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Goal of this talk

Many POPL papers about complicated program logics come with mechanized
soundness proofs, but how to reason in these logics?

Goal: reasoning in an object logic in the same style as reasoning in Coq

How?

I Extend Coq with (spatial and non-spatial)
named proof contexts for an object logic

I Tactics for introduction and elimination of all
connectives of the object logic

I Entirely implemented using reflection, type
classes and Ltac (no OCaml plugin needed)

Iris: language independent higher-order separation logic for modular reasoning about
fine-grained concurrency in Coq
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Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
P ∗ (∃ a : A , Ψ a) ∗ R−∗ ∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context
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Motivation

Why should we care about interactive proofs? Why not automate everything?

Infeasible to automate everything, for example:

I Concurrent algorithms in Iris (Jung, Krebbers, Swasey, Timany)

I The Rust type system in Iris (Jung, Jourdan, Dreyer, Krebbers)

I Logical relations in Iris (Krogh-Jespersen, Svendsen, Timany, Birkedal, Tassarotti, Jung, Krebbers)

I Weak memory concurrency in Iris (Kaiser, Dang, Dreyer, Lahav, Vafeiadis)

I Object calculi in Iris (Swasey, Dreyer, Garg)

I Logical atomicity in Iris (Krogh-Jespersen, Zhang, Jung)

I Defining Iris in Iris (Krebbers, Jung, Jourdan, Bizjak, Dreyer, Birkedal)

Most of these projects are formalized in IPM
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How to do such proofs in a proof assistant?

Current proof assistant support is limited to basic separation logic:

I Macros for manipulating Hoare triples: Appel, Wright, Charge!, . . .

I Heavy automation: Bedrock, Rtac, . . .

Iris has many complicated connectives that are beyond basic separation logic
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How to embed a logic into a proof assistant

Deep embedding Shallow embedding

Inductive form : Type :=
| iAnd : form → form → form

| iForall : string → form → form → form

Definition iProp : Type :=
(* predicates over states *) .

Definition iAnd : iProp → iProp → iProp :=
(* semantic interpretation *) .

Definition iForall : ∀ A , (A → iProp) → iProp :=
(* semantic interpretation *) .

Traverse formulas using Coq functions (fast) Traverse formulas on the meta level (slow)

Reflective tactics (fast) Tactics on the meta level (slow)

Need to explicitly encode binders Reuse binders of Coq

Need to embed features like lists Piggy-back on features like lists from Coq

Grammar of formulas fixed once and forall Easily extensible with new connectives

Context manipulation is the prime task of tactics:
Deeply embed contexts, shallowly embed the logic
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Deeply embedded contexts in IPM

Visible goal in IPM:

~x : ~φ Variables and pure Coq hypotheses

~Hpersistent : ~P Persistent hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
~Hspatial : ~Q Spatial hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Goal in object logic

Propositions that enjoy P ⇔ P ∗ P

Actual Coq goal (without pretty printing):

~xi : ~φi

of envs (Envs . . . . . .) ` R

where:

Record envs :=
Envs { env persistent : env iProp ; env spatial : env iProp }.

Coercion of envs (∆ : envs) : iProp :=
( p envs wf ∆q ∗ 2 [∗ ] env persistent ∆ ∗ [∗ ] env spatial ∆)%I .

Association list of shallowly embedded propositions

Folded separating conjunction
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Deeply embedded contexts in IPM

Visible goal in IPM:

~x : ~φ Variables and pure Coq hypotheses
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
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where:
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The iSplit tactic

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .
iExists x .

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x ∗ P
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The iSplit tactic

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .
iExists x .
iSplitL "HΨ".

2 subgoals

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/2)
"HΨ" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P
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Implementation of the iSplit tactic

Tactics implemented by reflection as mere lemmas:

Lemma tac sep split ∆ ∆1 ∆2 lr js Q1 Q2 :
envs split lr js ∆ = Some (∆1,∆2) →
(∆1 ` Q1) → (∆2 ` Q2) → ∆ ` Q1 ∗ Q2 .

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in

eapply tac sep split with false Hs ;
[env cbv ; reflexivity | |
fail "iSplitL: hypotheses" Hs "not found in the context"

| (* goal 1 *)

| (* goal 2 *) ] .
Report sensible error to the user
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The iFrame tactic

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P
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Implementation of the iFrame tactic

Problem: the goal is not deeply embedded, how to manipulate it?

