A Typed C11 Semantics for Interactive Theorem Proving

Robbert Krebbers Freek Wiedijk

ICIS, Radboud University Nijmegen, The Netherlands
January 13, 2015 @ CPP, Mumbai, India

What is this C program supposed to do?

```
int x = 0, y = 0, *p = &x;
int f() { p = &y; return 17; }
int main() {
    *p = f();
    printf("x=%d,y=%d\n", x, y);
}
```

Let us try some compilers

- Clang prints $\mathrm{x}=0, \mathrm{y}=17$ f is called first, thereafter p is evaluated to \&y
- GCC prints $x=17, y=0$ p is evaluated to \&x first, then f is called

More subtle: *p = ($p=\& y, 17$) ; has undefined behavior

Contribution

- $\mathbf{C H}_{2} \mathbf{O}$ (Krebbers \& Wiedijk)
- Compiler independent C11 semantics in Coq
- Operational, executable, and axiomatic semantics

CPP'15 contribution: a verified interpreter to explore the non-deterministic behaviors of $\mathrm{CH}_{2} \mathrm{O}$

- Type system \& weak type safety
- Executable semantics \& soundness/completeness
- Formal translation from AST \& type soundness

Recent related work

	IICompCert	틀 $\mathbf{K C C}$	$=\mathbf{C H}_{2} \mathbf{O}$
Compiler indep/close to C11	0	0	\bullet
Size of C fragment	\bullet	\bullet	0
Proof assistant support	\bullet	0	\bullet
Type system	0	0	\bullet
Principled core language	\bullet	0	\bullet
Formal translation from AST	0	n / a	\bullet

Overview of the $\mathrm{CH}_{2} \mathrm{O}$ project

OCaml part

8 Coq part

$\mathrm{CH}_{2} \mathrm{O}$ abstract C

$$
\begin{aligned}
& k \in \text { cintrank }::=\text { char } \mid \text { short } \mid \text { int } \\
& \text { | long | long long | ptr } \\
& \text { si } \in \text { signedness }::=\text { signed } \mid \text { unsigned } \\
& \tau_{\mathrm{i}} \in \text { cinttype }::=s i ? k \\
& \tau \in \text { ctype }::=\text { void }|\operatorname{def} x| \tau_{\mathrm{i}} \mid \tau * \\
& |\tau[e]| \text { struct } x \mid \text { union } x \\
& \mid \text { enum } x \mid \text { typeof } e \\
& \alpha \in \text { assign }::=:=\mid \text { © := } \mid:=\text { © } \\
& e \in \operatorname{cexpr}::=x \mid \text { const }_{\tau_{\mathrm{i}}} z \mid \text { sizeof } \tau \\
& \left|\tau_{\mathrm{i}} \min \right| \tau_{\mathrm{i}} \max \mid \tau_{\mathrm{i}} \text { bits } \\
& |\& e| * e \\
& \mid e_{1} \alpha e_{2} \\
& |x(\vec{e})| \text { abort } \\
& \mid \text { alloc }_{\tau} e \mid \text { free } e \\
& \odot_{u} e \mid e_{1} \odot e_{2} \\
& \left|e_{1} \& \& e_{2}\right| e_{1}| | e_{2} \\
& \left|e_{1} ? e_{2}: e_{3}\right|\left(e_{1}, e_{2}\right) \\
& |(\tau) /| e \cdot x \\
& r \in \text { crefseg }::=[e] \mid \cdot x \\
& I \in \text { cinit }::=e \mid\{\vec{r}:=\vec{l}\} \\
& \text { sto } \in \text { cstorage }::=\text { static | extern | auto } \\
& s \in \operatorname{cstmt}::=e \mid \text { skip } \\
& \mid \text { goto } x \mid \text { return } e^{\text {? }} \\
& \text { | break | continue } \\
& \text { | }\{s\} \\
& \mid \overrightarrow{\text { sto }} \tau x:=1 \text { ? ; s } \\
& \text { | typedef } x:=\tau \text {; } s \\
& \left|s_{1} ; s_{2}\right| x: s \\
& \text { | while(e) } s \\
& \mid \text { for }\left(e_{1} ; e_{2} ; e_{3}\right) s \\
& \mid \text { do } s \text { while(e) } \\
& \text { | if (e) } s_{1} \text { else } s_{2} \\
& d \in \operatorname{decl}::=\text { struct } \vec{\tau} \vec{x} \mid \text { union } \vec{\tau} \vec{x} \\
& \text { | typedef } \tau \\
& \mid \text { enum } \overrightarrow{x:=e ?}: \tau_{\text {i }} \\
& \text { | global I? : } \overrightarrow{\text { sto } \tau} \\
& \mid \operatorname{fun}(\overrightarrow{\tau x}) s^{?}: \overrightarrow{s t o} \tau \\
& \Theta \in \text { decls }:=\text { list (string } \times \text { decl) }
\end{aligned}
$$

$\mathrm{CH}_{2} \mathrm{O}$ abstract C

Formal translation to core C

Conversions include:

- Named variables to De Bruijn indices
- Sound/complete constant expression evaluation, e.g. in $\tau[e]$
- Simplification of loops, e.g.

$$
\text { while }(e) s \Rightarrow \text { catch (loop (if }(e) \text { skip else throw } 0 \text {; catch } s) \text {) }
$$

- Expansion of typedef and enum declarations
- Translation of constants like INT_MIN
- Translation of compound literals, e.g. (struct S) $\{. \mathrm{x}=1,\{4, \mathrm{r}\}, . \mathrm{y}[4+1]=0, \mathrm{q}\}$

Theorem (Type soundness)
The translator only produces well-typed $\mathrm{CH}_{2} \mathrm{O}$ core programs

