Relational reasoning using concurrent separation logic

Robbert Krebbers!

Delft University of Technology, The Netherlands

February 23, 2019 @ EU Types meeting, Krakow, Poland

1This is joint work with Dan Frumin (Radboud University) and Lars Birkedal (Aarhus University)

Why prove relational properties of programs?

» Specifying programs

implementation = specification

Why prove relational properties of programs?

» Specifying programs
implementation = specification
» Optimized versions of data structures

hash _table =X assoc_list

Why prove relational properties of programs?

» Specifying programs
implementation = specification
» Optimized versions of data structures
hash _table =X assoc_list
» Proving program transformations

Vesource- Compile(esource) ;jctx €source

Language features that complicate refinements

» Mutable state

(1etx = f()in(x, X)) Betx (f(), f())

Language features that complicate refinements

» Mutable state

(1etx = f()in(x, X)) Betx (f(), f())

» Higher-order functions

(/\(). 1) Zetx (1etx — ref(0) in (A(). x « (1 + !x); !x))

Language features that complicate refinements

» Mutable state

(1etx = f()in(x, X)) Betx (f(), f())

» Higher-order functions

(/\(). 1) Zetx (1etx — ref(0) in (A(). x « (1 + !x); !x))

» Concurrency
(x 10, x 11) Zetx (x “ 11)

What do such relational properties mean mathematically?

Contextual refinement

Contextual refinement: the “gold standard” of program refinement:

e1 Jex @ T=V(C:T = N).VYv. Cle] v = Clex] } v

~

“Any behavior of a (well-typed) client C using e; can be matched by a behavior of the
same client using e

Contextual refinement

Contextual refinement: the “gold standard” of program refinement:

e1 Jex @ T=V(C:T = N).VYv. Cle] L v = Clex] } v

~

“Any behavior of a (well-typed) client C using e; can be matched by a behavior of the
same client using e

[Very hard to prove: Quantification over all cIients}

Logical relations to the rescue!

Do not prove contextual refinement directly, but use a binary logical relation:

61<62:T

~

> e = e : 7 is defined structurally on the type 7
» Does not involve quantification over all clients C

=cix € : T proved once and for all

~

> Soundness e;1 Z & T = e

A bit of history

Logical relations e; = e, : 7 are notoriously hard to define when having recursive types,
higher-order state (type-world circularity), ...

A bit of history

Logical relations e; = e, : 7 are notoriously hard to define when having recursive types,
higher-order state (type-world circularity), ...

Solutions to define such logical relations:

A bit of history

Logical relations e; = e, : 7 are notoriously hard to define when having recursive types,
higher-order state (type-world circularity), ...

Solutions to define such logical relations:
> Step-indexing (Appel-McAllester, Ahmed, .. .)

Solve circularities by stratifying everything by a natural number corresponding to
the number of computation steps

A bit of history

Logical relations e; = e, : 7 are notoriously hard to define when having recursive types,
higher-order state (type-world circularity), ...

Solutions to define such logical relations:
> Step-indexing (Appel-McAllester, Ahmed, ...)

Solve circularities by stratifying everything by a natural number corresponding to
the number of computation steps

P> Logical approach (LSLR, LADR, CaReSL, Iris, ...)

Hide step-indexing using modalities to obtain clearer definitions and proofs

A bit of history

Logical relations e; = e, : 7 are notoriously hard to define when having recursive types,
higher-order state (type-world circularity), ...

Solutions to define such logical relations:
> Step-indexing (Appel-McAllester, Ahmed, .. .)

Solve circularities by stratifying everything by a natural number corresponding to
the number of computation steps

P> Logical approach (LSLR, LADR, CaReSL, Iris, ...)

Hide step-indexing using modalities to obtain clearer definitions and proofs

We tried to take this one step further

Prove program refinements using
inference rules a la concurrent separation logic

Instead of Hoare triples {P} e {Q} we have refinement judgments e; S e : 7

» Refinement proofs by symbolic execution as we know from separation logic
» Modular and conditional specifications

» Modeled using the “logical approach”

RelLoC [Frumin, Krebbers, Birkedal; LICS'18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained
concurrent programs.

RelLoC [Frumin, Krebbers, Birkedal; LICS'18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained
concurrent programs.

