
Pure Type Systems without Explicit Contexts

Robbert Krebbers
Joint work with Herman Geuvers,

James McKinna and Freek Wiedijk

Institute for Computing and Information Science
Faculty of Science, Radboud University Nijmegen

and
Faculty of Mathematics and Computer Science

Eindhoven University of Technology
The Netherlands

July 14, 2010

The main traditions of type theory

I Descendants of simple type theory

I Church’s original system
I Polymorphic λ-calculus, System F
I HOL’s type theory
I . . .

Traditionally presented without contexts

I Dependent type theories (de Bruijn, Martin-Löf)
I Automath
I Berardi/Terlouw framework of Pure Type Systems
I Coq’s type theory
I . . .

Traditionally presented with contexts

Problem

Traditional presentation of dependent type theory

I Terms considered with respect to an explicit context Γ

Γ ` M : A

I A bound variable is bound locally by a λ or Π

I A free variable is bound globally by Γ

Can we present dependent type theory without contexts?

Motivation
First-order logic and contexts

Predicate logic Type theory

A ` P(x)

A ` ∀x .P(x)

` A→ ∀x .P(x)

H : A, x : D ` M3 : P(x)

H : A ` M2 : Πx : D.P(x)

` M1 : A→ Πx : D.P(x)

‘sea’ of free variables context of ‘free’ variables

What about?
(∀x .P(x))→ (∃x .P(x))

Approach

I We simulate the sea of free variables

I Infinitely many variables xA for each type A

I This gives an “infinite context” called Γ∞
I For example

sN
∗→N∗

I Variable carries history of how it comes to be well-typed

I Judgments of the shape A : B

I Should be imagined as Γ∞ ` A : B

Approach

Two kinds of variables: free and bound variables

Curry λx .f x

Church λxA.f A→AxA

Barendregt et al. λx : A.f x

Γ∞-style λẋ : A∗.f A
∗→A∗ ẋ

That is

I Γ∞ extends Church’s approach to dependent types

I But Γ∞ avoids the need to consider substitution in labels of
bound variables

(λxAλPA→∗λyP
A→∗xA . . .)aA →β λP

A→∗λyP
A→∗aA . . .

PTS terms

I The set T of pseudo-terms is defined as

T ::= s | V | ΠV : T .T | λV : T .T | T T

I For ordinary PTSs the choice of V does not matter

I For Γ∞ we have two kinds of variables

V ::= Ẋ | X T

X ::= x | y | z | . . . | x0 | x1 | x2 | . . .

I Variables xA are intended to be free

I Variables ẋ are intended to be bound

Labelling terms

I Type labels should be considered as strings

I Labels are insensitive to α and β-conversion

I That is to say
xA[A := B] 6≡ xB

and

(λȦ : ∗.Ȧ)B∗ =β B∗

x (λȦ:∗.Ȧ)B∗ 6=β xB
∗

I But we do have (by type conversion)

x (λȦ:∗.Ȧ)B∗ : B∗

Typing rules
Two of the six rules

PTS rules Γ∞ rules

Γ ` A : s
x /∈ Γ

Γ, x : A ` x : A
A : s

xA : A

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` Πx : A.B : s3

A : s1 B : s2

Πẋ : A.B[yA := ẋ] : s3

Remark:

I Binding a variable in Γ∞

replace a free variable by a bound variable

I No weakening rule

But this does not correspond to PTSs!

Now we would have

xA
∗

: A∗

λȦ : ∗.xA∗ : ΠȦ : ∗.Ȧ

but, in ordinary PTS-style

A : ∗, x : A ` x : A

x : A ` λA : ∗.x : ΠA : ∗.A

which is nonsense because A∗ occurs free in the label of x .

Taking the type annotations seriously

It is not enough to consider the free variables in a type label, but
the hereditarily free variables of a type label.

A : s1 B : s2
IncorrectyA /∈ hfvT(B)

Πẋ : A.B[yA := ẋ] : s3

M : B Πẋ : A.B[yA := ẋ] : s
yA /∈ hfvT(M) ∪ hfvT(B)

λẋ : A.M[yA := ẋ] : Πẋ : A.B[yA := ẋ]

Taking the type annotations seriously

Hereditarily free type-variables are defined as

hfvT(s) = hfvT(ẋ) = ∅
hfvT(F N) = hfvT(F) ∪ hfvT(N)

hfvT(λẋ : A.N) = hfvT(Πẋ : A.N) = hfvT(A) ∪ hfvT(N)

hfvT(xA) = hfv(A)

Where the hereditarily free variables are defined as

hfv(s) = hfv(ẋ) = ∅
hfv(F N) = hfv(F) ∪ hfv(N)

hfv(λẋ : A.N) = hfv(Πẋ : A.N) = hfv(A) ∪ hfv(N)

hfv(xA) = {xA} ∪ hfv(A)

The correspondence theorems

derivable PTS judgment ←→ derivable Γ∞ judgment

(α-)rename Γ ` M : A to Γ′ ` M ′ : A′ such that Γ′ ⊂ Γ∞ and

Γ ` M : A =⇒ M ′ : A′

for M : A generate a context Γ(M,A) such that

Γ(M,A) ` M : A ⇐= M : A

Type annotated judgments

A type annotated judgment is a judgment of the shape

x1
B1 : B1, . . . , xn

Bn : Bn ` M : A

where

1. all free variables in M and A are of the form xi
Bi

2. all bound variables in Bi , M and A are of the form ẋ

Type annotated judgments

Lemma
Every judgment Γ ` M : A in a PTS can be (α-)renamed to a type
annotated judgment Γ′ ` M ′ : A′.

For example consider

A : ∗, a : A ` (λx : A. x) a : A

This judgment can be (α-)renamed to

A∗ : ∗, aA∗ : A∗ ` (λẋ : A∗. ẋ) aA
∗

Theorem
Let Γ′ ` M ′ : A′ be a derivable type annotated judgment.
Then M ′ : A′ is derivable in the corresponding Γ∞-theory.

The reverse implication

Theorem
Let M : A be derivable in Γ∞. Then Γ(M,A) ` M : A is derivable
in the corresponding PTS.

I Generate a context Γ(M,A) by induction over M : A

I For Π, λ, app and conv we have to merge contexts

I The merge of Γ and ∆ is defined as Γ, (∆ \ Γ) if

∀x ∈ dom(Γ) ∩ dom(∆)(typeΓ(x) ≡ type∆(x))

I So merge is a partial function

I Key lemma: for type annotated judgments merge is total

Possible advantages

I Easier typing rules

I Strengthening is implicit

I Some meta theory is easier to prove

I Closer to implementation?

But is the cost of labelling variables too high?

Future work

I Γ∞ presentation for other type theories
I Theories with definitions?

I Implementation based on Γ∞
I Efficiency?
I Extra kind of variables xA that remain free?

I Formalization
I Already one direction finished
I Locally nameless approach
I Suits distinction between variables well

