An Operational and Axiomatic Semantics for
Non-determinism and Sequence Points in C

Robbert Krebbers

Radboud University Nijmegen

January 22, 2014 @ POPL, San Diego, USA

/16

What is this program supposed to do?

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d %d\n", x, y);

}

16

What is this program supposed to do?

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d %d\n", x, y);

}

Let us try some compilers

» Clang prints 4 7, seems just left-right

2

16

What is this program supposed to do?

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d %d\n", x, y);

}

Let us try some compilers
» Clang prints 4 7, seems just left-right

» GCC prints 4 8, does not correspond to any evaluation order

16

What is this program supposed to do?

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d %d\n", x, y);

}

Let us try some compilers
» Clang prints 4 7, seems just left-right

» GCC prints 4 8, does not correspond to any evaluation order

This program violates the sequence point restriction
» due to two unsequenced writes to x
> resulting in undefined behavior

» thus both compilers are right

2/16

Undefined behavior in C

“Garbage in, garbage out” principle
» Programs with undefined behavior are not statically excluded
» Undefined behavior = all bets are off
» Allows compilers to omit (expensive) dynamic checks

3/16

Undefined behavior in C

“Garbage in, garbage out” principle
» Programs with undefined behavior are not statically excluded
» Undefined behavior = all bets are off
» Allows compilers to omit (expensive) dynamic checks

A compiler independent C semantics should account for undefined
behavior

16

Examples

» Side-effects are useful in a while, for, return, ...

while ((x = getchar()) != EOF)
/% do something */

4/16

Examples

» Side-effects are useful in a while, for, return, ...

while ((x = getchar()) != EOF)
/% do something */

» Non-determinism is subtle in innocent looking examples:

*p = g (x, vy, 2);

Here, g may change p, so the evaluation order matters

4/16

Examples

» Side-effects are useful in a while, for, return, ...

while ((x = getchar()) != EOF)
/% do something */

» Non-determinism is subtle in innocent looking examples:
*p = g (x, ¥y, 2);

Here, g may change p, so the evaluation order matters

> Interleaving of subexpressions is possible, for example

printf("a") + (printf("b") + printf("c"));

may print “bac”

4/16

Contribution

A compiler independent small step operational, and axiomatic,

semantics for non-determinism and sequence points, supporting:

>

>

>

expressions with function calls, assignments, conditionals
undefined behavior due to integer overflow

parametrized by integer types

dynamically allocated memory (malloc and free)
non-local control (return and goto)

local variables (and pointers to those)

mutual recursion

separation logic

soundness proof fully checked by ¥ Coq

5/16

Contribution

A compiler independent small step operational, and axiomatic,

semantics for non-determinism and sequence points, supporting:

>

>

>

expressions with function calls, assignments, conditionals
undefined behavior due to integer overflow

parametrized by integer types

dynamically allocated memory (malloc and free)
non-local control (return and goto)

local variables (and pointers to those)

mutual recursion

separation logic

soundness proof fully checked by ¥ Coq

5/16

Contribution

A compiler independent small step operational, and axiomatic,

semantics for non-determinism and sequence points, supporting:

>

>

>

expressions with function calls, assignments, conditionals
undefined behavior due to integer overflow

parametrized by integer types

dynamically allocated memory (malloc and free)
non-local control (return and goto)

local variables (and pointers to those)

mutual recursion

separation logic

soundness proof fully checked by ¥ Coq

5/16

Contribution

A compiler independent small step operational, and axiomatic,

semantics for non-determinism and sequence points, supporting:

>

>

>

expressions with function calls, assignments, conditionals
undefined behavior due to integer overflow

parametrized by integer types

dynamically allocated memory (malloc and free)
non-local control (return and goto)

local variables (and pointers to those)

mutual recursion

separation logic

soundness proof fully checked by ¥ Coq

5/16

Key idea

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e {Q1} {P2} e {Q}
{P1 %Py} e1®ex{Q1 % Q}

6

16

Key idea

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e {Q1} {P2} e {Q}
{P1 %Py} e1®ex{Q1 % Q}

What does this mean:
» Split the memory into two disjoint parts
» Prove that e; and e, can be executed safely in their part

» Now e; ©® ey can be executed safely in the whole memory

6

16

Key idea

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e {Q1} {P2} e {Q}
{P1 %Py} e1®ex{Q1 % Q}

What does this mean:
» Split the memory into two disjoint parts
» Prove that e; and e, can be executed safely in their part

» Now e; ©® ey can be executed safely in the whole memory

Disjointness = no sequence point violation

6

16

Definition of the memory

Given a set of permissions P, we define:

m € mem := index —, (val x P)
b €index : =N
v € val :=indet | int, n | ptr b | NULL

[Integer types: unsigned char, signed int, ...

