
1

Separation algebras for C verification in Coq

Robbert Krebbers

ICIS, Radboud University Nijmegen, The Netherlands

July 18, 2014 @ VSTTE, Vienna, Austria



2

Context of this talk

Formalin (Krebbers & Wiedijk)

I Compiler independent C semantics in Coq

I Take underspecification by C11 seriously

I Operational semantics

I Executable semantics

I Typing and type checker

I Separation logic

H H

C11

O



2

Context of this talk

Formalin (Krebbers & Wiedijk)

I Compiler independent C semantics in Coq

I Take underspecification by C11 seriously

I Operational semantics

I Executable semantics

I Typing and type checker

I Separation logic ⇒ topic of this talk

H H

C11

O



3

Why compiler (in)dependence matters

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d %d\n", x, y);

}

Let us try some compilers

I Clang prints 4 7, seems just left-right

I GCC prints 4 8, does not correspond to any evaluation order

This program violates the sequence point restriction

I due to two unsequenced writes to x

I undefined behavior: garbage in, garbage out ⇒ all bets are off

I thus both compilers are right

Formalin should account for all undefined behavior



3

Why compiler (in)dependence matters

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d %d\n", x, y);

}

Let us try some compilers

I Clang prints 4 7, seems just left-right

I GCC prints 4 8, does not correspond to any evaluation order

This program violates the sequence point restriction

I due to two unsequenced writes to x

I undefined behavior: garbage in, garbage out ⇒ all bets are off

I thus both compilers are right

Formalin should account for all undefined behavior



3

Why compiler (in)dependence matters

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d %d\n", x, y);

}

Let us try some compilers

I Clang prints 4 7, seems just left-right

I GCC prints 4 8, does not correspond to any evaluation order

This program violates the sequence point restriction

I due to two unsequenced writes to x

I undefined behavior: garbage in, garbage out ⇒ all bets are off

I thus both compilers are right

Formalin should account for all undefined behavior



3

Why compiler (in)dependence matters

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d %d\n", x, y);

}

Let us try some compilers

I Clang prints 4 7, seems just left-right

I GCC prints 4 8, does not correspond to any evaluation order

This program violates the sequence point restriction

I due to two unsequenced writes to x

I undefined behavior: garbage in, garbage out ⇒ all bets are off

I thus both compilers are right

Formalin should account for all undefined behavior



3

Why compiler (in)dependence matters

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d %d\n", x, y);

}

Let us try some compilers

I Clang prints 4 7, seems just left-right

I GCC prints 4 8, does not correspond to any evaluation order

This program violates the sequence point restriction

I due to two unsequenced writes to x

I undefined behavior: garbage in, garbage out ⇒ all bets are off

I thus both compilers are right

Formalin should account for all undefined behavior



4

Separation logic for C [Krebbers, POPL’14]

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 } e2 {Q1 ∗ Q2}

What does this mean:

I Split the memory into two disjoint parts

I Prove that e1 and e2 can be executed safely in their part

I Now e1 } e2 can be executed safely in the whole memory

Disjointness ⇒ no sequence point violation



4

Separation logic for C [Krebbers, POPL’14]

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 } e2 {Q1 ∗ Q2}

What does this mean:

I Split the memory into two disjoint parts

I Prove that e1 and e2 can be executed safely in their part

I Now e1 } e2 can be executed safely in the whole memory

Disjointness ⇒ no sequence point violation



4

Separation logic for C [Krebbers, POPL’14]

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 } e2 {Q1 ∗ Q2}

What does this mean:

I Split the memory into two disjoint parts

I Prove that e1 and e2 can be executed safely in their part

I Now e1 } e2 can be executed safely in the whole memory

Disjointness ⇒ no sequence point violation



5

Connectives of separation logic

The connectives of separation logic are defined as:

emp := λm .m = ∅
P ∗ Q := λm . ∃m1m2 .m = m1 ∪ m2 ∧ P m1 ∧ Q m2

Definition of is non-trivial:

I Complex memory based on structured trees

I Fractional permissions for share-accounting
For example needed in x + x

I Existence permissions for pointer arithmetic
For example needed in *(p + 1) = (*p = 1)

I Locked permissions for sequence point restriction

Use separation algebras [Calcagno et al., LICS’07] to abstractly
describe the permissions and memory



5

Connectives of separation logic

The connectives of separation logic are defined as:

emp := λm .m = ∅
P ∗ Q := λm . ∃m1m2 .m = m1 ∪ m2 ∧ P m1 ∧ Q m2

Definition of is non-trivial:

