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» Optimized versions of data structures
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» Proving program transformations

Vesource- Compile(esource) ;jctx €source
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Language features that complicate refinements

» Mutable state

(1etx = f()in(x, X)) Betx (f(), f())

» Higher-order functions

(/\(). 1) Zetx (1etx — ref(0) in (A(). x « (1 + !x); !x))

» Concurrency
(x 10, x 11) Zetx (x “ 11)



What do such relational properties mean mathematically?
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Contextual refinement

Contextual refinement: the “gold standard” of program refinement:
e1 Setx €T =VY(C: 7 — int).Vv. Cle] L v = Clea] } v

“Any behavior of a (well-typed) client C using e; can be matched by a behavior of the
same client using "

[Very hard to prove: Quantification over all cIientsJ




Logical relations to the rescue!

Do not prove contextual refinement directly, but use a binary logical relation:

61<62:T

~

> e = e : 7 is defined structurally on the type 7
» Does not involve quantification over all clients C

=cix € : T proved once and for all

~

> Soundness e;1 Z & T = e
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A bit of history

Logical relations e; = e, : 7 are notoriously hard to define when having recursive types,
higher-order state (type-world circularity), ...

Solutions to define such logical relations:
> Step-indexing (Appel-McAllester, Ahmed, .. .)

Solve circularities by stratifying everything by a natural number corresponding to
the number of computation steps

P> Logical approach (LSLR, LADR, CaReSL, Iris, ...)

Hide step-indexing using modalities to obtain clearer definitions and proofs

We tried to take this one step further



Prove program refinements using
inference rules a la concurrent separation logic

Instead of Hoare triples {P} e {Q} we have refinement judgments e; S e : 7

» Refinement proofs by symbolic execution as we know from separation logic
» Modular and conditional specifications

» Modeled using the “logical approach”
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RelLoC [Frumin, Krebbers, Birkedal; LICS'18]

ReLoC: mechanized separation logic for interactive refinement proofs of fine-grained
concurrent programs

» Fine-grained concurrency: programs use low-level
synchronization primitives for more granular parallelism

» Mechanized: soundness proven sound using the Iris
framework in Coq

» Interactive refinement proofs: using high-level tactics
in Coq
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ReLoC: (simplified) grammar

P,Q €Prop:=Vx.P|3Ix.P|PVQ]| ...
| PxQ | P=Q | Lijv | Lgv

| QAlFeaie:7) | [rla(va,ve) | ...

Separation logic for handling mutable state

» (i v for the left-hand side (implementation)
» (s v for the right-hand side (specification)

Logic with first-class refinement propositions to allow conditional refinements
> (l1—=iv) « (a1 Zex:7)
> (g Ze:unit = 7) =« (f(er) D e);e):7)



Proving refinements of pure programs
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Some rules for pure programs

Symbolic execution rules
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A”:K[ei]je237' el_>pureei¢
AlEK[e]Ze:T -

AlEer 3SK[e]:T € —pure €
AlFe ZKle]: T )
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Some rules for pure programs

Structural rules

AlFeZe:T * Al=e 3T
Al (e1,€)) 3 (e2,€9) 7 x 7

J(R: Valx Val = Prop). [a:=R],AlFe Je:T
A ||= pack(er) 2 pack(ep) : Ja. T ‘

O (Vvl V2.|IT]]A(V17V2) —k )
[Tla(vi,ve) AlEealv/xi] 3 elwn/x]:o
AHiV:[:jVQZTI AlEX. e S A .e0:T—0

sk
0




Example
A bit interface:

bitT 2 3a. @ X (@ — a) x (a — bool)

» constructor
» flip the bit

» view the bit as a Boolean
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Example
A bit interface:

bitT = Ja. @ x (o — a) x

» constructor
» flip the bit
>

Two implementations:
bit_bool = pack(true, (Ab.=b), (Ab. b))

bit nat = pack(l7 (An.if n=0thenlelse0), (An.n= 1))