16

Permission systems

Actual permissions contains:
> Locked flag to catch sequence point violations

» Assignment: lock memory location
» Sequence point: unlock memory locations

» A fraction (0, 1]g to allow sharing

» Block scope variable or allocated with malloc flag

8/16

Permission systems

Actual permissions contains:

> Locked flag to catch sequence point violations

» Assignment: lock memory location
» Sequence point: unlock memory locations

» A fraction (0, 1]g to allow sharing

» Block scope variable or allocated with malloc flag

A permission system P abstracts from these details.
» U\ :P=>P—=P
» L,C :P—= P = Prop
» kind : P — {Free, Write, Read, Locked}
» lock,unlock: P — P

> satisfying certain axioms

8/16

Permission systems

Actual permissions contains:

> Locked flag to catch sequence point violations

» Assignment: lock memory location
» Sequence point: unlock memory locations

» A fraction (0, 1]g to allow sharing

» Block scope variable or allocated with malloc flag

A permission system P abstracts from these details.
» U\ :P=>P—=P
» L,C :P—= P = Prop
» kind : P — {Free, Write, Read, Locked}
» lock,unlock: P — P

> satisfying certain axioms

8/16

Permission systems

Actual permissions contains:

> Locked flag to catch sequence point violations

» Assignment: lock memory location
» Sequence point: unlock memory locations

» A fraction (0, 1]g to allow sharing

» Block scope variable or allocated with malloc flag

A permission system P abstracts from these details.
» U\ :P=>P—=P
» L,C :P—= P = Prop
» kind : P — {Free, Write, Read, Locked}
» lock,unlock: P — P

> satisfying certain axioms

8/16

Permission systems

Actual permissions contains:

> Locked flag to catch sequence point violations
» Assignment: lock memory location
» Sequence point: unlock memory locations

» A fraction (0, 1]g to allow sharing

» Block scope variable or allocated with malloc flag

A permission system P abstracts from these details.
» U\ :P=>P—=P
» L,C :P—= P = Prop
» kind : P — {Free, Write, Read, Locked}
» lock,unlock: P — P

> satisfying certain axioms

We lift these operations to memories index —, (val x P)

8/16

The language

Our language

© €binopi===|<=|+|-|*|/|%]| ...
ecexpri=x;|[vla| el :=e | f(€)]|load e | alloc
| freee|e1@ex|er1?er:e3|()e
s € stmt := e | skip | goto / | return e | block c s | s1; s

| I:s | while(e) s | if (e) s1 else s,

9/16

The language

Our language

© €binopi===|<=|+|-|*|/|%]| ...
ecexpri=x;|[vlo| el :=e | f(€)]|load e | alloc
| freee|e1@ex|er1?er:e3|()e
s € stmt := e | skip | goto / | return e | block c s | s1; s

| I:s | while(e) s | if (e) s1 else s,

Values [v]q carry a set € of indexes (memory locations) to be
unlocked at the next sequence point

9/16

Operational semantics

Head reduction for expressions (e, m)—, (¢/, m’) (9 rules)

10/16

Operational semantics

Head reduction for expressions (e, m)—, (¢/, m’) (9 rules)
» On assignments: locked index b added to €7 U Q>
([ptr blo, == [Vl m)—=h (V] bj 0,00, lock b (mlbi=v]))
» On sequence points: 2 unlocked in memory
([vla ? e : 3, m)— (e2, unlock Q2 m) provided . ..

10/16

Operational semantics

Head reduction for expressions (e, m)—, (¢/, m’) (9 rules)
» On assignments: locked index b added to €7 U Q>
([ptr blo, == [Vl m)—=h (V] bj 0,00, lock b (mlbi=v]))
» On sequence points: 2 unlocked in memory
([vla ? e : 3, m)— (e2, unlock Q2 m) provided . ..

Gives a local treatment of sequence points

10/16

Operational semantics

Head reduction for expressions (e, m)—, (¢/, m’) (9 rules)
» On assignments: locked index b added to €7 U Q>
([ptr blo, == [Vl m)—=h (V] bj 0,00, lock b (mlbi=v]))
» On sequence points: 2 unlocked in memory
([vla ? e : 3, m)— (e2, unlock Q2 m) provided . ..