» Fine-grained concurrency: programs use low-level
synchronization primitives for more granular parallelism

RelLoC [Frumin, Krebbers, Birkedal; LICS'18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained

concurrent programs.
» Fine-grained concurrency: programs use low-level
synchronization primitives for more granular parallelism

» Mechanized: soundness proven sound using the Iris
framework in Coq

RelLoC [Frumin, Krebbers, Birkedal; LICS'18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained
concurrent programs.

» Fine-grained concurrency: programs use low-level
synchronization primitives for more granular parallelism

» Mechanized: soundness proven sound using the Iris
framework in Coq

» Interactive refinement proofs: using high-level tactics
in Coq

ReLoC: (simplified) grammar

P,Q €Prop:=Vx.P|3Ix.P|PVQ]| ...

ReLoC: (simplified) grammar

P,Q €Prop:=Vx.P|3Ix.P|PVQ]| ...
| PxQ | P=Q | Lijv | Lgv

Separation logic for handling mutable state

» (i v for the left-hand side (implementation)
» (s v for the right-hand side (specification)

ReLoC: (simplified) grammar

P,Q €Prop:=Vx.P|3Ix.P|PVQ]| ...
| PxQ | P=Q | Lijv | Lgv

| QAlFeaie:7) | [rla(va,ve) | ...

Separation logic for handling mutable state

» (i v for the left-hand side (implementation)
» (s v for the right-hand side (specification)

Logic with first-class refinement propositions to allow conditional refinements
> (l1—=iv) « (a1 Zex:7)
> (aZe:l=7) « (fla) S el)el):)

Proving refinements of pure programs

11

Some rules for pure programs

Symbolic execution rules

A”:K[e:/l]r_je2:7— el_>puree;,[d

AlEKlea]Ze:T

Some rules for pure programs

Symbolic execution rules

A”:K[ei]je237' el_>pureei¢
AlEK[e]Ze:T -

AlEer 3SK[e]:T € —pure €
AlFe ZKle]: T)

Some rules for pure programs

Structural rules

AlFeZe:T * Al=e 3T
Al (er,€1) 3 (e2,6) s 7 x 7

Some rules for pure programs

Structural rules

AlFeZe:T * Al=e 3T
Al (er,€1) 3 (e2,6) s 7 x 7

J(R: Valx Val = Prop). [a:=R],AlFe Je:T
A ||= pack(er) 2 pack(ep) : Ja. T ‘

Some rules for pure programs

Structural rules

AlFeZe:T * Al=e 3T
Al (e1,€)) 3 (e2,€9) 7 x 7

J(R: Valx Val = Prop). [a:=R],AlFe Je:T
A ||= pack(er) 2 pack(ep) : Ja. T ‘

O (Vvl V2.|IT]]A(V17V2) —k)
[Tla(vi,ve) AlEealv/xi] 3 elwn/x]:o
AHiV:[:jVQZTI AlEX. e S A .e0:T—0

sk
0

Example

A bit interface:
bitT £ Ja. a X (e = a) x (a—2)
» constructor
» flip the bit

» view the bit as a Boolean

Example

A bit interface:
bitT 2 Jo. @ x (a — a) x

» constructor

» flip the bit
>

Two implementations:
bit_bool = pack(true, (Ab.—b), (\b. b))

bit_nat = pack(l, (An.if n =0thenlelse0), (An.n= 1))

Example

A bit interface:
bitT 2 Jo. @ x (a — a) x

» constructor

» flip the bit
>

Two implementations:
bit_bool = pack(true, (Ab.—b), (\b. b))
bit_nat £ pack(l, (An.if n=0thenlelse0), (An.n= 1))
Refinement (and vice versa):

bit_bool = bit nat : bitT

Proof of the refinement

pack(true, (Ab.=b), (\b. b))

N

pack(l7 (An.if n =0thenlelse0), (An.n= 1))

Ja.a x (o — a) x (o — 2)

Proof of the refinement

pack(true, (Ab.=b), (\b. b))

N

pack(l, (An.if n=0thenlelse0), (An.n= 1))

Jo.a x (o — a) x (o — 2)

{Need to come with with an R : Val x Val — Prop]

Proof of the refinement
where R £ {(true, 1), (false,0)}

pack(true, (Ab.=b), (\b. b))