I Complex memory based on structured trees

I Fractional permissions for share-accounting
For example needed in x + x

I Existence permissions for pointer arithmetic
For example needed in *(p + 1) = (*p = 1)

I Locked permissions for sequence point restriction

Use separation algebras [Calcagno et al., LICS’07] to abstractly
describe the permissions and memory



5

Connectives of separation logic

The connectives of separation logic are defined as:

emp := λm .m = ∅
P ∗ Q := λm . ∃m1m2 .m = m1 ∪ m2 ∧ P m1 ∧ Q m2

Definition of is non-trivial:

I Complex memory based on structured trees

I Fractional permissions for share-accounting
For example needed in x + x

I Existence permissions for pointer arithmetic
For example needed in *(p + 1) = (*p = 1)

I Locked permissions for sequence point restriction

Use separation algebras [Calcagno et al., LICS’07] to abstractly
describe the permissions and memory



6

Tweaked version of separation algebras in Coq

Def: A simple separation algebra consists of a set A, with:

I An element ∅ : A

I A predicate valid : A→ Prop

I Binary relations ⊥, ⊆ : A→ A→ Prop

I Binary operations ∪, \ : A→ A→ A

Satisfying the following laws:

1. If x ⊥ y , then y ⊥ x and x ∪ y = y ∪ x

2. If valid x , then ∅ ⊥ x and ∅ ∪ x = x

3. Associative, non-empty, cancellative, positive, . . .



6

Tweaked version of separation algebras in Coq

Def: A simple separation algebra consists of a set A, with:

I An element ∅ : A

I A predicate valid : A→ Prop

I Binary relations ⊥, ⊆ : A→ A→ Prop

I Binary operations ∪, \ : A→ A→ A

Total instead of partial

Satisfying the following laws:

1. If x ⊥ y , then y ⊥ x and x ∪ y = y ∪ x

2. If valid x , then ∅ ⊥ x and ∅ ∪ x = x

3. Associative, non-empty, cancellative, positive, . . .



6

Tweaked version of separation algebras in Coq

Def: A simple separation algebra consists of a set A, with:

I An element ∅ : A

I A predicate valid : A→ Prop

I Binary relations ⊥, ⊆ : A→ A→ Prop

I Binary operations ∪, \ : A→ A→ A

Total instead of partial Disjointness

Satisfying the following laws:

1. If x ⊥ y , then y ⊥ x and x ∪ y = y ∪ x

2. If valid x , then ∅ ⊥ x and ∅ ∪ x = x

3. Associative, non-empty, cancellative, positive, . . .



6

Tweaked version of separation algebras in Coq

Def: A simple separation algebra consists of a set A, with:

I An element ∅ : A

I A predicate valid : A→ Prop

I Binary relations ⊥, ⊆ : A→ A→ Prop

I Binary operations ∪, \ : A→ A→ A

To avoid subset types Total instead of partial Disjointness

Satisfying the following laws:

1. If x ⊥ y , then y ⊥ x and x ∪ y = y ∪ x

2. If valid x , then ∅ ⊥ x and ∅ ∪ x = x

3. Associative, non-empty, cancellative, positive, . . .



6

Tweaked version of separation algebras in Coq

Def: A simple separation algebra consists of a set A, with:

I An element ∅ : A

I A predicate valid : A→ Prop

I Binary relations ⊥, ⊆ : A→ A→ Prop

I Binary operations ∪, \ : A→ A→ A

To avoid subset types Total instead of partial Disjointness

Satisfying the following laws:

1. If x ⊥ y , then y ⊥ x and x ∪ y = y ∪ x

2. If valid x , then ∅ ⊥ x and ∅ ∪ x = x

3. Associative, non-empty, cancellative, positive, . . .



7

Example: fractional separation algebra

Fractional permissions [0, 1]Q [Boyland, SAS’09]

No access Read-only Exclusive access
0 1

Rational numbers make it possible to split Read-only permissions

Def: The simple fractional separation algebra Q is defined as:

valid x := 0 ≤ x ≤ 1

x ⊥ y := 0 ≤ x , y ∧ x + y ≤ 1

x ⊆ y := 0 ≤ x ≤ y ≤ 1

∅ := 0

x ∪ y := x + y

x \ y := x − y



7

Example: fractional separation algebra

Fractional permissions [0, 1]Q [Boyland, SAS’09]

