Relational reasoning using concurrent separation logic

Robbert Krebbers ${ }^{1}$
Delft University of Technology, The Netherlands

February 23, 2019 @ EU Types meeting, Krakow, Poland

[^0]Why prove relational properties of programs?

- Specifying programs
implementation ctx specification

Why prove relational properties of programs?

- Specifying programs

$$
\text { implementation }{ }_{c t x} \text { specification }
$$

- Optimized versions of data structures

$$
\text { hash_table } \precsim c t x \text { assoc_list }
$$

Why prove relational properties of programs?

- Specifying programs

```
implementation \precsimctx specification
```

- Optimized versions of data structures

$$
\text { hash_table } \precsim c t x \text { assoc_list }
$$

- Proving program transformations

$$
\forall e_{\text {source }} . \text { compile }\left(e_{\text {source }}\right) \precsim c t x e_{\text {source }}
$$

Language features that complicate refinements

- Mutable state

$$
(\operatorname{let} x=f() \operatorname{in}(x, x)) \not \mathbb{L}_{\operatorname{ctx}}(f(), f())
$$

Language features that complicate refinements

- Mutable state

$$
(\operatorname{let} x=f() \text { in }(x, x)) \not{L} \operatorname{ctx}(f(), f())
$$

- Higher-order functions

$$
(\lambda() \cdot 1) \not{L} \operatorname{ctx}(\operatorname{let} x=\operatorname{ref}(0) \text { in }(\lambda() \cdot x \leftarrow(1+!x) ;!x))
$$

Language features that complicate refinements

- Mutable state

$$
(\operatorname{let} x=f() \text { in }(x, x)) \not{L} \operatorname{ctx}(f(), f())
$$

- Higher-order functions

$$
(\lambda() \cdot 1) \not{L} \operatorname{ctx}(\operatorname{let} x=\operatorname{ref}(0) \operatorname{in}(\lambda() \cdot x \leftarrow(1+!x) ;!x))
$$

- Concurrency

$$
(x \leftarrow 10 ; x \leftarrow 11) \not{L} \operatorname{Lctx}(x \leftarrow 11)
$$

What do such relational properties mean mathematically?

Contextual refinement

Contextual refinement: the "gold standard" of program refinement:

$$
e_{1} \precsim c t x e_{2}: \tau \triangleq \forall(\mathcal{C}: \tau \rightarrow \mathbf{N}) . \forall v . \mathcal{C}\left[e_{1}\right] \downarrow v \Longrightarrow \mathcal{C}\left[e_{2}\right] \downarrow v
$$

"Any behavior of a (well-typed) client \mathcal{C} using e_{1} can be matched by a behavior of the same client using e_{2} "

Contextual refinement

Contextual refinement: the "gold standard" of program refinement:

$$
e_{1} \precsim c t x e_{2}: \tau \triangleq \underset{\uparrow}{\forall}(\mathcal{C}: \tau \rightarrow \mathbf{N}) . \forall v . \mathcal{C}\left[e_{1}\right] \downarrow v \Longrightarrow \mathcal{C}\left[e_{2}\right] \downarrow v
$$

"Any behavior of a (well-typed) client \mathcal{C} using e_{1} can be matched by a behavior of the same client using e_{2} "

Very hard to prove: Quantification over all clients

Logical relations to the rescue!

Do not prove contextual refinement directly, but use a binary logical relation:

$$
e_{1} \precsim e_{2}: \tau
$$

- $e_{1} \precsim e_{2}: \tau$ is defined structurally on the type τ
- Does not involve quantification over all clients \mathcal{C}
- Soundness $e_{1} \precsim e_{2}: \tau \Longrightarrow e_{1} \precsim c t x e_{2}: \tau$ proved once and for all

A bit of history

Logical relations $e_{1} \precsim e_{2}: \tau$ are notoriously hard to define when having recursive types, higher-order state (type-world circularity), ...

A bit of history

Logical relations $e_{1} \precsim e_{2}: \tau$ are notoriously hard to define when having recursive types, higher-order state (type-world circularity), ...

Solutions to define such logical relations:

A bit of history

Logical relations $e_{1} \precsim e_{2}: \tau$ are notoriously hard to define when having recursive types, higher-order state (type-world circularity), ...

Solutions to define such logical relations:

- Step-indexing (Appel-McAllester, Ahmed, ...)

Solve circularities by stratifying everything by a natural number corresponding to the number of computation steps

A bit of history

Logical relations $e_{1} \precsim e_{2}: \tau$ are notoriously hard to define when having recursive types, higher-order state (type-world circularity), ...

Solutions to define such logical relations:

- Step-indexing (Appel-McAllester, Ahmed, ...)

Solve circularities by stratifying everything by a natural number corresponding to the number of computation steps

- Logical approach (LSLR, LADR, CaReSL, Iris, ...)

Hide step-indexing using modalities to obtain clearer definitions and proofs

A bit of history

Logical relations $e_{1} \precsim e_{2}: \tau$ are notoriously hard to define when having recursive types, higher-order state (type-world circularity), ...

Solutions to define such logical relations:

- Step-indexing (Appel-McAllester, Ahmed, ...)

Solve circularities by stratifying everything by a natural number corresponding to the number of computation steps

- Logical approach (LSLR, LADR, CaReSL, Iris, ...)

Hide step-indexing using modalities to obtain clearer definitions and proofs

We tried to take this one step further

Prove program refinements using inference rules à la concurrent separation logic

Instead of Hoare triples $\{P\} e\{Q\}$ we have refinement judgments $e_{1} \precsim e_{2}: \tau$

- Refinement proofs by symbolic execution as we know from separation logic
- Modular and conditional specifications
- Modeled using the "logical approach"

ReLoC [Frumin, Krebbers, Birkedal; LICS'18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained concurrent programs.

ReLoC [Frumin, Krebbers, Birkedal; LICS'18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained concurrent programs.

- Fine-grained concurrency: programs use low-level synchronization primitives for more granular parallelism

ReLoC [Frumin, Krebbers, Birkedal; LICS'18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained concurrent programs.

- Fine-grained concurrency: programs use low-level synchronization primitives for more granular parallelism
- Mechanized: soundness proven sound using the Iris framework in Coq

ReLoC [Frumin, Krebbers, Birkedal; LICS'18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained concurrent programs.