Solution: logic programming using type classes

The lemma corresponding to the tactic in Coq:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

Lemma tac frame ∆ ∆’ i p R P Q :

envs lookup delete i ∆ = Some (p, R, ∆’) →
Frame R P Q →
((if p then ∆ else ∆’) ` Q) → ∆ ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Note: we support framing under binders (∃, ∀, . . . ) and user defined connectives
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Implementation of the iFrame tactic (2)
Consider the type class:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Instances (rules of the logic program):
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Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Instances (rules of the logic program):

Instance frame here R : Frame R R True .
Instance frame sep l R P1 P2 Q :
Frame R P1 Q → Frame R (P1 ∗ P2 ) (Q ∗ P2 ) .

Instance frame sep r R P1 P2 Q :
Frame R P2 Q → Frame R (P1 ∗ P2 ) (P1 ∗ Q) .
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Implementation of the iFrame tactic (2)
Consider the type class:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Instances (rules of the logic program):

Class MakeSep P Q PQ := make sep : P ∗ Q a` PQ .
Instance frame here R : Frame R R True .
Instance frame sep l R P1 P2 Q Q ’ :
Frame R P1 Q → MakeSep Q P2 Q ’ → Frame R (P1 ∗ P2 ) Q ’ .

Instance frame sep r R P1 P2 Q Q ’ :
Frame R P2 Q → MakeSep P1 Q Q ’ → Frame R (P1 ∗ P2 ) Q ’ .

Instance make sep true l P : MakeSep True P P | 1.
Instance make sep true r P : MakeSep P True P | 1.
Instance make sep default P Q : MakeSep P Q (P ∗ Q) | 2.
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Proving Hoare triples

Consider:
{x 7→ v1 ∗ y 7→ v2}swap(x, y){x 7→ v2 ∗ y 7→ v1}

How to use IPM to manipulate the precondition?

Solution: define Hoare triple in terms of weakest preconditions

We let:

{P} e {Q} , 2(P −∗ wp e {Q})

where wp e {Q} gives the weakest precondition under which:

I all executions of e are safe

I the final state of e satisfies the postcondition Q
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Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .

iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

1 subgoal

Σ : gFunctors

H : heapG Σ
l1 , l2 : loc

v1 , v2 : val

(1/1)
{{ l1 7→ v1 ∗ l2 7→ v2 }} (swap #l1) #l2 {{ , l1 7→ v2 ∗ l2 7→ v1 }}
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14

Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .
iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

1 subgoal

Σ : gFunctors

H : heapG Σ
l1 , l2 : loc

v1 , v2 : val

(1/1)
"Hl1" : l1 7→ v1

"Hl2" : l2 7→ v2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
WP

let : "tmp" := ! #l1 in

#l1 ← ! #l2 ; ;
#l2 ← "tmp" {{ , l1 7→ v2 ∗ l2 7→ v1 }}
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Making IPM tactics modular using type classes
We want iDestruct "H" as "[H1 H2]" to:

I turn H : P * Q into H1 : P and H2 : Q

I turn H : .(P * Q) into H2 : . P and H2 : . Q

I turn H : l 7→ v into H1 : l
1/27−→ v and H2 : l

1/27−→ v

We use type classes to achieve that:

Class IntoAnd (p : bool) (P Q1 Q2 : uPred M) :=
into and : P ` if p then Q1 ∧ Q2 else Q1 ∗ Q2 .

Instance into and sep p P Q : IntoAnd p (P ∗ Q) P Q .
Instance into and and P Q : IntoAnd true (P ∧ Q) P Q .
Instance into and later p P Q1 Q2 : IntoAnd p P Q1 Q2 → IntoAnd p (. P) (. Q1) (. Q2) .
Instance into and mapsto l q v : IntoAnd false (l 7→{q} v) (l 7→{q/2} v) (l 7→{q/2} v) .

Lemma tac and destruct ∆ ∆’ i p j1 j2 P P1 P2 Q :
envs lookup i ∆ = Some (p , P) →
IntoAnd p P P1 P2 →
envs simple replace i p (Esnoc (Esnoc Enil j1 P1 ) j2 P2 ) ∆ = Some ∆’ →
(∆’ ` Q) → ∆ ` Q .
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IPM in summary

I Contexts are deeply embedded

I Context manipulation is done via
computational reflection

I IPM tactics are just Coq lemmas

I Type classes are used to make the
tactics more general

I Ltac is used to provide an end-user
syntax and error reporting

These ideas are hopefully applicable to other object logics
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In the paper and Coq formalization

I Detailed description of the implementation

I Verification of concurrent algorithms using IPM

I Formalization of unary and binary logical relations

I Proving logical refinements

Shows that IPM scales
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Abstract
When using a proof assistant to reason in an embedded logic – like
separation logic – one cannot benefit from the proof contexts and
basic tactics of the proof assistant. This results in proofs that are
at a too low level of abstraction because they are cluttered with
bookkeeping code related to manipulating the object logic.

