
1

Interactive and Automated Proofs in Modal Separation Logic

Robbert Krebbers

Radboud University Nijmegen, The Netherlands

August 2, 2023 @ ITP, Bia lystok, Poland



2

This talk is about embedding

proof assistants in proof assistants

Let me first give some context
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A verification framework, implemented in the Coq proof

assistant, for developing and deploying

advanced forms of separation logic, especially for

higher-order and concurrent programs
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How Iris is used

Developing a logic: Use Iris as a meta theory to develop a program logic

▶ for a specific language: ML, Rust, C, Go, WebAssembly, capability machines, . . .

▶ program property: functional correctness, non-interference, crash safety,
refinement, complexity, . . .

▶ programming paradigm: algebraic effects, distributed systems, session types,
relaxed memory concurrency, . . .

Deploying a logic: Verify programs or a type system using the developed logic

For both developing and deploying logics,
a proof assistant is essential
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Wanted:

proof assistant for

Very different from the logic of Coq/HOL/etc
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Wanted:

proof assistant for
higher-order

impredicative

modal

concurrent

separation logic

Very different from the logic of Coq/HOL/etc
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How?

Embed proof assistant in existing proof assistant

Why?

Prove soundness of embedded proof assistant

Reuse infrastructure of host proof assistant

Users do not need to learn new tool
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Overview of this talk

1. Brief introduction to separation logic

2. Interactive proofs using the Iris Proof Mode

3. Implementation of the Iris Proof Mode

4. Proof automation using Diaframe
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Part #1: Separation Logic 101
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Separation logic [O’Hearn, Reynolds, Yang; CSL’01]

Propositions P,Q denote ownership of resources

Separating conjunction P ∗ Q:
The resources consists of separate parts satisfying P and Q

Basic example:

{ℓ1 7→ v1 ∗ ℓ2 7→ v2}swap ℓ1 ℓ2{ℓ1 7→ v2 ∗ ℓ2 7→ v1}

the ∗ ensures that ℓ1 and ℓ2 are different memory locations
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Separation logic [O’Hearn, Reynolds, Yang; CSL’01]

Propositions P,Q denote ownership of resources

Separating conjunction P ∗ Q:
The resources consists of separate parts satisfying P and Q

Slightly less basic example:

isList ℓ v⃗ ≜

{
ℓ 7→ nil if v⃗ = [ ]

∃ℓ′. ℓ 7→ cons v1 ℓ′ ∗ isList ℓ′ v⃗2 if v⃗ = v1 :: v⃗2

{isList ℓ1 v⃗1 ∗ isList ℓ2 v⃗2}append ℓ1 ℓ2{isList ℓ1 (v⃗1 ++ v⃗2)}

the ∗ ensures that all nodes of ℓ1 and ℓ2 are disjoint
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The simple model of separation logic
The semantic domains:

ℓ ∈ Loc ≜ N

σ ∈ Heap ≜ Loc
fin−⇀ Val

P,Q ∈ heapProp ≜ Heap → Prop

Entailment:
P ⊢ Q ≜ ∀σ. Pσ → Qσ

The connectives of separation logic:

ℓ 7−→ v ≜ λσ. σ(ℓ) = v

P ∧ Q ≜ λσ. Pσ ∧ Qσ

P ∗ Q ≜ λσ. ∃σ1σ2. σ = σ1 ⊎ σ2 ∧ Pσ1 ∧ Qσ2

(∃x : A. P) ≜ λσ. ∃x : A. Pσ
disjointness of heaps, hidden by ∗
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How to do proofs in separation logic

Suppose we want to prove P ∗ (∃a. Φa) ∗ Q ⊢ Q ∗ (∃a. P ∗ Φa)

1. Unfold definitions of the model: ∀σ. (∃σ1 σ2. σ = σ1 ⊎ σ2 ∧ Pσ1 ∧ . . .) → . . .
▶ Defeats the purpose of separation logic to hide reasoning about disjointness
▶ Does not scale to larger goals or modal models

2. Use the laws of separation logic: associativity/commutativity of ∗,
distributivity of ∃ over ∗, . . .
▶ Too low-level, already small proofs require many steps
▶ Also rather slow

3. Use Iris
▶ Topic of today’s talk
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Part #2: Iris Proof Mode
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Iris Proof Mode (IPM) [Krebbers et al.; POPL’17, ICFP’18]

Enable tactic-style proofs in separation logic

▶ Extend Coq with named proof contexts for separation logic

▶ Tactics for introduction and elimination of all connectives of separation logic . . .