N

pack(l, (An.if n=0thenlelse0), (An.n= 1))

Jo.a x (o — a) x (o — 2)

{Need to come with with an R : Val x Val — Prop]

Proof of the refinement
[:=R] E where R £ {(true, 1), (false,0)}

(true, (Ab. —b), (Ab. b))

N

(1, (An.if n =0thenlelse0), (An.n= 1))

aX(a—a)x(a—2)

Proof of the refinement
[:=R] E where R £ {(true, 1), (false,0)}

(true, (Ab. —b), (Ab. b))

N

(1, (An.if n=0thenlelse0), (An.n= 1))

aX(a—a)x(a—2)

[Use structural rule for products}

Proof of the refinement

[:=R] E where R £ {(true, 1), (false,0)}
true 31 e
(Ab.=b) Z (An.if n = 0thenlelseO) e e

(Ab.b) 2 (An.n=1) toe— 2

Proof of the refinement

[:=R] E where R £ {(true, 1), (false,0)}
true 31 e
(Ab.=b) Z (An.if n = 0thenlelseO) e e

(Ab.b) 2 (An.n=1) toe— 2

Proof of the refinement

[:=R] E where R £ {(true, 1), (false,0)}
true 31 e
(Ab.=b) 3 (An.if n =0thenlelse0) e e

(Ab.b) 2 (An.n=1) toe— 2

(by def of R)

Proof of the refinement

[:=R] E where R £ {(true, 1), (false,0)}

true 31 e
(Ab.=b) Z (An.if n = 0thenlelseO) e e
(Ab.b) 2 (An.n=1) toe— 2

After using the A rule and case analysis on R:

—true Z if 1 =0thenlelse0 e
—~false 3if0=0thenlelse0 e

(by def of R)

(A-rule + symb. exec.)

Proof of the refinement

[:=R] E where R £ {(true, 1), (false,0)}
true 31 e
(Ab.=b) 3 (An.if n =0thenlelse0) e e

(Ab.b) 2 (An.n=1) toe— 2

(by def of R)
(A-rule + symb. exec.)

(A-rule + symb. exec.)

Proof of the refinement

[:=R] E where R £ {(true, 1), (false,0)}

true 31 e (by def of R)
(Ab.=b) 3 (An.if n =0thenlelse0) e e (A-rule + symb. exec.)
(Ab.b) 2 (An.n=1) toe— 2 (A-rule + symb. exec.)

Reasoning about mutable state

Separation logic to the rescue!

16

“Vanilla"” separation |OgiC [O'Hearn, Reynolds, Yang; CSL'01]
Propositions P, Q denote ownership of resources

Points-to connective ¢ — v:
Exclusive ownership of location ¢ with value v

Separating conjunction P x Q:
The resources consists of separate parts satisfying P and Q

Basic example:

{l1 = vi % ly — vy} swap(l1, €2){l1 > vo x lp — vi }

[the * ensures that £ and /5 are different memory Iocations]

Mutable state and separation logic for refinements

There are two versions of the points-to connective:
» (v for the left-hand side/implementation
» (¢ v for the right-hand side/specification

Mutable state and separation logic for refinements

There are two versions of the points-to connective:
» (v for the left-hand side/implementation
» (¢ v for the right-hand side/specification

Example:
lr—4 = L0 = (1) S (b 410):

Some rules for mutable state

Symbolic execution

fll—ﬂ— * (fll—ﬂvl —*AH:K[()]jGQZT)
A‘):K[fl%vl]j62i7'

sk
>k

Some rules for mutable state

Symbolic execution

by =i — * (h=ivi + AEK[(O]Ze:7)
A‘):K[fl%vl]j62i7'

sk
>k

bis— x (bosve >+ Alra ZKIO]:7)
AlEe S K[l w]:T

Some rules for mutable state

Symbolic execution

fl*—>i— * (fll—>iv1 —*AH:K[()]jeQ:T)
AH:K[E]_(—V]_]ieziT

sk
>k

bis— x (bosve >+ Alra ZKIO]:7)
AlEe S K[l w]:T

Vfl.fl = v —k AH: K[fl]jeg:7'¢ V€2.€2 =g Vo =k AH:ejK[fz]:T¢
A|lE K[ref(v)] S e T ‘ AlE e Z K[ref(w)]: 7 '

Reasoning about higher-order functions and concurrency

20

State encapsulation

Modules with encapsulated state:

let x = ref(e)in ()\y. .)