Gives a local treatment of sequence points

Small step reduction S(k, ¢, m) — S(k’, ¢/, m') (33 rules)
> (k, @) gives the position in the whole program
» Uses evaluation contexts to lift head reduction

» Different ¢s for expressions, statements, function calls

10/16

Assertions of separation logic
Defined using a shallow embedding:

P, @ € assert := stack — mem — Prop

[Maps variables to indexes in memory}

11/16

Assertions of separation logic
Defined using a shallow embedding:

P, @ € assert := stack — mem — Prop

[Maps variables to indexes in memory}

Some assertions:

(P*Q)pm:=3mymy.
m=mUmAm LmAPpm AQpmy

11/16

Assertions of separation logic
Defined using a shallow embedding:

P, @ € assert := stack — mem — Prop

[Maps variables to indexes in memory}

Some assertions:

(P*Q)pm:=3mymy.
m=mUmAm LmAPpm AQpmy
(e1+> &) pm:=3bv.[er]pm=ptrbA
":62]]p,m =VvAm= {(ba(vvv))}

(with e; and e; side-effect free)

11/16

Assertions of separation logic
Defined using a shallow embedding:

P, @ € assert := stack — mem — Prop

[Maps variables to indexes in memory}

Some assertions:
(P*Q)pm:=3mymy.
m=mUmAm LmAPpm AQpmy
(e1+> &) pm:=3bv.[er]pm=ptrbA
[e2]pm =vAm={(b(v,))}
(Pr>)pm:= P p (unlock (locks m)m)

(with e and e; side-effect free)

11/16

The Hoare “triples”

Statement judgment A; J; R+ {P}s{Q
ment 4, 4, R - {P}(Q)

[Function conditions} [Goto/return conditions}

12 /16

The Hoare “triples”

Statement judgw; J‘<?\I— {P}s {Q}\

[Function conditions} [Goto/return conditions} [Q : assert}

Expression judgment A - {P}e {(TQ}

EQ sval — assert}

In the semantics: if P holds beforehand, then
» e does not crash
» Qv holds afterwards when terminating with v

» with framing memories that can change at each step

12 /16

The axiomatic semantics
24 separation logic proof rules, e.g.:
For assignments:

Write C kind y {Pi}er {Qi1} {P}e2{@} Vav.((Qia* Qv) = ((a-)* Rav))

tock =7 V)« Rav}

{P1 % Py} e :=e{Av.3a.(a —

13 /16

The axiomatic semantics
24 separation logic proof rules, e.g.:
For assignments:

Write C kind y {Pi}er {Qi1} {P}e2{@} Vav.((Qia* Qv) = ((a-)* Rav))
{P1* Py} er:=e{Av.3a.(a — ok

v) * Rav}

For dereferencing:

kind v # Locked {P}e{Xa.3v.Qav * (a > v)}
{P}1load e{Av.3a.Qav * (a s v)}

13 /16

The axiomatic semantics
24 separation logic proof rules, e.g.:
For assignments:

Write C kind y {Pi}er {Qi1} {P}e2{@} Vav.((Qia* Qv) = ((a-)* Rav))
{P1* Py} er:=e{Av.3a.(a — ok

v) * Rav}

For dereferencing:

kind v # Locked {P}e{Xa.3v.Qav * (a > v)}
{P}1load e{Av.3a.Qav * (a s v)}

For the conditional:

AF{P}er{\v.v#indet A P'vi>} AF {v.istruev AP v} e {Q}
AF{Ple?e:ea{Q}

13 /16

The axiomatic semantics
24 separation logic proof rules, e.g.:
For assignments:

Write C kind y {Pi}er {Qi1} {P}e2{@} Vav.((Qia* Qv) = ((a-)* Rav))
{P1* Py} er:=e{Av.3a.(a — ok

v) * Rav}

For dereferencing:

kind v # Locked {P}e{Xa.3v.Qav * (a > v)}
{P}1load e{Av.3a.Qav * (a s v)}

For the conditional:

AF{P}er{\v.v#indet A P'vi>} AF {v.istruev AP v} e {Q}
AF{Ple?e:ea{Q}

Common separation logic and more complex rules can be derived

13/16

Formalization in Coq

v

Based on [Krebbers/Wiedijk, FoSSaCS'13]
Extremely useful for debugging

v

v

Notations close to those on paper

v

Various extensions of the separation logic r/

v

Uses lots of automation
10000 lines of code

v

Lemma ax_load A A ye P Q :
perm_kind -y # Locked —
A AE. {P}e{{Na, 3v, Q avx* valc ar{y} valc v }} —
A\ AFe. {{P }}1load e {{ Av, 3 a, Q av *x valc ar—{y} valc v }}.

14 /16

Future research

v

Integration with the C type system [Krebbers, CPP'13]

v

Integration with non-aliasing restrictions [Krebbers, CPP'13]

v

Interpreter in Coq
Verification condition generator in Coq

v

Automation of separation logic

v

15/16

Questions

Sources: http://robbertkrebbers.nl/research/ch2o0/

16 /16

http://robbertkrebbers.nl/research/ch2o/

