
A Formalization of the C99 Standard
in HOL, Isabelle and Coq

Robbert Krebbers
Joint work with Freek Wiedijk

Radboud University Nijmegen

July 19, 2011 @ CICM, Bertinoro, Italy

The C programming language

Among the two currently most used languages:

I LangPop.com - Programming Language Popularity

I TIOBE Software - Programming Community index

Used for the smallest microcontroller to the largest supercomputer.

The C99 standard

The official description issued by ANSI and ISO:

I Written in English

I No mathematically precise formalism

I Incomplete and ambiguous

Example

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

3030

&x

31

&y

Example

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

3030

&x

31

&y&x+1

Example

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

3030 31

qp

Example

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

3030 31

qp

Example

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

3030 31

qp

Example

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

Defect report #260:

The implementation is permitted to use the derivation of
a pointer value in determining whether or not access
through that pointer is undefined behaviour, . . .

The Formalin project

I May 2011 to May 2015

I Create a formalization of the
complete C99 standard

I In the theorem provers HOL4,
Isabelle/HOL and Coq

I Which follow the standard closely

I All derived from a common master
formalization (e.g. in Ott)

C99

COQ

Isabelle/

HOLHOL4

Features

I C preprocessor

I C standard library

I Floating point arithmetic

I Casts

I Non-determinism

I Sequence points

I Alignment requirements

I Non-local control flow (goto, setjmp/longjmp, signal
handling)

I volatile, restrict and const variables

I Programs in a ‘freestanding environment’

Purposes

I Utterly precise version of the standard

I Validate correctness of formal versions of subsets of C
(e.g. Compcert)

I Verify correctness of verification conditions generated by tools
(e.g. VCC or Frama-C)

Research team

Robbert Krebbers

PhD student
RU, The

Netherlands

Freek Wiedijk

Project leader
RU, The

Netherlands

Herman Geuvers

Promotor
RU, The

Netherlands

James McKinna

Advisor
RU, The

Netherlands

Erik Poll

Advisor
RU, The

Netherlands

Michael Norrish

HOL advisor
NICTA, Australia

Andreas Lochbihler

Isabelle advisor
KIT, Germany

Jean-Christophe
Filliâtre

Coq advisor
CNRS, France

Related projects

I Michael Norrish. C and C++ semantics (L4.verified)

I Xavier Leroy et al. Verified C compiler in Coq (Compcert)

I Chucky Ellison and Grigore Rosu. Executable C semantics in
Maude (KCC)

More information

http://ch2o.cs.ru.nl/

http://ch2o.cs.ru.nl/

