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Separation logic [O’Hearn, Reynolds, and Yang, 2001]

Propositions P,Q denote ownership of resources

Separating conjunction P ∗ Q:
The resources consists of separate parts satisfying P and Q

Basic example:

{x 7→ v1 ∗ y 7→ v2}swap(x, y){x 7→ v2 ∗ y 7→ v1}

the ∗ ensures that x and y are different memory locations
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Why is separation logic useful?

Separation logic is very useful:

I It provides a high level of modularity

I It scales to fancy PL features like concurrency

Just in Coq, there is an ever growing collection of separation logics:

I Bedrock

I CFML

I Charge!

I CHL

I FCSL

I Iris

I VST

I . . .

* a`
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The challenge

When developing a new separation logic in a proof assistant, one has to:

1. Prove soundness

2. Develop tactics to carry out proofs

These steps are tedious, can we simplify them?
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In prior work, we proposed solutions for both problems:

1. Proving soundness: Iris [POPL’15, ICFP’16, ESOP’17, JFP’18]

2. Tactics: Iris Proof Mode [POPL’17]
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Iris [POPL’15, ICFP’16, ESOP’17, JFP’18]

A general, language-independent, framework for modeling your own
domain specific higher-order separation logics

I General: unifies the reasoning principles in many other logics

I Language-independent: parameterized by the language
I Modeling logics: can be used to model domain specific logics

I iGPS for weak memory [ECOOP’17]

I RustBelt’s lifetime logic [POPL’18]

I ReLoC for program refinements [LICS’18]
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Iris Proof Mode [POPL’17]: Coq tactics for Iris

Lemma test {A} (P Q : iProp) (Ψ : A → iProp) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

Lemma in the Iris logic

∗ means: resources should be split

The hypotheses for the left conjunct
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Iris Proof Mode [POPL’17]: Coq tactics for Iris

Lemma test {A} (P Q : iProp) (Ψ : A → iProp) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
by iFrame.

Qed.

No more subgoals .

Lemma in the Iris logic

∗ means: resources should be split

The hypotheses for the left conjunct

We can also solve this lemma automatically
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The good things about Iris Proof Mode

It enabled mechanized proofs in many papers because:

I Proofs have the look and feel of ordinary Coq proofs
For many Coq tactics tac, it has a variant iTac

I Support for advanced features of separation logic
Higher-order quantification, invariants, ghost state, later
. modality, . . .

I Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions
(see also the next ICFP talk!)
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The bad thing about Iris Proof Mode

The implementation is tied to Iris

Iris Proof Mode
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Problem #1: Iris propositions are affine

In Iris you may “forget” about resources:

{`1 7→ v1 ∗ `2 7→ v2} `2 := ! `1 {`2 7→ v1}

Due to the affinity axiom P ∗ Q ` Q, which is hard-wired into many tactics:

iClear

Π 
 Q

Π,P 
 Q

iAssumption

Π,P 
 P

Not having the affinity axiom is useful: precise accounting of resources

Challenge: How to disentangle the affinity axiom from the Iris tactics?
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Problem #2: No tactical support for derived logics

Coq (Prop)

Iris (iProp)

Derived logic (e.g. iGpsProp)

propositions defined in terms of

Proof using standard Coq tactics

Proof using Iris tactics

Proof using ???

Challenge: How to reason in logics defined in terms of another
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Contributions

MoSeL: A General, Extensible Modal Framework
for Interactive Proofs in Separation Logic in Coq

Contributions:

I MoSeL is parameterized by a general abstraction of separation logic

I MoSeL supports general and affine separation logics, and combinations thereof

I MoSeL supports reasoning in derived separation logics

I MoSeL can be fine-tuned for each logic using type classes

MoSeL is usable in practice: we used it on 5 very different existing separation logics

CFML CHL Fairis iGPS Iris
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Making MoSeL separation logic independent

A Bunched Implications (BI) logic [O’Hearn&Pym,99] is a preorder (Prop,`) with:

I Operations True,False,∧,∨,⇒,∀,∃ satisfying the axioms of intuitionistic logic

I Operations emp, ∗,−∗ satisfying:

emp ∗ P a` P
P ∗ Q ` Q ∗ P

(P ∗ Q) ∗ R ` P ∗ (Q ∗ R)

P1 ` Q1 P2 ` Q2

P1 ∗ P2 ` Q1 ∗ Q2

P ∗ Q ` R

P ` Q −∗ R

Structure bi := Bi {

bi car :> Type;

bi entails : bi car → bi car → Prop;

bi forall : ∀ A, (A → bi car) → bi car;

bi sep : bi car → bi car → bi car;

(* other separation logic operators and axioms *)

}.