In this paper, we introduce a so-called proof mode that extends
the Coq proof assistant with (spatial and non-spatial) named proof
contexts for the object logic. We show that thanks to these contexts
we can implement high-level tactics for introduction and elimination
of the connectives of the object logic, and thereby make reasoning
in the embedded logic as seamless as reasoning in the meta logic of
the proof assistant. We apply our method to Iris: a state of the art
higher-order impredicative concurrent separation logic.

We show that our method is very general, and is not just limited to
program verification. We demonstrate its generality by formalizing
correctness proofs of fine-grained concurrent algorithms, derived
constructs of the Iris logic, and a unary and binary logical relation
for a language with concurrency, higher-order store, polymorphism,
and recursive types. This is the first formalization of a binary logical
relation for such an expressive language. We also show how to use
the logical relation to prove contextual refinement of fine-grained
concurrent algorithms.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Separation Logic, Interactive Theorem Proving, Coq,
Fine-grained Concurrency, Logical Relations

1. Introduction
In the last decade, there has been tremendous progress on program
logics for increasingly sophisticated programming languages [43,
17, 16, 13, 18, 42, 40, 11, 31, 24, 23, 26]. Part of the success of
these logics stems from the fact that they have built-in support for
reasoning about challenging programming language features. For
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instance, they include separating conjunction of separation logic for
reasoning about mutable data structures, invariants for reasoning
about sharing, guarded recursion for reasoning about various forms
of recursion, and higher-order quantification for giving generic
modular specifications to libraries.

Due to these built-in features, modern program logics are very
different from the logics of general purpose proof assistants. There-
fore, to use a proof assistant to formalize reasoning in a program
logic, one needs to represent the program logic in that proof assis-
tant, and then, to benefit from the built-in features of the program
logic, use the proof assistant to reason in the embedded logic.

Reasoning in an embedded logic using a proof assistant tradition-
ally results in a lot of overhead. Most of this overhead stems from
the fact that when embedding a logic, one can no longer make use
of the proof assistant’s infrastructure for managing hypotheses. In
separation logic this overhead is evident from the fact that proposi-
tions represent resources (they are spatial) and can thus be used at
most once, which is very different from hypotheses in conventional
logic that can be duplicated at will.

To remedy this situation, we present a so-called proof mode that
extends the Coq proof assistant with (spatial and non-spatial) named
contexts for managing the hypotheses of the object logic. We show
that using our proof mode we can make reasoning in the embedded
logic as seamless as reasoning in the meta logic of Coq. Although
we believe that our proof mode is very generic, and can be applied
to a variety of different embedded logics, we apply it to a specific
logic in this paper, Iris: a state of the art impredicative higher-order
separation logic for fine-grained concurrency [24, 23, 26]. We call
the implementation on top of Iris IPM: Iris Proof Mode.

Iris is an interesting showcase for our proof mode, because
unlike conventional program logics, it cannot only be used to
reason about partial program correctness, but it also supports other
kinds of reasoning. For starters, Iris differs from other (concurrent)
program logics by not baking in particular reasoning principles,
but by providing a minimal set of primitive constructs using which
more advanced reasoning constructs can be defined in the logic.
Furthermore, Iris can be used to define unary and binary relational
interpretations of type systems and for proving theorems about those
interpretations, e.g., that if two terms are related in the relational
interpretation of a type, then they are contextually equivalent.
The type systems can range from ML-like type systems, such
as Fµ,ref ,conc (System F with recursive types, references, and
concurrency), to more expressive type-and-effect systems [27], or
sophisticated ownership-based type systems such as the Rust type
system [14]. We show that IPM supports all of these different kinds
of reasoning.

One may wonder why we develop a reasoning tool for a logic
like Iris in a general purpose proof assistant, instead of building a
standalone tool. The main reason for using a proof assistant is that
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Thank you!

Want a ‘proof mode’ for another logic, talk to us!

Download Iris at http://iris-project.org/

Talks about Iris this week:

I Wed 15:35 @ POPL: Krogh-Jespersen, Svendsen and Birkedal
A Relational Model of Types-and-Effects in Higher-Order Concurrent Separation Logic

I Sat 9:00 @ CoqPL: Krebbers
Demonstration of the Iris separation logic in Coq

I Sat 10:30 @ CoqPL: Timany, Krebbers and Birkedal
Logical Relations in Iris

http://iris-project.org/
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Coq wish list

I Data types in Ltac

I Side-effecting tactics that can return a value

I More expressive parsing mechanism of tactic
notations

I Exception handling in Ltac to enable better
error message generation

I Opt-out from backtracking Ltac semantics


