ = σ1 ⊎ σ2 ∧ Pσ1 ∧ . . .) → . . .
▶ Defeats the purpose of separation logic to hide reasoning about disjointness
▶ Does not scale to larger goals or step-indexing

2. Use the laws of separation logic: associativity/commutativity of ∗,
distributivity of ∃ over ∗, . . .
▶ Too low-level, already small proofs require many steps
▶ Also rather slow in a proof assistant

3. Use Iris Proof Mode
▶ Topic of today’s talk

29

How to do mechanized proofs in separation logic

Suppose we want to prove P ∗ (∃a. Φa) ∗ Q ⊢ Q ∗ (∃a. P ∗ Φa)

1. Unfold definitions of the model: ∀σ. (∃σ1 σ2. σ = σ1 ⊎ σ2 ∧ Pσ1 ∧ . . .) → . . .
▶ Defeats the purpose of separation logic to hide reasoning about disjointness
▶ Does not scale to larger goals or step-indexing

2. Use the laws of separation logic: associativity/commutativity of ∗,
distributivity of ∃ over ∗, . . .
▶ Too low-level, already small proofs require many steps
▶ Also rather slow in a proof assistant

3. Use Iris Proof Mode
▶ Topic of today’s talk

29

How to do mechanized proofs in separation logic

Suppose we want to prove P ∗ (∃a. Φa) ∗ Q ⊢ Q ∗ (∃a. P ∗ Φa)

1. Unfold definitions of the model: ∀σ. (∃σ1 σ2. σ = σ1 ⊎ σ2 ∧ Pσ1 ∧ . . .) → . . .
▶ Defeats the purpose of separation logic to hide reasoning about disjointness
▶ Does not scale to larger goals or step-indexing

2. Use the laws of separation logic: associativity/commutativity of ∗,
distributivity of ∃ over ∗, . . .
▶ Too low-level, already small proofs require many steps
▶ Also rather slow in a proof assistant

3. Use Iris Proof Mode
▶ Topic of today’s talk

29

How to do mechanized proofs in separation logic

Suppose we want to prove P ∗ (∃a. Φa) ∗ Q ⊢ Q ∗ (∃a. P ∗ Φa)

1. Unfold definitions of the model: ∀σ. (∃σ1 σ2. σ = σ1 ⊎ σ2 ∧ Pσ1 ∧ . . .) → . . .
▶ Defeats the purpose of separation logic to hide reasoning about disjointness
▶ Does not scale to larger goals or step-indexing

2. Use the laws of separation logic: associativity/commutativity of ∗,
distributivity of ∃ over ∗, . . .
▶ Too low-level, already small proofs require many steps
▶ Also rather slow in a proof assistant

3. Use Iris Proof Mode
▶ Topic of today’s talk

30

Iris Proof Mode (IPM) [Krebbers et al.; POPL’17, ICFP’18]

Embedding of a proof assistant for separation logic in Coq

▶ Extend Coq with named proof contexts for separation logic

▶ Tactics for introduction and elimination of all connectives of separation logic . . .

▶ . . . that can be used in Coq’s mechanisms for automation/tactic programming

▶ Implemented without modifying Coq (using reflection, type classes and Ltac)

* ⊣⊢

31

Why use Coq and not build a standalone proof
assistant for separation logic?

Prove soundness of embedded proof assistant

Reuse infrastructure of host proof assistant

Users do not need to learn new tool

32

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct

32

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct

32

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

1 subgoal

A : Type

P , Q : iProp

Φ : A → iProp

(1/1)
P ∗ (∃ a : A , Φ a) ∗ Q

⊢ Q ∗ (∃ a : A , P ∗ Φ a)

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct

32

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

1 subgoal

A : Type

P , Q : iProp

Φ : A → iProp

(1/1)
"H1" : P

"H2" : ∃ a : A , Φ a

"H3" : Q

−−−−−−−−−−−−−−−−−−−−−−∗
Q ∗ (∃ a : A , P ∗ Φ a)

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct

32

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

1 subgoal

A : Type

P , Q : iProp

Φ : A → iProp

x : A

(1/1)
"H1" : P

"H2" : Φ x

"H3" : Q

−−−−−−−−−−−−−−−−−−−−−−∗
Q ∗ (∃ a : A , P ∗ Φ a)

