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The main traditions of type theory

I Descendants of simple type theory

I Church’s original system
I Polymorphic λ-calculus, System F
I HOL’s type theory
I . . .

Traditionally presented without contexts

I Dependent type theories (de Bruijn, Martin-Löf)
I Automath
I Berardi/Terlouw framework of Pure Type Systems
I Coq’s type theory
I . . .

Traditionally presented with contexts



Problem

Traditional presentation of dependent type theory

I Terms considered with respect to an explicit context Γ

Γ ` M : A

I A bound variable is bound locally by a λ or Π

I A free variable is bound globally by Γ

Can we present dependent type theory without contexts?



Motivation
First-order logic and contexts

Predicate logic Type theory

A ` P(x)

A ` ∀x .P(x)

` A→ ∀x .P(x)

H : A, x : D ` M3 : P(x)

H : A ` M2 : Πx : D.P(x)

` M1 : A→ Πx : D.P(x)

‘sea’ of free variables context of ‘free’ variables

What about?
(∀x .P(x))→ (∃x .P(x))



Approach

I We simulate the sea of free variables

I Infinitely many variables xA for each type A

I This gives an “infinite context” called Γ∞
I For example

sN
∗→N∗

I Variable carries history of how it comes to be well-typed

I Judgments of the shape A : B

I Should be imagined as Γ∞ ` A : B



Approach

Two kinds of variables: free and bound variables

Curry λx .f x

Church λxA.f A→AxA

Barendregt et al. λx : A.f x

Γ∞-style λẋ : A∗.f A
∗→A∗ ẋ

That is

I Γ∞ extends Church’s approach to dependent types

I But Γ∞ avoids the need to consider substitution in labels of
bound variables

(λxAλPA→∗λyP
A→∗xA . . .)aA →β λP

A→∗λyP
A→∗aA . . .



PTS terms

I The set T of pseudo-terms is defined as

T ::= s | V | ΠV : T .T | λV : T .T | T T

I For ordinary PTSs the choice of V does not matter

I For Γ∞ we have two kinds of variables

V ::= Ẋ | X T

X ::= x | y | z | . . . | x0 | x1 | x2 | . . .

I Variables xA are intended to be free

I Variables ẋ are intended to be bound



Labelling terms

I Type labels should be considered as strings

I Labels are insensitive to α and β-conversion

I That is to say
xA[A := B] 6≡ xB

and

(λȦ : ∗.Ȧ)B∗ =β B∗

x (λȦ:∗.Ȧ)B∗ 6=β xB
∗

I But we do have (by type conversion)

x (λȦ:∗.Ȧ)B∗ : B∗



Typing rules
Two of the six rules

PTS rules Γ∞ rules

Γ ` A : s
x /∈ Γ

Γ, x : A ` x : A
A : s

xA : A

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` Πx : A.B : s3

A : s1 B : s2

Πẋ : A.B[yA := ẋ ] : s3

Remark:

I Binding a variable in Γ∞

replace a free variable by a bound variable

I No weakening rule



But this does not correspond to PTSs!

Now we would have

xA
∗

: A∗

λȦ : ∗.xA∗ : ΠȦ : ∗.Ȧ

but, in ordinary PTS-style

A : ∗, x : A ` x : A

x : A ` λA : ∗.x : ΠA : ∗.A

which is nonsense because A∗ occurs free in the label of x .



Taking the type annotations seriously

It is not enough to consider the free variables in a type label, but
the hereditarily free variables of a type label.

A : s1 B : s2
IncorrectyA /∈ hfvT(B)

Πẋ : A.B[yA := ẋ ] : s3

M : B Πẋ : A.B[yA := ẋ ] : s
yA /∈ hfvT(M) ∪ hfvT(B)

λẋ : A.M[yA := ẋ ] : Πẋ : A.B[yA := ẋ ]



Taking the type annotations seriously

Hereditarily free type-variables are defined as

hfvT(s) = hfvT(ẋ) = ∅
hfvT(F N) = hfvT(F ) ∪ hfvT(N)

hfvT(λẋ : A.N) = hfvT(Πẋ : A.N) = hfvT(A) ∪ hfvT(N)

hfvT(xA) = hfv(A)

Where the hereditarily free variables are defined as

hfv(s) = hfv(ẋ) = ∅
hfv(F N) = hfv(F ) ∪ hfv(N)

hfv(λẋ : A.N) = hfv(Πẋ : A.N) = hfv(A) ∪ hfv(N)

hfv(xA) = {xA} ∪ hfv(A)



The correspondence theorems

derivable PTS judgment ←→ derivable Γ∞ judgment

(α-)rename Γ ` M : A to Γ′ ` M ′ : A′ such that Γ′ ⊂ Γ∞ and

Γ ` M : A =⇒ M ′ : A′

for M : A generate a context Γ(M,A) such that

Γ(M,A) ` M : A ⇐= M : A



Type annotated judgments

A type annotated judgment is a judgment of the shape

x1
B1 : B1, . . . , xn

Bn : Bn ` M : A

where

1. all free variables in M and A are of the form xi
Bi

2. all bound variables in Bi , M and A are of the form ẋ



Type annotated judgments

Lemma
Every judgment Γ ` M : A in a PTS can be (α-)renamed to a type
annotated judgment Γ′ ` M ′ : A′.

For example consider

A : ∗, a : A ` (λx : A. x) a : A

This judgment can be (α-)renamed to

A∗ : ∗, aA∗ : A∗ ` (λẋ : A∗. ẋ) aA
∗

Theorem
Let Γ′ ` M ′ : A′ be a derivable type annotated judgment.
Then M ′ : A′ is derivable in the corresponding Γ∞-theory.



The reverse implication

Theorem
Let M : A be derivable in Γ∞. Then Γ(M,A) ` M : A is derivable
in the corresponding PTS.

I Generate a context Γ(M,A) by induction over M : A

I For Π, λ, app and conv we have to merge contexts

I The merge of Γ and ∆ is defined as Γ, (∆ \ Γ) if

∀x ∈ dom(Γ) ∩ dom(∆)(typeΓ(x) ≡ type∆(x))

I So merge is a partial function

I Key lemma: for type annotated judgments merge is total



Possible advantages

I Easier typing rules

I Strengthening is implicit

I Some meta theory is easier to prove

I Closer to implementation?

But is the cost of labelling variables too high?



Future work

I Γ∞ presentation for other type theories
I Theories with definitions?

I Implementation based on Γ∞
I Efficiency?
I Extra kind of variables xA that remain free?

I Formalization
I Already one direction finished
I Locally nameless approach
I Suits distinction between variables well