[The reference can only be used in the cIosurej

State encapsulation

Modules with encapsulated state:

let x = ref(e)in ()\y. .)

[The reference can only be used in the cIosure}

Simple example:
counter £ </\(). let x = ref(1)in (A(). FAA(x, 1))) 15 (1= N)
» counter() constructs an instance ¢ : 1 — N of the counter module

» Calling c() in subsequently gives 0,1,2, ...

» The reference x is private to the module

The problem

Modules with encapsulated state:

let x = ref(e) in ()\y. .

The problem

Modules with encapsulated state:

let x = ref(e) in ()\y. .)

f

Reasoning about such modules is challenging:
» f can be called multiple times by clients

So, the value of x can change in each call

The problem

Modules with encapsulated state:

let x = ref(e) in ()\y. .)

f

Reasoning about such modules is challenging:
» f can be called multiple times by clients

So, the value of x can change in each call

» f can even be called even in parallel!
So, f cannot get exclusive access to x — v

The problem

Modules with encapsulated state:

let x = ref(e) in ()\y. .)

f

Reasoning about such modules is challenging:
» f can be called multiple times by clients

So, the value of x can change in each call

» f can even be called even in parallel!
So, f cannot get exclusive access to x — v

We need to guarantee that closures do not get access to exclusive resources

Persistent resources

The “persistent” modality O in Iris/ReLoC:

O P £ “P holds without assuming exclusive resources”

Examples:
» Equality is persistent: (x = y) F O(x = y)
» Points-to connectives are not: (({ — v)t/ 0O((+— v)
> More examples later. ..

ReLoC's A-rule again

The O modality makes sure no exclusive resources can escape into closures:

O <VV1 V2.|IT]]A(V1,V2) —k >
Al alv/x] 3 efvw/x] o
AH:)\Xl.el:j)\Xz.GQST%O'

sk
55

ReLoC's A-rule again

The O modality makes sure no exclusive resources can escape into closures:

O <VV1 V2.|IT]]A(V1,V2) —k >
Al alv/x] 3 efvw/x] o
AH:)\Xl.el:j)\Xz.GQST%O'

sk
55

Prohibits “wrong” refinements, for example:

()\(). 1) Zetx <1etx = ref(0) in (A(). x ¢ (1+ !x); !x))

Due to O, the resource x 5 0 cannot be used to prove the closure

But it should be possible to use resources in closures

For example:
()\(). let x = ref(1) in (A(). FAA(x, 1)))
N

A().let x = ref(1),/ = newlock () in
A(). acquire(/);
letv =!xin
X<+ v+1;
release(/); v

Iris-style Invariants

The invariant connective |R|
expresses that R is maintained as an invariant on the state

Iris-style Invariants

The invariant connective |R|
expresses that R is maintained as an invariant on the state

Invariants allow to share resources:
> A resource R can be turned into | R| at any time
> Invariants are persistent: | R| - 0 R
» .. .thus can be used to prove closures

Iris-style Invariants

The invariant connective |R|
expresses that R is maintained as an invariant on the state

Invariants allow to share resources:
> A resource R can be turned into | R| at any time
> Invariants are persistent: | R| - 0 R
» .. .thus can be used to prove closures

But that comes with a cost:
» Invariants @ can only be accessed during atomic steps on the left-hand side

» ...while multiple steps on the right-hand side can be performed

Example

let x = ref(l) in(\().FAA(x,1))

N

let x = ref(1l),/ = newlock () in
(A(). acquire(/);
letv =!xin
X<+ v+1;

release(/); v)

Example

let x = ref(l) in(\().FAA(x,1))

N

let x = ref(1l),/ = newlock () in
(A(). acquire(/);
letv =!xin
X<+ v+1;

release(/); v)

Example

(A()- FAA(x1, 1))

A

x1 1 let x = ref(l),/ = newlock () in
(A(). acquire(/);
letv =!xin
X<+ v+1;

release(/); v)

Example

(A()- FAA(x1, 1))

A

x1 1 let x = ref(l),/ = newlock () in
(A(). acquire(/);
letv =!xin
X<+ v+1;

release(/); v)

