Separation algebras for C verification in Coq

Robbert Krebbers

ICIS, Radboud University Nijmegen, The Netherlands

July 18, 2014 @ VSTTE, Vienna, Austria

Context of this talk

Formalin (Krebbers & Wiedijk)

- Compiler independent C semantics in Coq
- ► Take underspecification by C11 seriously
- Operational semantics
- Executable semantics
- Typing and type checker
- Separation logic

Context of this talk

Formalin (Krebbers & Wiedijk)

- Compiler independent C semantics in Coq
- Take underspecification by C11 seriously
- Operational semantics
- Executable semantics
- Typing and type checker
- ► Separation logic ⇒ topic of this talk


```
int main() {
    int x;
    int y = (x = 3) + (x = 4);
    printf("%d %d\n", x, y);
}
```

```
int main() {
    int x;
    int y = (x = 3) + (x = 4);
    printf("%d %d\n", x, y);
}
```

Let us try some compilers

Clang prints 4 7, seems just left-right

```
int main() {
    int x;
    int y = (x = 3) + (x = 4);
    printf("%d %d\n", x, y);
}
```

Let us try some compilers

- Clang prints 4 7, seems just left-right
- ▶ GCC prints 4 8, does not correspond to any evaluation order

```
int main() {
    int x;
    int y = (x = 3) + (x = 4);
    printf("%d %d\n", x, y);
}
```

Let us try some compilers

- Clang prints 4 7, seems just left-right
- ▶ GCC prints 4 8, does not correspond to any evaluation order

This program violates the sequence point restriction

- due to two unsequenced writes to x
- undefined behavior: garbage in, garbage out \Rightarrow all bets are off
- thus both compilers are right

```
int main() {
    int x;
    int y = (x = 3) + (x = 4);
    printf("%d %d\n", x, y);
}
```

Let us try some compilers

- Clang prints 4 7, seems just left-right
- GCC prints 4 8, does not correspond to any evaluation order

This program violates the sequence point restriction

- due to two unsequenced writes to x
- undefined behavior: garbage in, garbage out \Rightarrow all bets are off
- thus both compilers are right

Formalin should account for all undefined behavior

Separation logic for C [Krebbers, POPL'14]

Observation: non-determinism corresponds to concurrency **Idea**: use the separation logic rule for parallel composition

$${P_1} e_1 {Q_1} {P_2} e_2 {Q_2} {P_1 * P_2} e_1 \odot e_2 {Q_1 * Q_2}$$

Separation logic for C [Krebbers, POPL'14]

Observation: non-determinism corresponds to concurrency **Idea**: use the separation logic rule for parallel composition

$$\begin{array}{c} \{P_1\} \ e_1 \ \{Q_1\} & \{P_2\} \ e_2 \ \{Q_2\} \\ \\ \{P_1 \ast P_2\} \ e_1 \ \odot \ e_2 \ \{Q_1 \ast \ Q_2\} \end{array}$$

What does this mean:

- Split the memory into two disjoint parts
- ▶ Prove that e₁ and e₂ can be executed safely in their part
- ▶ Now $e_1 \odot e_2$ can be executed safely in the whole memory

Separation logic for C [Krebbers, POPL'14]

Observation: non-determinism corresponds to concurrency **Idea**: use the separation logic rule for parallel composition

$$\begin{array}{c} \{P_1\} \ e_1 \ \{Q_1\} & \{P_2\} \ e_2 \ \{Q_2\} \\ \\ \{P_1 \ast P_2\} \ e_1 \ \odot \ e_2 \ \{Q_1 \ast \ Q_2\} \end{array}$$

What does this mean:

- Split the memory into two disjoint parts
- ▶ Prove that e₁ and e₂ can be executed safely in their part
- ▶ Now $e_1 \odot e_2$ can be executed safely in the whole memory

 $\mathsf{Disjointness} \Rightarrow \mathsf{no} \ \mathsf{sequence} \ \mathsf{point} \ \mathsf{violation}$

