
Computer certified efficient exact reals in Coq

Robbert Krebbers
Joint work with Bas Spitters1

Radboud University Nijmegen

July 22, 2011 @ CICM, Bertinoro, Italy

1The research leading to these results has received funding from the
European Union’s 7th Framework Programme under grant agreement nr.
243847 (ForMath).

Why do we need certified exact real arithmetic?

I There is a big gap between:
I Numerical algorithms in research papers.
I Actual implementations (Mathematica, MATLAB, . . .).

I This gap makes the code difficult to maintain.

I Makes it difficult to trust the code of these implementations!
I Undesirable in proofs that rely on the execution of this code.

I Kepler conjecture.
I Existence of the Lorentz attractor.

Why do we need certified exact real arithmetic?

(http://xkcd.com/217/)

http://xkcd.com/217/

Bishop’s proposal

Use constructive analysis to bridge this gap.

Moreover, one can further narrow the gap by using:

I Exact real numbers instead of floating point numbers.

I Functional programming instead of imperative programming.

I Dependent type theory.

I A proof assistant to verify the correctness proofs.

I Constructive mathematics to tightly connect mathematics
with computations.

This talk

Improve performance of real number computation in Coq.

Coq:

I Proof assistant based on the calculus of inductive
constructions.

I Both a pure functional programming language, and,

I a language for mathematical statements and proofs.

Real numbers:

I Cannot be represented exactly in a computer.

I Approximation by rational numbers.

I Or any set that is dense in the rationals (e.g. the dyadics).

Starting point: O’Connor’s implementation in Coq

I Based on metric spaces and the completion monad.

R := CQ := {f : Q+ → Q | f is regular}

I To define a function R→ R: define a uniformly continuous
function f : Q→ R, and obtain f̌ : R→ R.

I Efficient combination of proving and programming.

O’Connor’s implementation in Coq

Problem:

I A concrete representation of the rationals (Coq’s Q) is used.

I Cannot swap implementations, e.g. use machine integers.

Solution:
Build theory and programs on top of abstract interfaces instead of
concrete implementations.

I Cleaner.

I Mathematically sound.

I Can swap implementations.

Our contribution

An abstract specification of the dense set.

I For which we provide an implementation using the dyadics:

n ∗ 2e for n, e ∈ Z

I Using Coq’s machine integers.

I Extend the algebraic hierarchy based on type classes by
Spitters and van der Weegen to achieve this.

Some other performance improvements.

I Implement range reductions.
I Improve computation of power series:

I Keep auxiliary results small.
I Avoid evaluation of termination proofs.

Interfaces for mathematical structures

I Algebraic hierarchy (groups, rings, fields, . . .)

I Relations, orders, . . .

I Categories, functors, universal algebra, . . .

I Numbers: N, Z, Q, R, . . .

Need solid representations of these, providing:

I Structure inference.

I Multiple inheritance/sharing.

I Convenient algebraic manipulation (e.g. rewriting).

I Idiomatic use of names and notations.

Spitters and van der Weegen: use type classes!

Type classes

I Useful for organizing interfaces of abstract structures.

I Akin to AXIOM’s so-called categories.

I Great success in Haskell and Isabelle.

I Recently added to Coq.

I Based on already existing features (records, proof search,
implicit arguments).

Spitters and van der Weegen’s approach

Define operational type classes for operations and relations.

Class Equiv A := equiv: relation A.
Infix ”=” := equiv: type scope.
Class RingPlus A := ring plus: A → A → A.
Infix ”+” := ring plus.

Represent typical properties as predicate type classes.

Class LeftAbsorb ‘{Equiv A} {B} (op : A → B → A) (x : A) : Prop :=
left absorb: ∀ y, op x y = x.

Represent algebraic structures as predicate type classes.

Class SemiRing A {e plus mult zero one} : Prop := {
semiring mult monoid :> @CommutativeMonoid A e mult one ;
semiring plus monoid :> @CommutativeMonoid A e plus zero ;
semiring distr :> Distribute (.∗.) (+) ;
semiring left absorb :> LeftAbsorb (.∗.) 0 }.

Examples

(* z & x = z & y → x = y *)

Instance group cancel ‘{Group G} : ∀ z, LeftCancellation (&) z.
Proof. . . . Qed.

Lemma preserves inv ‘{Group A} ‘{Group B}
‘{!Monoid Morphism (f : A → B)} x : f (−x) = −f x.

Proof.
apply (left cancellation (&) (f x)). (* f x & f (-x) = f x - f x *)

rewrite ← preserves sg op. (* f (x - x) = f x - f x *)

rewrite 2!right inverse. (* f unit = unit *)

apply preserves mon unit.
Qed.

Lemma cancel ring test ‘{Ring R} x y z : x + y = z + x → y = z.
Proof.
intros. (* y = z *)

apply (left cancellation (+) x). (* x + y = x + z *)

now rewrite (commutativity x z).
Qed.

Spitters and van der Weegen

I A standard algebraic hierarchy.

I Some category theory.

I Some universal algebra.
I Interfaces for number structures.