- Fine-grained concurrency: programs use low-level synchronization primitives for more granular parallelism
- Mechanized: soundness proven sound using the Iris framework in Coq
- Interactive refinement proofs: using high-level tactics in Coq

ReLoC: (simplified) grammar

$$
P, Q \in \operatorname{Prop}::=\forall x . P|\exists x . P| P \vee Q \mid \ldots
$$

ReLoC: (simplified) grammar

$$
\begin{aligned}
& P, Q \in \operatorname{Prop}::=\forall x . P|\exists x . P| P \vee Q \mid \ldots \\
& \quad|P * Q| P * Q\left|\ell \mapsto_{\mathrm{i}} v\right| \ell \mapsto_{\mathrm{s}} v
\end{aligned}
$$

Separation logic for handling mutable state

- $\ell \mapsto_{\mathrm{i}} v$ for the left-hand side (implementation)
- $\ell \mapsto_{s} v$ for the right-hand side (specification)

ReLoC: (simplified) grammar

$$
P, Q \in \text { Prop }::=\forall x . P|\exists x . P| P \vee Q \mid \ldots
$$

$$
\begin{aligned}
& |P * Q| P * Q\left|\ell \mapsto_{i} v\right| \ell \mapsto_{s} v \\
& \left|\quad\left(\Delta \|=e_{1} \precsim e_{2}: \tau\right)\right| \llbracket \tau \rrbracket_{\Delta}\left(v_{1}, v_{2}\right) \mid \ldots
\end{aligned}
$$

Separation logic for handling mutable state

- $\ell \mapsto_{\mathrm{i}} v$ for the left-hand side (implementation)
- $\ell \mapsto_{s} v$ for the right-hand side (specification)

Logic with first-class refinement propositions to allow conditional refinements

- $\left(\ell_{1} \mapsto_{i} v\right){ }^{*}\left(e_{1} \precsim e_{2}: \tau\right)$
- $\left(e_{1} \precsim e_{2}: \mathbf{1} \rightarrow \tau\right) \rightarrow\left(f\left(e_{1}\right) \precsim e_{2}() ; e_{2}(): \tau\right)$

Proving refinements of pure programs

Some rules for pure programs

Symbolic execution rules

$$
\frac{\Delta \|=K\left[e_{1}^{\prime}\right] \precsim e_{2}: \tau \quad e_{1} \rightarrow_{\text {pure }} e_{1}^{\prime}}{\Delta \| \models K\left[e_{1}\right] \precsim e_{2}: \tau} *
$$

Some rules for pure programs

Symbolic execution rules

$$
\begin{gathered}
\frac{\Delta \|=K\left[e_{1}^{\prime}\right] \precsim e_{2}: \tau \quad e_{1} \rightarrow_{\text {pure }} e_{1}^{\prime}}{\Delta \| \models K\left[e_{1}\right] \precsim e_{2}: \tau} * \\
\frac{\Delta \|=e_{1} \precsim K\left[e_{2}^{\prime}\right]: \tau \quad e_{2} \rightarrow_{\text {pure }} e_{2}^{\prime}}{\Delta \| \models e_{1} \precsim K\left[e_{2}\right]: \tau} *
\end{gathered}
$$

Some rules for pure programs

Structural rules

$$
\frac{\Delta\left\|e_{1} \precsim e_{2}: \tau \quad * \quad \Delta\right\| \models e_{1}^{\prime} \precsim e_{2}^{\prime}: \tau^{\prime}}{\Delta \|=\left(e_{1}, e_{1}^{\prime}\right) \precsim\left(e_{2}, e_{2}^{\prime}\right): \tau \times \tau^{\prime}} *
$$

Some rules for pure programs

Structural rules

$$
\begin{gathered}
\frac{\Delta\left\|e_{1} \precsim e_{2}: \tau \quad * \quad \Delta\right\|=e_{1}^{\prime} \precsim e_{2}^{\prime}: \tau^{\prime}}{\Delta \| \models\left(e_{1}, e_{1}^{\prime}\right) \precsim\left(e_{2}, e_{2}^{\prime}\right): \tau \times \tau^{\prime}} * \\
\frac{\exists(R: V a l \times V \text { Val } \rightarrow \operatorname{Prop}) . \quad[\alpha:=R], \Delta \|=e_{1} \precsim e_{2}: \tau}{\Delta \|=\operatorname{pack}\left(e_{1}\right) \precsim \operatorname{pack}\left(e_{2}\right): \exists \alpha . \tau} *
\end{gathered}
$$

Some rules for pure programs

Structural rules

$$
\begin{gathered}
\frac{\Delta\left\|e_{1} \precsim e_{2}: \tau \quad * \quad \Delta\right\|=e_{1}^{\prime} \precsim e_{2}^{\prime}: \tau^{\prime}}{\Delta \| \models\left(e_{1}, e_{1}^{\prime}\right) \precsim\left(e_{2}, e_{2}^{\prime}\right): \tau \times \tau^{\prime}} * \\
\frac{\exists(R: V a l \times V a l \rightarrow \operatorname{Prop}) . \quad[\alpha:=R], \Delta \|=e_{1} \precsim e_{2}: \tau}{\Delta \| \models \operatorname{pack}\left(e_{1}\right) \precsim \operatorname{pack}\left(e_{2}\right): \exists \alpha \cdot \tau} * \\
\frac{\llbracket \tau \rrbracket \Delta\left(v_{1}, v_{2}\right)}{\Delta \| \models v_{1} \precsim v_{2}: \tau} * \quad \frac{\square\binom{\forall v_{1} v_{2} \cdot \llbracket \tau \rrbracket_{\Delta}\left(v_{1}, v_{2}\right) * *}{\Delta \|=e_{1}\left[v_{1} / x_{1}\right] \precsim e_{2}\left[v_{2} / x_{2}\right]: \sigma}}{\Delta \|=\lambda x_{1} \cdot e_{1} \precsim \lambda x_{2} \cdot e_{2}: \tau \rightarrow \sigma} *
\end{gathered}
$$

Example

A bit interface:

$$
\mathrm{bitT} \triangleq \exists \alpha . \alpha \times(\alpha \rightarrow \alpha) \times(\alpha \rightarrow 2)
$$

- constructor
- flip the bit
- view the bit as a Boolean

Example

A bit interface:

$$
\mathrm{bitT} \triangleq \exists \alpha . \alpha \times(\alpha \rightarrow \alpha) \times(\alpha \rightarrow 2)
$$

- constructor
- flip the bit
- view the bit as a Boolean

Two implementations:

$$
\begin{aligned}
\text { bit_bool } & \triangleq \operatorname{pack}(\operatorname{true},(\lambda b . \neg b),(\lambda b . b)) \\
\text { bit_nat } & \triangleq \operatorname{pack}(1,(\lambda n . \text { if } n=0 \text { then } 1 \text { else } 0),(\lambda n . n=1))
\end{aligned}
$$

Example

A bit interface:

$$
\mathrm{bitT} \triangleq \exists \alpha . \alpha \times(\alpha \rightarrow \alpha) \times(\alpha \rightarrow 2)
$$