Connectives of separation logic

The connectives of separation logic are defined as:

 $emp := \lambda m . m = \emptyset$ $P * Q := \lambda m . \exists m_1 m_2 . m = m_1 \cup m_2 \land P m_1 \land Q m_2$

Connectives of separation logic

The connectives of separation logic are defined as:

$$emp := \lambda m \cdot m = \emptyset$$

$$P * Q := \lambda m \cdot \exists m_1 m_2 \cdot m = m_1 \cup m_2 \wedge P m_1 \wedge Q m_2$$

Definition of \bullet is non-trivial:

- Complex memory based on structured trees
- Fractional permissions for share-accounting For example needed in x + x
- Existence permissions for pointer arithmetic For example needed in *(p + 1) = (*p = 1)
- Locked permissions for sequence point restriction

Connectives of separation logic

The connectives of separation logic are defined as:

 $emp := \lambda m \cdot m = \emptyset$ $P * Q := \lambda m \cdot \exists m_1 m_2 \cdot m = m_1 \cup m_2 \wedge P m_1 \wedge Q m_2$

Definition of igodot is non-trivial:

- Complex memory based on structured trees
- Fractional permissions for share-accounting For example needed in x + x
- Existence permissions for pointer arithmetic For example needed in *(p + 1) = (*p = 1)
- Locked permissions for sequence point restriction

Use separation algebras [Calcagno *et al.*, LICS'07] to abstractly describe the permissions and memory

Def: A simple separation algebra consists of a set A, with:

- An element $\emptyset : A$
- A predicate valid : $A \rightarrow \mathsf{Prop}$
- Binary relations \perp , \subseteq : $A \rightarrow A \rightarrow$ Prop
- Binary operations \cup , $\setminus : A \rightarrow A \rightarrow A$

Def: A simple separation algebra consists of a set A, with:

- An element $\emptyset : A$
- A predicate valid : $A \rightarrow \mathsf{Prop}$
- Binary relations \perp , \subseteq : $A \rightarrow A \rightarrow$ Prop
- Binary operations \bigcup , $\setminus : A \to A \to A$

Total instead of partial

Def: A simple separation algebra consists of a set A, with:

Total instead of partial

- An element $\emptyset : A$
- A predicate valid : $A \rightarrow \mathsf{Prop}$
- Binary relations \bot , \subseteq : $A \rightarrow A \rightarrow$ Prop
- Binary operations \cup , $\overline{\langle : A \rightarrow A \rightarrow A \rangle}$

Disjointness

Def: A simple separation algebra consists of a set A, with:

- An element $\emptyset : A$
- A predicate valid : $A \rightarrow Prop$
- Binary relations \bot , $\subseteq : A \rightarrow A \rightarrow \mathsf{Prop}$
- Binary operations \bigcup , $\setminus : A \to A \to A$

To avoid subset types

Total instead of partial

Disjointness

Def: A simple separation algebra consists of a set A, with:

- An element $\emptyset : A$
- A predicate valid : $A \rightarrow Prop$
- Binary relations \bot , \subseteq : $A \rightarrow A \rightarrow$ Prop
- Binary operations \bigcup , $\setminus : A \to A \to A$

To avoid subset types

Total instead of partial

Satisfying the following laws:

- 1. If $x \perp y$, then $y \perp x$ and $x \cup y = y \cup x$
- 2. If valid x, then $\emptyset \perp x$ and $\emptyset \cup x = x$
- 3. Associative, non-empty, cancellative, positive, ...

