
1

Relational reasoning using concurrent separation logic

Robbert Krebbers1

Delft University of Technology, The Netherlands

January 20, 2020 @ ADSL, New Orleans, USA

1This is joint work with Dan Frumin (Radboud University) and Lars Birkedal (Aarhus University)

2

Why prove relational properties of programs?

I Specifying programs

implementation -ctx specification

I Optimized versions of data structures

hash table -ctx assoc list

I Proving program transformations

∀esource. compile(esource) -ctx esource

2

Why prove relational properties of programs?

I Specifying programs

implementation -ctx specification

I Optimized versions of data structures

hash table -ctx assoc list

I Proving program transformations

∀esource. compile(esource) -ctx esource

2

Why prove relational properties of programs?

I Specifying programs

implementation -ctx specification

I Optimized versions of data structures

hash table -ctx assoc list

I Proving program transformations

∀esource. compile(esource) -ctx esource

3

Language features that complicate refinements

I Mutable state (
let x = f () in (x , x)

)
6-ctx

(
f (), f ()

)

I Higher-order functions(
λ(). 1

)
6-ctx

(
let x = ref(0) in (λ(). x ← (1 + ! x); ! x)

)

I Concurrency (
x ← 10; x ← 11

)
6-ctx

(
x ← 11

)

3

Language features that complicate refinements

I Mutable state (
let x = f () in (x , x)

)
6-ctx

(
f (), f ()

)

I Higher-order functions(
λ(). 1

)
6-ctx

(
let x = ref(0) in (λ(). x ← (1 + ! x); ! x)

)

I Concurrency (
x ← 10; x ← 11

)
6-ctx

(
x ← 11

)

3

Language features that complicate refinements

I Mutable state (
let x = f () in (x , x)

)
6-ctx

(
f (), f ()

)

I Higher-order functions(
λ(). 1

)
6-ctx

(
let x = ref(0) in (λ(). x ← (1 + ! x); ! x)

)

I Concurrency (
x ← 10; x ← 11

)
6-ctx

(
x ← 11

)

4

What do such relational properties mean mathematically?

5

Contextual refinement

Contextual refinement: the “gold standard” of program refinement:

e1 -ctx e2 : τ , ∀(C : τ → int). ∀v . C[e1] ↓ v =⇒ C[e2] ↓ v

“Any behavior of a (well-typed) client C using e1 can be matched by a behavior of the
same client using e2”

Very hard to prove: Quantification over all clients

5

Contextual refinement

Contextual refinement: the “gold standard” of program refinement:

e1 -ctx e2 : τ , ∀(C : τ → int). ∀v . C[e1] ↓ v =⇒ C[e2] ↓ v

“Any behavior of a (well-typed) client C using e1 can be matched by a behavior of the
same client using e2”

Very hard to prove: Quantification over all clients

6

Logical relations to the rescue!

Do not prove contextual refinement directly, but use a binary logical relation:

e1 - e2 : τ

I e1 - e2 : τ is defined structurally on the type τ

I Does not involve quantification over all clients C
I Soundness e1 - e2 : τ =⇒ e1 -ctx e2 : τ proved once and for all

7

A bit of history

Logical relations e1 - e2 : τ are notoriously hard to define when having recursive types,
higher-order state (type-world circularity), . . .

Solutions to define such logical relations:

I Step-indexing (Appel-McAllester, Ahmed, . . .)

Solve circularities by stratifying everything by a natural number corresponding to
the number of computation steps

I Logical approach (LSLR, LADR, CaReSL, Iris, . . .)

Hide step-indexing using modalities to obtain clearer definitions and proofs

We tried to take this one step further

7

A bit of history

Logical relations e1 - e2 : τ are notoriously hard to define when having recursive types,
higher-order state (type-world circularity), . . .

Solutions to define such logical relations:

I Step-indexing (Appel-McAllester, Ahmed, . . .)

Solve circularities by stratifying everything by a natural number corresponding to
the number of computation steps

I Logical approach (LSLR, LADR, CaReSL, Iris, . . .)

Hide step-indexing using modalities to obtain clearer definitions and proofs

We tried to take this one step further

7

A bit of history

Logical relations e1 - e2 : τ are notoriously hard to define when having recursive types,
higher-order state (type-world circularity), . . .

Solutions to define such logical relations:

I Step-indexing (Appel-McAllester, Ahmed, . . .)

Solve circularities by stratifying everything by a natural number corresponding to
the number of computation steps

I Logical approach (LSLR, LADR, CaReSL, Iris, . . .)

Hide step-indexing using modalities to obtain clearer definitions and proofs

We tried to take this one step further

7

A bit of history

Logical relations e1 - e2 : τ are notoriously hard to define when having recursive types,
higher-order state (type-world circularity), . . .

Solutions to define such logical relations:

I Step-indexing (Appel-McAllester, Ahmed, . . .)

Solve circularities by stratifying everything by a natural number corresponding to
the number of computation steps

I Logical approach (LSLR, LADR, CaReSL, Iris, . . .)

Hide step-indexing using modalities to obtain clearer definitions and proofs

We tried to take this one step further

7

A bit of history

Logical relations e1 - e2 : τ are notoriously hard to define when having recursive types,
higher-order state (type-world circularity), . . .

Solutions to define such logical relations:

I Step-indexing (Appel-McAllester, Ahmed, . . .)

Solve circularities by stratifying everything by a natural number corresponding to
the number of computation steps

I Logical approach (LSLR, LADR, CaReSL, Iris, . . .)

Hide step-indexing using modalities to obtain clearer definitions and proofs

We tried to take this one step further

8

Prove program refinements using
inference rules à la concurrent separation logic

Instead of Hoare triples {P} e {Q} we have refinement judgments e1 - e2 : τ

I Refinement proofs by symbolic execution as we know from separation logic

I Modular and conditional specifications

I Modeled using the “logical approach”

9

ReLoC [Frumin, Krebbers, Birkedal; LICS’18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained
concurrent programs

I Fine-grained concurrency: programs use low-level
synchronization primitives for more granular parallelism

I Mechanized: soundness proven sound using the Iris
framework in Coq

I Interactive refinement proofs: using high-level tactics
in Coq

9

ReLoC [Frumin, Krebbers, Birkedal; LICS’18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained
concurrent programs

I Fine-grained concurrency: programs use low-level
synchronization primitives for more granular parallelism

I Mechanized: soundness proven sound using the Iris
framework in Coq

I Interactive refinement proofs: using high-level tactics
in Coq

9

ReLoC [Frumin, Krebbers, Birkedal; LICS’18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained
concurrent programs

I Fine-grained concurrency: programs use low-level
synchronization primitives for more granular parallelism

I Mechanized: soundness proven sound using the Iris
framework in Coq

I Interactive refinement proofs: using high-level tactics
in Coq

9

ReLoC [Frumin, Krebbers, Birkedal; LICS’18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained
concurrent programs

I Fine-grained concurrency: programs use low-level
synchronization primitives for more granular parallelism

I Mechanized: soundness proven sound using the Iris
framework in Coq

I Interactive refinement proofs: using high-level tactics
in Coq

10

ReLoC: (simplified) grammar

P,Q ∈ Prop ::= ∀x .P | ∃x .P | P ∨ Q | . . .