- constructor
- flip the bit
- view the bit as a Boolean

Two implementations:

$$
\begin{aligned}
\text { bit_bool } & \triangleq \operatorname{pack}(\operatorname{true},(\lambda b . \neg b),(\lambda b . b)) \\
\text { bit_nat } & \triangleq \operatorname{pack}(1,(\lambda n . \operatorname{if} n=0 \text { then } 1 \text { else } 0),(\lambda n . n=1))
\end{aligned}
$$

Refinement (and vice versa):

$$
\text { bit_bool } \precsim \text { bit_nat : bitT }
$$

Proof of the refinement

$$
\begin{gathered}
\operatorname{pack}(\operatorname{true},(\lambda b . \neg b),(\lambda b . b)) \\
\precsim \\
\operatorname{pack}(1,(\lambda n . \text { if } n=0 \text { then } 1 \mathrm{else} 0),(\lambda n \cdot n=1))
\end{gathered}
$$

$\exists \alpha . \alpha \times(\alpha \rightarrow \alpha) \times(\alpha \rightarrow \mathbf{2})$

Proof of the refinement

$$
\begin{gathered}
\operatorname{pack}(\operatorname{true},(\lambda b \cdot \neg b),(\lambda b . b)) \\
\precsim
\end{gathered}
$$

$$
\operatorname{pack}(1,(\lambda n . \text { if } n=0 \text { then } 1 \mathrm{else} 0),(\lambda n . n=1))
$$

$$
\overbrace{\text { Need to come with with an } R: \text { Val } \times \text { Val } \rightarrow \text { Prop }}^{\exists \alpha . \alpha \times(\alpha \rightarrow \alpha) \times(\alpha \rightarrow \mathbf{2})}
$$

Proof of the refinement

$$
\begin{aligned}
& \text { where } R \triangleq\{(\operatorname{true}, 1),(\mathrm{false}, 0)\} \\
& \qquad \operatorname{pack}(\operatorname{true},(\lambda b . \neg b),(\lambda b \cdot b)) \\
& \precsim \\
& \operatorname{pack}(1,(\lambda n . \text { if } n=0 \operatorname{then} 1 \text { else } 0),(\lambda n \cdot n=1))
\end{aligned}
$$

Proof of the refinement

$$
\begin{gathered}
{[\alpha:=R] \models \quad \text { where } R \triangleq\{(\text { true }, 1),(\text { false }, 0)\}} \\
(\text { true, }(\lambda b . \neg b),(\lambda b . b)) \\
\precsim \\
(1,(\lambda n . \text { if } n=0 \text { then } 1 \text { else } 0),(\lambda n . n=1)) \\
: \\
\alpha \times(\alpha \rightarrow \alpha) \times(\alpha \rightarrow \mathbf{2})
\end{gathered}
$$

Proof of the refinement

$$
[\alpha:=R] \models \quad \text { where } R \triangleq\{(\text { true }, 1),(\text { false }, 0)\}
$$

$$
(\text { true },(\lambda b . \neg b),(\lambda b . b))
$$

$$
\precsim
$$

$$
(1,(\lambda n . \text { if } n=0 \text { then } 1 \text { else } 0),(\lambda n . n=1))
$$

Proof of the refinement

$$
\begin{array}{rlrl}
{[\alpha:=R] \models} & \text { where } R \triangleq\{(\text { true }, 1),(\text { false }, 0)\} \\
\text { true } & \precsim 1 & & : \alpha \\
(\lambda b . \neg b) & \precsim(\lambda n . \text { if } n=0 \text { then } 1 \text { else } 0) & & : \alpha \rightarrow \alpha \\
(\lambda b . b) & \precsim(\lambda n . n=1) & & : \alpha \rightarrow \mathbf{2}
\end{array}
$$

Proof of the refinement

$$
\begin{array}{rlrl}
{[\alpha:=R] \models} & \text { where } R \triangleq\{(\text { true }, 1),(\text { false }, 0)\} \\
\text { true } & \precsim 1 & & : \alpha \\
(\lambda b . \neg b) & \precsim(\lambda n . \text { if } n=0 \text { then } 1 \text { else } 0) & & : \alpha \rightarrow \alpha \\
(\lambda b . b) & \precsim(\lambda n . n=1) & & : \alpha \rightarrow \mathbf{2}
\end{array}
$$

Proof of the refinement

$$
\begin{array}{rlrl}
{[\alpha:=R] \models} & \text { where } R \triangleq\{(\text { true }, 1),(\text { false }, 0)\} \\
\text { true } & \precsim 1 & & : \alpha \\
(\lambda b . \neg b) & \precsim(\lambda n . \text { if } n=0 \text { then } 1 \text { else } 0) & & : \alpha \rightarrow \alpha \\
(\lambda b . b) & \precsim(\lambda n . n=1) & : \alpha \rightarrow \mathbf{2}
\end{array}
$$

$$
\text { (by def of } R \text {) }
$$

Proof of the refinement

$$
\begin{array}{rlrl}
{[\alpha:=R]} & \text { where } R \triangleq\{(\operatorname{true}, 1),(\text { false }, 0)\} & \\
\text { true } & \precsim 1 & : \alpha & \quad \text { (by def of } R) \\
(\lambda b . \neg b) & \precsim(\lambda n . \text { if } n=0 \text { then } 1 \text { else } 0) & : \alpha \rightarrow \alpha & (\lambda \text {-rule }+ \text { symb. exec.) } \\
(\lambda b . b) & \precsim(\lambda n . n=1) & : \alpha \rightarrow 2
\end{array}
$$

After using the λ rule and case analysis on R :

$$
\begin{aligned}
\neg \text { true } \precsim \text { if } 1=0 \text { then } 1 \text { else } 0 & : \alpha \\
\neg \text { false } \precsim \text { if } 0=0 \text { then } 1 \text { else } 0 & : \alpha
\end{aligned}
$$

Proof of the refinement

$$
\begin{array}{rlrl}
{[\alpha:=R]} & \text { where } R \triangleq\{(\text { true } 1),(\text { false }, 0)\} & \\
\text { true } & \precsim 1 & : \alpha & \\
(\lambda b . \neg b) & \precsim(\lambda n . \text { if } n=0 \text { then } 1 \text { else } 0) & : \alpha \rightarrow \alpha & (\lambda \text {-rule }+ \text { symb. exec. }) \\
(\lambda b . b) & \precsim(\lambda n . n=1) & : \alpha \rightarrow 2 & (\lambda \text {-rule }+ \text { symb. exec. })
\end{array}
$$

Proof of the refinement

$$
\begin{array}{rlrl}
{[\alpha:=R]} & \text { where } R \triangleq\{(\text { true } 1),(\text { false }, 0)\} & \\
\text { true } & \precsim 1 & : \alpha & \\
(\lambda b . \neg b) & \precsim(\lambda n . \text { if } n=0 \text { then } 1 \text { else } 0) & : \alpha \rightarrow \alpha & (\lambda \text {-rule }+ \text { symb. exec. }) \\
(\lambda b . b) & \precsim(\lambda n . n=1) & : \alpha \rightarrow 2 & (\lambda \text {-rule }+ \text { symb. exec. })
\end{array}
$$

Reasoning about mutable state

Separation logic to the rescue!

