Type Classes for Efficient Exact Real Arithmetic in Coq

Robbert Krebbers
Joint work with Bas Spitters1

Radboud University Nijmegen

September 9, 2011 @ TYPES
Bergen, Norway

1The research leading to these results has received funding from the European Union’s 7th Framework Programme under grant agreement nr. 243847 (ForMath).
Why do we need certified exact real arithmetic?

- There is a big gap between:
 - Numerical algorithms in research papers.
 - Actual implementations (Mathematica, MATLAB, ...).

- Makes the code difficult to maintain.
- Makes it difficult to trust the code of these implementations!
- Undesirable in proofs that rely on the execution of this code.
- Kepler conjecture.
- Existence of the Lorentz attractor.
- Undesirable in safety critical applications.
Why do we need certified exact real arithmetic?

- There is a big gap between:
 - Numerical algorithms in research papers.
 - Actual implementations (Mathematica, MATLAB, ...).
- This gap makes the code difficult to maintain.
- Makes it difficult to trust the code of these implementations!
Why do we need certified exact real arithmetic?

- There is a big gap between:
 - Numerical algorithms in research papers.
 - Actual implementations (Mathematica, MATLAB, ...).
- This gap makes the code difficult to maintain.
- Makes it difficult to trust the code of these implementations!
- Undesirable in proofs that rely on the execution of this code.
 - Kepler conjecture.
 - Existence of the Lorentz attractor.
- Undesirable in safety critical applications.
This talk

Improve performance of real number computation in Coq.
This talk

Improve performance of real number computation in CoQ.

Real numbers:
- Cannot be represented exactly in a computer.
- Approximation by rational numbers.
- Or any set that is dense in the rationals (e.g. the dyadics).
This talk

Improve performance of real number computation in Coq.

Real numbers:
- Cannot be represented exactly in a computer.
- Approximation by rational numbers.
- Or any set that is dense in the rationals (e.g. the dyadics).

Coq:
- Well suited because it is both a dependently typed functional programming language, and,
- a proof assistant for constructive mathematics.
Based on *metric spaces* and the *completion monad*.

\[\mathbb{R} := \mathcal{CQ} := \{ f : \mathbb{Q}_+ \to \mathbb{Q} \mid f \text{ is regular} \} \]

To define a function \(\mathbb{R} \to \mathbb{R} \): define a *uniformly continuous function* \(f : \mathbb{Q} \to \mathbb{R} \), and obtain \(\tilde{f} : \mathbb{R} \to \mathbb{R} \).

Efficient combination of proving and programming.
O’Connor’s implementation in \(\text{CoQ} \)

Problem:

- A concrete representation of the rationals (\(\text{CoQ}'s \ Q \)) is used.
- Cannot swap implementations, e.g., use machine integers.
O’Connor’s implementation in CoQ

Problem:
- A concrete representation of the rationals (CoQ’s Q) is used.
- Cannot swap implementations, e.g. use machine integers.

Solution:
Build theory and programs on top of abstract interfaces instead of concrete implementations.
- Cleaner.
- Mathematically sound.
- Can swap implementations.
Our contribution

An abstract specification of the dense set.

- For which we provide an implementation using the dyadics:
 \[n \times 2^e \quad \text{for} \quad n, e \in \mathbb{Z} \]

- Using Coq’s machine integers.
- Extend the algebraic hierarchy based on type classes by Spitters and van der Weegen to achieve this.

Some other performance improvements:
- Implement range reductions.
- Improve computation of power series:
 - Keep auxiliary results small.
 - Avoid evaluation of termination proofs.
Our contribution

An abstract specification of the dense set.

- For which we provide an implementation using the dyadics:
 \[n \cdot 2^e \text{ for } n, e \in \mathbb{Z} \]

- Using Coq's machine integers.
- Extend the algebraic hierarchy based on type classes by Spitters and van der Weegen to achieve this.

Some other performance improvements.

- Implement range reductions.
- Improve computation of power series:
 - Keep auxiliary results small.
 - Avoid evaluation of termination proofs.
Spitters and van der Weegen

Type class based interfaces for:

- A standard algebraic hierarchy.
- Some category theory.
- Some universal algebra.

- Naturals: initial semiring.
- Integers: initial ring.
- Rationals: field of fractions of \mathbb{Z}.
Type class based interfaces for:

- A standard algebraic hierarchy.
- Some category theory.
- Some universal algebra.
- Interfaces for number structures.
 - Naturals: initial semiring.
 - Integers: initial ring.
 - Rationals: field of fractions of \mathbb{Z}.
Our extensions of Spitters and van der Weegen

- Interfaces and theory for operations (nat^{pow}, shiftl, \ldots).
- Support for undecidable structures.
- Library on constructive order theory (ordered rings, etc.\ldots)
- Explicit casts.
Support for undecidable structures

- To compute $\frac{1}{x}$ for $x \in \mathbb{R}$, one needs a witness $\varepsilon \in \mathbb{Q}_+$ such that $|x| \geq \varepsilon$.