Separation logic for handling mutable state

I ` 7→i v for the left-hand side (implementation)

I ` 7→s v for the right-hand side (specification)

Logic with first-class refinement propositions to allow conditional refinements

I (`1 7→i v) −∗ (e1 - e2 : τ)

I (e1 - e2 : unit→ τ) −∗ (f (e1) - e2(); e2() : τ)

10

ReLoC: (simplified) grammar

P,Q ∈ Prop ::= ∀x .P | ∃x .P | P ∨ Q | . . .

| P ∗ Q | P −∗ Q | ` 7→i v | ` 7→s v

Separation logic for handling mutable state

I ` 7→i v for the left-hand side (implementation)

I ` 7→s v for the right-hand side (specification)

Logic with first-class refinement propositions to allow conditional refinements

I (`1 7→i v) −∗ (e1 - e2 : τ)

I (e1 - e2 : unit→ τ) −∗ (f (e1) - e2(); e2() : τ)

10

ReLoC: (simplified) grammar

P,Q ∈ Prop ::= ∀x .P | ∃x .P | P ∨ Q | . . .

| P ∗ Q | P −∗ Q | ` 7→i v | ` 7→s v

| (∆ ||= e1 - e2 : τ) | JτK∆(v1, v2) | . . .

Separation logic for handling mutable state

I ` 7→i v for the left-hand side (implementation)

I ` 7→s v for the right-hand side (specification)

Logic with first-class refinement propositions to allow conditional refinements

I (`1 7→i v) −∗ (e1 - e2 : τ)

I (e1 - e2 : unit→ τ) −∗ (f (e1) - e2(); e2() : τ)

11

Proving refinements of pure programs

12

Some rules for pure programs

Symbolic execution rules

∆ ||= K [e ′1] - e2 : τ e1 →pure e
′
1 ∗

∆ ||= K [e1] - e2 : τ

∆ ||= e1 - K [e ′2] : τ e2 →pure e
′
2 ∗

∆ ||= e1 - K [e2] : τ

12

Some rules for pure programs

Symbolic execution rules

∆ ||= K [e ′1] - e2 : τ e1 →pure e
′
1 ∗

∆ ||= K [e1] - e2 : τ

∆ ||= e1 - K [e ′2] : τ e2 →pure e
′
2 ∗

∆ ||= e1 - K [e2] : τ

13

Some rules for pure programs

Structural rules

∆ ||= e1 - e2 : τ ∗ ∆ ||= e ′1 - e ′2 : τ ′
∗

∆ ||= (e1, e
′
1) - (e2, e

′
2) : τ × τ ′

∃(R : Val× Val→ Prop). [α := R] ,∆ ||= e1 - e2 : τ
∗

∆ ||= pack(e1) - pack(e2) : ∃α. τ

JτK∆(v1, v2)
∗

∆ ||= v1 - v2 : τ

2
(
∀v1 v2. JτK∆(v1, v2) −∗

∆ ||= e1[v1/x1] - e2[v2/x2] : σ

)
∗

∆ ||= λx1. e1 - λx2. e2 : τ → σ

13

Some rules for pure programs

Structural rules

∆ ||= e1 - e2 : τ ∗ ∆ ||= e ′1 - e ′2 : τ ′
∗

∆ ||= (e1, e
′
1) - (e2, e

′
2) : τ × τ ′

∃(R : Val× Val→ Prop). [α := R] ,∆ ||= e1 - e2 : τ
∗

∆ ||= pack(e1) - pack(e2) : ∃α. τ

JτK∆(v1, v2)
∗

∆ ||= v1 - v2 : τ

2
(
∀v1 v2. JτK∆(v1, v2) −∗

∆ ||= e1[v1/x1] - e2[v2/x2] : σ

)
∗

∆ ||= λx1. e1 - λx2. e2 : τ → σ

13

Some rules for pure programs

Structural rules

∆ ||= e1 - e2 : τ ∗ ∆ ||= e ′1 - e ′2 : τ ′
∗

∆ ||= (e1, e
′
1) - (e2, e

′
2) : τ × τ ′

∃(R : Val× Val→ Prop). [α := R] ,∆ ||= e1 - e2 : τ
∗

∆ ||= pack(e1) - pack(e2) : ∃α. τ

JτK∆(v1, v2)
∗

∆ ||= v1 - v2 : τ

2
(
∀v1 v2. JτK∆(v1, v2) −∗

∆ ||= e1[v1/x1] - e2[v2/x2] : σ

)
∗

∆ ||= λx1. e1 - λx2. e2 : τ → σ

14

Example
A bit interface:

bitT , ∃α. α × (α→ α) × (α→ bool)

I constructor

I flip the bit

I view the bit as a Boolean

Two implementations:

bit bool , pack
(
true, (λb.¬b), (λb. b)

)
bit nat , pack

(
1, (λn. if n = 0 then 1 else 0), (λn. n = 1)

)
Refinement (and vice versa):

bit bool - bit nat : bitT

14

Example
A bit interface:

bitT , ∃α. α × (α→ α) × (α→ bool)

I constructor

I flip the bit

I view the bit as a Boolean

Two implementations:

bit bool , pack
(
true, (λb.¬b), (λb. b)

)
bit nat , pack

(
1, (λn. if n = 0 then 1 else 0), (λn. n = 1)

)

Refinement (and vice versa):

bit bool - bit nat : bitT

14

Example
A bit interface:

bitT , ∃α. α × (α→ α) × (α→ bool)

I constructor

I flip the bit

I view the bit as a Boolean

Two implementations:

bit bool , pack
(
true, (λb.¬b), (λb. b)

)
bit nat , pack

(
1, (λn. if n = 0 then 1 else 0), (λn. n = 1)

)
Refinement (and vice versa):

bit bool - bit nat : bitT

15

Proof of the refinement

[α := R] |= where R , {(true, 1), (false, 0)}

pack
(
true, (λb.¬b), (λb. b)