I Naturals: initial semiring.
I Integers: initial ring.
I Rationals: field of fractions of Z.

Some extensions of Spitters and van der Weegen

I Interfaces and theory for operations (nat pow, shiftl, . . .).

I Library on constructive order theory (ordered rings, etc. . .)

I Support for undecidable structures.

I Explicit casts.

I More implementations of abstract interfaces.

Approximate rationals

Class AppDiv AQ := app div : AQ → AQ → Z → AQ.
Class AppApprox AQ := app approx : AQ → Z → AQ.

Class AppRationals AQ {e plus mult zero one inv} ‘{!Order AQ}
{AQtoQ : Coerce AQ Q as MetricSpace} ‘{!AppInverse AQtoQ}
{ZtoAQ : Coerce Z AQ} ‘{!AppDiv AQ} ‘{!AppApprox AQ}
‘{!Abs AQ} ‘{!Pow AQ N} ‘{!ShiftL AQ Z}
‘{∀ x y : AQ, Decision (x = y)} ‘{∀ x y : AQ, Decision (x ≤ y)} : Prop := {
aq ring :> @Ring AQ e plus mult zero one inv ;
aq order embed :> OrderEmbedding AQtoQ ;
aq ring morphism :> SemiRing Morphism AQtoQ ;
aq dense embedding :> DenseEmbedding AQtoQ ;
aq div : ∀ x y k, B2k (’app div x y k) (’x / ’y) ;
aq approx : ∀ x k, B2k (’app approx x k) (’x) ;
aq shift :> ShiftLSpec AQ Z (�) ;
aq nat pow :> NatPowSpec AQ N (ˆ) ;
aq ints mor :> SemiRing Morphism ZtoAQ }.

Approximate rationals
Compress

Class AppDiv AQ := app div : AQ → AQ → Z → AQ.
Class AppApprox AQ := app approx : AQ → Z → AQ.
Class AppRationals AQ . . . : Prop := {
. . .

aq div : ∀ x y k, B2k (’app div x y k) (’x / ’y) ;
aq approx : ∀ x k, B2k (’app approx x k) (’x) ;
. . . }

I app approx is used to to keep the size of the numbers “small”.

I Define compress := bind (λ ε, app approx x (Qdlog2 ε)) such that
compress x = x.

I Greatly improves the performance [O’Connor].

Power series

I Well suited for computation if:
I its coefficients are alternating,
I decreasing,
I and have limit 0.

I For example, for −1 ≤ x ≤ 0:

exp x =
∞∑
i=0

x i

i !

I To approximate exp x with error ε we find a k such that:

xk

k!
≤ ε

Power series

Problem: we do not have exact division.

I Parametrize InfiniteAlternatingSum with streams n and d
representing the numerators and denominators to postpone
divisions.

I Need to find both the length and precision of division.

n1
d1︸︷︷︸

ε
2k
error

+
n2
d2︸︷︷︸

ε
2k
error

+ . . .+
nk
dk︸︷︷︸

ε
2k
error

such that
nk
dk
≤ ε/2

I Thus, to approximate exp x with error ε we need a k such that:

B ε
2

(app div nk dk (log
ε

2k
) +

ε

2k
) 0.

Power series

I Computing the length can be optimized using shifts.

I Our approach only requires to compute few extra terms.

I Approximate division keeps the auxiliary numbers “small”.

I We applied a trick to avoid evaluation of termination proofs.

Extending the exponential to its complete domain

I We extend the exponential to its complete domain by
repeatedly applying:

exp x = (exp (x � 1))2

I Performance improves significantly by reducing the input to a
value between −2k ≤ x ≤ 0 for 50 ≤ k .

What have we implemented so far?

Verified versions of:

I Basic field operations (+, ∗, -, /)

I Exponentiation by a natural.

I Computation of power series.

I exp, arctan, sin and cos.

I π := 176∗arctan 1
57+28∗arctan 1

239−48∗arctan 1
682+96∗arctan 1

12943 .

I Square root using Wolfram iteration.

Benchmarks

I Our Haskell prototype is ∼15 times faster.

I Our Coq implementation is ∼100 times faster.
I For example:

I 500 decimals of exp (π ∗
√

163) and sin (exp 1),
I 2000 decimals of exp 1000,

within 10 seconds in Coq!

I (Previously about 10 decimals)

I Type classes only yield a 3% performance loss.

I Coq is still too slow compared to unoptimized Haskell
(factor 30 for Wolfram iteration).

Further work

I Newton iteration to compute the square root.

I Geometric series (e.g. to compute ln).

I native compute: evaluation by compilation to Ocaml.

I Flocq: more fine grained floating point algorithms.

I Type classified theory on metric spaces.

Conclusions

I Greatly improved the performance of the reals.

I Abstract interfaces allow to swap implementations and share
theory and proofs.

I Type classes yield no apparent performance penalty.

I Nice notations with unicode symbols.

Issues:

I Type classes are quite fragile.

I Instance resolution is too slow.

I Need to adapt definitions to avoid evaluation in Prop.

Sources

http://robbertkrebbers.nl/research/reals/

http://robbertkrebbers.nl/research/reals/

