
1

A Typed C11 Semantics
for Interactive Theorem Proving

Robbert Krebbers Freek Wiedijk

ICIS, Radboud University Nijmegen, The Netherlands

January 13, 2015 @ CPP, Mumbai, India

2

What is this C program supposed to do?

int x = 0, y = 0, *p = &x;

int f() { p = &y; return 17; }

int main() {

*p = f();

printf("x=%d,y=%d\n", x, y);

}

Initial state:
x

0

y

0

p

•

Let us try some compilers

I Clang prints x=0,y=17

f is called first, thereafter p is evaluated to &y

I GCC prints x=17,y=0

p is evaluated to &x first, then f is called

More subtle: *p = (p = &y, 17); has undefined behavior

3

Contribution

CH2O (Krebbers & Wiedijk)

I Compiler independent C11 semantics in Coq

I Operational, executable, and axiomatic semantics

CPP’15 contribution: a verified interpreter to explore the
non-deterministic behaviors of CH2O

I Type system & weak type safety

I Executable semantics & soundness/completeness

I Formal translation from AST & type soundness

4

Recent related work

CompCert KCC CH2O
Compiler indep/close to C11 # G#
Size of C fragment G#
Proof assistant support #
Type system # #
Principled core language #
Formal translation from AST # n/a

5

Overview of the CH2O project

Executable structured memory model

.c file

CIL
abstract
syntax

CH2O
abstract
syntax

CH2O core
syntax

Stream of
finite sets
of states

Type
judgment

CH2O
operational
semantics

Separation
logic

OCaml part Coq part

Soundness and
completenessType

soundness

Subject red.
and progress

Soundness

[FoSSaCS’13]

[POPL’14]

[VSTTE’14]

= translation

= proof

6

CH2O abstract C

k ∈ cintrank ::= char | short | int

| long | long long | ptr

si ∈ signedness ::= signed | unsigned

τi ∈ cinttype ::= si ? k

τ ∈ ctype ::= void | def x | τi | τ∗
| τ [e] | struct x | union x

| enum x | typeof e

α ∈ assign ::= := | } := | :=}

e ∈ cexpr ::= x | constτi
z | sizeof τ

| τi min | τi max | τi bits

| &e | ∗e
| e1 α e2

| x(~e) | abort

| allocτ e | free e

| }u e | e1 } e2

| e1 && e2 | e1 || e2

| e1 ? e2 : e3 | (e1, e2)

| (τ) I | e . x
r ∈ crefseg ::= [e] | .x

I ∈ cinit ::= e | { # »#»r := I}
sto ∈ cstorage ::= static | extern | auto

s ∈ cstmt ::= e | skip

| goto x | return e?

| break | continue

| {s}
| # »
sto τ x := I ? ; s

| typedef x := τ ; s

| s1 ; s2 | x : s

| while(e) s

| for(e1 ; e2 ; e3) s

| do s while(e)

| if (e) s1 else s2

d ∈ decl ::= struct # »τ x | union # »τ x

| typedef τ

| enum
»
x := e? : τi

| global I ? :
»
sto τ

| fun (
»
τ x?) s? :

»
sto τ

Θ ∈ decls := list (string × decl)

7

CH2O abstract C
Formal translation to core C

Conversions include:

I Named variables to De Bruijn indices

I Sound/complete constant expression evaluation, e.g. in τ [e]

I Simplification of loops, e.g.

while(e) s ⇒ catch (loop (if (e) skip else throw 0 ; catch s))

I Expansion of typedef and enum declarations

I Translation of constants like INT_MIN

I Translation of compound literals, e.g.
(struct S){ .x=1, {4,r}, .y[4+1]=0, q }

Theorem (Type soundness)

The translator only produces well-typed CH2O core programs

8

CH2O operational semantics

I Zippers are used to describe non-local control flow

I Structured memory model (as separation algebra) to
accurately describe low- versus high-level subtleties of C11

I Permissions (as separation algebra) are used for:
I Ruling out expressions like (x = 1) + (x = 2)
I Connection with separation logic

I Evaluation contexts for non-deterministic redex selection

I Stuck states for undefined behavior

9

CH2O operational semantics
Example of memory state

Consider:

struct S {

union U {

signed char x[2]; int y;

} u;

void *p;

} s = { { .x = {33,34} }, s.u.x + 2 }

The object in memory may look like:
os 7→

.0

signed char: 10000100 01000100 EEEEEEEE EEEEEEEE

void∗: (ptr p)0 (ptr p)1 . . . (ptr p)31

p = (os : struct S,
struct S
↪−−−−→ 0

union U
↪−−−→• 0

signed char[2]
↪−−−−−−−→ 0, 16)signed char>void

10

Typing of CH2O core C

Expression judgment Γ, Γf ,∆, ~τ ` e : τlr

I Struct/union fields: Γ ∈ tag→fin list type

I Functions: Γf ∈ funname→fin (list type× type)

I Memory layout: ∆ ∈ index→fin (type× bool)

I De Bruijn variables: ~τ ∈ list type

For example:

~τ(i) = τ

xτi : τl

e : τl

&e : (τ∗)r

Γf (f) = (~τ , σ) ~e : ~τr

f (~e) : σr

Statement judgment Γ, Γf ,∆, ~τ ` s : (β, τ ?)

skip : (false, ⊥)

e : τr

return e : (true, τ) goto l : (true, ⊥)

State judgment Γ, Γf ,∆ ` S : g (typically g = main)

11

Typing of CH2O core C
Type preservation

Lemma (Type preservation)

If S1 : g and S1 _ S2, then S2 : g

Theorem (Weak type safety)

If S1 initial for g(~v), then if S1 _∗ S2 we have either:

1. Not finished: S2 _ S3 for some S3

2. Undefined behavior: S2 = S(P, undef φU , m)

3. Final state: S2 = S(ε, return g v , m)

12

Executable semantics

Goal: define exec : state→ Pfin(state) and extract to OCaml

Problems:

1. Decomposition E [e1] of expressions is non-deterministic:

S(P, E [e1], m1) _ S(P, E [e2], m2) if (e1,m1)_h(e2,m2)

2. Object identifiers o for newly allocated memory are arbitrary:

S(P, (↘, localτ s), m)

_ S((localo:τ 2)P, (↘, s), allocΓ o τ false m) if o /∈dom m

Solutions:

1. Enumerate all possible decompositions E [e1]

2. Pick a canonical object identifier fresh m for o (makes
completeness difficult!)

13

Executable semantics
Soundness and completeness

Theorem (Soundness)

If S2 ∈ exec S1, then S1 _ S2

Definition (Permutation)

We let S1 ∼f S2, if S2 is obtained by renaming S1 with respect to
f : index→ option index

Theorem (Completeness)

If S1 _∗ S2, then there exists an f and S ′2 such that:

S ′2

S1 S2

∼f
exec

∗

∗

14

Formalization in Coq

Interpreter extracted to OCaml from Coq

I Error monad for failure of type checking

I Set monad for non-determinism

I Verified hash sets for efficiency

All essential properties proven in Coq:

I Weak type safety

I Soundness and completeness of executable semantics

I Type soundness of translation from AST

Part of ∼40.000 LOC constructive and axiom free development

15

Conclusion

A programming language semantics should consist of:

I Operational semantics
Reasoning about program transformations

I Axiomatic semantics
Correctness proofs of concrete programs

I Executable semantics
Debugging and testing

Extremely challenging to develop matching versions for C11

Future work: still many parts of C11 left to be explored

16

Demo and questions

Sources: http://robbertkrebbers.nl/research/ch2o/

http://robbertkrebbers.nl/research/ch2o/