)
-

pack
(

1, (λn. if n = 0 then 1 else 0), (λn. n = 1)
)

:

∃α. α× (α→ α)× (α→ bool)

Need to come with with an R : Val× Val→ PropUse structural rule for products

2

15

Proof of the refinement

[α := R] |= where R , {(true, 1), (false, 0)}

pack
(
true, (λb.¬b), (λb. b)

)
-

pack
(

1, (λn. if n = 0 then 1 else 0), (λn. n = 1)
)

:

∃α. α× (α→ α)× (α→ bool)

Need to come with with an R : Val× Val→ Prop

Use structural rule for products

2

15

Proof of the refinement

[α := R] |=

where R , {(true, 1), (false, 0)}

pack
(
true, (λb.¬b), (λb. b)

)
-

pack
(

1, (λn. if n = 0 then 1 else 0), (λn. n = 1)
)

:

∃α. α× (α→ α)× (α→ bool)

Need to come with with an R : Val× Val→ Prop

Use structural rule for products

2

15

Proof of the refinement

[α := R] |= where R , {(true, 1), (false, 0)}

pack

(
true, (λb.¬b), (λb. b)

)
-

pack

(
1, (λn. if n = 0 then 1 else 0), (λn. n = 1)

)
:

∃α.

α× (α→ α)× (α→ bool)

Need to come with with an R : Val× Val→ PropUse structural rule for products

2

15

Proof of the refinement

[α := R] |= where R , {(true, 1), (false, 0)}

pack

(
true, (λb.¬b), (λb. b)

)
-

pack

(
1, (λn. if n = 0 then 1 else 0), (λn. n = 1)

)
:

∃α.

α× (α→ α)× (α→ bool)

Need to come with with an R : Val× Val→ Prop

Use structural rule for products

2

15

Proof of the refinement

[α := R] |= where R , {(true, 1), (false, 0)}

true - 1 : α

(by def of R)

(λb.¬b) - (λn. if n = 0 then 1 else 0) : α→ α

(λ-rule + symb. exec.)

(λb. b) - (λn. n = 1) : α→ bool

(λ-rule + symb. exec.)

After using the λ rule and case analysis on R:

¬true - if 1 = 0 then 1 else 0 : α

¬false - if 0 = 0 then 1 else 0 : α
2

15

Proof of the refinement

[α := R] |= where R , {(true, 1), (false, 0)}

true - 1 : α

(by def of R)

(λb.¬b) - (λn. if n = 0 then 1 else 0) : α→ α

(λ-rule + symb. exec.)

(λb. b) - (λn. n = 1) : α→ bool

(λ-rule + symb. exec.)

After using the λ rule and case analysis on R:

¬true - if 1 = 0 then 1 else 0 : α

¬false - if 0 = 0 then 1 else 0 : α
2

15

Proof of the refinement

[α := R] |= where R , {(true, 1), (false, 0)}

true - 1 : α (by def of R)

(λb.¬b) - (λn. if n = 0 then 1 else 0) : α→ α

(λ-rule + symb. exec.)

(λb. b) - (λn. n = 1) : α→ bool

(λ-rule + symb. exec.)

After using the λ rule and case analysis on R:

¬true - if 1 = 0 then 1 else 0 : α

¬false - if 0 = 0 then 1 else 0 : α
2

15

Proof of the refinement

[α := R] |= where R , {(true, 1), (false, 0)}

true - 1 : α (by def of R)

(λb.¬b) - (λn. if n = 0 then 1 else 0) : α→ α (λ-rule + symb. exec.)

(λb. b) - (λn. n = 1) : α→ bool

(λ-rule + symb. exec.)

After using the λ rule and case analysis on R:

¬true - if 1 = 0 then 1 else 0 : α

¬false - if 0 = 0 then 1 else 0 : α

2

15

Proof of the refinement

[α := R] |= where R , {(true, 1), (false, 0)}

true - 1 : α (by def of R)

(λb.¬b) - (λn. if n = 0 then 1 else 0) : α→ α (λ-rule + symb. exec.)

(λb. b) - (λn. n = 1) : α→ bool (λ-rule + symb. exec.)

After using the λ rule and case analysis on R:

¬true - if 1 = 0 then 1 else 0 : α

¬false - if 0 = 0 then 1 else 0 : α
2

15

Proof of the refinement

[α := R] |= where R , {(true, 1), (false, 0)}

true - 1 : α (by def of R)

(λb.¬b) - (λn. if n = 0 then 1 else 0) : α→ α (λ-rule + symb. exec.)

(λb. b) - (λn. n = 1) : α→ bool (λ-rule + symb. exec.)

After using the λ rule and case analysis on R:

¬true - if 1 = 0 then 1 else 0 : α

¬false - if 0 = 0 then 1 else 0 : α

2

16

Reasoning about mutable state

Separation logic to the rescue!

17

“Vanilla” separation logic [O’Hearn, Reynolds, Yang; CSL’01]

Propositions P,Q denote ownership of resources

Points-to connective ` 7→ v :
Exclusive ownership of location ` with value v

Separating conjunction P ∗ Q:
The resources consists of separate parts satisfying P and Q

Basic example:

{`1 7→ v1 ∗ `2 7→ v2}swap(`1, `2){`1 7→ v2 ∗ `2 7→ v1}

the ∗ ensures that `1 and `2 are different memory locations

18

Mutable state and separation logic for refinements

There are two versions of the points-to connective:

I ` 7→i v for the left-hand side/implementation

I ` 7→s v for the right-hand side/specification

Example:

`1 7→i 4 −∗ `2 7→s 0 −∗ (! `1) - (`2 ← 4; ! `2) : int

18

Mutable state and separation logic for refinements

There are two versions of the points-to connective:

I ` 7→i v for the left-hand side/implementation

I ` 7→s v for the right-hand side/specification

Example:

`1 7→i 4 −∗ `2 7→s 0 −∗ (! `1) - (`2 ← 4; ! `2) : int

19

Some rules for mutable state

Symbolic execution

`1 7→i − ∗ (`1 7→i v1 −∗ ∆ ||= K [()] - e2 : τ)
∗

∆ ||= K [`1 ← v1] - e2 : τ

`2 7→s − ∗ (`2 7→s v2 −∗ ∆ ||= e1 - K [()] : τ)
∗

∆ ||= e1 - K [`2 ← v2] : τ

∀`1. `1 7→i v1 −∗ ∆ ||= K [`1] - e2 : τ
∗

∆ ||= K [ref(v1)] - e2 : τ

∀`2. `2 7→s v2 −∗ ∆ ||= e - K [`2] : τ
∗

∆ ||= e1 - K [ref(v2)] : τ

19

Some rules for mutable state

Symbolic execution

`1 7→i − ∗ (`1 7→i v1 −∗ ∆ ||= K [()] - e2 : τ)
∗

∆ ||= K [`1 ← v1] - e2 : τ

`2 7→s − ∗ (`2 7→s v2 −∗ ∆ ||= e1 - K [()] : τ)
∗

∆ ||= e1 - K [`2 ← v2] : τ

∀`1. `1 7→i v1 −∗ ∆ ||= K [`1] - e2 : τ
∗

∆ ||= K [ref(v1)] - e2 : τ

∀`2. `2 7→s v2 −∗ ∆ ||= e - K [`2] : τ
∗

∆ ||= e1 - K [ref(v2)] : τ

19

Some rules for mutable state

Symbolic execution

`1 7→i − ∗ (`1 7→i v1 −∗ ∆ ||= K [()] - e2 : τ)
∗

∆ ||= K [`1 ← v1] - e2 : τ

`2 7→s − ∗ (`2 7→s v2 −∗ ∆ ||= e1 - K [()] : τ)
∗

∆ ||= e1 - K [`2 ← v2] : τ

∀`1. `1 7→i v1 −∗ ∆ ||= K [`1] - e2 : τ
∗

∆ ||= K [ref(v1)] - e2 : τ

∀`2. `2 7→s v2 −∗ ∆ ||= e - K [`2] : τ
∗

∆ ||= e1 - K [ref(v2)] : τ

20

Reasoning about higher-order functions and concurrency

21

State encapsulation

Modules with encapsulated state:

let x = ref(e) in
(
λy

)
The reference can only be used in the closure

Simple example:

counter ,
(
λ(). let x = ref(1) in

(
λ(). FAA(x , 1)

))
: unit→ (unit→ int)

I counter() constructs an instance c : unit→ int of the counter module

I Calling c() in subsequently gives 1, 2, . . .

I The reference x is private to the module

21

State encapsulation

Modules with encapsulated state:

let x = ref(e) in
(
λy

)
The reference can only be used in the closure

Simple example:

counter ,
(
λ(). let x = ref(1) in

(
λ(). FAA(x , 1)

))
: unit→ (unit→ int)

I counter() constructs an instance c : unit→ int of the counter module

I Calling c() in subsequently gives 1, 2, . . .

I The reference x is private to the module

22

The problem

Modules with encapsulated state:

let x = ref(e) in
(
λy

)
︸ ︷︷ ︸

f

Reasoning about such modules is challenging:

I f can be called multiple times by clients

So, the value of x can change in each call

I f can even be called even in parallel!

So, f cannot get exclusive access to x 7→ v

We need to guarantee that closures do not get access to exclusive resources

22

The problem

Modules with encapsulated state:

let x = ref(e) in
(
λy

)
︸ ︷︷ ︸

f

Reasoning about such modules is challenging:

I f can be called multiple times by clients

So, the value of x can change in each call

I f can even be called even in parallel!

So, f cannot get exclusive access to x 7→ v

We need to guarantee that closures do not get access to exclusive resources

22

The problem

Modules with encapsulated state:

let x = ref(e) in
(
λy

)
︸ ︷︷ ︸

f

Reasoning about such modules is challenging:

I f can be called multiple times by clients

So, the value of x can change in each call

I f can even be called even in parallel!

So, f cannot get exclusive access to x 7→ v

We need to guarantee that closures do not get access to exclusive resources

22

The problem

Modules with encapsulated state:

let x = ref(e) in
(
λy

)
︸ ︷︷ ︸

f

Reasoning about such modules is challenging:

I f can be called multiple times by clients

So, the value of x can change in each call

I f can even be called even in parallel!

So, f cannot get exclusive access to x 7→ v

We need to guarantee that closures do not get access to exclusive resources

23

Persistent resources

The “persistent” modality 2 in Iris/ReLoC:

2P , “P holds without assuming exclusive resources”

Examples:

I Equality is persistent: (x = y) ` 2(x = y)

I Points-to connectives are not: ((` 7→ v) 6` 2(` 7→ v)

I More examples later. . .

24

ReLoC’s λ-rule again

The 2 modality makes sure no exclusive resources can escape into closures:

2
(
∀v1 v2. JτK∆(v1, v2) −∗

∆ ||= e1[v1/x1] - e2[v2/x2] : σ

)
∗

∆ ||= λx1. e1 - λx2. e2 : τ → σ

Prohibits “wrong” refinements, for example:(
λ(). 1

)
6-ctx

(
let x = ref(0) in (λ(). x ← (1 + ! x); ! x)

)
Due to 2, the resource x 7→s 0 cannot be used to prove the closure

24

ReLoC’s λ-rule again

The 2 modality makes sure no exclusive resources can escape into closures:

2
(
∀v1 v2. JτK∆(v1, v2) −∗

∆ ||= e1[v1/x1] - e2[v2/x2] : σ

)
∗

∆ ||= λx1. e1 - λx2. e2 : τ → σ

Prohibits “wrong” refinements, for example:(
λ(). 1

)
6-ctx

(
let x = ref(0) in (λ(). x ← (1 + ! x); ! x)

)
Due to 2, the resource x 7→s 0 cannot be used to prove the closure

25

But it should be possible to use resources in closures

For example: (
λ(). let x = ref(1) in

(
λ(). FAA(x , 1)

))
-

λ(). let x = ref(1), l = newlock () in

λ(). acquire(l);
let v = ! x in
x ← v + 1;
release(l); v

26

Iris-style Invariants

The invariant connective R
expresses that R is maintained as an invariant on the state

Invariants allow to share resources:

I A resource R can be turned into R at any time

I Invariants are persistent: R ` 2 R

I . . . thus can be used to prove closures

But that comes with a cost:

I Invariants R can only be accessed during atomic steps on the left-hand side

I . . . while multiple steps on the right-hand side can be performed

26

Iris-style Invariants

The invariant connective R
expresses that R is maintained as an invariant on the state

Invariants allow to share resources:

I A resource R can be turned into R at any time

I Invariants are persistent: R ` 2 R

I . . . thus can be used to prove closures

But that comes with a cost:

I Invariants R can only be accessed during atomic steps on the left-hand side

I . . . while multiple steps on the right-hand side can be performed

26

Iris-style Invariants

The invariant connective R
expresses that R is maintained as an invariant on the state

Invariants allow to share resources:

I A resource R can be turned into R at any time

I Invariants are persistent: R ` 2 R

I . . . thus can be used to prove closures

But that comes with a cost:

I Invariants R can only be accessed during atomic steps on the left-hand side

I . . . while multiple steps on the right-hand side can be performed

27

Example

let x = ref(1) in (λ(). FAA(x , 1))

-

let x = ref(1) , l = newlock () in

(λ(). acquire(l);

let v = ! x in

x ← v + 1;

release(l); v)

27

Example

let x = ref(1) in (λ(). FAA(x , 1))

-

let x = ref(1) , l = newlock () in

(λ(). acquire(l);

let v = ! x in

x ← v + 1;

release(l); v)

27

Example

∃n.

x1 7→i 1

(λ(). FAA(x1, 1))

-

let x = ref(1) , l = newlock () in

(λ(). acquire(l);

let v = ! x in

x ← v + 1;

release(l); v)

27

Example

∃n.

x1 7→i 1

(λ(). FAA(x1, 1))

-

let x = ref(1) , l = newlock () in

(λ(). acquire(l);

let v = ! x in

x ← v + 1;

release(l); v)

27

Example

∃n.

x1 7→i 1

x2 7→s 1

(λ(). FAA(x1, 1))

-

let l = newlock () in

(λ(). acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v)

27

Example

∃n.

x1 7→i 1

x2 7→s 1

(λ(). FAA(x1, 1))

-

let l = newlock () in

(λ(). acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v)

27

Example

∃n.

x1 7→i 1

x2 7→s 1

isLock(l , unlocked)

(λ(). FAA(x1, 1))

-

(λ(). acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v)

27

Example

∃n.
x1 7→i n

x2 7→s n

isLock(l , unlocked)

(λ(). FAA(x1, 1))

-

(λ(). acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v)

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

(λ(). FAA(x1, 1))

-

(λ(). acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v)

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

FAA(x1, 1)

-

acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

FAA(x1, 1)

-

acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

x1 7→i n

x2 7→s n

isLock(l , unlocked)

FAA(x1, 1)

-

acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

x1 7→i n + 1

x2 7→s n

isLock(l , unlocked)

n

-

acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

x1 7→i n + 1

x2 7→s n

isLock(l , unlocked)

n

-

acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

x1 7→i n + 1

x2 7→s n

isLock(l , locked)

n

-

acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

x1 7→i n + 1

x2 7→s n

isLock(l , locked)

n

-

acquire(l);

let v = ! x2 in

x2 ← v + 1;

release(l); v

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

x1 7→i n + 1

x2 7→s n

isLock(l , locked)

n

-

acquire(l);

let v = ! x2 in

x2 ← n + 1;

release(l); n

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

x1 7→i n + 1

x2 7→s n

isLock(l , locked)

n

-

acquire(l);

let v = ! x2 in

x2 ← n + 1;

release(l); n

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

x1 7→i n + 1

x2 7→s n + 1

isLock(l , locked)

n

-

acquire(l);

let v = ! x2 in

x2 ← n + 1;

release(l); n

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

x1 7→i n + 1

x2 7→s n + 1

isLock(l , locked)

n

-

acquire(l);

let v = ! x2 in

x2 ← n + 1;

release(l); n

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

x1 7→i n + 1

x2 7→s n + 1

isLock(l , unlocked)

n

-

acquire(l);

let v = ! x2 in

x2 ← n + 1;

release(l);

n

27

Example

∃n. x1 7→i n ∗
x2 7→s n ∗
isLock(l , unlocked)

n

-

acquire(l);

let v = ! x2 in

x2 ← n + 1;

release(l);

n

28

Wrapping up. . .

I ReLoC provides rules allowing this kind of
simulation reasoning, formally

I The example can be done in Coq in almost the
same fashion

I The approach scales to: lock-free concurrent
data structures, generative ADTs, examples
from the logical relations literature

29

Implementation in Coq

30

ReLoC

ReLoC is build on top of the Iris framework, so we can inherit:

I Iris’s invariants

I Iris’s ghost state

I Iris’s Coq infrastructure

I . . .

31

The proofs we have done in Coq

ReLoC judgments e1 - e2 : τ are modeled as a shallow embedding using the “logical
approach” to logical relations

Proved in Coq:

I Proof rules: All the ReLoC rules hold in the shallow embedding

I Soundness: e1 - e2 : τ =⇒ e1 -ctx e2 : τ

I Actual program refinements: concurrent data structures, and examples from the
logical relations literature

32

Need to reason in separation logic!

33

Iris Proof Mode (IPM) [Krebbers et al.; POPL’17]

Lemma test {A} (P Q : iProp) (Ψ : A → iProp) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

Lemma in the Iris logic

∗ means: resources should be split

The hypotheses for the left conjunct

33

Iris Proof Mode (IPM) [Krebbers et al.; POPL’17]

Lemma test {A} (P Q : iProp) (Ψ : A → iProp) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

Lemma in the Iris logic

∗ means: resources should be split

The hypotheses for the left conjunct

33

Iris Proof Mode (IPM) [Krebbers et al.; POPL’17]

Lemma test {A} (P Q : iProp) (Ψ : A → iProp) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

1 subgoal

A : Type

P , Q : iProp

Ψ : A → iProp

x : A

(1/1)
"H1" : P

"H2" : Ψ x

"H3" : Q

−−−−−−−−−−−−−−−−−−−−−−∗
Q ∗ (∃ a : A , P ∗ Ψ a)

Lemma in the Iris logic

∗ means: resources should be split

The hypotheses for the left conjunct

33

Iris Proof Mode (IPM) [Krebbers et al.; POPL’17]

Lemma test {A} (P Q : iProp) (Ψ : A → iProp) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

1 subgoal

A : Type

P , Q : iProp

Ψ : A → iProp

x : A

(1/1)
"H1" : P

"H2" : Ψ x

"H3" : Q

−−−−−−−−−−−−−−−−−−−−−−∗
Q ∗ (∃ a : A , P ∗ Ψ a)

Lemma in the Iris logic

∗ means: resources should be split

The hypotheses for the left conjunct

33

Iris Proof Mode (IPM) [Krebbers et al.; POPL’17]

Lemma test {A} (P Q : iProp) (Ψ : A → iProp) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

1 subgoal

A : Type

P , Q : iProp

Ψ : A → iProp

x : A

(1/1)
"H1" : P

"H2" : Ψ x

"H3" : Q

−−−−−−−−−−−−−−−−−−−−−−∗
Q ∗ (∃ a : A , P ∗ Ψ a)

Lemma in the Iris logic

∗ means: resources should be split

The hypotheses for the left conjunct

33

Iris Proof Mode (IPM) [Krebbers et al.; POPL’17]

Lemma test {A} (P Q : iProp) (Ψ : A → iProp) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

2 subgoals

A : Type

P , Q : iProp

Ψ : A → iProp

x : A

(1/2)
"H3" : Q

−−−−−−−−−−−−−−−−−−−−−−∗
Q

(2/2)
"H1" : P

"H2" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , P ∗ Ψ a

Lemma in the Iris logic

∗ means: resources should be split

The hypotheses for the left conjunct

33

Iris Proof Mode (IPM) [Krebbers et al.; POPL’17]

Lemma test {A} (P Q : iProp) (Ψ : A → iProp) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

Lemma in the Iris logic

∗ means: resources should be split

The hypotheses for the left conjunct

33

Iris Proof Mode (IPM) [Krebbers et al.; POPL’17]

Lemma test {A} (P Q : iProp) (Ψ : A → iProp) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
by iFrame.