Refinement (and vice versa):

bit_bool 2 bit nat : bitT



Proof of the refinement

pack(true, (Ab.=b), (\b. b))

N

pack(l7 (An.if n =0thenlelse0), (An.n= 1))

Ja.a x (¢ — ) X (v — bool)
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Proof of the refinement
[ :=R] E where R £ {(true, 1), (false,0)}

(true, (Ab. —b), (Ab. b))

N

(1, (An.if n=0thenlelse0), (An.n= 1))

a X (@ = a) X (« — bool)

[Use structural rule for products}
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Proof of the refinement

[ :=R] E where R £ {(true, 1), (false,0)}

true 31 e (by def of R)
(Ab.=b) S (An.if n=0thenlelse0) :a— « (A-rule + symb. exec.)
(Ab.b) 2 (An.n=1) : o« — bool

After using the A rule and case analysis on R:

—true Zif 1 =0thenlelse0 e
—false 3 if 0 =0thenlelse0 e}



Proof of the refinement

[ :=R] E where R £ {(true, 1), (false,0)}
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Proof of the refinement

[ :=R] E where R £ {(true, 1), (false,0)}

true 31
(Ab.—b) 3 (An.if n =0thenlelse0)

(Ab.b) 2 (An.n=1)

o — o

.« — bool

(by def of R)
(A-rule + symb. exec.)

(A-rule + symb. exec.)



Reasoning about mutable state

Separation logic to the rescue!
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“Vanilla"” separation |OgiC [O'Hearn, Reynolds, Yang; CSL'01]
Propositions P, Q denote ownership of resources

Points-to connective ¢ — v:
Exclusive ownership of location ¢ with value v

Separating conjunction P x Q:
The resources consists of separate parts satisfying P and Q

Basic example:

{l1 = vi % ly — vy} swap(l1, €2){l1 > vo x lp — vi }

[the * ensures that £ and /5 are different memory Iocations]




Mutable state and separation logic for refinements

There are two versions of the points-to connective:
» (v for the left-hand side/implementation
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Mutable state and separation logic for refinements

There are two versions of the points-to connective:
» (v for the left-hand side/implementation
» (¢ v for the right-hand side/specification

Example:

14 = fr—>s 0  — (!gl)ﬁ(fz(—4;!€2):int



Some rules for mutable state

Symbolic execution

fll—ﬂ— * (fll—ﬂvl —*AH:K[()]jGQZT)
A‘):K[fl%vl]j62i7'

sk
>k




Some rules for mutable state

Symbolic execution

by =i — * (h=ivi + AEK[(O]Ze:7)
A‘):K[fl%vl]j62i7'

sk
>k

bis—  x  (bosve >+ Alra ZKIO]:7)
AlEe S K[l w]:T




Some rules for mutable state

Symbolic execution

fl*—>i— * (fll—>iv1 —*AH:K[()]jeQ:T)
AH:K[E]_(—V]_]ieziT

sk
>k

bis—  x  (bosve >+ Alra ZKIO]:7)
AlEe S K[l w]:T

Vfl.fl = v —k AH: K[fl]jeg:7'¢ V€2.€2 =g Vo =k AH:ejK[fz]:T¢
A|lE K[ref(v)] S e T ‘ AlE e Z K[ref(w)]: 7 '




Reasoning about higher-order functions and concurrency

20



State encapsulation
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State encapsulation

Modules with encapsulated state:

let x = ref(e)in ()\y. . )

[The reference can only be used in the cIosure}

Simple example:
counter 2 <)\() let x = ref(1)in (A(). FAA(x, 1))) ‘unit — (unit — int)
» counter() constructs an instance ¢ : unit — int of the counter module

» Calling c() in subsequently gives 1,2, ...