No access Read-only Exclusive access
0 1

Rational numbers make it possible to split Read-only permissions

Def: The simple fractional separation algebra Q is defined as:

valid x := 0 ≤ x ≤ 1

x ⊥ y := 0 ≤ x , y ∧ x + y ≤ 1

x ⊆ y := 0 ≤ x ≤ y ≤ 1

∅ := 0

x ∪ y := x + y

x \ y := x − y



8

Organization of permissions

Separation logic: ∪ main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind,⊆k)

Freeable

Writable

Readable Locked

Existing

⊥

I Freeable: reading, writing, deallocation

I Writable: reading, writing

I Readable: reading

I Existing: existence permissions, only
pointer arithmetic

I Locked: temporarily locked until next
sequence point
Example: (x = 3) + (*p = 4);

Undefined behavior if &x == p

I ⊥: no operations allowed
Example: free(p); return (p-p);



8

Organization of permissions

Separation logic: ∪ main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind,⊆k)

Freeable

Writable

Readable Locked

Existing

⊥

I Freeable: reading, writing, deallocation

I Writable: reading, writing

I Readable: reading

I Existing: existence permissions, only
pointer arithmetic

I Locked: temporarily locked until next
sequence point
Example: (x = 3) + (*p = 4);

Undefined behavior if &x == p

I ⊥: no operations allowed
Example: free(p); return (p-p);



8

Organization of permissions

Separation logic: ∪ main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind,⊆k)

Freeable

Writable

Readable Locked

Existing

⊥

I Freeable: reading, writing, deallocation

I Writable: reading, writing

I Readable: reading

I Existing: existence permissions, only
pointer arithmetic

I Locked: temporarily locked until next
sequence point
Example: (x = 3) + (*p = 4);

Undefined behavior if &x == p

I ⊥: no operations allowed
Example: free(p); return (p-p);



8

Organization of permissions

Separation logic: ∪ main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind,⊆k)

Freeable

Writable

Readable Locked

Existing

⊥

I Freeable: reading, writing, deallocation

I Writable: reading, writing

I Readable: reading

I Existing: existence permissions, only
pointer arithmetic

I Locked: temporarily locked until next
sequence point
Example: (x = 3) + (*p = 4);

Undefined behavior if &x == p

I ⊥: no operations allowed
Example: free(p); return (p-p);



8

Organization of permissions

Separation logic: ∪ main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind,⊆k)

Freeable

Writable

Readable Locked

Existing

⊥

I Freeable: reading, writing, deallocation

I Writable: reading, writing

I Readable: reading

I Existing: existence permissions, only
pointer arithmetic

I Locked: temporarily locked until next
sequence point
Example: (x = 3) + (*p = 4);

Undefined behavior if &x == p

I ⊥: no operations allowed
Example: free(p); return (p-p);



8

Organization of permissions

Separation logic: ∪ main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind,⊆k)

Freeable

Writable

Readable Locked

Existing

⊥

I Freeable: reading, writing, deallocation

I Writable: reading, writing

I Readable: reading

I Existing: existence permissions, only
pointer arithmetic

I Locked: temporarily locked until next
sequence point
Example: (x = 3) + (*p = 4);

Undefined behavior if &x == p

I ⊥: no operations allowed
Example: free(p); return (p-p);



8

Organization of permissions

Separation logic: ∪ main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind,⊆k)

Freeable

Writable

Readable Locked

Existing

⊥

I Freeable: reading, writing, deallocation

I Writable: reading, writing

I Readable: reading

I Existing: existence permissions, only
pointer arithmetic

I Locked: temporarily locked until next
sequence point
Example: (x = 3) + (*p = 4);

Undefined behavior if &x == p

I ⊥: no operations allowed
Example: free(p); return (p-p);



9

Interaction with permission kinds

Def: A C permissions system is a separation algebra A with
functions kind : A→ pkind, lock, unlock

, 12

: A→ A

and token : A

satisfying:

unlock (lock x) = x provided that Writable ⊆k kind x

kind (lock x) = Locked provided that Writable ⊆k kind x

kind
(
1
2x
)

=

{
Readable if Writable ⊆k kind x

kind x otherwise

kind token = Existing

kind (x \ token) =

{
Writable if kind x = Freeable

kind x if Existing ⊆k kind x

Example: use 1
2 in x + x

Example: use \ token in *(p + 1) = (*p = 1)