Disjointness

Example: fractional separation algebra

Fractional permissions $[0,1]_{\mathbb{Q}}$ [Boyland, SAS'09]

Rational numbers make it possible to split Read-only permissions

Example: fractional separation algebra

Fractional permissions $[0,1]_{\mathbb{Q}}$ [Boyland, SAS'09]

Rational numbers make it possible to split Read-only permissions

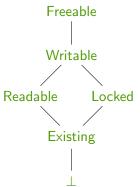
Def: The simple fractional separation algebra \mathbb{Q} is defined as:

valid
$$x := 0 \le x \le 1$$
 $\emptyset := 0$ $x \perp y := 0 \le x, y \land x + y \le 1$ $x \cup y := x + y$ $x \subseteq y := 0 \le x \le y \le 1$ $x \setminus y := x - y$

Separation logic: \cup main connective (from separation algebra) Operational semantics: need to know what is allowed

Separation logic: \cup main connective (from separation algebra) Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind, \subseteq_k)

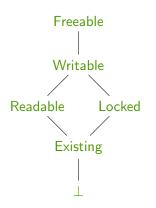


Freeable: reading, writing, deallocation

 le

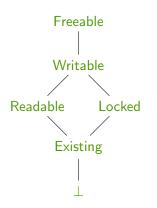
 Locked
 g

Separation logic: \cup main connective (from separation algebra) Operational semantics: need to know what is allowed



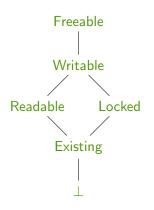
- ► Freeable: reading, writing, deallocation
- Writable: reading, writing

Separation logic: \cup main connective (from separation algebra) Operational semantics: need to know what is allowed



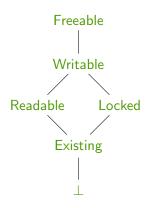
- Freeable: reading, writing, deallocation
- Writable: reading, writing
- Readable: reading

Separation logic: \cup main connective (from separation algebra) Operational semantics: need to know what is allowed



- ► Freeable: reading, writing, deallocation
- Writable: reading, writing
- Readable: reading
- Existing: existence permissions, only pointer arithmetic

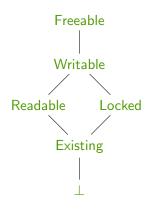
Separation logic: \cup main connective (from separation algebra) Operational semantics: need to know what is allowed



- Freeable: reading, writing, deallocation
- Writable: reading, writing
- Readable: reading
- Existing: existence permissions, only pointer arithmetic
- Locked: temporarily locked until next sequence point Example: (x = 3) + (*p = 4); Undefined behavior if &x == p

Separation logic: \cup main connective (from separation algebra) Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind, \subseteq_k)



- ► Freeable: reading, writing, deallocation
- Writable: reading, writing
- Readable: reading
- Existing: existence permissions, only pointer arithmetic
- Locked: temporarily locked until next sequence point Example: (x = 3) + (*p = 4);

Undefined behavior if &x == p

L: no operations allowed Example: free(p); return (p-p);

Interaction with permission kinds

Def: A C permissions system is a separation algebra A with functions kind : $A \rightarrow pkind$, lock, unlock : $A \rightarrow A$ satisfying:

unlock (lock x) = xkind (lock x) = Locked provided that Writable \subseteq_k kind x provided that Writable \subseteq_k kind x

Interaction with permission kinds

Def: A C permissions system is a separation algebra A with functions kind : $A \rightarrow$ pkind, lock, unlock, $\frac{1}{2} : A \rightarrow A$ satisfying:

unlock (lock x) = x
kind (lock x) = Locked
kind
$$\left(\frac{1}{2}x\right) = \begin{cases} \text{Readable}\\ \text{kind } x \end{cases}$$

provided that Writable \subseteq_k kind x provided that Writable \subseteq_k kind x if Writable \subseteq_k kind x otherwise

Example: use $\frac{1}{2}$ in x + x

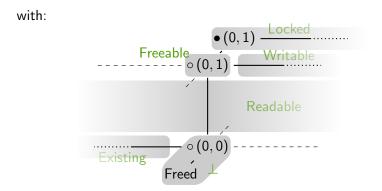
Interaction with permission kinds

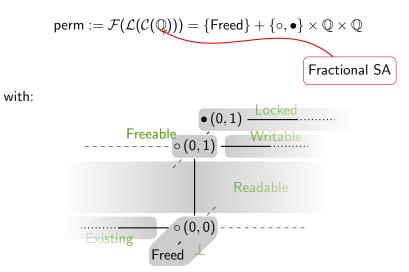
Def: A C permissions system is a separation algebra A with functions kind : $A \rightarrow pkind$, lock, unlock, $\frac{1}{2} : A \rightarrow A$ and token : A satisfying:

