A Typed C11 Semantics
for Interactive Theorem Proving

Robbert Krebbers Freek Wiedijk
ICIS, Radboud University Nijmegen, The Netherlands

January 13, 2015 @ CPP, Mumbai, India

What is this C program supposed to do?

int x = 0, y = 0, *p = &x;

int £ { p = &y; return 17; } Initial state:
int main() { X y
*p = £0; o [0]

printf ("x=%d,y=Vkd\n", x, y);
}

Let us try some compilers
» Clang prints x=0,y=17
f is called first, thereafter p is evaluated to &y
» GCC prints x=17,y=0
p is evaluated to &x first, then £ is called

More subtle: *p = (p = &y, 17); has undefined behavior

Contribution

== CH,0 (Krebbers & Wiedijk)
» Compiler independent C11 semantics in ¥ Coq

» Operational, executable, and axiomatic semantics

CPP’15 contribution: a verified interpreter to explore the
non-deterministic behaviors of CH,O

> Type system & weak type safety
» Executable semantics & soundness/completeness

» Formal translation from AST & type soundness

Recent related work

11CompCert | =KCC | =CH,0

Compiler indep/close to C11
Size of C fragment

Proof assistant support
Type system

Principled core language
Formal translation from AST

OGN NON N N

CNONON N
o000 >0

=]
~
[«5]

Overview of the CH,O project

«# OCaml part

CIL CHZO
.c file abstract abstract
syntax syntax

CH30O core
syntax

Stream of
finite sets
of states

H . S
. . :
- .Q
H e, Soundness and
.
Type H . completeness
soundness H ‘e H

.0
Subject red. A s
and progress CH,0
operational
semantics

Type
judgment

Soundness
[FoSSaCS'13]
[POPL'14]
[VSTTE'14]

Separation
logic

=Y — translation
—— = proof (

Executable structured memory model

CH,0 abstract C

k € cintrank ::= char | short | int
| long | long long | ptr

si € signedness ::= signed | unsigned

T, € cinttype 1= si? k

T € ctype ::=void | def x | i | 7%
| 7[e] | struct x | union x
| enum x | typeof e

o € assign = = | ©@:= | =©

e € cexpr ;1= x | const,, z | sizeof 7
| 7: min | 7 max | 7; bits
| &e | xe
| e e

| x(&) | abort
| alloc, e | free e
| Ouele@e
e &&e|e lle
ler?e e (e,)
[(T)]]e.x

r € crefseg 1= [e] | .x

| € cinit ::=
sto € cstorage ;1=
s € cstmt i=

d € decl ::=

© € decls :=

el {7:=1}

static | extern | auto
e | skip

| goto x | return e?

| break | continue

| {s}

| storx:=1":s

| typedef x :=7; s
|si;:|x:s

| while(e) s

| for(e; ; & ; e3) s

| do s while(e)

| if (€) s1 else s,
struct 7X | union 7X
| typedef

| enum Xi=e': T
| global 17 : sto T

| fun(7x7)s? : 56 T

list (string x decl)

CH,0 abstract C

Formal translation to core C

Conversions include:
» Named variables to De Bruijn indices
» Sound/complete constant expression evaluation, e.g. in T[e]

» Simplification of loops, e.g.
while(e) s = catch (loop (if (e) skip else throw 0; catch s))

» Expansion of typedef and enum declarations
Translation of constants like INT_MIN

v

v

Translation of compound literals, e.g.
(struct S){ .x=1, {4,r}, .y[4+1]=0, q }

Theorem (Type soundness)
The translator only produces well-typed CH>O core programs

CH,O operational semantics

» Zippers are used to describe non-local control flow

» Structured memory model (as separation algebra) to
accurately describe low- versus high-level subtleties of C11

» Permissions (as separation algebra) are used for:

» Ruling out expressions like (x = 1) + (x = 2)
» Connection with separation logic

» Evaluation contexts for non-deterministic redex selection

» Stuck states for undefined behavior

CH,O operational semantics

Example of memory state

Consider:

struct S {
union U {
signed char x[2]; int y;
}u;
void *p;
}s={{ .x ={33,34} }, s.u.x + 2 }

The object in memory may look like:
0s >

L voids: [(ptr p)o (ptr p)1 - (ptr p)a1
0
signed char: [10000100[01000100] 77777777 | 77277277 |

struct S union U signed char(2]
p = (os : struct S, 0 . 3 16)signed char>void

Typing of CH,O core C

Expression judgment [T, A, T+ e: 7,
» Struct/union fields: I € tag —, list type
» Functions: ¢ € funname —y, (list type X type)
» Memory layout: A € index —, (type X bool)
» De Bruijn variables: 7 € list type

For example:

T()=r7 e Fe(f) = (7, 0)
xI &e: (T%), f(&):or

oy
3

Statement judgment ',[¢, A, 7+ s: (3, 77)

e: Ty
skip : (false, L) return e: (true, 7) goto /: (true, 1)

State judgment [T, A+ S:g (typically g = main)

Typing of CH,O core C

Type preservation

Lemma (Type preservation)
IfS1:g and S — Sy, then Sy @ g

Theorem (Weak type safety)

If Sy initial for g(V), then if S; —* S, we have either:
1. Not finished: S, — S3 for some S3
2. Undefined behavior: S, = S(P, undef ¢y, m)
3. Final state: S, = S(e, returng v, m)

Executable semantics

Goal: define exec : state — P, (state) and extract to OCaml

Problems:

1. Decomposition £| e; | of expressions is non-deterministic:
S(P, g[el], m]_) — S(P, g[ez], m2) if (el,ml)—bh(eg,mz)
2. Object identifiers o for newly allocated memory are arbitrary:

S(P, (™, local; s), m)

— S((localo.r O) P, (, s), allocr o 7 false m) if og¢dom m

Solutions:
1. Enumerate all possible decompositions £ e; |

2. Pick a canonical object identifier fresh m for o (makes
completeness difficult!)

Executable semantics

Soundness and completeness

Theorem (Soundness)
If S, € exec S7, then 51 — S5

Definition (Permutation)

We let S5; ~¢ S,, if S, is obtained by renaming S; with respect to
f : index — option index

Theorem (Completeness)
If S; —* Sy, then there exists an f and S} such that:

/
)

exec - |

- [adi

51— l>*52

Formalization in Coq

Interpreter extracted to «< OCaml from Coq
» Error monad for failure of type checking
» Set monad for non-determinism

» Verified hash sets for efficiency

All essential properties proven in Coq:
» Weak type safety
» Soundness and completeness of executable semantics

» Type soundness of translation from AST

Part of ~40.000 LOC constructive and axiom free development

Conclusion

A programming language semantics should consist of:

» Operational semantics
Reasoning about program transformations

» Axiomatic semantics
Correctness proofs of concrete programs

» Executable semantics
Debugging and testing

Extremely challenging to develop matching versions for C11

Future work: still many parts of C11 left to be explored

Demo and questions

Sources: http://robbertkrebbers.nl/research/ch2o0/

http://robbertkrebbers.nl/research/ch2o/