Cannot be extracted from a proof of $x \neq 0$ because a negation lacks computational content.

Need apartness $\not\sim$ instead of inequality.

1. $\neg x \not\sim x$ (irreflexive)
2. $x \not\sim y \rightarrow y \not\sim x$ (symmetric)
3. $x \not\sim y \rightarrow (x \not\sim z \lor y \not\sim z)$ (co-transitive)
4. $\neg x \not\sim y \leftrightarrow x = y$ (tight)
Support for undecidable structures

To compute $\frac{1}{x}$ for $x \in \mathbb{R}$, one needs a witness $\varepsilon \in \mathbb{Q}^+$ such that $|x| \geq \varepsilon$.

Cannot be extracted from a proof of $x \neq 0$ because a negation lacks computational content.

Need apartness \preceq instead of inequality.

1. $\neg x \preceq x$ (irreflexive)
2. $x \preceq y \rightarrow y \preceq x$ (symmetric)
3. $x \preceq y \rightarrow (x \preceq z \lor y \preceq z)$ (co-transitive)
4. $\neg x \preceq y \leftrightarrow x = y$ (tight)
Apartness in the old version of CoRN

- Informative apartness relation (in \texttt{Type}).
- Easy to extract witnesses.
Apartness in the old version of CoRN

- Informative apartness relation (in Type).
- Easy to extract witnesses.
- Present everywhere in the algebraic hierarchy.
- CoQ does not support setoid rewriting in Type.
Apartness in the old version of CoRN

- Informative apartness relation (in \textit{Type}).
- Easy to extract witnesses.
- Present everywhere in the algebraic hierarchy.
- \textit{Coq} does not support setoid rewriting in \textit{Type}.
- \textit{Very heavy in practice}.
Apartness in our development

- Non-informative apartness relation (in Prop).
- Requires additional work to extract witnesses.
Apartness in our development

- Non-informative apartness relation (in \textit{Prop}).
- Requires additional work to extract witnesses.
- Include it just where it is necessary.
- Use type classes to reduce bookkeeping.
Apartness in our development

- Non-informative apartness relation (in Prop).
- Requires additional work to extract witnesses.
- Include it just where it is necessary.
- Use type classes to reduce bookkeeping.
- Easier in practice.
Extracting witnesses

Use constructive indefinite description

Lemma `constructive_indefinite_description_nat` (P : nat → Prop):

\[(∀ \ x : nat, \{P x\} + \{¬ P x\}) \rightarrow (∃ \ n : nat, \ P n) \rightarrow \{n : nat \mid P n\}\]

to extract a witness from a Prop-based apartness.
Extracting witnesses

Use constructive indefinite description

Lemma constructive_inddefinite_description_nat (P : nat → Prop) :
(∀ x : nat, {P x} + {¬ P x}) → (∃ n : nat, P n) → {n : nat | P n}

to extract a witness from a Prop-based apartness.

- Performs linear bounded search.
 Slow!
Extracting witnesses

Use constructive indefinite description

Lemma constructive_indefinite_description_nat (P : nat → Prop) :
(∀ x : nat, {P x} + {¬ P x}) → (∃ n : nat, P n) → {n : nat | P n}

to extract a witness from a Prop-based apartness.

- Performs linear bounded search.
 Slow!
- We specify explicit witnesses for computation.
 Faster to obtain, better quality.
We have to look out for cyclic instances, for example

StrongSetoid A \rightarrow Setoid A
Cyclic instances

- We have to look out for cyclic instances, for example

\[
\text{StrongSetoid } A \quad \rightarrow \quad \text{Setoid } A
\]

\[
\text{set } x \leq y := x \neq y, \text{ need decidably equality}
\]
Cyclic instances

► We have to look out for cyclic instances, for example

\[
\text{StrongSetoid } A \quad \rightarrow \quad \text{Setoid } A
\]

\[
\text{set } x \leq y := x \neq y, \text{ need decidably equality makes instance search loop.}
\]

► Create StrongSetoid A from Setoid A instances by hand.
Approximate rationals

Class AppDiv AQ := app_div : AQ → AQ → Z → AQ.
Class AppApprox AQ := app_approx : AQ → Z → AQ.