"Vanilla" separation logic [O'Hearn, Reynolds, Yang; CSL'01]

Propositions P, Q denote ownership of resources

Points-to connective $\ell \mapsto v$:
Exclusive ownership of location ℓ with value v

Separating conjunction $P * Q$:
The resources consists of separate parts satisfying P and Q

Basic example:

$$
\left\{\ell_{1} \mapsto v_{1} * \ell_{2} \mapsto v_{2}\right\} \operatorname{swap}\left(\ell_{1}, \ell_{2}\right)\left\{\ell_{1} \mapsto v_{2} * \ell_{2} \mapsto v_{1}\right\}
$$

the $*$ ensures that ℓ_{1} and ℓ_{2} are different memory locations

Mutable state and separation logic for refinements

There are two versions of the points-to connective:

- $\ell \mapsto_{\mathrm{i}} v$ for the left-hand side/implementation
- $\ell \mapsto_{\mathrm{s}} v$ for the right-hand side/specification

Mutable state and separation logic for refinements

There are two versions of the points-to connective:

- $\ell \mapsto_{\mathrm{i}} v$ for the left-hand side/implementation
- $\ell \mapsto_{s} \vee$ for the right-hand side/specification

Example:

$$
\ell_{1} \mapsto_{\mathrm{i}} 4 \quad-* \quad \ell_{2} \mapsto_{\mathrm{s}} 0 \quad \rightarrow^{*} \quad\left(!\ell_{1}\right) \precsim\left(\ell_{2} \leftarrow 4 ;!\ell_{2}\right): \mathbf{N}
$$

Some rules for mutable state

Symbolic execution

$$
\frac{\ell_{1} \mapsto_{\mathrm{i}}-\quad * \quad\left(\ell_{1} \mapsto_{\mathrm{i}} v_{1} * \Delta \| K[()] \precsim e_{2}: \tau\right)^{*}}{\Delta \|=K\left[\ell_{1} \leftarrow v_{1}\right] \precsim e_{2}: \tau}
$$

Some rules for mutable state

Symbolic execution

$$
\begin{gathered}
\frac{\ell_{1} \mapsto_{\mathrm{i}}-\quad\left(\ell_{1} \mapsto_{\mathrm{i}} v_{1} * \Delta \| K[()] \precsim e_{2}: \tau\right)^{*}}{\Delta \|=K\left[\ell_{1} \leftarrow v_{1}\right] \precsim e_{2}: \tau} \\
\frac{\ell_{2} \mapsto_{\mathrm{s}}-\quad}{\Delta \quad\left(\ell_{2} \mapsto_{\mathrm{s}} v_{2} * \Delta \| \models e_{1} \precsim K[()]: \tau\right)^{2}} * \\
\Delta \|=e_{1} \precsim K\left[\ell_{2} \leftarrow v_{2}\right]: \tau
\end{gathered}
$$

Some rules for mutable state

Symbolic execution

$$
\begin{gathered}
\frac{\ell_{1} \mapsto_{\mathrm{i}}-\quad\left(\ell_{1} \mapsto_{\mathrm{i}} v_{1} * \Delta \| K[()] \precsim e_{2}: \tau\right)}{\Delta \| \models K\left[\ell_{1} \leftarrow v_{1}\right] \precsim e_{2}: \tau} * \\
\frac{\ell_{2} \mapsto_{\mathrm{s}}-\quad}{} \quad * \quad\left(\ell_{2} \mapsto_{\mathrm{s}} v_{2} * \Delta \|=e_{1} \precsim K[()]: \tau\right)^{2}
\end{gathered} *
$$

$$
\frac{\forall \ell_{1} \cdot \ell_{1} \mapsto_{\mathrm{i}} v_{1} * \Delta \| K\left[\ell_{1}\right] \precsim e_{2}: \tau}{\Delta \| \models K\left[\operatorname{ref}\left(v_{1}\right)\right] \precsim e_{2}: \tau} * \quad \frac{\forall \ell_{2} \cdot \ell_{2} \mapsto_{\mathrm{s}} v_{2} * \Delta \| \models e \precsim K\left[\ell_{2}\right]: \tau}{\Delta \| e_{1} \precsim K\left[\operatorname{ref}\left(v_{2}\right)\right]: \tau} *
$$

Reasoning about higher-order functions and concurrency

State encapsulation

Modules with encapsulated state:

State encapsulation

Modules with encapsulated state:

Simple example:

$$
\text { counter } \triangleq(\lambda() . \text { let } x=\operatorname{ref}(1) \text { in }(\lambda() . \operatorname{FAA}(x, 1))): \mathbf{1} \rightarrow(\mathbf{1} \rightarrow \mathbf{N})
$$

- counter () constructs an instance c:1 $\rightarrow \mathbf{N}$ of the counter module
- Calling $c()$ in subsequently gives $0,1,2, \ldots$
- The reference x is private to the module

The problem

Modules with encapsulated state:

$$
\operatorname{let} x=\operatorname{ref}(e) \text { in } \underbrace{(\lambda y \ldots)}_{f}
$$

The problem

Modules with encapsulated state:

$$
\operatorname{let} x=\operatorname{ref}(e) \text { in } \underbrace{(\lambda y \ldots)}_{f}
$$

Reasoning about such modules is challenging:

- f can be called multiple times by clients

So, the value of x can change in each call

The problem

Modules with encapsulated state:

$$
\operatorname{let} x=\operatorname{ref}(e) \text { in } \underbrace{(\lambda y \ldots)}_{f}
$$

Reasoning about such modules is challenging:

- f can be called multiple times by clients

So, the value of x can change in each call

- f can even be called even in parallel!

So, f cannot get exclusive access to $x \mapsto v$

The problem

Modules with encapsulated state:

$$
\operatorname{let} x=\operatorname{ref}(e) \text { in } \underbrace{(\lambda y \ldots)}_{f}
$$

Reasoning about such modules is challenging:

- f can be called multiple times by clients

So, the value of x can change in each call

- f can even be called even in parallel!

So, f cannot get exclusive access to $x \mapsto v$

We need to guarantee that closures do not get access to exclusive resources

Persistent resources

The "persistent" modality \square in Iris/ReLoC:
$\square P \triangleq$ " P holds without assuming exclusive resources"

Examples:

- Equality is persistent: $(x=y) \vdash \square(x=y)$
- Points-to connectives are not: $((\ell \mapsto v) \nvdash \square(\ell \mapsto v)$
- More examples later...