Example

X1'—>i]_

Xo ¥ 1

(A()- FAA(x1, 1))

A

let / = newlock () in
(A(). acquire(/);
letv =Ix5in
Xo < v —+1;

release(/); v)

Example

X1'—>i]_

Xo ¥ 1

(A()- FAA(x1, 1))

A

let / = newlock () in
(A(). acquire(/);
letv =Ix5in
Xo < v —+1;

release(/); v)

Example

X1 '—)i]_
Xo ¥ 1

isLock(/,unlocked)

(A()-FAA(xq,1))

A

(A()- acquire(/);
letv = !xy1in
Xg —Vv+1;

release(/); v)

Example

dn.

Xy i n
Xo F>g N

isLock(/,unlocked)

(A()-FAA(xq,1))

A

(A()- acquire(/);
letv = !xy1in
Xg —Vv+1;

release(/); v)

Example

dn.xq > n %
Xo F>g N X

isLock(/, unlocked)

(A()-FAA(xq,1))

N

(A()- acquire(/);
letv = !xy1in
Xg —Vv+1;

release(/); v)

Example

dn.xq > n %
Xo g N %
isLock(/, unlocked)

FAA(x1,1)

A

acquire(/);
letv= lxy in
Xg < v+ 1;

release(/); v

Example

dn.xq > n %
Xo g N %
isLock(/, unlocked)

FAA(xy,1)

A

acquire(/);
letv= lxy in
Xg < v+ 1;

release(/); v

Example

Xy > n
Xo s N

isLock(/, unlocked)

FAA(xy,1)

A

acquire(/);
letv= lxy in
Xg < v+ 1;

release(/); v

Example

X1 —=in+1
Xo s N

isLock(/, unlocked)

A

acquire(/);
letv= lxy in
Xg < v+ 1;

release(/); v

Example

X1 —=in+1
Xo s N

isLock(/, unlocked)

A

acquire(/);
letv= lxy in
Xg < v+ 1;

release(/); v

Example

n
N
X1 —=in+1
s N
*277s letv= lxy in
isLock(/, locked)
Xg < v+ 1;

release(/); v

Example

n
N
X1 —=in+1
s N
*277s letv= lxy in
isLock(/, locked)
Xg < v+ 1;

release(/); v

Example

n
3
X1 —=in+1
Xo s N
isLock(/, locked)
Xo < n+1;

release(/); n

Example

n
3
X1 —=in+1
Xo s N
isLock(/, locked)
X0+ n+1,;

release(/); n

Example

A

X1 —=in+1
Xo s N+ 1
isLock(/, locked)

release(/); n

Example

A

X1 —=in+1
Xo s N+ 1
isLock(/, locked)

release(/); n

Example

X1 —=in+1
Xo s N+ 1
isLock(/, unlocked)

A

Example

dn.xq > n %
Xo F>g N X
isLock(/, unlocked)

A

Wrapping up. ..

» RelLoC provides rules allowing this kind of simulation reasoning, formally
» The example can be done in Coq in almost the same fashion

» The approach scales to: lock-free concurrent data structures, generative ADTs,
examples from the logical relations literature

Logically atomic relational specifications

Problem

» The example that we have seen is a bit more subtle: the fetch-and-add (FAA)
function is not a physically atomic instruction

» What kind of specification can we give to FAA as a compound program?

Logically atomic relational specifications

Problem

» The example that we have seen is a bit more subtle: the fetch-and-add (FAA)
function is not a physically atomic instruction

» What kind of specification can we give to FAA as a compound program?

Our solution
Relational version of TaDA-style logically atomic triples in ReLoC

Implementation in Coq

30

RelLoC

ReLoC is build on top of the Iris framework, so we can inherit:

» Iris's Invariants

> Iris's ghost state

» Iris's Coq infrastructure
> ...

The proofs we have done in Coq

ReLoC judgments e; =X e : 7 are modeled as a shallow embedding using the “logical
approach” to logical relations

Proved in Coq:
» Proof rules: All the ReLoC rules hold in the shallow embedding
> Soundness: €1 € T = €] S 21 T
» Actual program refinements: concurrent data structures, and examples from the
logical relations literature

Need to reason in separation logic!

33

Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp)

Px(Jda, Va) «xQ—=«Qx3Ja, PxWVa.
Proof.

iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

— iAssumption.

