
Separation Logic for Non-local Control Flow
and Block Scope Variables

Robbert Krebbers
Joint work with Freek Wiedijk

Radboud University Nijmegen

March 19, 2013 @ FoSSaCS, Rome, Italy

What is this program supposed to do?

int *p = NULL;

l: if (p) {

return (*p);

} else {

int j = 10;

p = &j;

goto l;

}

It exhibits undefined behavior, thus it may do anything

What is this program supposed to do?

int *p = NULL;

l: if (p) {

return (*p);

} else {

int j = 10;

p = &j;

goto l;

}

memory:

p

NULL

It exhibits undefined behavior, thus it may do anything

What is this program supposed to do?

int *p = NULL;

l: if (p) {

return (*p);

} else {

int j = 10;

p = &j;

goto l;

}

memory:

p

NULL

It exhibits undefined behavior, thus it may do anything

What is this program supposed to do?

int *p = NULL;

l: if (p) {

return (*p);

} else {

int j = 10;

p = &j;

goto l;

}

memory:

p

NULL

j

10

It exhibits undefined behavior, thus it may do anything

What is this program supposed to do?

int *p = NULL;

l: if (p) {

return (*p);

} else {

int j = 10;

p = &j;

goto l;

}

memory:

p

•

j

10

It exhibits undefined behavior, thus it may do anything

What is this program supposed to do?

int *p = NULL;

l: if (p) {

return (*p);

} else {

int j = 10;

p = &j;

goto l;

}

memory:

p

•

j

10

It exhibits undefined behavior, thus it may do anything

What is this program supposed to do?

int *p = NULL;

l: if (p) {

return (*p);

} else {

int j = 10;

p = &j;

goto l;

}

memory:

p

•

It exhibits undefined behavior, thus it may do anything

What is this program supposed to do?

int *p = NULL;

l: if (p) {

return (*p);

} else {

int j = 10;

p = &j;

goto l;

}

memory:

p

•

It exhibits undefined behavior, thus it may do anything

What is this program supposed to do?

int *p = NULL;

l: if (p) {

return (*p);

} else {

int j = 10;

p = &j;

goto l;

}

memory:

p

•

It exhibits undefined behavior, thus it may do anything

Undefined behavior in C

I Undefined behavior is shown by “wrong” C programs

I Programs may do anything on undefined behavior

I It allows compilers to omit (expensive) dynamic checks

I It cannot be checked for statically

I Not accounting for it means that

I programs can be proven to be correct with respect to the
formal semantics . . .

I whereas they may crash when compiled with an actual compiler

This talk: undefined behavior due to dangling pointers by
non-local control flow and block scopes

Undefined behavior in C

I Undefined behavior is shown by “wrong” C programs

I Programs may do anything on undefined behavior

I It allows compilers to omit (expensive) dynamic checks

I It cannot be checked for statically

I Not accounting for it means that

I programs can be proven to be correct with respect to the
formal semantics . . .

I whereas they may crash when compiled with an actual compiler

This talk: undefined behavior due to dangling pointers by
non-local control flow and block scopes

Undefined behavior in C

I Undefined behavior is shown by “wrong” C programs

I Programs may do anything on undefined behavior

I It allows compilers to omit (expensive) dynamic checks

I It cannot be checked for statically

I Not accounting for it means that

I programs can be proven to be correct with respect to the
formal semantics . . .

I whereas they may crash when compiled with an actual compiler

This talk: undefined behavior due to dangling pointers by
non-local control flow and block scopes

Goto considered harmful?

http://xkcd.com/292/

Not necessarily:

` {P} . . . goto main_sub3; . . . {Q}

http://xkcd.com/292/

Goto considered harmful?

http://xkcd.com/292/

Not necessarily:

` {P} . . . goto main_sub3; . . . {Q}

http://xkcd.com/292/

Contribution

A concise small step operational, and axiomatic, semantics for
goto, supporting:

I local variables (and pointers to those),

I mutual recursion,

I separation logic,

I soundness proof fully checked by Coq

Approach

I Execute gotos and returns in small steps
I Not so much to search for labels, . . .
I but to naturally perform required allocations and deallocations

I Traversal through the AST in the following directions:
I ↘ downwards to the next statement
I ↗ upwards to the next statement
I y l to a label l: after a goto l
I ↑↑ to the top of the statement after a return