ReLoC's λ-rule again

The modality makes sure no exclusive resources can escape into closures:

$$
\frac{\square\binom{\forall v_{1} v_{2} \cdot \llbracket \tau \rrbracket \Delta\left(v_{1}, v_{2}\right) *}{\Delta \| \models e_{1}\left[v_{1} / x_{1}\right] \precsim e_{2}\left[v_{2} / x_{2}\right]: \sigma}}{\Delta \|=\lambda x_{1} \cdot e_{1} \precsim \lambda x_{2} \cdot e_{2}: \tau \rightarrow \sigma} *
$$

ReLoC's λ-rule again

The \square modality makes sure no exclusive resources can escape into closures:

$$
\frac{\square\binom{\forall v_{1} v_{2} \cdot \llbracket \tau \rrbracket_{\Delta}\left(v_{1}, v_{2}\right) *}{\Delta \|=e_{1}\left[v_{1} / x_{1}\right] \precsim e_{2}\left[v_{2} / x_{2}\right]: \sigma}}{\Delta \|=\lambda x_{1} \cdot e_{1} \precsim \lambda x_{2} \cdot e_{2}: \tau \rightarrow \sigma} *
$$

Prohibits "wrong" refinements, for example:

$$
(\lambda() \cdot 1) \not L_{c t x}(\operatorname{let} x=\operatorname{ref}(0) \text { in }(\lambda() \cdot x \leftarrow(1+!x) ;!x))
$$

Due to \square, the resource $x \mapsto_{\mathrm{s}} 0$ cannot be used to prove the closure

But it should be possible to use resources in closures

For example:

$$
\begin{gathered}
(\lambda() \cdot \operatorname{let} x=\operatorname{ref}(1) \operatorname{in}(\lambda() \cdot \operatorname{FAA}(x, 1))) \\
\\
\precsim
\end{gathered}
$$

$$
\left(\begin{array}{c}
\lambda() . \text { let } x=\operatorname{ref}(1), I=\operatorname{newlock}() \text { in } \\
\lambda() . \operatorname{acquire}(I) ; \\
\text { let } v=!x \text { in } \\
x \leftarrow v+1 ; \\
\text { release }(I) ; v
\end{array}\right)
$$

Iris-style Invariants

The invariant connective R

expresses that R is maintained as an invariant on the state

Iris-style Invariants

The invariant connective R
expresses that R is maintained as an invariant on the state
Invariants allow to share resources:

- A resource R can be turned into R at any time
- Invariants are persistent: $R \vdash \square R$
- ...thus can be used to prove closures

Iris-style Invariants

The invariant connective R
expresses that R is maintained as an invariant on the state
Invariants allow to share resources:

- A resource R can be turned into R at any time
- Invariants are persistent: $R \vdash \square R$
- ...thus can be used to prove closures

But that comes with a cost:

- Invariants R can only be accessed during atomic steps on the left-hand side
- ... while multiple steps on the right-hand side can be performed

Example

$$
\begin{aligned}
\text { let } x=\operatorname{ref}(1) & \operatorname{in}(\lambda() \cdot \operatorname{FAA}(x, 1)) \\
& \precsim \\
\text { let } x=\operatorname{ref}(1), & I=\operatorname{newlock}() \text { in } \\
(\lambda() & . \operatorname{acquire}(I) ; \\
& \text { let } v=!x \text { in } \\
& x \leftarrow v+1 ; \\
& \text { release }(I) ; v)
\end{aligned}
$$

Example

$$
\begin{aligned}
\text { let } x=\operatorname{ref}(1) & \operatorname{in}(\lambda() \cdot \operatorname{FAA}(x, 1)) \\
& \precsim \\
\text { let } x=\operatorname{ref}(1) & , I=\operatorname{newlock}() \text { in } \\
(\lambda() & . \operatorname{acquire(I);} \\
& \text { let } v=!x \text { in } \\
& x \leftarrow v+1 ; \\
& \text { release }(I) ; v)
\end{aligned}
$$

Example

$$
\left(\lambda() \cdot \operatorname{FAA}\left(x_{1}, 1\right)\right)
$$

$$
\mathrm{x}_{1} \mapsto_{\mathrm{i}} 1
$$

Example

$$
\mathrm{x}_{1} \mapsto_{\mathrm{i}} 1
$$

$$
\begin{gathered}
\left(\lambda() \cdot \operatorname{FAA}\left(x_{1}, 1\right)\right) \\
\precsim \\
\text { let } x=\operatorname{ref}(1), I=\operatorname{newlock}() \text { in } \\
(\lambda() . \operatorname{acquire}(I) ; \\
\\
\text { let } v=!x \text { in } \\
x \leftarrow v+1 ; \\
\\
\\
\text { release }(I) ; v)
\end{gathered}
$$

Example

$$
\begin{aligned}
& \mathrm{x}_{1} \mapsto_{\mathrm{i}} 1 \\
& \mathrm{x}_{2} \mapsto_{\mathrm{s}} 1
\end{aligned}
$$

$$
\left(\lambda() \cdot \operatorname{FAA}\left(x_{1}, 1\right)\right)
$$ 2人

let $/=$ newlock () in
$(\lambda()$. acquire (I);
let $v=!\mathrm{x}_{2}$ in
$\mathrm{X}_{2} \leftarrow v+1 ;$
release($/$); v)

Example

$$
\begin{aligned}
& \mathrm{x}_{1} \mapsto_{\mathrm{i}} 1 \\
& \mathrm{x}_{2} \mapsto_{\mathrm{s}} 1
\end{aligned}
$$

$$
\begin{gathered}
\left(\lambda() . \operatorname{FAA}\left(x_{1}, 1\right)\right) \\
\precsim \\
\text { let } I=\text { newlock }() \text { in } \\
(\lambda() . \text { acquire }(I) ; \\
\text { let } v=!\mathrm{x}_{2} \text { in } \\
\mathrm{x}_{2} \leftarrow v+1 ; \\
\text { release }(I) ; v)
\end{gathered}
$$

Example

$$
\left(\lambda() \cdot \operatorname{FAA}\left(x_{1}, 1\right)\right)
$$

$$
\begin{gathered}
\precsim \\
(\lambda() . \text { acquire }(I) ; \\
\text { let } v=!\mathrm{x}_{2} \text { in } \\
\mathrm{x}_{2} \leftarrow v+1 ; \\
\text { release }(I) ; v)
\end{gathered}
$$

Example

$$
\left(\lambda() \cdot \operatorname{FAA}\left(x_{1}, 1\right)\right)
$$

$$
\begin{gathered}
\precsim \\
(\lambda() . \text { acquire }(I) ; \\
\text { let } v=!\mathrm{x}_{2} \text { in } \\
\mathrm{x}_{2} \leftarrow v+1 ; \\
\text { release }(I) ; v)
\end{gathered}
$$