Class AppRationals AQ {e plus mult zero one inv} ‘{!Order AQ}
 {AQtoQ : Coerce AQ Q_as_MetricSpace} ‘{!AppInverse AQtoQ}
 {ZtoAQ : Coerce Z AQ} ‘{!AppDiv AQ} ‘{!AppApprox AQ}
 ‘{!Abs AQ} ‘{!Pow AQ N} ‘{!ShiftL AQ Z}
 ‘{∀ x y : AQ, Decision (x = y)} ‘{∀ x y : AQ, Decision (x ≤ y)} : Prop := {
 aq_ring :> @Ring AQ e plus mult zero one inv ;
 aq_order_embed :> OrderEmbedding AQtoQ ;
 aq_ring_morphism :> SemiRing_Morphism AQtoQ ;
 aq_dense_embedding :> DenseEmbedding AQtoQ ;
 aq_div : ∀ x y k, B₂ᵏ(’app_div x y k) (’x / ’y) ;
 aq_approx : ∀ x k, B₂ᵏ(’app_approx x k) (’x) ;
 aq_shift :> ShiftLSpec AQ Z (≪) ;
 aq_nat_pow :> NatPowSpec AQ N (^) ;
 aq_ints_mor :> SemiRing_Morphism ZtoAQ }.
Creating the real numbers

- Show that the approximate rationals form a metric space.
- Complete it to obtain the real numbers.
- Lift the ring operations to the real numbers.
- Prove correspondence with O’Connor’s implementation.
Power series

- Well suited for computation if:
 - its coefficients are alternating,
 - decreasing,
 - and have limit 0.

\[
\sin x = \sum_{i=0}^{\infty} \left(\frac{-1}{2i+1}\right)^{2i+1} x^{2i+1}
\]

To approximate \(\sin x \) with error \(\varepsilon \) we find a \(k \) such that:

\[
\left| \left(\frac{-1}{2i+1}\right)^{2i+1} x^{2i+1}\right| \leq \varepsilon
\]
Power series

- Well suited for computation if:
 - its coefficients are alternating,
 - decreasing,
 - and have limit 0.

- For example, for $-1 \leq x \leq 1$:

$$\sin x = \sum_{i=0}^{\infty} (-1)^{i} \cdot \frac{x^{2i+1}}{2i + 1}$$

- To approximate $\sin x$ with error ε we find a k such that:

$$\left| (-1)^{i} \cdot \frac{x^{2i+1}}{2i + 1} \right| \leq \varepsilon$$
Problem 1: we do not have exact division.

- So, we cannot compute the coefficients \(\frac{x^{2i+1}}{2i+1} \) exactly.
Power series

Problem 1: we do not have exact division.

▶ So, we cannot compute the coefficients \(\frac{x^{2i+1}}{2i+1} \) exactly.
▶ Use 2 streams: numerators and denominators.
Power series

Problem 1: we do not have exact division.
 ▶ So, we cannot compute the coefficients \(\frac{x^{2i+1}}{2i+1} \) exactly.
 ▶ Use 2 streams: numerators and denominators.
 ▶ Need to compute both the length and precision of division.
 ▶ This can be optimized using shifts.
Problem 1: we do not have exact division.

- So, we cannot compute the coefficients $\frac{x^{2i+1}}{2i+1}$ exactly.
- Use 2 streams: numerators and denominators.
- Need to compute both the length and precision of division.
- This can be optimized using shifts.
- Our approach only requires to compute few extra terms.
- Approximate division keeps the auxiliary numbers “small”.
Power series

Problem 2: convince Coq that it terminates.

- Use an inductive proposition to describe limits.

\[\text{Inductive } \text{Exists} \ A \ (P : \text{Stream} \ A \rightarrow \text{Prop}) \ (x : \text{Stream}) : \text{Prop} :=\]
\[| \text{Here} : P \ x \rightarrow \text{Exists} \ P \ x\]
\[| \text{Further} : \text{Exists} \ P \ (\text{tl} \ x) \rightarrow \text{Exists} \ P \ x.\]
Problem 2: convince Coq that it terminates.

- Use an inductive proposition to describe limits.
 \[
 \text{Inductive} \quad \text{Exists} \ A \ (P : \text{Stream} \ A \rightarrow \text{Prop}) \ (x : \text{Stream}) : \text{Prop} := \\
 \quad \mid \text{Here} : P \ x \rightarrow \text{Exists} \ P \ x \\
 \quad \mid \text{Further} : \text{Exists} \ P \ (\text{tl} \ x) \rightarrow \text{Exists} \ P \ x.
 \]

- But, need to make it lazy, otherwise \text{vm_compute} will evaluate a proposition [O‘Connor].
 \[
 \text{Inductive} \quad \text{LazyExists} \ A \ (P : \text{Stream} \ A \rightarrow \text{Prop}) \ (x : \text{Stream} \ A) : \text{Prop} := \\
 \quad \mid \text{LazyHere} : P \ x \rightarrow \text{LazyExists} \ P \ x \\
 \quad \mid \text{LazyFurther} : (\text{unit} \rightarrow \text{LazyExists} \ P \ (\text{tl} \ x)) \rightarrow \text{LazyExists} \ P \ x.
 \]
Unfortunately, still too much overhead.