$\mathrm{CH}_{2} \mathrm{O}$ operational semantics

- Zippers are used to describe non-local control flow
- Structured memory model (as separation algebra) to accurately describe low- versus high-level subtleties of C11
- Permissions (as separation algebra) are used for:
- Ruling out expressions like ($\mathrm{x}=1$) + ($\mathrm{x}=2$)
- Connection with separation logic
- Evaluation contexts for non-deterministic redex selection
- Stuck states for undefined behavior

$\mathrm{CH}_{2} \mathrm{O}$ operational semantics

Example of memory state

Consider:

```
struct S {
    union U {
        signed char x[2]; int y;
    } u;
    void *p;
} s = { {. .x = {33,34} }, s.u.x + 2 }
```

The object in memory may look like:

Typing of $\mathrm{CH}_{2} \mathrm{O}$ core C

Expression judgment $\Gamma, \Gamma_{\mathrm{f}}, \Delta, \vec{\tau} \vdash \mathrm{e}: \tau_{\mathrm{lr}}$

- Struct/union fields: $\Gamma \in$ tag $\rightarrow_{\text {fin }}$ list type
- Functions: $\Gamma_{\mathrm{f}} \in$ funname $\rightarrow_{\text {fin }}$ (list type \times type)
- Memory layout: $\Delta \in$ index $\rightarrow_{\text {fin }}$ (type \times bool)
- De Bruijn variables: $\vec{\tau} \in$ list type

For example:

$$
\frac{\vec{\tau}(i)=\tau}{x_{i}^{\tau}: \tau_{\mathbf{l}}} \quad \frac{e: \tau_{\mathbf{I}}}{\& e:(\tau *)_{\mathbf{r}}} \quad \frac{\Gamma_{f}(f)=(\vec{\tau}, \sigma) \quad \vec{e}: \vec{\tau}_{\mathbf{r}}}{f(\vec{e}): \sigma_{\mathbf{r}}}
$$

Statement judgment $\Gamma, \Gamma_{\mathrm{f}}, \Delta, \vec{\tau} \vdash s:\left(\beta, \tau^{?}\right)$
$\overline{\text { skip : (false, } \perp \text {) }} \frac{e: \tau_{\mathbf{r}}}{\text { return } e:(\text { true }, \tau)} \quad$ goto $l:($ true,$\perp)$

State judgment $\Gamma, \Gamma_{\mathrm{f}}, \Delta \vdash S: g \quad$ (typically $g=$ main)

Typing of $\mathrm{CH}_{2} \mathrm{O}$ core C

Type preservation

> Lemma (Type preservation)
> If $S_{1}: g$ and $S_{1} \rightarrow S_{2}$, then $S_{2}: g$

Theorem (Weak type safety)
If S_{1} initial for $g(\vec{v})$, then if $S_{1} \rightarrow{ }^{*} S_{2}$ we have either:

1. Not finished: $S_{2} \rightarrow S_{3}$ for some S_{3}
2. Undefined behavior: $S_{2}=\mathbf{S}\left(\mathcal{P}, \overline{\text { undef }} \phi_{U}, m\right)$
3. Final state: $S_{2}=\mathbf{S}(\epsilon, \overline{\text { return }} g v, m)$

Executable semantics

Goal: define exec : state $\rightarrow \mathcal{P}_{\text {fin }}$ (state) and extract to OCaml

Problems:

1. Decomposition $\mathcal{E}\left[e_{1}\right]$ of expressions is non-deterministic:

$$
\mathbf{S}\left(\mathcal{P}, \mathcal{E}\left[e_{1}\right], m_{1}\right) \rightarrow \mathbf{S}\left(\mathcal{P}, \mathcal{E}\left[e_{2}\right], m_{2}\right) \text { if }\left(e_{1}, m_{1}\right) \rightarrow \mapsto_{h}\left(e_{2}, m_{2}\right)
$$

2. Object identifiers o for newly allocated memory are arbitrary:

$$
\begin{aligned}
& \mathbf{S}\left(\mathcal{P},\left(\searrow, \text { local }_{\tau} s\right), m\right) \\
\rightarrow & \mathbf{S}\left(\left(\text { local }_{o: \tau} \square\right) \mathcal{P},(\searrow, s) \text {, alloc } \Gamma \circ \tau \text { false } m\right) \text { if } \circ \notin \operatorname{dom} m
\end{aligned}
$$

Solutions:

1. Enumerate all possible decompositions $\mathcal{E}\left[e_{1}\right]$
2. Pick a canonical object identifier fresh m for o (makes completeness difficult!)

Executable semantics

Soundness and completeness

Theorem (Soundness)
If $S_{2} \in \operatorname{exec} S_{1}$, then $S_{1} \rightarrow S_{2}$
Definition (Permutation)
We let $S_{1} \sim_{f} S_{2}$, if S_{2} is obtained by renaming S_{1} with respect to f : index \rightarrow option index

Theorem (Completeness)
If $S_{1} \rightarrow{ }^{*} S_{2}$, then there exists an f and S_{2}^{\prime} such that:

Formalization in Coq

Interpreter extracted to OCaml from Coq

- Error monad for failure of type checking
- Set monad for non-determinism
- Verified hash sets for efficiency

All essential properties proven in Coq:

- Weak type safety
- Soundness and completeness of executable semantics
- Type soundness of translation from AST

Part of ~ 40.000 LOC constructive and axiom free development

Conclusion

A programming language semantics should consist of:

- Operational semantics

Reasoning about program transformations

- Axiomatic semantics

Correctness proofs of concrete programs

- Executable semantics

Debugging and testing
Extremely challenging to develop matching versions for C11
Future work: still many parts of C11 left to be explored

Demo and questions

Sources: http://robbertkrebbers.nl/research/ch2o/

