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What is this program supposed to do?

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d %d\n", x, y);

}

Let us try some compilers

I Clang prints 4 7, seems just left-right

I GCC prints 4 8, does not correspond to any evaluation order

This program violates the sequence point restriction

I due to two unsequenced writes to x

I resulting in undefined behavior

I thus both compilers are right
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Undefined behavior in C

“Garbage in, garbage out” principle

I Programs with undefined behavior are not statically excluded

I Undefined behavior ⇒ all bets are off

I Allows compilers to omit (expensive) dynamic checks

A compiler independent C semantics should account for undefined
behavior
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Examples

I Side-effects are useful in a while, for, return, . . .

while ((x = getchar()) != EOF)

/* do something */

I Non-determinism is subtle in innocent looking examples:

*p = g (x, y, z);

Here, g may change p, so the evaluation order matters

I Interleaving of subexpressions is possible, for example

printf("a") + (printf("b") + printf("c"));

may print “bac”
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Contribution

A compiler independent small step operational, and axiomatic,
semantics for non-determinism and sequence points, supporting:

I expressions with function calls, assignments, conditionals

I undefined behavior due to integer overflow

I parametrized by integer types

I dynamically allocated memory (malloc and free)

I non-local control (return and goto)

I local variables (and pointers to those)

I mutual recursion

I separation logic

I soundness proof fully checked by Coq
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Key idea

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 } e2 {Q1 ∗ Q2}

What does this mean:

I Split the memory into two disjoint parts

I Prove that e1 and e2 can be executed safely in their part

I Now e1 } e2 can be executed safely in the whole memory

Disjointness ⇒ no sequence point violation
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Definition of the memory

Given a set of permissions P, we define:

m ∈ mem := index→fin (val× P)

b ∈ index := N
v ∈ val ::= indet | intτ n | ptr b | NULL

Integer types: unsigned char, signed int, . . .
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Permission systems

Actual permissions contains:
I Locked flag to catch sequence point violations

I Assignment: lock memory location
I Sequence point: unlock memory locations

I A fraction (0, 1]Q to allow sharing

I Block scope variable or allocated with malloc flag

A permission system P abstracts from these details.

I ∪, \ : P → P → P

I ⊥,⊆ : P → P → Prop

I kind : P → {Free,Write,Read, Locked}
I lock, unlock : P → P

I satisfying certain axioms

We lift these operations to memories index→fin (val× P)
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The language

Our language

} ∈ binop ::= == | <= | + | - | * | / | % | . . .
e ∈ expr ::= xi | [v ]Ω | e1 := e2 | f (~e) | load e | alloc

| free e | e1 } e2 | e1 ? e2 : e3 | (τ) e

s ∈ stmt ::= e | skip | goto l | return e | block c s | s1 ; s2

| l : s | while(e) s | if (e) s1 else s2

Values [v ]Ω carry a set Ω of indexes (memory locations) to be
unlocked at the next sequence point
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Operational semantics

Head reduction for expressions (e,m)_h (e ′,m′) (9 rules)

I On assignments: locked index b added to Ω1 ∪ Ω2

([ptr b]Ω1 :=[v ]Ω2 ,m)_h ([v ]{b}∪Ω1∪Ω2
, lock b (m[b :=v ]))

I On sequence points: Ω unlocked in memory
([v ]Ω ? e2 : e3,m)_h (e2, unlock Ω m) provided . . .

Gives a local treatment of sequence points

Small step reduction S(k , φ, m) _ S(k ′, φ′, m′) (33 rules)

I (k , φ) gives the position in the whole program

I Uses evaluation contexts to lift head reduction

I Different φs for expressions, statements, function calls
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Assertions of separation logic

Defined using a shallow embedding:

P,Q ∈ assert := stack→ mem→ Prop

Maps variables to indexes in memory

Some assertions:

(P ∗ Q) ρm := ∃m1 m2 .

m = m1 ∪ m2 ∧m1 ⊥ m2 ∧ P ρm1 ∧ Q ρm2

(e1
γ7→ e2) ρm := ∃b v . [[ e1 ]]ρ,m = ptr b ∧

[[ e2 ]]ρ,m = v ∧m = {(b, (v , γ))}

(P B) ρm := P ρ (unlock (locks m)m)

(with e1 and e2 side-effect free)
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The Hoare “triples”

Statement judgment ∆; J; R ` {P} s {Q}

Function conditions Goto/return conditions

Expression judgment ∆ ` {P} e {Q}

Q : val→ assert

In the semantics: if P holds beforehand, then

I e does not crash

I Q v holds afterwards when terminating with v

I with framing memories that can change at each step
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The axiomatic semantics

24 separation logic proof rules, e.g.:

For assignments:

Write ⊆ kind γ {P1} e1 {Q1} {P2} e2 {Q2} ∀av . ((Q1 a ∗ Q2 v)→ ((a
γ7→ –) ∗ R a v))

{P1 ∗ P2} e1 := e2 {λv . ∃a . (a
lock γ7→ v) ∗ R a v}

For dereferencing:

kind γ 6= Locked {P} e {λa . ∃v .Q a v ∗ (a
γ7→ v)}

{P} load e {λv . ∃a .Q a v ∗ (a
γ7→ v)}

For the conditional:

∆ ` {P} e1 {λv . v 6= indet ∧ P′v B} ∆ ` {∃v . istrue v ∧ P′ v} e2 {Q} . . .

∆ ` {P} e1 ? e2 : e3 {Q}

Common separation logic and more complex rules can be derived
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Formalization in Coq

I Based on [Krebbers/Wiedijk, FoSSaCS’13]

I Extremely useful for debugging

I Notations close to those on paper

I Various extensions of the separation logic

I Uses lots of automation

I 10 000 lines of code

Lemma ax_load ∆ A γ e P Q :

perm_kind γ 6= Locked→
∆\ A �e {{ P }} e {{ λ a, ∃ v, Q a v ∗ valc a 7→{γ} valc v }}→
∆\ A �e {{ P }} load e {{ λ v, ∃ a, Q a v ∗ valc a 7→{γ} valc v }}.
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Future research

I Integration with the C type system [Krebbers, CPP’13]

I Integration with non-aliasing restrictions [Krebbers, CPP’13]

I Interpreter in Coq

I Verification condition generator in Coq

I Automation of separation logic
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Questions

Sources: http://robbertkrebbers.nl/research/ch2o/
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