Example

$$
\begin{aligned}
& \exists n . \mathrm{x}_{1} \mapsto_{\mathrm{i}} n * \\
& \quad \mathrm{x}_{2} \mapsto_{\mathrm{s}} n * \\
& \quad \text { isLock }(I, \text { unlocked })
\end{aligned}
$$

$$
\left(\lambda() \cdot \operatorname{FAA}\left(x_{1}, 1\right)\right)
$$

\[

\]

Example

$$
\begin{aligned}
& \exists n . \mathrm{x}_{1} \mapsto_{\mathrm{i}} n * \\
& \quad \mathrm{x}_{2} \mapsto_{\mathrm{s}} n * \\
& \quad \text { isLock }(I, \text { unlocked })
\end{aligned}
$$

$\operatorname{FAA}\left(x_{1}, 1\right)$

acquire(I);
let $v=!\mathrm{x}_{2}$ in
$\mathrm{x}_{2} \leftarrow v+1 ;$
release(I); v

Example

$$
\begin{aligned}
& \exists n . \mathrm{x}_{1} \mapsto_{\mathrm{i}} n * \\
& \quad \mathrm{x}_{2} \mapsto_{\mathrm{s}} n * \\
& \quad \text { isLock }(I, \text { unlocked })
\end{aligned}
$$

$\operatorname{FAA}\left(x_{1}, 1\right)$

acquire(I);
let $v=!\mathrm{x}_{2}$ in
$\mathrm{x}_{2} \leftarrow v+1 ;$
release(I); v

Example

```
\existsn. }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\mapsto}{\textrm{i}}{}n
    \mp@subsup{x}{2}{}}\mp@subsup{\mapsto}{\textrm{S}}{}n
    isLock(I, unlocked)
```

$\operatorname{FAA}\left(x_{1}, 1\right)$

acquire(I);
let $v=!\mathrm{x}_{2}$ in
$\mathrm{x}_{2} \leftarrow v+1 ;$
release(I); v

Example

```
\existsn. }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\mapsto}{\textrm{i}}{}n
    \mp@subsup{x}{2}{}}\mp@subsup{\mapsto}{5}{}n
    isLock(I,unlocked)
```

$$
\mathrm{x}_{1} \mapsto_{\mathrm{i}} n+1
$$

$$
\mathrm{x}_{2} \mapsto_{\mathrm{s}} n
$$

isLock(I, unlocked)

$$
\begin{gathered}
n \\
\precsim \\
\text { acquire }(I) ; \\
\text { let } v=!\mathrm{x}_{2} \text { in } \\
\mathrm{x}_{2} \leftarrow v+1 ; \\
\text { release }(I) ; v
\end{gathered}
$$

Example

```
\existsn. }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\mapsto}{\textrm{i}}{}n
    \mp@subsup{x}{2}{}}\mp@subsup{\mapsto}{5}{}n
    isLock(I,unlocked)
```

$$
\mathrm{x}_{1} \mapsto_{\mathrm{i}} n+1
$$

$$
\mathrm{x}_{2} \mapsto_{\mathrm{s}} n
$$

isLock(I, unlocked)

$$
\begin{gathered}
n \\
\precsim \\
\text { acquire }(I) ; \\
\text { let } v=!\mathrm{x}_{2} \text { in } \\
\mathrm{x}_{2} \leftarrow v+1 ; \\
\text { release }(I) ; v
\end{gathered}
$$

Example

```
\existsn. }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\mapsto}{\textrm{i}}{}n
    \mp@subsup{x}{2}{}}\mp@subsup{\mapsto}{\textrm{S}}{}n
    isLock(I,unlocked)
```

$$
\begin{aligned}
& \mathrm{x}_{1} \mapsto_{\mathrm{i}} n+1 \\
& \mathrm{x}_{2} \mapsto_{\mathrm{s}} n
\end{aligned}
$$

isLock(/, locked)

Example

```
\existsn. }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\mapsto}{\textrm{i}}{}n
    \mp@subsup{x}{2}{}}\mp@subsup{\mapsto}{\textrm{S}}{}n
    isLock(I,unlocked)
```

$$
\begin{aligned}
& \mathrm{x}_{1} \mapsto_{\mathrm{i}} n+1 \\
& \mathrm{x}_{2} \mapsto_{\mathrm{s}} n
\end{aligned}
$$

isLock(/, locked)

Example

```
\existsn. }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\mapsto}{\textrm{i}}{}n
    \mp@subsup{x}{2}{}}\mp@subsup{\mapsto}{\textrm{S}}{}n
    isLock(I, unlocked)
```

$$
\begin{aligned}
& \mathrm{x}_{1} \mapsto_{\mathrm{i}} n+1 \\
& \mathrm{x}_{2} \mapsto_{\mathrm{s}} n
\end{aligned}
$$

isLock(/, locked)

Example

```
\existsn. }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\mapsto}{\textrm{i}}{}n
    \mp@subsup{x}{2}{}}\mp@subsup{\mapsto}{\textrm{S}}{}n
    isLock(I, unlocked)
```

$$
\begin{aligned}
& \mathrm{x}_{1} \mapsto_{\mathrm{i}} n+1 \\
& \mathrm{x}_{2} \mapsto_{\mathrm{s}} n
\end{aligned}
$$

isLock(/, locked)

Example

```
\existsn. }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\mapsto}{\textrm{i}}{}n
    \mp@subsup{x}{2}{}}\mp@subsup{\mapsto}{\textrm{S}}{}n
    isLock(I, unlocked)
```

$$
\begin{aligned}
& \mathrm{x}_{1} \mapsto_{\mathrm{i}} n+1 \\
& \mathrm{x}_{2} \mapsto_{\mathrm{s}} n+1 \\
& \text { isLock }(I, \text { locked })
\end{aligned}
$$

Example

```
\existsn. }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\mapsto}{\textrm{i}}{}n
    \mp@subsup{x}{2}{}}\mp@subsup{\mapsto}{\textrm{S}}{}n
    isLock(I, unlocked)
```

$$
\begin{aligned}
& \mathrm{x}_{1} \mapsto_{\mathrm{i}} n+1 \\
& \mathrm{x}_{2} \mapsto_{\mathrm{s}} n+1 \\
& \text { isLock }(/, \text { locked })
\end{aligned}
$$

Example

```
\existsn. }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\mapsto}{\textrm{i}}{}n
    \mp@subsup{x}{2}{}}\mp@subsup{\mapsto}{\textrm{S}}{}n
    isLock(I,unlocked)
```

$$
\begin{aligned}
& \mathrm{x}_{1} \mapsto_{\mathrm{i}} n+1 \\
& \mathrm{x}_{2} \mapsto_{\mathrm{s}} n+1 \\
& \text { isLock }(I, \text { unlocked })
\end{aligned}
$$

Example

$$
\begin{aligned}
& \exists n . \mathrm{x}_{1} \mapsto_{\mathrm{i}} n * \\
& \quad \mathrm{x}_{2} \mapsto_{\mathrm{s}} n * \\
& \quad \text { isLock }(I, \text { unlocked })
\end{aligned}
$$

Wrapping up...