▶ . . . that can be used in Coq’s mechanisms for automation/tactic programming

▶ Implemented without modifying Coq (using reflection, type classes and Ltac)

* ⊣⊢
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Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]".

iDestruct "H2" as (x) "H2".

iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

Lemma in separation logic

∗ means: resources should be split

The hypotheses for the left conjunct
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Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
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Iris Proof Mode demo

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[$ [? $]] //".
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∗ means: resources should be split

The hypotheses for the left conjunct
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Features of the Iris Proof Mode

▶ Proofs have the look and feel of ordinary Coq proofs
For many Coq tactics tac, we have a variant iTac

▶ Support for advanced features of separation logic
Higher-order quantification, modalities, invariants, ghost
state, . . .

▶ Integration with tactics for proving programs
Symbolic execution tactics for weakest preconditions

▶ Tactic programming
One can combine/program with IPM tactics using Coq’s
Ltac like ordinary Coq tactics
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Changes since the POPL’17 paper on Iris Proof Mode

▶ Generalized to any Bunched Implications (BI) logic (Krebbers et al., ICFP’18)

▶ Many usability improvements:
Smarter tactics, better error messages, improved robustness and performance

▶ Proof automation: RefinedC (Sammler et al. PLDI’21), Diaframe (Mulder et al.
PLDI’22, PLDI’23, OOPSLA’23), BedRock Systems (proprietary)

Most importantly: Iris (Proof Mode) got users:

▶ Coq became essential to teach Iris / concurrent separation logic

▶ 11 PhD theses

▶ 81 publications

▶ 3 editions of the Iris workshop

▶ Used by researchers at companies: BedRock Systems, Meta, Jetbrains
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Iris Proof Mode versus Diaframe
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Part #3: Implementation of Iris Proof Mode
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How to embed a logic into a proof assistant?

Deep embedding Shallow embedding
Inductive form : Type :=

| iAnd : form→ form→ form

| iForall : string→ form→ form→ form

Definition iProp : Type :=
(* fancy "predicates over states" *) .

Definition iAnd : iProp→ iProp→ iProp :=
(* semantic interpretation *) .

Definition iForall : ∀ A , (A→ iProp) → iProp :=
(* semantic interpretation *) .

Traverse formulas using Coq functions (fast) Traverse formulas on the meta level (slow)

Reflective tactics (fast) Tactics on the meta level (slow)

Need to explicitly encode binders Reuse binders of Coq

Need to embed features such as lists Piggy-back on features such as lists from Coq

Grammar of formulas fixed once and forall Easily extensible with new connectives

Context manipulation is the prime task of tactics:
Deeply embedded contexts, shallowly embedded logic⇒ Best of both worlds
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Deeply embedded contexts (1)

Lemma test {A} (P Q : iProp) (Φ : A → iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2" .
iSplitL "H3".

- iAssumption.

- iExists x.

iFrame.

Qed.

Notation for deeply embedded context
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(1/1)
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false false true false
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Notation for deeply embedded context
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Deeply embedded contexts (2)

Visible goal (with pretty printing):

x⃗ : ϕ⃗ Variables and pure Coq hypotheses

Π Spatial separation logic hypotheses
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Q Separation logic goal

Actual Coq goal (without pretty printing):

x⃗ : ϕ⃗

Π ⊩ Q

Where:
P1, . . . ,Pn ⊩ Q ≜ (P1 ∗ · · · ∗ Pn) ⊢ Q
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Implementation of the iSplitL/iSplitR tactic (simplified)

Tactics implemented by reflection as mere lemmas:
Lemma tac sep split Π Π1 Π2 Hs Q1 Q2 :

envs split Hs Π = Some (Π1 ,Π2) →
(Π1 ⊩ Q1 ) → (Π2 ⊩ Q2 ) → Π ⊩ Q1 ∗ Q2 .

Π1 ⊩ Q1 Π2 ⊩ Q2

Π1,Π2 ⊩ Q1 ∗ Q2

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in

eapply tac sep split with Hs ;
[ pm reflexivity | | fail "iSplitL: hypotheses" Hs "not found"

| (* goal 1 *)

| (* goal 2 *) ] .