- iExists x.

iFrame.

Qed.

Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp) :
*x (Ja, Wa) *Q—=xQx3Ja, PxWVa.

Proof.

iInt | emma in the |r|s Ioglc}

iDesvruaco—rre—c—ns

iSplitL "H3".
— iAssumption.
- iExists x.
iFrame.
Qed.

Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp)

Px (da, Va) *xQ—=«Q*3Ja, PxWVa.
Proof.

iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

— iAssumption.

- iExists x.

iFrame.

Qed.

1 subgoal

A : Type

P, Q : iProp
V¥ : A — iProp
x : A

"H1" : P
"H2" W x
IIH3II : Q

(1/1)

Q«x(Ja: A PxVa)

&
0

Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (W : A — iProp) : 1 subgoal
Px (3a, VWa) *xQ—=*Q xJa, PxWVa. A Type
Proof. P.oQ: iPl.”OP
iIntros "[H1 [H2 H3]]". \}': e
iDestruct "H2" as (x) "H2". (1/1)
iSplitl "H3". " - p
- iAssumption. "H2" : VU x
- iExists x. "H3" : Q
iFrame. *
Qed. Qx(Ja:A PxVa)
—

[* means: resources should be split}
I

Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (W : A — iProp) : 1 subgoal
Px (3a, VWa) *xQ—=*Q xJa, PxWVa. A : Type
Proof. \1;_0 + iProp
iTntros "[H1 [H2 H3]]". L e
iDestruct "H2" as (x) "H2". ' (1/1)
lSplltL "H3". "Hi" : P
- iAssumthon_/—\ "HO' - Y x
. "H3" @ Q
[The hypotheses for the left conJunct})
Qed. Qx(Ja:A PxVa)
—

[* means: resources should be split}
I

Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp) : 2 subgoals
Px (3a, VWa) *xQ—=*Q xJa, PxWVa. A @ Type
Proof. P, Q: iP?op

iIntros "[H1 [H2 H3]]". t : A — iProp

A
iDestruct "H2" as (x) "H2".

Cqn s (1/2)
1SplltL "H3". "H3" - Q
— iAssumpti *
[The hypotheses for the left conjunctj)
Qed. (2/2)
"Hi" ;P
"HQ' - W x

Jda: A PxVa

Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp)

Px(Jda, Va) «xQ—=«Qx3Ja, PxWVa.
Proof.

iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

— iAssumption.

- iExists x.

iFrame.

Qed.

Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp) : No more subgoals.
Px (da, Va) *xQ—=«Q*3Ja, PxWVa.

Proof.
iIntros "[H1 [H2 H3]]".
by iFrame.

Qed.

[We can also solve this lemma automatically}

ReLoC in Iris Proof Mode

» The RelLoC rules are just lemmas that can be iApplyed
» We have more automated support for symbolic execution

» Iris Proof Mode features a special context for persistent hypotheses, which is
crucial for dealing with invariants

Persistent propositions in Iris Proof Mode

Lemma test {PROP : bi} {A}
(P Q : PROP) (W : A — PROP)
Px 0O (Ja, Va) =« Ja, Vax (P xVa).
Proof.
iIntros "[H1 #H2]".
iDestruct "H2" as (x) "H2".
iExists x.
iSplitL "H2".
— iAssumption.
— by iFrame.
Qed.

Persistent propositions in Iris Proof Mode

Lemma test {PROP : bi} {A}
(P Q : PROP) (W : A — PROP) :
Px O (Ja, Va) —« Ja, Vax (P xVa).

Proof.

e
?ﬂ Persistent modality

iExists x.

iSplitL "H2".

— iAssumption.

— by iFrame.
Qed.

Persistent propositions in Iris Proof Mode

Lemma test {PROP : bi} {A}
(P Q : PROP) (W : A — PROP) :

Px O (Ja, Va) =« Ja, Vax (P xVa).

Proof.
iIntros "[H1 #H2]".
iDestruct "H2% as (x) "H2".
iExists x.
iSplitL "H2".
— iAssumption.
— by iFrame.

Qed.