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct

32

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

1 subgoal

A : Type

P , Q : iProp

Φ : A → iProp

x : A

(1/1)
"H1" : P

"H2" : Φ x

"H3" : Q

−−−−−−−−−−−−−−−−−−−−−−∗
Q ∗ (∃ a : A , P ∗ Φ a)

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct

32

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

1 subgoal

A : Type

P , Q : iProp

Φ : A → iProp

x : A

(1/1)
"H1" : P

"H2" : Φ x

"H3" : Q

−−−−−−−−−−−−−−−−−−−−−−∗
Q ∗ (∃ a : A , P ∗ Φ a)

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct

32

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

2 subgoals

A : Type

P , Q : iProp

Φ : A → iProp

x : A

(1/2)
"H3" : Q

−−−−−−−−−−−−−−−−−−−−−−∗
Q

(2/2)
"H1" : P

"H2" : Φ x

−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Φ a

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct

32

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".

by iFrame.

Qed.

1 subgoal

A : Type

P , Q : iProp

Φ : A → iProp

x : A

(1/1)
"H1" : P

"H2" : ∃ a , Φ a

"H3" : Q

−−−−−−−−−−−−−−−−−−−−−−∗
Q ∗ (∃ a : A , P ∗ Φ a)

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct

We can also solve this
goal automatically

32

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".

by iFrame.

Qed.

No more subgoals .

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct

We can also solve this
goal automatically

32

Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[$ [? $]] //".

Qed.

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct

Or use intro patterns

33

Features of the Iris Proof Mode

▶ Proofs have the look and feel of ordinary Coq proofs
For many Coq tactics tac, we have a variant iTac

▶ Support for advanced features of separation logic
Higher-order quantification, modalities, invariants, ghost
state, . . .

▶ Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions

▶ Tactic programming
One can combine/program with IPM tactics using Coq’s
Ltac like ordinary Coq tactics

33

Features of the Iris Proof Mode

▶ Proofs have the look and feel of ordinary Coq proofs
For many Coq tactics tac, we have a variant iTac

▶ Support for advanced features of separation logic
Higher-order quantification, modalities, invariants, ghost
state, . . .

▶ Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions

▶ Tactic programming
One can combine/program with IPM tactics using Coq’s
Ltac like ordinary Coq tactics

33

Features of the Iris Proof Mode

▶ Proofs have the look and feel of ordinary Coq proofs
For many Coq tactics tac, we have a variant iTac

▶ Support for advanced features of separation logic
Higher-order quantification, modalities, invariants, ghost
state, . . .

▶ Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions

▶ Tactic programming
One can combine/program with IPM tactics using Coq’s
Ltac like ordinary Coq tactics

33

Features of the Iris Proof Mode

▶ Proofs have the look and feel of ordinary Coq proofs
For many Coq tactics tac, we have a variant iTac

▶ Support for advanced features of separation logic
Higher-order quantification, modalities, invariants, ghost
state, . . .

▶ Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions

▶ Tactic programming
One can combine/program with IPM tactics using Coq’s
Ltac like ordinary Coq tactics

34

Changes since the POPL’17 paper on Iris Proof Mode

▶ Generalized to any Bunched Implications (BI) logic (Krebbers et al., ICFP’18)

▶ Many usability improvements:
Smarter tactics, better error messages, improved robustness and performance

▶ Proof automation: RefinedC (Sammler et al. PLDI’21), Diaframe (Mulder et al.
PLDI’22, PLDI’23, OOPSLA’23), BedRock Systems (proprietary)

Most importantly: Iris (Proof Mode) got users:

▶ Coq became essential to teach Iris / concurrent separation logic

▶ 13 PhD theses

▶ 98 publications

▶ 3 editions of the Iris workshop

▶ Used by researchers at companies: BedRock Systems, Meta, Jetbrains

34

Changes since the POPL’17 paper on Iris Proof Mode

▶ Generalized to any Bunched Implications (BI) logic (Krebbers et al., ICFP’18)

▶ Many usability improvements:
Smarter tactics, better error messages, improved robustness and performance

▶ Proof automation: RefinedC (Sammler et al. PLDI’21), Diaframe (Mulder et al.
PLDI’22, PLDI’23, OOPSLA’23), BedRock Systems (proprietary)

Most importantly: Iris (Proof Mode) got users:

▶ Coq became essential to teach Iris / concurrent separation logic

▶ 13 PhD theses

▶ 98 publications

▶ 3 editions of the Iris workshop

▶ Used by researchers at companies: BedRock Systems, Meta, Jetbrains

35

Future work: Going beyond safety

▶ Applying the logical approach to deadlock freedom, resource leak freedom,
liveness, non-interference remains challenging

▶ Different models of concurrent separation logic/Iris need to be explored: linear
(instead of affine), transfinite, etc.