» The reference x is private to the module
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The problem

Modules with encapsulated state:

let x = ref(e) in ()\y. . )

f

Reasoning about such modules is challenging:
» f can be called multiple times by clients

So, the value of x can change in each call

» f can even be called even in parallel!
So, f cannot get exclusive access to x — v

We need to guarantee that closures do not get access to exclusive resources



Persistent resources

The “persistent” modality O in Iris/ReLoC:

O P £ “P holds without assuming exclusive resources”

Examples:
» Equality is persistent: (x = y) F O(x = y)
» Points-to connectives are not: (({ — v)t/ 0O((+— v)
> More examples later. ..



ReLoC's A-rule again

The O modality makes sure no exclusive resources can escape into closures:

O <VV1 V2.|IT]]A(V1,V2) —k >
Al alv/x] 3 efvw/x] o
AH:)\Xl.el:j)\Xz.GQST%O'

sk
55




ReLoC's A-rule again

The O modality makes sure no exclusive resources can escape into closures:

O <VV1 V2.|IT]]A(V1,V2) —k >
Al alv/x] 3 efvw/x] o
AH:)\Xl.el:j)\Xz.GQST%O'

sk
55

Prohibits “wrong” refinements, for example:

()\(). 1) Zetx <1etx = ref(0) in (A(). x ¢ (1+ !x); !x))

Due to O, the resource x 5 0 cannot be used to prove the closure



But it should be possible to use resources in closures

For example:
()\(). let x = ref(1) in (A(). FAA(x, 1)))
N

A().let x = ref(1),/ = newlock () in
A(). acquire(/);
letv =!xin
X<+ v+1;
release(/); v
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Iris-style Invariants

The invariant connective |R|
expresses that R is maintained as an invariant on the state

Invariants allow to share resources:
> A resource R can be turned into | R| at any time
> Invariants are persistent: | R| - 0 R
» .. .thus can be used to prove closures

But that comes with a cost:
» Invariants @ can only be accessed during atomic steps on the left-hand side

» ...while multiple steps on the right-hand side can be performed
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N

let x = ref(1l),/ = newlock () in
(A(). acquire(/);
letv =!xin
X<+ v+1;
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release(/); v)
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Example

X1 '—)i]_
Xo ¥ 1

isLock(/,unlocked)

(A()-FAA(xq,1))

A

(A()- acquire(/);
letv = !xy1in
Xg —Vv+1;

release(/); v)
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X1 —=in+1
Xo s N+ 1
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X1 —=in+1
Xo s N+ 1
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A



Example

dn.xq > n %
Xo F>g N X
isLock(/, unlocked)

A



Wrapping up. ..

» RelLoC provides rules allowing this kind of
simulation reasoning, formally

» The example can be done in Coq in almost the
same fashion

» The approach scales to: lock-free concurrent
data structures, generative ADTs, examples
from the logical relations literature




Implementation in Coq
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RelLoC

ReLoC is build on top of the Iris framework, so we can inherit:

P lIris's invariants

> Iris's ghost state

» Iris's Coq infrastructure
> ...




The proofs we have done in Coq

ReLoC judgments e; = ey : 7 are modeled as a shallow embedding using the “logical
approach” to logical relations

Proved in Coq:
» Proof rules: All the ReLoC rules hold in the shallow embedding
> Soundness: €1 € T = €] S 21 T
» Actual program refinements: concurrent data structures, and examples from the
logical relations literature



Need to reason in separation logic!
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Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp)

Px(da, Va) «xQ—=«QxJa, PxWVa.
Proof.

iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

— iAssumption.

- iExists x.

iFrame.

Qed.
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Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp)

Px(da, Va) *xQ—=«Q*Ja, PxWVa.
Proof.

iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

— iAssumption.

- iExists x.

iFrame.

Qed.

