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The C programming language

Among the two currently most used languages:

I LangPop.com - Programming Language Popularity

I TIOBE Software - Programming Community index

Used for the smallest microcontroller to the largest supercomputer.



The C99 standard

The official description issued by ANSI and ISO:

I Written in English

I No mathematically precise formalism

I Incomplete and ambiguous



Example

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}
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Defect report #260:

The implementation is permitted to use the derivation of
a pointer value in determining whether or not access
through that pointer is undefined behaviour, . . .



The Formalin project

I May 2011 to May 2015

I Create a formalization of the
complete C99 standard

I In the theorem provers HOL4,
Isabelle/HOL and Coq

I Which follow the standard closely

I All derived from a common master
formalization (e.g. in Ott)
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Features

I C preprocessor

I C standard library

I Floating point arithmetic

I Casts

I Non-determinism

I Sequence points

I Alignment requirements

I Non-local control flow (goto, setjmp/longjmp, signal
handling)

I volatile, restrict and const variables

I Programs in a ‘freestanding environment’



Purposes

I Utterly precise version of the standard

I Validate correctness of formal versions of subsets of C
(e.g. Compcert)

I Verify correctness of verification conditions generated by tools
(e.g. VCC or Frama-C)
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Related projects

I Michael Norrish. C and C++ semantics (L4.verified)

I Xavier Leroy et al. Verified C compiler in Coq (Compcert)

I Chucky Ellison and Grigore Rosu. Executable C semantics in
Maude (KCC)



More information

http://ch2o.cs.ru.nl/
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