Proof is just eq refl

Report sensible error to the user
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Implementation of the iFrame tactic (1) (simplified)

Π ⊩ Q Q is P with R canceled

Π,R ⊩ P

Problem: Propositions (P,Q,R) are shallow embedded, cannot match on them
Solution: Transform P into Q using logic programming with type classes

Class Frame (R P Q : iProp) := frame : R ∗ Q ⊢ P.

Lemma tac frame ∆∆’ i p R P Q :

envs lookup delete i ∆ = Some (R, ∆’) →
Frame R P Q →
(∆’ ⊩ Q) → ∆ ⊩ P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Note: we support framing under binders (∃, ∀, . . . ) and user-defined connectives
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Implementation of the iFrame tactic (2) (simplified)

Class Frame (R P Q : iProp) := frame : R ∗ Q ⊢ P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Instances (rules of the logic program):
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Initial conclusion
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Instances (rules of the logic program):

Instance frame here R : Frame R R True .
Instance frame sep l R P1 P2 Q :
Frame R P1 Q → Frame R (P1 ∗ P2 ) (Q ∗ P2 ) .

Instance frame sep r R P1 P2 Q :
Frame R P2 Q → Frame R (P1 ∗ P2 ) (P1 ∗ Q) .
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Implementation of the iFrame tactic (2) (simplified)

Class Frame (R P Q : iProp) := frame : R ∗ Q ⊢ P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Instances (rules of the logic program):

Class MakeSep P Q PQ := make sep : P ∗ Q ⊣⊢ PQ .
Instance frame here R : Frame R R emp .
Instance frame sep l R P1 P2 Q Q ’ :
Frame R P1 Q → MakeSep Q P2 Q ’ → Frame R (P1 ∗ P2 ) Q ’ .

Instance frame sep r R P1 P2 Q Q ’ :
Frame R P2 Q → MakeSep P1 Q Q ’ → Frame R (P1 ∗ P2 ) Q ’ .

(** Clean spurious [emp]s *)

Instance make sep true l P : MakeSep emp P P | 1.
Instance make sep true r P : MakeSep P emp P | 1.
Instance make sep default P Q : MakeSep P Q (P ∗ Q) | 2.
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Making Iris Proof Mode parametric in the separation logic (1)

Proofs in a specific logic:

Lemma test {A} (P Q : iProp) (Φ : A→ iProp) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2" .
iSplitL "H3" .
− iAssumption .
− iExists x .

iFrame .
Qed .

Proofs for all logics:

Lemma test {PROP : bi} {A} (P Q : PROP) (Φ : A→ PROP) :
P ∗ (∃ a , Φ a) ∗ Q ⊢ Q ∗ ∃ a , P ∗ Φ a .

Proof .
iIntros "[H1 [H2 H3]]" .
iDestruct "H2" as (x) "H2" .
iSplitL "H3" .
− iAssumption .
− iExists x .

iFrame .
Qed .

Lemma universally quantified in the BI logic
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Making Iris Proof Mode parametric in the separation logic (2)

A Bunched Implications (BI) logic [O’Hearn&Pym,99] is a preorder (Prop,⊢) with:

▶ Operations True,False,∧,∨,⇒,∀,∃ satisfying the axioms of intuitionistic logic

▶ Operations emp, ∗,−∗ satisfying:

emp ∗ P ⊣⊢ P
P ∗ Q ⊢ Q ∗ P

(P ∗ Q) ∗ R ⊢ P ∗ (Q ∗ R)

P1 ⊢ Q1 P2 ⊢ Q2

P1 ∗ P2 ⊢ Q1 ∗ Q2

P ∗ Q ⊢ R

P ⊢ Q −∗ R

Structure bi := Bi {

bi car :> Type;

bi entails : bi car → bi car → Prop;

bi forall : ∀ A, (A → bi car) → bi car;

bi sep : bi car → bi car → bi car;

(* other separation logic operators and axioms *)

}.
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Part #4: Proof automation
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State of the art (in 2021)

Iris Proof Mode provides very basic automation:

▶ Framing

▶ Automatic distribution of modalities

Non-foundational tools (i.e., outside of proof assistants) provide much more:

▶ C verification: Verifast, MatchC, VCC

▶ Fine-grained concurrency: Caper, Voila, Starling
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Diaframe [Mulder et al.; PLDI’22, PLDI’23, OOPSLA’23]

Verification of programs using fine-grained concurrency:

▶ spin lock, ticket lock

▶ atomic reference counters

▶ concurrent stack, queue

PhD project of Ike
Mulder:
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Components of a verification

User of Diaframe provides:

▶ program

▶ specification

▶ invariant on shared state

Diaframe constructs:

▶ proof

⇒ proof involves ‘using’ and ‘restoring’ the invariant for atomic operations
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Iris Proof Mode versus Diaframe
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Diaframe approach

Coq proof assistant

Iris proof mode

Diaframe proof automation

Requirements:

▶ Extensible: For custom logics and theories defined in Iris

▶ No global backtracking: Failing fast / Corporation with interactive proofs



35

Diaframe approach

Coq proof assistant

Iris proof mode

Diaframe proof automation

Requirements:

▶ Extensible: For custom logics and theories defined in Iris

▶ No global backtracking: Failing fast / Corporation with interactive proofs



36

Diaframe evaluation

Verified 24 examples from the literature

Comparable proof burden to automated tools, but foundational

▶ 14/24 examples verified fully automatically

▶ ∼ 0.26 line of proof per line of code (∼ 3.0 in interactive Iris)

▶ Examples contain all benchmarks of other automated tools for fine-grained
concurrency: Caper, Voila, Starling
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We will focus on one part of the verification:

disjunctions
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Example: Verification of reference counter

Location ℓ stores the number of references to resource

Invariant:

ℓ 7→ 0 ∗ “no readers left”

∨

∃(n : N>0). ℓ 7→ n ∗ “n readers active”

Existing automated tools for concurrency verification (Caper, Voila, Starling) need help
to verify the reference counter, Diaframe can do it fully automatically
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When backtracking fails

Assume 7 ≤ m ≤ 18 and m ≡ 0 (mod 5)

ℓ 7→ m ⊢ ℓ 7→ 10 ✗

ℓ 7→ m ⊢ ℓ 7→ 10 ∨ ℓ 7→ 15

∨-l

Backtracking directly is hopeless!

We need the case distinction m = 10 ∨m ̸= 10, which is not obvious
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Classical logic to the rescue?

In classical logic, we can do:

∆, ¬Q ⊢ P

∆ ⊢ P ∨ Q
∨-intro-l-classic

This surely solves our problem?



41

. . . but our logic is inherently non-classical

Separation logics cannot be classical if

1. They model garbage collected languages

2. They have modalities (later, update) with a Kripke-style semantics such as Iris

⇒ We need to think of another approach
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Inspiration: Connection calculus

We take inspiration from connection calculus [Wallen, 1990] / the intuitionistic
ileanCoP prover [Otten, 2008]

Relies on finding connections:

A → (B ∨ C ),A ⊢ C ∨ B

from a hypothesis to the goal

Original connection calculus: Complete for first-order intuitionistic logic
Our work: Incomplete set of connection rules to guide choice of disjunct in
higher-order modal separation logic
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Disjunction example, revisited

∀m : Z. 7 ≤ m ≤ 18 → m ≡ 0 (mod 5) →

⊢ m ̸= 10 −∗ ℓ 7→ m −∗ ℓ 7→ 15

⊢ ∨ (−∗ ℓ 7→ 15)

ℓ 7→ m ⊢ ℓ 7→ 10 ∨ ℓ 7→ 15

Diaframe thinks: HINT: m

The remaining proof obligation is:

7 ≤ m ≤ 18 → m ≡ 0 (mod 5) → m ̸= 10 → m = 15

Which can be solved by arithmetic (lia)
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Overview of ingredients of Diaframe

Proof automation for higher-order modal separation logic is very different from first-
order classical logic

We take inspiration from methods in linear logic programming and intuitionistic
theorem proving:

▶ Connections to select the right lemmas and hypotheses

▶ Multi-succedent judgments to avoid introducing disjunctions too early

▶ Lazy instantiation of existentials and modalities

▶ Continuations to avoid subdividing spatial resources when introducing ∗
▶ Focusing to delay non-invertable rules
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Part #5: Conclusions
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♡
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Conclusions and future work

Interactive proofs

▶ Most projects use Iris as a library, e.g., to verify programs, to build logics for weak
memory concurrency, session types, distributed systems, complexity, algebraic
effects, crash safety—you name it

▶ The theory and tactics of Iris are pretty stable

▶ Improvements might be possible using new features of Coq: Elpi, Ltac2

Proof automation

▶ A very active research direction

▶ Our “resource” automation (RefinedC, Diaframe) is competitive with SMT-based
verification tools

▶ Our “pure” automation is far behind SMT-based verification tools
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Äına Linn Georges
Alban Reynaud
Alejandro Aguirre
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