1 subgoal

A : Type

P, Q : iProp
V¥ : A — iProp
x : A

"Hi" ;P
"Ho" Vo x
I|H3|| Q

(1/1)

&

Q+x(Ja: A PxVa)

3



Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp) : 1 subgoal
Px(da, Va) *xQ—=«Q*Ja, PxWVa. A : Type
Proof. P, Q : iProp
iIntros "[H1 [H2 H3]]1". Vi A — iProp
iDestruct "H2" as (x) "H2". x A (1/1)
iSplitL "H3". T
- iAssumption. "HoU - W x
- iExists x. "H3" : Q
iFrame. *
Qed. ﬁ(ﬂa:A,P*\Ua)
—

[* means: resources should be split]

|




Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp) : 1 subgoal

Px(da, Va) *xQ—=«Q*Ja, PxWVa. A : Type
Proof . P, Q : iProp

iIntros "[H1 [H2 H3]1". Vi A = iProp

iDestruct "H2" as (x) "H2". x A (1/1)

lSplltL "H?". "Hi" - P

- iAssumpt "HO" - W x

B I|H3||

[The hypotheses for the left conJunct} ‘ \

Qed. Qx(Ja:A PxVa)
A
—

[* means: resources should be split]

|




Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp) : 2 subgoals
Px(da, Va) *xQ—=«Q*Ja, PxWVa. A : Type

Proof. P, Q : iProp
iIntros "[H1 [H2 H3]]". : : A — iProp

iDestruct "H2" as (x) "H2". - A

iSplitL "H3". p— (1/2)
- iAssumpti . *
[The hypotheses for the left conjunct} ;
Qed. (2/2)
"H1" ;P
"H2" W x

Jda: A PxWVa




Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp)

Px(da, Va) «xQ—=«QxJa, PxWVa.
Proof.

iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

— iAssumption.

- iExists x.

iFrame.

Qed.




Iris Proof Mode (IPM) [Krebbers et al.; POPL'17]

Lemma test {A} (P Q : iProp) (V : A — iProp) : No more subgoals.
Px(da, Va) *xQ—=«Q*Ja, PxWVa.

Proof.
iIntros "[H1 [H2 H3]]".
by iFrame.

Qed.

[We can also solve this lemma automatically}




ReLoC in Iris Proof Mode

» The RelLoC rules are just lemmas that can be iApplyed
» We have more automated support for symbolic execution

» Iris Proof Mode features a special context for persistent hypotheses, which is
crucial for dealing with invariants



Ongoing work:

Proving security properties using
relational reasoning in separation logic
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Language-based security

Program variables are divided into two groups:
P low-sensitivity variables Iy, b, . ..

» high-sensitivity variables hy, ho,. ...

Confidentiality: the data stored in high-sensitivity variables should not leak to
low-sensitivity variables, e.g., 1 < ! h; + 1 does not happen

Proved via non-interference: changing the values of hy, hp,... and running the
program does not affect the resulting values of /1, b, ....



Type systems for non-interference
Type system where types are annotated with labels from a lattice LC H

F I ref inth F h;: ref intH

Fe:ref intX Fe' :int¢ ECx Fe:intX ke :inté

Fe« e :unit Fe+e :intXHe



Type systems for non-interference

Type system where types are annotated with labels from a lattice LC H

F I ref inth F h;: ref intH
Fe:ref intX Fe' :int¢ EC x Fe:intX ke :inté
e+ € :unit Fe+eé :intXE
Example:
Hlhy intH F1:inth
- h :ref inth Flhy +1: intH HCL

Fh<'hi+1:unit



Shortcomings of type systems

» Type systems can be extended to cover more PL features (dynamic references,
higher-order functions, exceptions), although it is not straightforward

» Type systems are too weak: in many situations non-interference depends on
functional correctness



Example: value-dependent classification

data = ref(secret); ,
letr=1<. . in
is_classified = ref(true)

while true do

if = r.is_classified || r.data < 0;
then out < | r.data || r.is_classified < false
else ();