Qed.

No more subgoals .

Lemma in the Iris logic

∗ means: resources should be split

The hypotheses for the left conjunct

We can also solve this lemma automatically

34

ReLoC in Iris Proof Mode

I The ReLoC rules are just lemmas that can be iApplyed

I We have more automated support for symbolic execution

I Iris Proof Mode features a special context for persistent hypotheses, which is
crucial for dealing with invariants

35

Ongoing work:

Proving security properties using

relational reasoning in separation logic

36

Language-based security

Program variables are divided into two groups:

I low-sensitivity variables l1, l2, . . .

I high-sensitivity variables h1, h2,

Confidentiality: the data stored in high-sensitivity variables should not leak to
low-sensitivity variables, e.g., l1 ← ! h1 + 1 does not happen

Proved via non-interference: changing the values of h1, h2, . . . and running the
program does not affect the resulting values of l1, l2,

37

Type systems for non-interference

Type system where types are annotated with labels from a lattice L v H

` li : ref intL ` hi : ref intH

` e : ref intχ ` e ′ : intξ ξ v χ
` e ← e ′ : unit

` e : intχ ` e ′ : intξ

` e + e ′ : intχtξ

37

Type systems for non-interference

Type system where types are annotated with labels from a lattice L v H

` li : ref intL ` hi : ref intH

` e : ref intχ ` e ′ : intξ ξ v χ
` e ← e ′ : unit

` e : intχ ` e ′ : intξ

` e + e ′ : intχtξ

Example:

` l1 : ref intL

`!h1 : intH ` 1 : intL

`!h1 + 1 : intH H v L

` l1 ←!h1 + 1 : unit

38

Shortcomings of type systems

I Type systems can be extended to cover more PL features (dynamic references,
higher-order functions, exceptions), although it is not straightforward

I Type systems are too weak: in many situations non-interference depends on
functional correctness

39

Example: value-dependent classification

let r =

{
data = ref(secret);
is classified = ref(true)

}
in

while true do

if ¬ ! r .is classified
then out ← ! r .data
else ();

r .data← 0;
r .is classified ← false

The classification of r .data depends on the run-time value r .is classified

I Can we type this program with conventional type systems?

I Is this program secure?

39

Example: value-dependent classification

let r =

{
data = ref(secret);
is classified = ref(true)

}
in

while true do

if ¬ ! r .is classified
then out ← ! r .data
else ();

r .data← 0;
r .is classified ← false

The classification of r .data depends on the run-time value r .is classified

I Can we type this program with conventional type systems?

I Is this program secure?

39

Example: value-dependent classification

let r =

{
data = ref(secret);
is classified = ref(true)

}
in

while true do

if ¬ ! r .is classified
then out ← ! r .data
else ();

r .data← 0;
r .is classified ← false

The classification of r .data depends on the run-time value r .is classified

I Can we type this program with conventional type systems? No

I Is this program secure? Yes

40

SeLoC [Frumin, Krebbers, Birkedal; Under submission]

SeLoC: a relational extension of Iris for non-interference

I A relational variant of weakest preconditions

I to combine reasoning about non-interference with functional correctness
I in the presence of fine-grained concurrency

I A type system built on top of SeLoC using logical relations

I Compatibility rules for composing typed programs
I Can “drop down” to separation logic to prove more complicated programs

I Soundness w.r.t. scheduler-independent notion of non-interference

40

SeLoC [Frumin, Krebbers, Birkedal; Under submission]

SeLoC: a relational extension of Iris for non-interference

I A relational variant of weakest preconditions
I to combine reasoning about non-interference with functional correctness
I in the presence of fine-grained concurrency

I A type system built on top of SeLoC using logical relations

I Compatibility rules for composing typed programs
I Can “drop down” to separation logic to prove more complicated programs

I Soundness w.r.t. scheduler-independent notion of non-interference

40

SeLoC [Frumin, Krebbers, Birkedal; Under submission]

SeLoC: a relational extension of Iris for non-interference

I A relational variant of weakest preconditions
I to combine reasoning about non-interference with functional correctness
I in the presence of fine-grained concurrency

I A type system built on top of SeLoC using logical relations
I Compatibility rules for composing typed programs
I Can “drop down” to separation logic to prove more complicated programs

I Soundness w.r.t. scheduler-independent notion of non-interference

41

Double weakest precondition

The basic component of SeLoC:

dwp e1 & e2 {Φ}

I Any two runs of the e1 and e2 are in a bisimulation and their results satisfy Φ

I e1 and e2 have different secret data, but must produce the same public output

I Left-hand side and right-hand side resources: `1 7→L v1 and `2 7→R v2

I Rules are similar to ReLoC, but require execution in lock-step

I Soundness statement:

(∀h1, h2 ∈ Z. Iout ` dwp e[h1/x] & e[h2/x] {v1v2. v1 = v2}) =⇒ e is secure

Iout , ∃v ∈ Z. out 7→L v ∗ out 7→R v

41

Double weakest precondition

The basic component of SeLoC:

dwp e1 & e2 {Φ}

I Any two runs of the e1 and e2 are in a bisimulation and their results satisfy Φ

I e1 and e2 have different secret data, but must produce the same public output

I Left-hand side and right-hand side resources: `1 7→L v1 and `2 7→R v2

I Rules are similar to ReLoC, but require execution in lock-step

I Soundness statement:

(∀h1, h2 ∈ Z. Iout ` dwp e[h1/x] & e[h2/x] {v1v2. v1 = v2}) =⇒ e is secure

Iout , ∃v ∈ Z. out 7→L v ∗ out 7→R v

41

Double weakest precondition

The basic component of SeLoC:

dwp e1 & e2 {Φ}

I Any two runs of the e1 and e2 are in a bisimulation and their results satisfy Φ