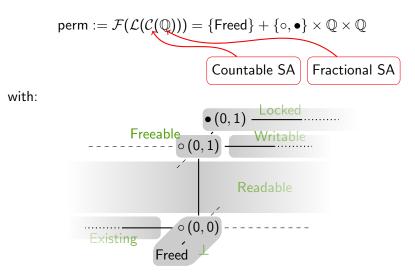
unlock (lock x) = xprovided that Writable $\subseteq_k kind x$ kind (lock x) = Lockedprovided that Writable $\subseteq_k kind x$ kind $(\frac{1}{2}x) = \begin{cases} Readable \\ kind x & otherwise \end{cases}$ if Writable $\subseteq_k kind x$ kind token = Existingotherwisekind (x \ token) = \begin{cases} Writable \\ kind x & if Existing $\subseteq_k kind x$

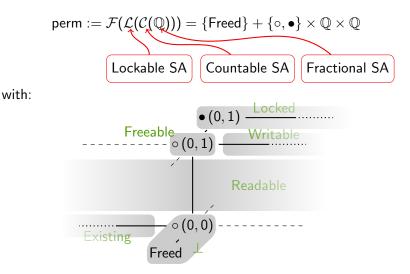
Example: use $\frac{1}{2}$ in x + x Example: use _ \ token in *(p + 1) = (*p = 1)

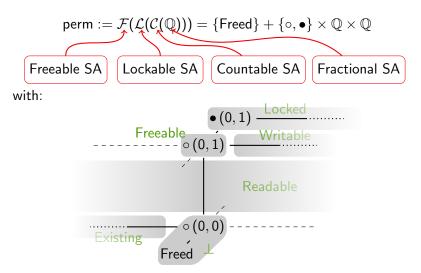
$$\mathsf{perm} := \mathcal{F}(\mathcal{L}(\mathcal{C}(\mathbb{Q}))) = \{\mathsf{Freed}\} + \{\circ, \bullet\} \times \mathbb{Q} \times \mathbb{Q}$$











The C memory

Extremely complex:

- Pointer arithmetic
- Difficult interaction between low and high level
 - Types
 - Object representations
- Byte-wise operations on all objects
- Non-aliasing restrictions
- Permissions

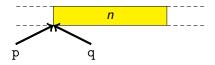
Aliasing: multiple pointers referring to the same object

Aliasing

Aliasing: multiple pointers referring to the same object

```
int f(int *p, int *q) {
    int x = *p; *q = 314; return x;
}
```

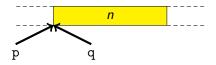
If p and q alias, the original value n of *p is returned



Aliasing

Aliasing: multiple pointers referring to the same object

If p and q alias, the original value n of *p is returned

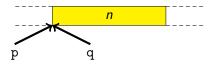


Optimizing x away is unsound: 314 would be returned

Aliasing

Aliasing: multiple pointers referring to the same object

If p and q alias, the original value n of *p is returned



Optimizing x away is unsound: 314 would be returned

Alias analysis: to determine whether pointers can alias

Aliasing with different types

Consider a similar function:

```
int h(int *p, float *q) {
    int x = *p; *q = 3.14; return x;
}
```

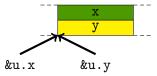
Aliasing with different types

Consider a similar function:

```
int h(int *p, float *q) {
    int x = *p; *q = 3.14; return x;
}
```

It can still be called with aliased pointers:

```
union { int x; float y; } u;
u.x = 271;
return h(&u.x, &u.y);
```