The classification of r.data depends on the run-time value r.is_classified
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Example: value-dependent classification

data = ref(secret); ,
letr=1<. . in
is_classified = ref(true)

while true do

if = r.is_classified || r.data < 0;
then out < | r.data || r.is_classified < false
else ();

The classification of r.data depends on the run-time value r.is_classified

» Can we type this program with conventional type systems? No

» Is this program secure? Yes
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SelLoC [Frumin, Krebbers, Birkedal; Under submission]

SelLoC: a relational extension of Iris for non-interference

> A relational variant of weakest preconditions

» to combine reasoning about non-interference with functional correctness
P in the presence of fine-grained concurrency

> A type system built on top of SeLoC using logical relations

» Compatibility rules for composing typed programs
» Can “drop down" to separation logic to prove more complicated programs

» Soundness w.r.t. scheduler-independent notion of non-interference
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Double weakest precondition
The basic component of SeLoC:

dwp e & e {P}

» Any two runs of the e; and e> are in a bisimulation and their results satisfy @
P> e; and ey have different secret data, but must produce the same public output
» Left-hand side and right-hand side resources: /1 — vi and {5 R v»

» Rules are similar to ReLoC, but require execution in lock-step

» Soundness statement:

(Yhi, hy € Z. loyr F dwp e[h1/x] & e[h2/x] {viva. vi = vo}) = e is secure

Iouté‘ﬂvez.outl—n_ V % out R v‘




Proof of the example: value-dependent classification

data = ref(secret); ,
letr= <. . in
is_classified = ref(true)

while true do
if — ! r.is_classified r.data + 0;
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Proof of the example: value-dependent classification

data = ref(secret); ,
letr= <. . in
is_classified = ref(true)

while true do
if — ! r.is_classified r.data + 0;

then out «+ !r.data || r.is_classified < false
else ();

Classified Declassified




Proof of the example: value-dependent classification

(in,state(CIassified) x iy, Ip. n.is_classified —| true x

r.is_classified —g true * ri.data —_ iy * r.data g i)

\/(in,state(lntermediate) * 3i. rp.is_classified —| true *

ry.is_classified —R true * ry.data — i * r».data —Rg i)

\/(in,state(DecIassified) * 3i. r.is_classified —| false *

ry.is_classified —r false * ry.data — i * r».data —R i)

Classified Declassified




Conclusions
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Want to know more details

ReLoC: contextual refinements

SeLoC: non-

interference

ReLoC: A Mechanised Relational Logic for Fine-Grained
Concurrency

Radboud University

Robbert Krebbers Lars Birkedal
Delft University of Technology

Aarhus University

Abstract
We present ReLoC: a logic for proving refinements of programs in
alanguage with higher-order sate, fine-grained concurrency, poly-

pes. The core judge
e3¢ 7, which expresses that a progeam e refines a program ¢’
attype r. In contrast o earlier work on refinements for languages

structure-directed rules for manipulating this judgement, whereas
previously, such proofs were carried out by unfolding the judge-
‘ment into ts definition in the model. These more abstract proof
rules make it simpler to carry out refinement proofs.
Moreover, we introduce logically atomic relational specficatins:
i

sions that take effect at a single instant in time. We demonstrate
Jational Rel

allowing for more modular proofs.
ReLoC is built on top of the expressive concursent separation

logic Iris,allowing us to leverage features ofIris such as invariants

and ghost state. We provide a mechanisation of our logic in Cog,
ich does not just contain a proof of soundness, but also tacties

forinteractvely carrying out reinements roofs We hve wsed

I examples,
the practicalty and modularity of our logic

CCS Concepts + Theory of computation — Logic and verifi-
cation: Separation logic: Concurrency; Program verificaton;

logical relat grained concur-

read £ 1x(). 1x

JxlLacquire liletn = Lxinx — 1+ mirelease I: n
counter, 2 Tet! = newlock () inlet x = ref(0) in
(read x. A().incy x 1)

recinex = lete=Lxin

SFCAS(x,c, 1+ ) thencelse e x

counter; £ Let.x = ref(0) in(read x,1(.inc; x)

Figure 1. Two concurrent counter implementations,

ment of program expressions: contextual equivalence of e and ¢/
thatit

¢',and contextual refinerment

of programs, e.g, one can show the correetness of a fine-grained.

p
it contextualy refines a coarse-grained implementation, which is
understood as the specifcation.

