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What is this C program supposed to do?

int x = 0, y = 0, *p = &x;

int f() { p = &y; return 17; }

int main() {

*p = f();

printf("x=%d,y=%d\n", x, y);

}

Initial state:
x

0

y

0

p

•

Let us try some compilers

I Clang prints x=0,y=17

f is called first, thereafter p is evaluated to &y

I GCC prints x=17,y=0

p is evaluated to &x first, then f is called

More subtle: *p = (p = &y, 17); has undefined behavior
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Contribution

CH2O (Krebbers & Wiedijk)

I Compiler independent C11 semantics in Coq

I Operational, executable, and axiomatic semantics

CPP’15 contribution: a verified interpreter to explore the
non-deterministic behaviors of CH2O

I Type system & weak type safety

I Executable semantics & soundness/completeness

I Formal translation from AST & type soundness
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Recent related work

CompCert KCC CH2O
Compiler indep/close to C11 # G#  
Size of C fragment   G#
Proof assistant support  #  
Type system # #  
Principled core language  #  
Formal translation from AST # n/a  
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Overview of the CH2O project

Executable structured memory model

.c file
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CH2O abstract C

k ∈ cintrank ::= char | short | int

| long | long long | ptr

si ∈ signedness ::= signed | unsigned

τi ∈ cinttype ::= si ? k

τ ∈ ctype ::= void | def x | τi | τ∗
| τ [e] | struct x | union x

| enum x | typeof e

α ∈ assign ::= := | } := | :=}

e ∈ cexpr ::= x | constτi
z | sizeof τ

| τi min | τi max | τi bits

| &e | ∗e
| e1 α e2

| x(~e) | abort

| allocτ e | free e

| }u e | e1 } e2

| e1 && e2 | e1 || e2

| e1 ? e2 : e3 | (e1, e2)

| (τ) I | e . x
r ∈ crefseg ::= [e] | .x

I ∈ cinit ::= e | { #            »#»r := I}
sto ∈ cstorage ::= static | extern | auto

s ∈ cstmt ::= e | skip

| goto x | return e?

| break | continue

| {s}
| #  »
sto τ x := I ? ; s

| typedef x := τ ; s

| s1 ; s2 | x : s

| while(e) s

| for(e1 ; e2 ; e3) s

| do s while(e)

| if (e) s1 else s2

d ∈ decl ::= struct #  »τ x | union #  »τ x

| typedef τ

| enum
#             »
x := e? : τi

| global I ? :
#  »
sto τ

| fun (
#     »
τ x? ) s? :

#  »
sto τ

Θ ∈ decls := list (string × decl)
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CH2O abstract C
Formal translation to core C

Conversions include:

I Named variables to De Bruijn indices

I Sound/complete constant expression evaluation, e.g. in τ [e]

I Simplification of loops, e.g.

while(e) s ⇒ catch (loop (if (e) skip else throw 0 ; catch s))

I Expansion of typedef and enum declarations

I Translation of constants like INT_MIN

I Translation of compound literals, e.g.
(struct S){ .x=1, {4,r}, .y[4+1]=0, q }

Theorem (Type soundness)

The translator only produces well-typed CH2O core programs
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CH2O operational semantics

I Zippers are used to describe non-local control flow

I Structured memory model (as separation algebra) to
accurately describe low- versus high-level subtleties of C11

I Permissions (as separation algebra) are used for:
I Ruling out expressions like (x = 1) + (x = 2)
I Connection with separation logic

I Evaluation contexts for non-deterministic redex selection

I Stuck states for undefined behavior
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CH2O operational semantics
Example of memory state

Consider:

struct S {

union U {

signed char x[2]; int y;

} u;

void *p;

} s = { { .x = {33,34} }, s.u.x + 2 }

The object in memory may look like:
os 7→

.0

signed char: 10000100 01000100 EEEEEEEE EEEEEEEE

void∗: (ptr p)0 (ptr p)1 . . . (ptr p)31

p = (os : struct S,
struct S
↪−−−−→ 0

union U
↪−−−→• 0

signed char[2]
↪−−−−−−−→ 0, 16)signed char>void
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Typing of CH2O core C

Expression judgment Γ, Γf ,∆, ~τ ` e : τlr

I Struct/union fields: Γ ∈ tag→fin list type

I Functions: Γf ∈ funname→fin (list type× type)

I Memory layout: ∆ ∈ index→fin (type× bool)

I De Bruijn variables: ~τ ∈ list type

For example:

~τ(i) = τ

xτi : τl

e : τl

&e : (τ∗)r

Γf (f ) = (~τ , σ) ~e : ~τr

f (~e) : σr

Statement judgment Γ, Γf ,∆, ~τ ` s : (β, τ ?)

skip : (false, ⊥)

e : τr

return e : (true, τ) goto l : (true, ⊥)

State judgment Γ, Γf ,∆ ` S : g (typically g = main)
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Typing of CH2O core C
Type preservation

Lemma (Type preservation)

If S1 : g and S1 _ S2, then S2 : g

Theorem (Weak type safety)

If S1 initial for g(~v), then if S1 _∗ S2 we have either:

1. Not finished: S2 _ S3 for some S3

2. Undefined behavior: S2 = S(P, undef φU , m)

3. Final state: S2 = S(ε, return g v , m)
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Executable semantics

Goal: define exec : state→ Pfin(state) and extract to OCaml

Problems:

1. Decomposition E [ e1 ] of expressions is non-deterministic:

S(P, E [ e1 ], m1) _ S(P, E [ e2 ], m2) if (e1,m1)_h(e2,m2)

2. Object identifiers o for newly allocated memory are arbitrary:

S(P, (↘, localτ s), m)

_ S((localo:τ 2)P, (↘, s), allocΓ o τ false m) if o /∈dom m

Solutions:

1. Enumerate all possible decompositions E [ e1 ]

2. Pick a canonical object identifier fresh m for o (makes
completeness difficult!)
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Executable semantics
Soundness and completeness

Theorem (Soundness)

If S2 ∈ exec S1, then S1 _ S2

Definition (Permutation)

We let S1 ∼f S2, if S2 is obtained by renaming S1 with respect to
f : index→ option index

Theorem (Completeness)

If S1 _∗ S2, then there exists an f and S ′2 such that:

S ′2

S1 S2

∼f
exec

∗

∗
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Formalization in Coq

Interpreter extracted to OCaml from Coq

I Error monad for failure of type checking

I Set monad for non-determinism

I Verified hash sets for efficiency

All essential properties proven in Coq:

I Weak type safety

I Soundness and completeness of executable semantics

I Type soundness of translation from AST

Part of ∼40.000 LOC constructive and axiom free development
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Conclusion

A programming language semantics should consist of:

I Operational semantics
Reasoning about program transformations

I Axiomatic semantics
Correctness proofs of concrete programs

I Executable semantics
Debugging and testing

Extremely challenging to develop matching versions for C11

Future work: still many parts of C11 left to be explored



16

Demo and questions

Sources: http://robbertkrebbers.nl/research/ch2o/

http://robbertkrebbers.nl/research/ch2o/