▶ We have initial versions for specific languages

▶ But we do not have the right Iris-style abstractions to build these logics modularly

▶ Nor to easily combine different PL features in one type safety proof

36

Read more?

Our overview:

A Logical Approach to Type Soundness

AMIN TIMANY, Aarhus University, Denmark
ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands
DEREK DREYER,MPI-SWS, Germany
LARS BIRKEDAL, Aarhus University, Denmark

Type soundness, which asserts that “well-typed programs cannot go wrong”, is widely viewed as the canonical
theorem one must prove to establish that a type system is doing its job. It is commonly proved using the
so-called syntactic approach (aka progress and preservation), which has had a huge impact on the study and
teaching of programming language foundations. Unfortunately, syntactic type soundness is a rather weak
theorem. It only applies to programs that are completely well-typed, and thus tells us nothing about the many
programs written in “safe” languages that make use of “unsafe” language features. Even worse, it tells us
nothing about whether type systems achieve one of their main goals: enforcement of data abstraction. One
can easily define a language that enjoys syntactic type soundness and yet fails to support even the most basic
modular reasoning principles for abstraction mechanisms like closures, objects, and abstract data types.

In this paper, we argue that we should no longer be satisfied with just proving syntactic type soundness, and
should instead start proving a stronger theorem—semantic type soundness—which captures more accurately
what type systems are actually good for. Semantic type soundness is an old idea—Milner’s original formulation
of type soundness was a semantic one—but it fell out of favor in the 1990s due to limitations and complexities
of denotational models. In the succeeding decades, thanks to a series of technical advances—notably, (1)
step-indexed Kripke logical relations constructed over operational semantics and (2) higher-order concurrent
separation logic as consolidated in the Iris framework in Coq—we can now build (machine-checked) semantic
soundness proofs at a much higher level of abstraction than was previously possible.

The resulting “logical” approach to semantic type soundness has already been employed to great effect in a
number of recent papers (by us and others), but those papers typically concern advanced problem scenarios
that complicate the presentation, they assume significant prior knowledge of the reader, and they refrain
from giving many details of the proofs. Here, we hope to provide a gentler, more pedagogically motivated
introduction to logical type soundness, aimed at a broader audience that may or may not be familiar with
logical relations and Iris. As a bonus, we also show how logical type soundness proofs can be easily generalized
to establish an even stronger relational property—representation independence—for realistic type systems.

Type structure is a syntactic discipline for enforcing levels of abstraction.
– Reynolds [1983]

Although types and assertions may be semantically similar, the actual development of
type systems for programming languages has been quite separate from the development
of approaches to specification such as Hoare logic. . . the real question is whether the
dividing line between types and assertions can be erased. – Reynolds [2002]

This paper is dedicated to the memory of John C. Reynolds.

1 INTRODUCTION
The type soundness (or type safety) theorem for a programming language states that if a program in
that language passes the type checker, it should be guaranteed to have well-defined behavior when
executed. Introduced over 40 years ago by Milner [1978], type soundness has become the canonical
property that type systems for “safe” programming languages are expected to satisfy.

Authors’ addresses: Amin Timany, Aarhus University, Denmark, timany@cs.au.dk; Robbert Krebbers, Radboud University
Nijmegen, The Netherlands, mail@robbertkrebbers.nl; Derek Dreyer, MPI-SWS, Saarland Informatics Campus, Germany,
dreyer@mpi-sws.org; Lars Birkedal, Aarhus University, Denmark, birkedal@cs.au.dk.

Session types:

Sessions and Separation

Jonas Kastberg Hinrichsen
PhD Dissertation

IT University of Copenhagen

March 2021

Deadlock freedom:

guarantees by construction
Types for deadlock and leak free concurrency • separation logics
for verified message passing • general and efficient coalgebraic
automata minimization • paradox-free probabilistic programming.

jules jacobs

Rust:

Understanding and Evolving
the Rust Programming Language

Dissertation zur Erlangung des Grades des
Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

vorgelegt von
Ralf Jung

Saarbrücken, August 2020

https://iris-project.org/

https://iris-project.org/