A simple example i the specification of  fine-grained concur-
rent counter by a coarse-grained version, counter; < counter,
(1= Ny (1 — N),sec Figur 1 forthe code. The increment oper.
ation of the coarse-grained version, counter, is performed inside a

eywords
ency, Iris, atomicity

ACM Reference Format:

ticalscction guarded by a lock, 3
counter, takes an “oplimistic” lockrec approach to incrementing

the value using a compare-and-set inside a loop. We will use the

anised Relationsl Logic for n LICS '5:LICS
i Tuly

Il contexis it is often the case that

Compositional Non-Interference
for Fine-Grained Concurrent Programs

Dan Frumin
Radboud University

Absrac—We prsent Selac:
rference of fine-grained

in'a compositional way. SeLoC

approsches, both i fems ofthe Festuresofthe farge program-

al separation logic for

Ianguage supports d:nzmlralh “enid seesence poimters,
higher-order functions, fork-based
with low.-level atomi
provides an invariant mechanism o establish protocols on data
that s not protected by locks. This allows s to verify programs
yond the reach of pr 3
A ey tehniea innovation in SeLoC s 3 relatonal vrson of
rack information flow
Jogic resourcen, O 0p of thse weakest preeonditons we puld
& 7pe gyteniike abatraction, using vasants wnd logiel rela-
tions. SeLoC has been mechanized on top of the Iris framework.
i the Coy proot nssant.
s Termsnowintcrlrece, fnegrained conurrncy
v I relations, separa

1. INTRODUCTION

Non-interference is a form of information flow control (IFC)
used to express security properties like confidentiality and
secrecy, which guarantee that confidential information does
not leak to attackers. In order to establish n ence of
programs used in prac ry to develop techniques
that scale up to programming paradigms and programming con-
st found in moden programming angags. Much effor
s been put nt tht ire 0 support dynamically

obbert
Delft Umvev sity of Technology

Krebbers Lars Birkedal
Aarhus University

about each single run of a program, non-interference is
stated in terms of multiple runs of the same program. One
as to show that for different values of confidential inputs,
the attacker cannot observe a different behavior,
Another reason for the discrepancy between the lack of
expressiveness for techniques for non-interference compared
1o those for functional correctness is that a ot of prior work
on non-interference has focused on type systems and type
system-like logics, e.g.. [1], [4], [6], [9]. [10]. Such systems
have the benefit of providing strong automation (by means of
type checking). but lack capabilities to reason about functional
comrectness, and therefore to establish non-interference of more
challenging programs,
In order to overcome aforementioned shortcomings, we take
@ different and more xpresive approsch hat combincs the
power of type systems and concurrent separation logic. |
our approach, one assigns flexible erace 10, mdwm\m
prograrm modules using types. The program modules
be composed using typing rules, ensuring non- i torinee
of the whole system. Individual programs can be verified
against those interfaces using a relational concurrent separation
logic, which allows one to carry out non-interference proofs
intertwined with functional correctness proofs.
Although ideas from concurrent separation logic hav
employed for ssiablishing non-nerference (or frtorder
prograims) before. see [91. [10], we believe that the combination

At LICS'18
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Thank you!

Download ReLoC at https://gitlab.mpi-sws.org/iris/reloc

Download Iris at https://iris-project.org/
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https://gitlab.mpi-sws.org/iris/reloc
https://iris-project.org/