14

Making MoSeL separation logic independent

A Bunched Implications (BI) logic [O’Hearn&Pym,99] is a preorder (Prop,`) with:

I Operations True,False,∧,∨,⇒,∀,∃ satisfying the axioms of intuitionistic logic

I Operations emp, ∗,−∗ satisfying:

emp ∗ P a` P
P ∗ Q ` Q ∗ P

(P ∗ Q) ∗ R ` P ∗ (Q ∗ R)

P1 ` Q1 P2 ` Q2

P1 ∗ P2 ` Q1 ∗ Q2

P ∗ Q ` R

P ` Q −∗ R

Structure bi := Bi {

bi car :> Type;

bi entails : bi car → bi car → Prop;

bi forall : ∀ A, (A → bi car) → bi car;

bi sep : bi car → bi car → bi car;

(* other separation logic operators and axioms *)

}.



14

Making MoSeL separation logic independent

A Bunched Implications (BI) logic [O’Hearn&Pym,99] is a preorder (Prop,`) with:

I Operations True,False,∧,∨,⇒,∀,∃ satisfying the axioms of intuitionistic logic

I Operations emp, ∗,−∗ satisfying:

emp ∗ P a` P
P ∗ Q ` Q ∗ P

(P ∗ Q) ∗ R ` P ∗ (Q ∗ R)

P1 ` Q1 P2 ` Q2

P1 ∗ P2 ` Q1 ∗ Q2

P ∗ Q ` R

P ` Q −∗ R

Structure bi := Bi {

bi car :> Type;

bi entails : bi car → bi car → Prop;

bi forall : ∀ A, (A → bi car) → bi car;

bi sep : bi car → bi car → bi car;

(* other separation logic operators and axioms *)

}.



15

Proofs in MoSeL

Proofs in a specific logic:

Lemma test {A} (P Q : iGpsProp) (Ψ : A→ iGpsProp) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2" .
iSplitL "H3" .
− iAssumption .
− iExists x .

iFrame .
Qed .

Proofs for all logics:

Lemma test {PROP : bi} {A} (P Q : PROP) (Ψ : A→ PROP) :
P ∗ (∃ a , Ψ a) ∗ Q −∗ Q ∗ ∃ a , P ∗ Ψ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2" .
iSplitL "H3" .
− iAssumption .
− iExists x .

iFrame .
Qed .

Lemma for another logic than Iris

Lemma universally quantified in the BI logic
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Addressing challenge #1:
Disentangling the affinity axiom

P ∗ Q ` Q
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A poor man’s solution

Make two versions of the tactics

1. For affine logics (like Iris and iGPS)

2. For non-affine logics (like CFML and CHL)

Problems:

I Duplicate work/maintenance

I Some logics mix affine and non-affine propositions, for example:

GC locations (affine) Non-GC locations (not affine)
` 7→gc v ` 7→ v

(Another example in [Tassarotti et al., ESOP’17])
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Key idea

I Don’t: classify whether the whole logic is affine

I Do: classify whether individual propositions are affine
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Classifying whether propositions are affine

Affine propositions:

affine(P) , P ` emp (propositions that can be “thrown away”)

The new tactics:

iClear

Π 
 Q affine(P)

Π,P 
 Q

iAssumption

affine(Π)

Π,Q 
 Q
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Classifying whether propositions are affine in Coq

A new type class:

Class Affine {PROP : bi} (Q : PROP) := affine : Q ` emp.

Instances:

I Tell MoSeL that specific connectives are affine:

Instance mapsto gc affine l v : Affine (l 7→gc v).

I Capture that affine propositions are closed under most connectives:

Instance sep affine {PROP : bi} (P Q : bi) :

Affine P → Affine Q → Affine (P ∗ Q).
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MoSeL: A General, Extensible Modal Framework
for Interactive Proofs in Separation Logic in Coq

What about modalities?
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The affine modality

The affine modality:

〈affine〉P , P ∧ emp

≈ “P holds using just affine resources”

I Can be used to turn any proposition into an affine version, e.g.
A wand that can be dropped 〈affine〉 (P −∗ Q)

I Commutes with most operators, e.g.
〈affine〉 (P ∨ Q) a` 〈affine〉P ∨ 〈affine〉Q

I Gives rise to an alternative classification of affine propositions
affine(P) iff P ` 〈affine〉P
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The idea of carving out classes of propositions and defining

their corresponding modalities is widely applicable:

I Persistent propositions �
I Intuitionistic propositions �
I Absorbing propositions 〈absorb〉
I Timeless propositions (in step-indexed logics) ., �
I Objective propositions (in iGPS) 〈obj〉 , 〈subj〉
I Normal propositions (in CFML) 〈normal〉
I . . .

The paper shows how to modularly deal with such classes

and use them in general tactics
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Thank you!

Download MoSeL at http://iris-project.org/

Contributions:

I MoSeL is parameterized by a general abstraction of separation logic

I MoSeL supports general and affine separation logics, and combinations thereof

I MoSeL supports reasoning in derived separation logics

I MoSeL can be fine-tuned for each logic using type classes

MoSeL is usable in practice: we used it on 5 very different existing separation logics

CFML CHL Fairis iGPS Iris

Use MoSeL for your separation logic too!

http://iris-project.org/