- ReLoC provides rules allowing this kind of simulation reasoning, formally
- The example can be done in Coq in almost the same fashion
- The approach scales to: lock-free concurrent data structures, generative ADTs, examples from the logical relations literature

Logically atomic relational specifications

Problem

- The example that we have seen is a bit more subtle: the fetch-and-add (FAA) function is not a physically atomic instruction
- What kind of specification can we give to FAA as a compound program?

Logically atomic relational specifications

Problem

- The example that we have seen is a bit more subtle: the fetch-and-add (FAA) function is not a physically atomic instruction
- What kind of specification can we give to FAA as a compound program?

Our solution
Relational version of TaDA-style logically atomic triples in ReLoC

Implementation in Coq

ReLoC

ReLoC is build on top of the Iris framework, so we can inherit:

- Iris's Invariants
- Iris's ghost state
- Iris's Coq infrastructure
- ...

The proofs we have done in Coq

ReLoC judgments $e_{1} \precsim e_{2}: \tau$ are modeled as a shallow embedding using the "logical approach" to logical relations

Proved in Coq:

- Proof rules: All the ReLoC rules hold in the shallow embedding
- Soundness: $e_{1} \precsim e_{2}: \tau \Longrightarrow e_{1} \precsim c t x e_{2}: \tau$
- Actual program refinements: concurrent data structures, and examples from the logical relations literature

Need to reason in separation logic!

Iris Proof Mode (IPM) [Krebbers et al:; PopL'17]

```
Lemma test {A} (P Q : iProp) (\Psi : A }->\mathrm{ iProp) :
    P * (\exists\textrm{a},\Psi\textrm{a})*Q -* Q * \existsa, P * \Psi a.
Proof.
    iIntros "[H1 [H2 H3]]".
    iDestruct "H2" as (x) "H2".
    iSplitL "H3".
    - iAssumption.
    - iExists x.
        iFrame.
```

Qed.

Iris Proof Mode (IPM) [Krebbers et al:; PopL'17]

```
Lemma test {A} (P Q : iProp) (\Psi : A }->\mathrm{ iProp)
    P * (\exists\textrm{a},\Psi\textrm{a})*\textrm{Q}-*\textrm{Q}*\exists\textrm{a},\textrm{P}*\Psi\textrm{a}.
Proof.
    iInt Lemma in the Iris logic
    iDesuru* mз мо m, m
    iSplitL "H3".
    - iAssumption.
    - iExists x.
        iFrame.
```

Qed.

Iris Proof Mode (IPM) [Krebbers et al:; PopL'17]

Lemma test $\{A\}(P Q: i P r o p)(\Psi: A \rightarrow i P r o p)$
$\mathrm{P} *(\exists \mathrm{a}, \Psi \mathrm{a}) * \mathrm{Q}-* \mathrm{Q} * \exists \mathrm{a}, \mathrm{P} * \Psi \mathrm{a}$.
Proof.
iIntros "[H1 [H2 H3]]"
iDestruct "H2" as (x) "H2".
iSplitL "H3".

- iAssumption.
- iExists x. iFrame.
Qed.

$$
\begin{align*}
& 1 \text { subgoal } \\
& \text { A : Type } \\
& \text { P, Q : iProp } \\
& \Psi: A \rightarrow \text { iProp } \\
& \mathrm{x}: \mathrm{A} \tag{1/1}
\end{align*}
$$

"H1" : P
"H2" : Ψ x
"H3" : Q
$\mathrm{Q} *(\exists \mathrm{a}: \mathrm{A}, \mathrm{P} * \Psi \mathrm{a})$

Iris Proof Mode (IPM) [Krebbers et al:; PopL'17]

Lemma test $\{\mathrm{A}\}(\mathrm{P} Q:$ iProp) $(\Psi: \mathrm{A} \rightarrow$ iProp) $P *(\exists \mathrm{a}, \Psi \mathrm{a}) * \mathrm{Q}-* \mathrm{Q} * \exists \mathrm{a}, \mathrm{P} * \Psi \mathrm{a}$. Proof.
iIntros "[H1 [H2 H3]]"
iDestruct "H2" as (x) "H2". iSplitL "H3".

- iAssumption.
- iExists x. iFrame.
Qed.

$$
\begin{align*}
& 1 \text { subgoal } \\
& \text { A: Type } \\
& \text { P, Q : iProp } \\
& \Psi: A \rightarrow \text { iProp } \\
& x: A \tag{1/1}
\end{align*}
$$

"H1" : P
"H2" : Ψ x
"H3" : Q
$Q *(\exists \mathrm{a}: \mathrm{A}, \mathrm{P} * \Psi \mathrm{a})$

* means: resources should be split

Iris Proof Mode (IPM) [Krebbers et al:; PoPL'17]

Iris Proof Mode (IPM) [Krebbers et al:; PopL'17]

Lemma test $\{A\}$ (P Q : iProp) ($\Psi: A \rightarrow$ iProp) $P *(\exists \mathrm{a}, \Psi \mathrm{a}) * \mathrm{Q}-* \mathrm{Q} * \exists \mathrm{a}, \mathrm{P} * \Psi \mathrm{a}$. Proof.
iIntros "[H1 [H2 H3]]"
iDestruct "H2" as (x) "H2".
iSplitL "H3".

- iAssumption

The hypotheses for the left conjunct

$$
\begin{aligned}
& 2 \text { subgoals } \\
& \text { A : Type } \\
& \text { P, Q : iProp } \\
& \Psi: A \rightarrow \text { iProp } \\
& \mathrm{x}: \mathrm{A}
\end{aligned}
$$

"H3" : Q

Q
Q
"H1" : P
"H2" : $\Psi \mathrm{x}$
$\exists \mathrm{a}: \mathrm{A}, \mathrm{P} * \Psi \mathrm{a}$
$\exists \mathrm{a}: \mathrm{A}, \mathrm{P} * \Psi \mathrm{a}$

Iris Proof Mode (IPM) [Krebbers et al:; PopL'17]

Lemma test $\{\mathrm{A}\}(\mathrm{P} Q:$ iProp) $(\Psi: \mathrm{A} \rightarrow$ iProp) : $\mathrm{P} *(\exists \mathrm{a}, \Psi \mathrm{a}) * \mathrm{Q}-* \mathrm{Q} * \exists \mathrm{a}, \mathrm{P} * \Psi \mathrm{a}$. Proof.
iIntros "[H1 [H2 H3]]".
iDestruct "H2" as (x) "H2".
iSplitL "H3".