Approach

I Execute gotos and returns in small steps
I Not so much to search for labels, . . .
I but to naturally perform required allocations and deallocations

I Traversal through the AST in the following directions:
I ↘ downwards to the next statement
I ↗ upwards to the next statement

I y l to a label l: after a goto l
I ↑↑ to the top of the statement after a return

Approach

I Execute gotos and returns in small steps
I Not so much to search for labels, . . .
I but to naturally perform required allocations and deallocations

I Traversal through the AST in the following directions:
I ↘ downwards to the next statement
I ↗ upwards to the next statement
I y l to a label l: after a goto l
I ↑↑ to the top of the statement after a return

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↘

memory:

p

NULL

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↘

memory:

p

NULL

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↘

memory:

p

NULL

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↘

memory:

p

NULL

j

10

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↘

memory:

p

NULL

j

10

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↘

memory:

p

•

j

10

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↗

memory:

p

•

j

10

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↗

memory:

p

•

j

10

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↘

memory:

p

•

j

10

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↘

memory:

p

•

j

10

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

y l

memory:

p

•

j

10

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

y l

memory:

p

•

j

10

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

y l

memory:

p

•

j

10

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

y l

memory:

p

•

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

y l

memory:

p

•

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↘

memory:

p

•

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↘

memory:

p

•

Example

int *p = NULL

l:

if (p)

return (*p) int j = 10

;

p = &j goto l

direction:

↘

memory:

p

•

How to model the current location in the program

Huet’s zipper

Purely functional way to store a pointer into a data structure

Statement contexts

I Statements:

s ::= block s | el := er | f (~e) | skip | goto l

| l : s | s1 ; s2 | if (e) s1 s2 | return

I The block construct is unnamed as we use De Bruijn indexes

I Singular statement contexts:

ES ::= � ; s2 | s1 ;� | if (e) � s2 | if (e) s1 � | l :�

I A pair (~ES , s) forms a zipper for statements, where

I ~ES is a statement turned
inside-out

I s is the focused substatement

~ES

s

Statement contexts

I Statements:

s ::= block s | el := er | f (~e) | skip | goto l

| l : s | s1 ; s2 | if (e) s1 s2 | return

I The block construct is unnamed as we use De Bruijn indexes

I Singular statement contexts:

ES ::= � ; s2 | s1 ;� | if (e) � s2 | if (e) s1 � | l :�

I A pair (~ES , s) forms a zipper for statements, where

I ~ES is a statement turned
inside-out

I s is the focused substatement

~ES

s

Statement contexts

I Statements:

s ::= block s | el := er | f (~e) | skip | goto l

| l : s | s1 ; s2 | if (e) s1 s2 | return

I The block construct is unnamed as we use De Bruijn indexes

I Singular statement contexts:

ES ::= � ; s2 | s1 ;� | if (e) � s2 | if (e) s1 � | l :�

I A pair (~ES , s) forms a zipper for statements, where

I ~ES is a statement turned
inside-out

I s is the focused substatement

~ES

s

Statement contexts

I Statements:

s ::= block s | el := er | f (~e) | skip | goto l

| l : s | s1 ; s2 | if (e) s1 s2 | return

I The block construct is unnamed as we use De Bruijn indexes

I Singular statement contexts:

ES ::= � ; s2 | s1 ;� | if (e) � s2 | if (e) s1 � | l :�

I A pair (~ES , s) forms a zipper for statements, where

I ~ES is a statement turned
inside-out

I s is the focused substatement

~ES

s

Program contexts

I Make the zipper stateful to also contain the stack
(to assign memory indexes to local variables)

I Extend the zipper dynamically on function calls

I Program contexts k are lists of singular program contexts:

E ::= ES | blockb � | . . .

where blockb � associates a block scope variable with its
corresponding memory index b

Program contexts

I Make the zipper stateful to also contain the stack
(to assign memory indexes to local variables)

I Extend the zipper dynamically on function calls

I Program contexts k are lists of singular program contexts:

E ::= ES | blockb � | . . .

where blockb � associates a block scope variable with its
corresponding memory index b

States

A state S(k, φ, m) consists of a program context k , focus φ, and
memory m

We consider the following focuses:

I (d , s) execution of a statement s in direction d

I call f ~v calling a function f (~v)

I return returning from a function

States

A state S(k, φ, m) consists of a program context k , focus φ, and
memory m

We consider the following focuses:

I (d , s) execution of a statement s in direction d

I call f ~v calling a function f (~v)

I return returning from a function

States

A state S(k, φ, m) consists of a program context k , focus φ, and
memory m

We consider the following focuses:

I (d , s) execution of a statement s in direction d

I call f ~v calling a function f (~v)

I return returning from a function

States

A state S(k, φ, m) consists of a program context k , focus φ, and
memory m

We consider the following focuses:

I (d , s) execution of a statement s in direction d

I call f ~v calling a function f (~v)

I return returning from a function

Example

int *p = NULL

l:

if (p)

return int j = 10

;

p = &j goto l

The corresponding state is
S(k, φ, m), where:

I k = [
� ; goto l ,
x0 := int 10 ;�,
blockbj �,
if (load x0) return �,
l :�,
x0 := NULL ;�,
blockbp �

]

I φ = (↗, x1 := x0)

I m = {bp 7→ ptr bj , bj 7→ 10}

The small step semantics

Lemma
The small step semantics behaves as traversing through a zipper.
That is, if

S(k , (d , s), m) _∗k S(k, (d ′, s ′), m′)

then s = s ′.

In a picture: if

k1

s1

_∗k1 k2

s2

_∗k1 k3

s3

. . . _∗k1 . . . k1

sn

then s1 = sn.

The small step semantics

Lemma
The small step semantics behaves as traversing through a zipper.
That is, if

S(k , (d , s), m) _∗k S(k, (d ′, s ′), m′)

then s = s ′.

In a picture: if

k1

s1

_∗k1 k2

s2

_∗k1 k3

s3

. . . _∗k1 . . . k1

sn

then s1 = sn.

Hoare sextuples

Our Hoare sextuples are of the shape

∆; J; R ` {P} s {Q}

where:

I {P} s {Q} is a Hoare triple, as usual

I ∆ maps function names to their pre- and post-conditions

I J maps labels to their jumping condition
When executing a goto l , the assertion J l has to hold

I R has to hold to execute a return

Remark: the assertions P, Q, J and R correspond to the directions
↘, ↗, y and ↑↑ of traversal

Hoare sextuples

Our Hoare sextuples are of the shape

∆; J; R ` {P} s {Q}

where:

I {P} s {Q} is a Hoare triple, as usual

I ∆ maps function names to their pre- and post-conditions

I J maps labels to their jumping condition
When executing a goto l , the assertion J l has to hold

I R has to hold to execute a return

Remark: the assertions P, Q, J and R correspond to the directions
↘, ↗, y and ↑↑ of traversal

Hoare sextuples

Our Hoare sextuples are of the shape

∆; J; R ` {P} s {Q}

where:

I {P} s {Q} is a Hoare triple, as usual

I ∆ maps function names to their pre- and post-conditions

I J maps labels to their jumping condition
When executing a goto l , the assertion J l has to hold

I R has to hold to execute a return

Remark: the assertions P, Q, J and R correspond to the directions
↘, ↗, y and ↑↑ of traversal

Hoare sextuples

Our Hoare sextuples are of the shape

∆; J; R ` {P} s {Q}

where:

I {P} s {Q} is a Hoare triple, as usual

I ∆ maps function names to their pre- and post-conditions

I J maps labels to their jumping condition
When executing a goto l , the assertion J l has to hold

I R has to hold to execute a return

Remark: the assertions P, Q, J and R correspond to the directions
↘, ↗, y and ↑↑ of traversal

Hoare sextuples

Our Hoare sextuples are of the shape

∆; J; R ` {P} s {Q}

where:

I {P} s {Q} is a Hoare triple, as usual

I ∆ maps function names to their pre- and post-conditions

I J maps labels to their jumping condition
When executing a goto l , the assertion J l has to hold

I R has to hold to execute a return

Remark: the assertions P, Q, J and R correspond to the directions
↘, ↗, y and ↑↑ of traversal

Hoare sextuples

Our Hoare sextuples are of the shape

∆; J; R ` {P} s {Q}

where:

I {P} s {Q} is a Hoare triple, as usual

I ∆ maps function names to their pre- and post-conditions

I J maps labels to their jumping condition
When executing a goto l , the assertion J l has to hold

I R has to hold to execute a return

Remark: the assertions P, Q, J and R correspond to the directions
↘, ↗, y and ↑↑ of traversal

Some Hoare rules

Composition:

∆; J; R ` {P} s1 {P ′} ∆; J; R ` {P ′} s2 {Q}
∆; J; R ` {P} s1 ; s2 {Q}

Goto:

∆; J; R ` {J l} goto l {Q}
∆; J; R ` {J l} s {Q}

∆; J; R ` {J l} l : s {Q}

Return:

∆; J; R ` {R} return {Q}

Some Hoare rules

Composition:

∆; J; R ` {P} s1 {P ′} ∆; J; R ` {P ′} s2 {Q}
∆; J; R ` {P} s1 ; s2 {Q}

Goto:

∆; J; R ` {J l} goto l {Q}
∆; J; R ` {J l} s {Q}

∆; J; R ` {J l} l : s {Q}

Return:

∆; J; R ` {R} return {Q}

Some Hoare rules

Composition:

∆; J; R ` {P} s1 {P ′} ∆; J; R ` {P ′} s2 {Q}
∆; J; R ` {P} s1 ; s2 {Q}

Goto:

∆; J; R ` {J l} goto l {Q}
∆; J; R ` {J l} s {Q}

∆; J; R ` {J l} l : s {Q}

Return:

∆; J; R ` {R} return {Q}

The frame rule

Used for local reasoning

∆; J; R ` {P} s {Q}
∆; J ∗ A; R ∗ A ` {P ∗ A} s {Q ∗ A}

The block scope variable rule

∆; J ↑ ∗ x0 7→ -; R ↑ ∗ x0 7→ - ` {P ↑ ∗ x0 7→ -} s {Q ↑ ∗ x0 7→ -}
∆; J; R ` {P} block s {Q}

When entering a block:

I The De Bruijn indexes are lifted: () ↑
I The memory is extended: () ∗ x0 7→ -

When leaving a block: the reverse

Important: using De Bruijn indexes avoids shadowing

The block scope variable rule

∆; J ↑ ∗ x0 7→ -; R ↑ ∗ x0 7→ - ` {P ↑ ∗ x0 7→ -} s {Q ↑ ∗ x0 7→ -}
∆; J; R ` {P} block s {Q}

When entering a block:

I The De Bruijn indexes are lifted: () ↑
I The memory is extended: () ∗ x0 7→ -

When leaving a block: the reverse

Important: using De Bruijn indexes avoids shadowing

The block scope variable rule

∆; J ↑ ∗ x0 7→ -; R ↑ ∗ x0 7→ - ` {P ↑ ∗ x0 7→ -} s {Q ↑ ∗ x0 7→ -}
∆; J; R ` {P} block s {Q}

When entering a block:

I The De Bruijn indexes are lifted: () ↑
I The memory is extended: () ∗ x0 7→ -

When leaving a block: the reverse

Important: using De Bruijn indexes avoids shadowing

Formalization in Coq

I Extremely useful for debugging

I Notations close to those on paper

I Also supports while and functions with
return values

I Uses lots of automation

I 3500 lines of code

Proved
in Coq

Formalization in Coq

I Extremely useful for debugging

I Notations close to those on paper

I Also supports while and functions with
return values

I Uses lots of automation

I 3500 lines of code

Proved
in Coq

Formalization in Coq

I Extremely useful for debugging

I Notations close to those on paper

I Also supports while and functions with
return values

I Uses lots of automation

I 3500 lines of code

Proved
in Coq

Future research

I Expressions with side effects (recently finished)

I Machine integers (recently finished)

I The C type system (in progress)

I Non-aliasing restrictions (in progress)

I Verification condition generator in Coq

I Correspondence with CompCert

Future research

I Expressions with side effects (recently finished)

I Machine integers (recently finished)

I The C type system (in progress)

I Non-aliasing restrictions (in progress)

I Verification condition generator in Coq

I Correspondence with CompCert

Future research

I Expressions with side effects (recently finished)

I Machine integers (recently finished)

I The C type system (in progress)

I Non-aliasing restrictions (in progress)

I Verification condition generator in Coq

I Correspondence with CompCert

Future research

I Expressions with side effects (recently finished)

I Machine integers (recently finished)

I The C type system (in progress)

I Non-aliasing restrictions (in progress)

I Verification condition generator in Coq

I Correspondence with CompCert

Questions

Sources: http://robbertkrebbers.nl/research/ch2o/

http://robbertkrebbers.nl/research/ch2o/