C89 allows p and q to be aliased, and thus requires it to return 271

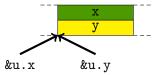
Aliasing with different types

Consider a similar function:

```
int h(int *p, float *q) {
    int x = *p; *q = 3.14; return x;
}
```

It can still be called with aliased pointers:

```
union { int x; float y; } u;
u.x = 271;
return h(&u.x, &u.y);
```



C89 allows p and q to be aliased, and thus requires it to return 271 C99/C11 allows type-based alias analysis:

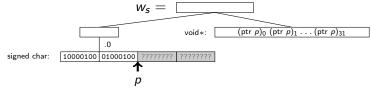
- A compiler can assume that p and q do not alias
- Reads/writes with "the wrong type" yield undefined behavior

The C memory as structured forest [Krebbers, CPP'13]

Consider:

```
struct T {
    union U {
        signed char x[2]; int y;
    } u;
    void *p;
} s = { { .x = {33,34} }, s.u.x + 2 }
```

As a picture:

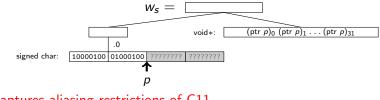


The C memory as structured forest [Krebbers, CPP'13]

Consider:

```
struct T {
    union U {
        signed char x[2]; int y;
    } u;
    void *p;
} s = { { .x = {33,34} }, s.u.x + 2 }
```

As a picture:



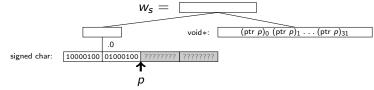
Captures aliasing restrictions of C11

The C memory as structured forest [Krebbers, CPP'13]

Consider:

```
struct T {
    union U {
        signed char x[2]; int y;
    } u;
    void *p;
} s = { { .x = {33,34} }, s.u.x + 2 }
```

As a picture:

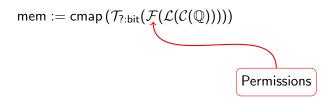


Captures aliasing restrictions of C11 Generalization of [Krebbers, CPP'13] is a separation algebra

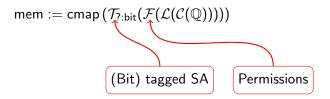
Def: The C memory is defined as:

 $\mathsf{mem} := \mathsf{cmap}\left(\mathcal{T}_{?:\mathsf{bit}}(\mathcal{F}(\mathcal{L}(\mathcal{C}(\mathbb{Q}))))\right)$

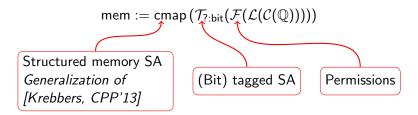
Def: The C memory is defined as:



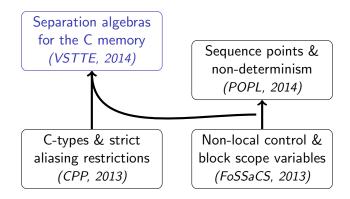
Def: The C memory is defined as:



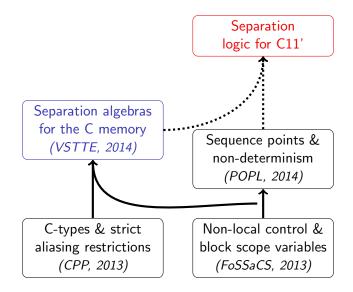
Def: The C memory is defined as:



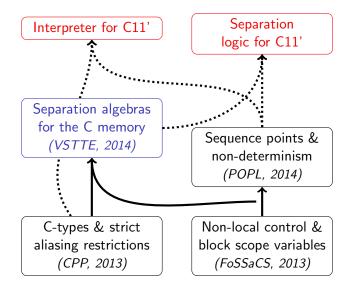
The bigger picture / Future work



The bigger picture / Future work



The bigger picture / Future work



Questions

Sources: http://robbertkrebbers.nl/research/ch2o/

(http://xkcd.com/371/)