1 subgoal
PROP : bi

A : Type

P, Q : PROP
¥ : A — PROP

(1/1)

O

> "H2" : da: A, Va

"H1" : P

&
0

Ja: A Vax (PxWVa)

[I\/Ioves hypothesis to persistent context}

Persistent propositions in Iris Proof Mode

Lemma test {PROP : bi} {A}
(P Q : PROP) (W : A — PROP)

Px O (Ja, Va) =« Ja, Vax (P xVa).

Proof.
iIntros "[H1 #H2]".
iDestruct "H2" as (x) "H2".
iExists x.
iSplitL "H2".
— iAssumption.
— by iFrame.

Qed.

1 subgoal
PROP : bi

A : Type

P, Q : PROP
¥ : A — PROP
x : A

"H2" : WV x

"H1" : P

(1/1)
O

&

Ja: A Vax (PxWVa)

Persistent propositions in Iris Proof Mode

Lemma test {PROP : bi} {A} 1 subgoal
(P Q : PROP) (W : A — PROP) : PROP : bi
Px0O (Ja, Wa) =« Ja, Vax (PxVa). A: Type
Proof P, Q : PROP
o W : A — PROP
iIntros "[H1 #H2]". % - A
iDestruct "H2" as (x) "H2".
iExists x. "H2" WU x

iSplitL "H2".
— iAssumpt&cm_/_\ "H1" o P

(1/1)

er Do not need to split persistent contextlyx « (p « v x)

Persistent propositions in Iris Proof Mode

Lemma test {PROP : bi} {A}
(P Q : PROP) (W : A — PROP)

Px O (Ja, Va) =« Ja, Vax (P xVa).

Proof.
iIntros "[H1 #H2]".
iDestruct "H2" as (x) "H2".
iExists x.
iSplitL "H2".
— iAssumption.
— by iFrame.

Qed.

2 subgoals
PROP : bi
A : Type
P, Q : PROP
¥ : A — PROP
x : A
(1/2)
"H2" : VU x
O
v x
(2/2)
"H2" : VU x
O
"Hi" : P

P x WV x

Conclusions

37

Conclusions and future work

Contributions
» RelLoC: a logic that allows to carry out refinement proofs interactively in Coq
» New approach to modular refinement specifications for logically atomic programs

> Case studies: concurrent data structures, and examples from the logical relations
literature

Future work

» Program transformations
P> Refinements between programs in different language

» Other relational properties of concurrent programs

Want to know more details

Dan Frumin
Radboud University
dfrumin@cs.ru.nl

Abstract

We present ReLoC: a logic for proving refinements of programs in
a language with higher-order state, fine-grained concurrency, poly-
morphism and recursive types. The core of our logic is a judgement
e 3¢’ : 7, which expresses that a program e refines a program e’
at type 7. In contrast to earlier work on refinements for languages
with higher-order state and concurrency, ReLoC provides type- and
structure-directed rules for manipulating this judgement, whereas
previously, such proofs were carried out by unfolding the judge-
ment into its definition in the model. These more abstract proof
rules make it simpler to carry out refinement proofs.

Moreover, we introduce logically atomic relational specifications:
anovel approach for relational specifications for compound expres-
sions that take effect at a single instant in time. We demonstrate
how to formalise and prove such relational specifications in ReLoC,

Robbert Krebbers
Delft University of Technology
mail@robbertkrebbers.nl

ReLoC: A Mechanised Relational Logic for Fine-Grained
Concurrency

Lars Birkedal
Aarhus University
birkedal@cs.au.dk

read £ Ax (). !x
incs £ Axl.acquire l;letn = !xinx « 1 +n;release [; n
counters £ let = newlock () inlet x = ref(0) in
(read x, A(). incs x [)
inc; £ recincx = lete =!xin
if CAS(x,c,1+ c) thencelseincx

counter; £ let x = ref(0) in (read x, A(). inc; x)

Figure 1. Two concurrent counter implementations.

are often referred to as the gold standards of equivalence and refine-

Thank you!

Download RelLoC at https://cs.ru.nl/~dfrumin/reloc/
Download Iris at https://iris-project.org/

Advertisement. | currently have a vacancy for a
fully funded PhD position (4 years) in the beautiful
Netherlands

Topics: Separation logic for multilingual programs,
asynchronous |1/O, non-functional properties,
verified compilation, proof automation, tactics, ...

Interested/Know someone? Get in touch!

https://cs.ru.nl/~dfrumin/reloc/
https://iris-project.org/