9

Interaction with permission kinds

Def: A C permissions system is a separation algebra A with
functions kind : A→ pkind, lock, unlock, 12 : A→ A

and token : A

satisfying:

unlock (lock x) = x provided that Writable ⊆k kind x

kind (lock x) = Locked provided that Writable ⊆k kind x

kind
(
1
2x
)

=

{
Readable if Writable ⊆k kind x

kind x otherwise

kind token = Existing

kind (x \ token) =

{
Writable if kind x = Freeable

kind x if Existing ⊆k kind x

Example: use 1
2 in x + x

Example: use \ token in *(p + 1) = (*p = 1)



9

Interaction with permission kinds

Def: A C permissions system is a separation algebra A with
functions kind : A→ pkind, lock, unlock, 12 : A→ A and token : A
satisfying:

unlock (lock x) = x provided that Writable ⊆k kind x

kind (lock x) = Locked provided that Writable ⊆k kind x

kind
(
1
2x
)

=

{
Readable if Writable ⊆k kind x

kind x otherwise

kind token = Existing

kind (x \ token) =

{
Writable if kind x = Freeable

kind x if Existing ⊆k kind x

Example: use 1
2 in x + x

Example: use \ token in *(p + 1) = (*p = 1)



10

Implementation of permissions

Def: C permissions are defined as

perm := F(L(C(Q))) = {Freed}+ {◦, •} ×Q×Q

with:

Readable

Freeable Writable

Existing

Locked

◦ (0, 1)

◦ (0, 0)

• (0, 1)

Freed ⊥



10

Implementation of permissions

Def: C permissions are defined as

perm := F(L(C(Q))) = {Freed}+ {◦, •} ×Q×Q

Fractional SA

with:

Readable

Freeable Writable

Existing

Locked

◦ (0, 1)

◦ (0, 0)

• (0, 1)

Freed ⊥



10

Implementation of permissions

Def: C permissions are defined as

perm := F(L(C(Q))) = {Freed}+ {◦, •} ×Q×Q

Countable SA Fractional SA

with:

Readable

Freeable Writable

Existing

Locked

◦ (0, 1)

◦ (0, 0)

• (0, 1)

Freed ⊥



10

Implementation of permissions

Def: C permissions are defined as

perm := F(L(C(Q))) = {Freed}+ {◦, •} ×Q×Q

Lockable SA Countable SA Fractional SA

with:

Readable

Freeable Writable

Existing

Locked

◦ (0, 1)

◦ (0, 0)

• (0, 1)

Freed ⊥



10

Implementation of permissions

Def: C permissions are defined as

perm := F(L(C(Q))) = {Freed}+ {◦, •} ×Q×Q

Freeable SA Lockable SA Countable SA Fractional SA

with:

Readable

Freeable Writable

Existing

Locked

◦ (0, 1)

◦ (0, 0)

• (0, 1)

Freed ⊥



11

The C memory

Extremely complex:

I Pointer arithmetic
I Difficult interaction between low and high level

I Types
I Object representations

I Byte-wise operations on all objects

I Non-aliasing restrictions

I Permissions



12

Aliasing

Aliasing: multiple pointers referring to the same object

int f(int *p, int *q) {

int x = *p; *q = 314; return x;

}

If p and q alias, the original value n of *p is returned

n

p q

Optimizing x away is unsound: 314 would be returned

Alias analysis: to determine whether pointers can alias



12

Aliasing

Aliasing: multiple pointers referring to the same object

int f(int *p, int *q) {

int x = *p; *q = 314; return x;

}

If p and q alias, the original value n of *p is returned

n

p q

Optimizing x away is unsound: 314 would be returned

Alias analysis: to determine whether pointers can alias



12

Aliasing

Aliasing: multiple pointers referring to the same object

int f(int *p, int *q) {

int x = *p; *q = 314; return x *p;

}

If p and q alias, the original value n of *p is returned

n

p q

Optimizing x away is unsound: 314 would be returned

Alias analysis: to determine whether pointers can alias



12

Aliasing

Aliasing: multiple pointers referring to the same object

int f(int *p, int *q) {

int x = *p; *q = 314; return x *p;

}

If p and q alias, the original value n of *p is returned

n

p q

Optimizing x away is unsound: 314 would be returned

Alias analysis: to determine whether pointers can alias



13

Aliasing with different types

Consider a similar function:

int h(int *p, float *q) {

int x = *p; *q = 3.14; return x;

}

It can still be called with aliased pointers:

union { int x; float y; } u;

u.x = 271;

return h(&u.x, &u.y);

x
y

&u.x &u.y

C89 allows p and q to be aliased, and thus requires it to return 271

C99/C11 allows type-based alias analysis:

I A compiler can assume that p and q do not alias

I Reads/writes with “the wrong type” yield undefined behavior



13

Aliasing with different types

Consider a similar function:

int h(int *p, float *q) {

int x = *p; *q = 3.14; return x;

}

It can still be called with aliased pointers:

union { int x; float y; } u;

u.x = 271;

return h(&u.x, &u.y);

x
y

&u.x &u.y

C89 allows p and q to be aliased, and thus requires it to return 271

C99/C11 allows type-based alias analysis:

I A compiler can assume that p and q do not alias

I Reads/writes with “the wrong type” yield undefined behavior



13

Aliasing with different types

Consider a similar function:

int h(int *p, float *q) {

int x = *p; *q = 3.14; return x;

}

It can still be called with aliased pointers:

union { int x; float y; } u;

u.x = 271;

return h(&u.x, &u.y);

x
y

&u.x &u.y

C89 allows p and q to be aliased, and thus requires it to return 271

C99/C11 allows type-based alias analysis:

I A compiler can assume that p and q do not alias

I Reads/writes with “the wrong type” yield undefined behavior



14

The C memory as structured forest [Krebbers, CPP’13]

Consider:

struct T {

union U {

signed char x[2]; int y;

} u;

void *p;

} s = { { .x = {33,34} }, s.u.x + 2 }

As a picture:
ws =

.0

signed char: 10000100 01000100 ???????? ????????

void∗: (ptr p)0 (ptr p)1 . . . (ptr p)31

p

Captures aliasing restrictions of C11
Generalization of [Krebbers, CPP’13] is a separation algebra



14

The C memory as structured forest [Krebbers, CPP’13]

Consider:

struct T {

union U {

signed char x[2]; int y;

} u;

void *p;

} s = { { .x = {33,34} }, s.u.x + 2 }

As a picture:
ws =

.0

signed char: 10000100 01000100 ???????? ????????

void∗: (ptr p)0 (ptr p)1 . . . (ptr p)31

p

Captures aliasing restrictions of C11

Generalization of [Krebbers, CPP’13] is a separation algebra



14

The C memory as structured forest [Krebbers, CPP’13]

Consider:

struct T {

union U {

signed char x[2]; int y;

} u;

void *p;

} s = { { .x = {33,34} }, s.u.x + 2 }

As a picture:
ws =

.0

signed char: 10000100 01000100 ???????? ????????

void∗: (ptr p)0 (ptr p)1 . . . (ptr p)31

p

Captures aliasing restrictions of C11
Generalization of [Krebbers, CPP’13] is a separation algebra



15

The C memory compositionally

Def: The C memory is defined as:

mem := cmap (T?:bit(F(L(C(Q)))))



15

The C memory compositionally

Def: The C memory is defined as:

mem := cmap (T?:bit(F(L(C(Q)))))

Permissions



15

The C memory compositionally

Def: The C memory is defined as:

mem := cmap (T?:bit(F(L(C(Q)))))

(Bit) tagged SA Permissions



15

The C memory compositionally

Def: The C memory is defined as:

mem := cmap (T?:bit(F(L(C(Q)))))

Structured memory SA
Generalization of
[Krebbers, CPP’13]

(Bit) tagged SA Permissions



16

The bigger picture / Future work

Non-local control &
block scope variables

(FoSSaCS, 2013)

C-types & strict
aliasing restrictions

(CPP, 2013)

Sequence points &
non-determinism
(POPL, 2014)

Separation algebras
for the C memory
(VSTTE, 2014)

Separation
logic for C11’



16

The bigger picture / Future work

Non-local control &
block scope variables

(FoSSaCS, 2013)

C-types & strict
aliasing restrictions

(CPP, 2013)

Sequence points &
non-determinism
(POPL, 2014)

Separation algebras
for the C memory
(VSTTE, 2014)

Separation
logic for C11’



16

The bigger picture / Future work

Non-local control &
block scope variables

(FoSSaCS, 2013)

C-types & strict
aliasing restrictions

(CPP, 2013)

Sequence points &
non-determinism
(POPL, 2014)

Separation algebras
for the C memory
(VSTTE, 2014)

Separation
logic for C11’

Interpreter for C11’



17

Questions

Sources: http://robbertkrebbers.nl/research/ch2o/

(http://xkcd.com/371/)

http://robbertkrebbers.nl/research/ch2o/
http://xkcd.com/371/