I e1 and e2 have different secret data, but must produce the same public output

I Left-hand side and right-hand side resources: `1 7→L v1 and `2 7→R v2

I Rules are similar to ReLoC, but require execution in lock-step

I Soundness statement:

(∀h1, h2 ∈ Z. Iout ` dwp e[h1/x] & e[h2/x] {v1v2. v1 = v2}) =⇒ e is secure

Iout , ∃v ∈ Z. out 7→L v ∗ out 7→R v

41

Double weakest precondition

The basic component of SeLoC:

dwp e1 & e2 {Φ}

I Any two runs of the e1 and e2 are in a bisimulation and their results satisfy Φ

I e1 and e2 have different secret data, but must produce the same public output

I Left-hand side and right-hand side resources: `1 7→L v1 and `2 7→R v2

I Rules are similar to ReLoC, but require execution in lock-step

I Soundness statement:

(∀h1, h2 ∈ Z. Iout ` dwp e[h1/x] & e[h2/x] {v1v2. v1 = v2}) =⇒ e is secure

Iout , ∃v ∈ Z. out 7→L v ∗ out 7→R v

41

Double weakest precondition

The basic component of SeLoC:

dwp e1 & e2 {Φ}

I Any two runs of the e1 and e2 are in a bisimulation and their results satisfy Φ

I e1 and e2 have different secret data, but must produce the same public output

I Left-hand side and right-hand side resources: `1 7→L v1 and `2 7→R v2

I Rules are similar to ReLoC, but require execution in lock-step

I Soundness statement:

(∀h1, h2 ∈ Z. Iout ` dwp e[h1/x] & e[h2/x] {v1v2. v1 = v2}) =⇒ e is secure

Iout , ∃v ∈ Z. out 7→L v ∗ out 7→R v

41

Double weakest precondition

The basic component of SeLoC:

dwp e1 & e2 {Φ}

I Any two runs of the e1 and e2 are in a bisimulation and their results satisfy Φ

I e1 and e2 have different secret data, but must produce the same public output

I Left-hand side and right-hand side resources: `1 7→L v1 and `2 7→R v2

I Rules are similar to ReLoC, but require execution in lock-step

I Soundness statement:

(∀h1, h2 ∈ Z. Iout ` dwp e[h1/x] & e[h2/x] {v1v2. v1 = v2}) =⇒ e is secure

Iout , ∃v ∈ Z. out 7→L v ∗ out 7→R v

42

Proof of the example: value-dependent classification

let r =

{
data = ref(secret);
is classified = ref(true)

}
in

while true do

if ¬ ! r .is classified
then out ← ! r .data
else ();

r .data← 0;
r .is classified ← false

Classified Intermediate Declassified

42

Proof of the example: value-dependent classification

let r =

{
data = ref(secret);
is classified = ref(true)

}
in

while true do

if ¬ ! r .is classified
then out ← ! r .data
else ();

r .data← 0;
r .is classified ← false

Classified Intermediate Declassified

42

Proof of the example: value-dependent classification

let r =

{
data = ref(secret);
is classified = ref(true)

}
in

while true do

if ¬ ! r .is classified
then out ← ! r .data
else ();

r .data← 0;
r .is classified ← false

Classified Intermediate Declassified

42

Proof of the example: value-dependent classification

let r =

{
data = ref(secret);
is classified = ref(true)

}
in

while true do

if ¬ ! r .is classified
then out ← ! r .data
else ();

r .data← 0;
r .is classified ← false

Classified Intermediate Declassified

42

Proof of the example: value-dependent classification

(
in state(Classified) ∗ ∃i1, i2. r1.is classified 7→L true ∗
r2.is classified 7→R true ∗ r1.data 7→L i1 ∗ r2.data 7→R i2

)
∨
(
in state(Intermediate) ∗ ∃i . r1.is classified 7→L true ∗
r2.is classified 7→R true ∗ r1.data 7→L i ∗ r2.data 7→R i

)
∨
(
in state(Declassified) ∗ ∃i . r1.is classified 7→L false ∗
r2.is classified 7→R false ∗ r1.data 7→L i ∗ r2.data 7→R i

)

Classified Intermediate Declassified

43

Conclusions

44

Want to know more details

ReLoC: contextual refinements

ReLoC: A Mechanised Relational Logic for Fine-Grained
Concurrency

Dan Frumin
Radboud University
dfrumin@cs.ru.nl

Robbert Krebbers
Delft University of Technology

mail@robbertkrebbers.nl

Lars Birkedal
Aarhus University
birkedal@cs.au.dk

Abstract
We present ReLoC: a logic for proving refinements of programs in
a language with higher-order state, fine-grained concurrency, poly-
morphism and recursive types. The core of our logic is a judgement
e ≾ e ′ : τ , which expresses that a program e refines a program e ′
at type τ . In contrast to earlier work on refinements for languages
with higher-order state and concurrency, ReLoC provides type- and
structure-directed rules for manipulating this judgement, whereas
previously, such proofs were carried out by unfolding the judge-
ment into its definition in the model. These more abstract proof
rules make it simpler to carry out refinement proofs.

Moreover, we introduce logically atomic relational specifications:
a novel approach for relational specifications for compound expres-
sions that take effect at a single instant in time. We demonstrate
how to formalise and prove such relational specifications in ReLoC,
allowing for more modular proofs.

ReLoC is built on top of the expressive concurrent separation
logic Iris, allowing us to leverage features of Iris such as invariants
and ghost state. We provide a mechanisation of our logic in Coq,
which does not just contain a proof of soundness, but also tactics
for interactively carrying out refinements proofs. We have used
these tactics to mechanise several examples, which demonstrates
the practicality and modularity of our logic.

CCS Concepts • Theory of computation→ Logic and verifi-
cation; Separation logic; Concurrency; Program verification;

Keywords Separation logic, logical relations, fine-grained concur-
rency, Iris, atomicity

ACM Reference Format:
Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A Mech-
anised Relational Logic for Fine-Grained Concurrency. In LICS ’18: LICS
’18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, July
9–12, 2018, Oxford, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3209108.3209174

1 Introduction
Recall that an expression e contextually refines e ′ if, for all contexts
C, if C[e] has some observable behaviour, then so does C[e ′], and
that e and e ′ are contextually equivalent if e contextually refines e ′
and vice versa. Contextual equivalence and contextual refinement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209174

read ≜ λx (). !x
incs ≜ λx l . acquire l ; letn = !x inx ← 1 + n; release l ; n

counters ≜ let l = newlock () in letx = ref(0) in
(read x , λ(). incs x l)

inci ≜ rec inc x = let c = !x in
if CAS(x , c, 1 + c) then c else inc x

counteri ≜ letx = ref(0) in (read x , λ(). inci x)

Figure 1. Two concurrent counter implementations.

are often referred to as the gold standards of equivalence and refine-
ment of program expressions: contextual equivalence of e and e ′
means that it is safe for a compiler to replace any occurrence of e by
e ′, and contextual refinement is often used to specify the behaviour
of programs, e.g., one can show the correctness of a fine-grained
concurrent implementation of an abstract data type by proving that
it contextually refines a coarse-grained implementation, which is
understood as the specification.