- iAssumption.
- iExists x. iFrame.
Qed.

Iris Proof Mode (IPM) [Krebbers et al:; PoPL'17]

```
Lemma test {A} (P Q : iProp) (\Psi : A }->\mathrm{ iProp)
    P*(\exists\textrm{a},\Psi\textrm{a})*Q-*Q*\exists\textrm{Q},\textrm{P}*\Psi\textrm{Q}.
Proof
    iIntros "[H1 [H2 H3]]".
    by iFrame.
Qed.
We can also solve this lemma automatically
```


ReLoC in Iris Proof Mode

- The ReLoC rules are just lemmas that can be iApplyed
- We have more automated support for symbolic execution
- Iris Proof Mode features a special context for persistent hypotheses, which is crucial for dealing with invariants

Persistent propositions in Iris Proof Mode

```
Lemma test {PROP : bi} {A}
    (P Q : PROP) (\Psi : A }->\mathrm{ PROP)
    P * }\square(\exists\textrm{a},\Psi\textrm{a})-*\exists\textrm{a},\Psi\textrm{T}|(\textrm{P}*\Psi\textrm{T})
Proof.
    iIntros "[H1 #H2]".
    iDestruct "H2" as (x) "H2".
    iExists x.
    iSplitL "H2".
    - iAssumption.
    - by iFrame.
Qed.
```


Persistent propositions in Iris Proof Mode

Lemma test $\{\mathrm{PROP}: \mathrm{bi}\}\{\mathrm{A}\}$
(P Q : PROP) ($\Psi: \mathrm{A} \rightarrow$ PROP)
$P * \square(\exists \mathrm{a}, \Psi \mathrm{a})-* \exists \mathrm{a}, \Psi \mathrm{a} *(\mathrm{P} * \Psi \mathrm{a})$.
Proof.
i: Persistent modality
iDoworav nц wo (n, nu
iExists x.
iSplitL "H2".

- iAssumption.
- by iFrame.

Qed.

Persistent propositions in Iris Proof Mode

Persistent propositions in Iris Proof Mode

```
Lemma test {PROP : bi} {A}
    (P Q : PROP) (\Psi : A }->\mathrm{ PROP)
    P* 
Proof.
    iIntros "[H1 #H2]".
    iDestruct "H2" as (x) "H2"
    iExists x.
    iSplitL "H2".
    - iAssumption.
    - by iFrame.
Qed.
```

1 subgoal
PROP : bi
A : Type
P, Q: PROP
$\Psi: A \rightarrow P R O P$
x : A
(1/1)
"H2" : Ψ x
"H1" : P
$\exists \mathrm{a}: \mathrm{A}, \Psi \mathrm{a} *(\mathrm{P} * \Psi \mathrm{a})$

Persistent propositions in Iris Proof Mode

```
Lemma test {PROP : bi} {A}
    (P Q : PROP) (\Psi : A }->\mathrm{ PROP)
    P* 
Proof.
    iIntros "[H1 #H2]"
    iDestruct "H2" as (x) "H2"
    iExists x.
    iSplitL "H2".
- iAssumption
```

Do not need to split persistent context $\mu_{\mathrm{x} *\left(\mathrm{P} * \psi_{\mathrm{x}}\right)}$

Persistent propositions in Iris Proof Mode

```
Lemma test {PROP : bi} {A}
    (P Q : PROP) (\Psi : A }->\mathrm{ PROP)
    P* 
Proof.
    iIntros "[H1 #H2]".
    iDestruct "H2" as (x) "H2".
    iExists x.
    iSplitL "H2".
    - iAssumption.
    - by iFrame.
Qed.
```

2 subgoals PROP : bi
A : Type
P, Q: PROP
$\Psi: A \rightarrow P R O P$ x : A
(1/2)
"H2" : Ψ x
ψ_{x}

Conclusions

Conclusions and future work

Contributions

- ReLoC: a logic that allows to carry out refinement proofs interactively in Coq
- New approach to modular refinement specifications for logically atomic programs
- Case studies: concurrent data structures, and examples from the logical relations literature

Future work

- Program transformations
- Refinements between programs in different language
- Other relational properties of concurrent programs

Want to know more details

ReLoC: A Mechanised Relational Logic for Fine-Grained Concurrency

Dan Frumin
Radboud University
dfrumin@cs.ru.nl

Robbert Krebbers
Delft University of Technology
mail@robbertkrebbers.nl

Lars Birkedal
Aarhus University
birkedal@cs.au.dk

Abstract

We present ReLoC: a logic for proving refinements of programs in a language with higher-order state, fine-grained concurrency, polymorphism and recursive types. The core of our logic is a judgement $e \precsim e^{\prime}: \tau$, which expresses that a program e refines a program e^{\prime} at type τ. In contrast to earlier work on refinements for languages with higher-order state and concurrency, ReLoC provides type- and structure-directed rules for manipulating this judgement, whereas previously, such proofs were carried out by unfolding the judgement into its definition in the model. These more abstract proof rules make it simpler to carry out refinement proofs.

Moreover, we introduce logically atomic relational specifications: a novel approach for relational specifications for compound expressions that take effect at a single instant in time. We demonstrate how to formalise and prove such relational specifications in ReLoC,

$$
\begin{aligned}
& \text { read } \triangleq \lambda x() .!x \\
& \text { inc }_{s} \triangleq \lambda x l \text {. acquire } l \text {; let } n=!x \text { in } x \leftarrow 1+n \text {; release } l ; n \\
& \operatorname{counter}_{s} \triangleq \operatorname{let} l=\text { newlock }() \text { in let } x=\operatorname{ref}(0) \text { in } \\
& \left(\operatorname{read} x, \lambda() . \operatorname{inc}_{S} x l\right) \\
& \operatorname{inc}_{i} \triangleq \operatorname{rec} \text { inc } x=\text { let } c=!x \text { in } \\
& \text { if CAS }(x, c, 1+c) \text { then } c \text { else inc } x \\
& \text { counter }_{i} \triangleq \operatorname{let} x=\operatorname{ref}(0) \text { in }\left(\text { read } x, \lambda() . \operatorname{inc}_{i} x\right)
\end{aligned}
$$

Figure 1. Two concurrent counter implementations.

[^1]
Thank you!

Download ReLoC at https://cs.ru.nl/~dfrumin/reloc/
Download Iris at https://iris-project.org/

Advertisement. I currently have a vacancy for a fully funded PhD position (4 years) in the beautiful Netherlands

Topics: Separation logic for multilingual programs, asynchronous I/O, non-functional properties, verified compilation, proof automation, tactics, ...

Interested/Know someone? Get in touch!

[^0]: ${ }^{1}$ This is joint work with Dan Frumin (Radboud University) and Lars Birkedal (Aarhus University)

[^1]: are often referred to as the gold standards of equivalence and refine-