- Perform 50,000 steps before looking at the proof.

```ocaml
Fixpoint LazyExists_inc ‘{P : Stream A → Prop}
  (n : nat) s : LazyExists P (Str_nth_tl n s) → LazyExists P s :=
  match n return LazyExists P (Str_nth_tl n s) → LazyExists P s with
  | O ⇒ λ x, x
  | S n ⇒ λ ex, LazyFurther (λ _, LazyExists_inc n (tl s) ex)
  end.
```
Unfortunately, still too much overhead.

- Perform 50,000 steps before looking at the proof.

```ocaml
Fixpoint LazyExists_inc \{P : Stream A \rightarrow Prop\} 
  (n : nat) s : LazyExists P (Str_nth_tl n s) \rightarrow LazyExists P s := 
match n return LazyExists P (Str_nth_tl n s) \rightarrow LazyExists P s with 
    | O  ⇒ λ x, x 
    | S n ⇒ λ ex, LazyFurther (λ _, LazyExists_inc n (tl s) ex) 
end.
```

- Major (\geq 10 times) performance improvement!
We extend the sine to its complete domain by repeatedly applying:

\[
\sin x = 3 \sin \left(\frac{x}{3} \right) - 4 \left(\sin \left(\frac{x}{3} \right) \right)^3
\]
We extend the sine to its complete domain by repeatedly applying:

$$\sin x = 3 \times \sin \frac{x}{3} - 4 \times \left(\sin \frac{x}{3} \right)^3$$

Efficient because we postpone divisions.
Extending the sine to its complete domain

- We extend the sine to its complete domain by repeatedly applying:

\[\sin x = 3 \cdot \sin \left(\frac{x}{3} \right) - 4 \cdot \left(\sin \left(\frac{x}{3} \right) \right)^3 \]

- Efficient because we postpone divisions.
- Performance improves significantly by reducing the input to a value between \(-2^k \leq x \leq 0\) for \(50 \leq k\).
- Faster than subtracting multiples of \(2\pi\) because our implementation of \(\pi\) is too slow.
What have we implemented so far?

Verified versions of:

- Basic field operations (+, *, -, /)
- Exponentiation by a natural.
- Computation of power series.
- exp, arctan, sin and cos.
- \(\pi := 176 \cdot \arctan \frac{1}{57} + 28 \cdot \arctan \frac{1}{239} - 48 \cdot \arctan \frac{1}{682} + 96 \cdot \arctan \frac{1}{12943} \).
- Square root using Wolfram iteration.
Benchmarks

- Our **Haskell** prototype is \(~15\) times faster.
- Our **Coq** implementation is \(~100\) times faster.
- For example:
 - 500 decimals of \(\exp \left(\pi \times \sqrt{163} \right)\) and \(\sin \left(\exp 1 \right)\),
 - 2000 decimals of \(\exp 1000\),
 - within 10 seconds in **Coq**!
- (Previously about 10 decimals)
Benchmarks

- Our Haskell prototype is \(\sim 15 \) times faster.
- Our Coq implementation is \(\sim 100 \) times faster.
- For example:
 - 500 decimals of \(\exp(\pi \times \sqrt{163}) \) and \(\sin(\exp 1) \),
 - 2000 decimals of \(\exp 1000 \),
 within 10 seconds in Coq!
- (Previously about 10 decimals)
- Type classes only yield a 3% performance loss.
- Coq is still too slow compared to unoptimized Haskell (factor 30 for Wolfram iteration).
Further work

- Newton iteration to compute the square root.
- Geometric series (e.g. to compute \ln).
- `native_compute`: evaluation by compilation to OCAML.
- `FLOCQ`: more fine grained floating point algorithms.
- Type classified theory on metric spaces.
Conclusions

- Greatly improved the performance of the reals.
- Abstract interfaces allow to swap implementations and share theory and proofs.
- Type classes yield no apparent performance penalty.
- Nice names and notations with type classes and unicode symbols.
Issues

- Type classes are quite fragile.
- Instance resolution is too slow.
- Instance resolution cannot handle cyclic instances.
- No setoid rewriting in for relations in `Type`.
- Need to adapt definitions to avoid evaluation in `Prop`.
Sources

http://robbertkrebbers.nl/research/reals/