A simple example is the specification of a fine-grained concur-
rent counter by a coarse-grained version, counteri ≾ counters :
(1→ N) × (1→ N), see Figure 1 for the code. The increment oper-
ation of the coarse-grained version, counters is performed inside a
critical section guarded by a lock, whereas the fine-grained version,
counteri , takes an “optimistic” lock-free approach to incrementing
the value using a compare-and-set inside a loop. We will use the
counter as a simple running example throughout the paper. Proving
program refinements and equivalence directly is difficult because of
the quantification over all contexts. As such, it is often the case that
reasoning is done using the technique of logical relations. For pro-
gramming languages with features such as impredicative polymor-
phism, recursive types, higher-order state, and concurrency logical
relations models can be quite intricate. Such models usually involve
recursively defined worlds (constructed using step-indexing) and
various forms of resource accounting [2, 4, 5, 10]. To simplify both
the definition and the application of logical relations, logical ap-
proaches to logical relations have been invented, for increasingly
richer programming languages [13, 15, 26, 28].

A very recent publication [23], which is the basis for our work,
shows how logical relations for Fµ,ref,conc, a language with im-
predicative polymorphism, recursive types, general references, and
concurrency, can be defined in a state-of-the-art higher-order con-
current separation logic Iris [19–22].

Iris supports impredicative concurrent abstract predicates [12,
27] and includes general forms of ghost state which can be used
both for the definition of binary logical relations and for reasoning
about challenging program equivalences. The meta-theory of Iris is

At LICS’18

SeLoC: non-interference

Compositional Non-Interference
for Fine-Grained Concurrent Programs
Dan Frumin

Radboud University
Robbert Krebbers

Delft University of Technology
Lars Birkedal

Aarhus University

Abstract—We present SeLoC: a relational separation logic for
verifying non-interference of fine-grained concurrent programs
in a compositional way. SeLoC is more expressive than previous
approaches, both in terms of the features of the target program-
ming language, and in terms of the logic. The target programming
language supports dynamically allocated references (pointers),
higher-order functions, and fine-grained fork-based concurrency
with low-level atomic operators like compare-and-set. The logic
provides an invariant mechanism to establish protocols on data
that is not protected by locks. This allows us to verify programs
that were beyond the reach of previous approaches.

A key technical innovation in SeLoC is a relational version of
weakest-preconditions to track information flow using separation
logic resources. On top of these weakest-preconditions we build
a type system-like abstraction, using invariants and logical rela-
tions. SeLoC has been mechanized on top of the Iris framework
in the Coq proof assistant.

Index Terms—non-interference, fine-grained concurrency, in-
variants, logical relations, separation logic, Coq, Iris

I. INTRODUCTION

Non-interference is a form of information flow control (IFC)
used to express security properties like confidentiality and
secrecy, which guarantee that confidential information does
not leak to attackers. In order to establish non-inference of
programs used in practice, it is necessary to develop techniques
that scale up to programming paradigms and programming con-
structs found in modern programming languages. Much effort
has been put into that direction—e.g., to support dynamically
allocated references and higher-order functions [1]–[3], and
concurrency [4]–[10]. For shared-memory concurrency a lot of
these efforts were focused on compositional reasoning, which
is needed to facilitate reasoning about components/threads
in isolation without having to take all possible interference
from the environment and other threads into account. Despite
recent advancements, the expressivity of available techniques
for non-interference still lags behind the expressivity of
techniques for functional correctness, which have seen major
breakthroughs since the seminal development of concurrent
separation logic [11], [12]. There are several reasons for this:
• As pointed out in [6], for many interesting program

modules, non-interference relies on functional correctness.
For example, it may be the case that the confidentiality of
the contents of a reference depends on runtime information
instead of mere static information (this is called value-
dependent classification).

• Proving non-interference is harder than proving functional
correctness. While functional correctness is a property

about each single run of a program, non-interference is
stated in terms of multiple runs of the same program. One
has to show that for different values of confidential inputs,
the attacker cannot observe a different behavior.

Another reason for the discrepancy between the lack of
expressiveness for techniques for non-interference compared
to those for functional correctness is that a lot of prior work
on non-interference has focused on type systems and type
system-like logics, e.g., [1], [4], [6], [9], [10]. Such systems
have the benefit of providing strong automation (by means of
type checking), but lack capabilities to reason about functional
correctness, and therefore to establish non-interference of more
challenging programs.

In order to overcome aforementioned shortcomings, we take
a different and more expressive approach that combines the
power of type systems and concurrent separation logic. In
our approach, one assigns flexible interfaces to individual
program modules using types. The program modules can then
be composed using typing rules, ensuring non-interference
of the whole system. Individual programs can be verified
against those interfaces using a relational concurrent separation
logic, which allows one to carry out non-interference proofs
intertwined with functional correctness proofs.

Although ideas from concurrent separation logic have been
employed for establishing non-interference (for first-order
programs) before, see [9], [10], we believe that the combination
of typing and separation logic is new. On top of that, our
approach provides a number of other advantages compared to
prior work on non-interference:

• We are the first to consider non-interference in the context
of a language with fine-grained concurrency. That is,
our language features low-level atomic operations like
compare-and-set. These operations are used to implement
lock-free concurrent data structures and high-level syn-
chronization mechanisms like locks/mutexes, whereas in
prior work locks were taken to be language primitives.

• To provide a high level of expressiveness and modularity,
our separation logic involves various novel features. First,
to support reasoning about multiple runs of a program
with different values for confidential inputs, our separation
logic is relational. Second, to reason about sophisticated
forms of sharing and ownership, as in value-dependent
classifications, our logic provides a powerful invariant
mechanism to describe expressive protocols.

1

Under submission

45

Thank you!

Download ReLoC at https://gitlab.mpi-sws.org/iris/reloc

Download Iris at https://iris-project.org/

*

https://gitlab.mpi-sws.org/iris/reloc
https://iris-project.org/

