Formalization of C:
What we have learned and beyond

Robbert Krebbers

Radboud University, The Netherlands

Now at: Aarhus University, Denmark

December 2, 2015

What is this program supposed to do?

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("x=%d,y=kd\n", x, y);
}

What is this program supposed to do?

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("x=%d,y=kd\n", x, y);
}

Let us try some compilers

» Clang prints x=4,y=7, seems just left-right

What is this program supposed to do?

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("x=%d,y=kd\n", x, y);
}

Let us try some compilers
» Clang prints x=4,y=7, seems just left-right

» GCC prints x=4,y=8, does not correspond to any order

What is this program supposed to do?

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("x=%d,y=kd\n", x, y);
}

Let us try some compilers
» Clang prints x=4,y=7, seems just left-right

» GCC prints x=4,y=8, does not correspond to any order

This program violates the sequence point restriction
» due to two unsequenced writes to x
» resulting in undefined behavior

> thus both compilers are right

Underspecification in C11

» Unspecified behavior: two or more behaviors are allowed
For example: order of evaluation in expressions (+57 more)

» Implementation defined behavior: like unspecified
behavior, but the compiler has to document its choice
For example: size and endianness of integers (+118 more)

» Undefined behavior: the standard imposes no requirements
at all, the program is even allowed to crash
For example: dereferencing a NULL or dangling pointer, signed
integer overflow, . .. (+201 more)

Underspecification in C11

» Unspecified behavior: two or more behaviors are allowed
For example: order of evaluation in expressions (+57 more)
Non-determinism

» Implementation defined behavior: like unspecified
behavior, but the compiler has to document its choice
For example: size and endianness of integers (+118 more)
Parametrization

» Undefined behavior: the standard imposes no requirements
at all, the program is even allowed to crash
For example: dereferencing a NULL or dangling pointer, signed
integer overflow, . .. (+201 more)
No semantics/crash state

Why does C use underspecification that heavily?

Pros for optimizing compilers:
» More optimizations are possible
» High run-time efficiency

» Easy to support multiple architectures

Why does C use underspecification that heavily?

Pros for optimizing compilers:
» More optimizations are possible
» High run-time efficiency

» Easy to support multiple architectures

Cons for programmers/formal methods people:
» Portability and maintenance problems
» Hard to capture precisely in a semantics

» Hard to formally reason about

The CH,O project

OCaml part Coq part

C sources

CH,0
abstract C

CH50 core C

The CH,O project

OCaml part Coq part

C sources

sEsEsmEmEEEEm,

Operational
semantics
.

6k S — S
.

CH,0

abstract C CH20 core C

enmEEEEE

The CH,O project

“ OCaml part

C sources

CH,0
abstract C

Coq part
-
REFEEELETEEEER
H Typing H
H judgment .
PTE S foain k
.

-

CH50 core C

Type preservation
Type soundness & progress
EEILLLLLLL R

.
+ Operational .
. semantics .
L6 F S — Syt

tasnnssnnnnnns’

The CH,O project

“ OCaml part Coq part
(N
RILTETTTTTTITN
H Typing .
H judgment .
T E S i o
KT Y
Type preservation
C sources Type soundnesz\mogress
R
+ Operational .
CH20 CH,0 core C H semantics .
abstract C . =
65 — S50t
ererespaanaast
Soundness &
Completeness
KITTETY CETTETN
1 Executable
* semantics .
2S) € execr 5 S *
T -
- J

The CH,O proje

«# OCaml part

ct

Coq part

Vs

masmnnmy

C sources

CH,0
abstract C

-

samsmmEmEEEmEE,
Typing E
judgment .
I+ S : fpain §
.

CH50 core C

Soundness &
Completeness

essmmmmmmmEE

.
Pure expression
evaluation H
.

lelr pm = v s
.

“ssssssmanmnsn

Type preservation
Type soundness & progress

o
+ Operational
. .
. semantics .
.
L6 F S — Syt
.
tgrnasnpnnnnns’

Soundness &
Completeness

Executable

EEEETN

semantics .
H

LTS

2 S € execr 5 S1%

tannnnnnnnnnns?

The CH,O proje

«# OCaml part

ct

Coq part

C sources

CH,0
abstract C

.
I
H Typing H
H judgment .
ST F S faain *
ees .

CH50 core C

Soundness &
Completeness

esmsEmEmmEns
Pure expression

evaluation
[e]r,p‘m =

“ssssssmanmnsn

R
ammnnnns

Type preservation
Type soundness & progress

Operational
semantics

% Soundness

eEEEEEES

Soundness &
Completeness

Executable

EEEETN

semantics .
H

0
.
.
.
.

2 S € execr 5 S1%

tannnnnnnnnnns?

+ Axiom

. semantics

" R U, T Frs
H .

- s

LR T Pt

sEsEsmEmEEEEE,

“nmmmmnn

The CH,O project

«# OCaml part

Coq part

-
REFEEELETEEEER
H Typing .
H judgment .
PTE S foain k
.

-

C sources

CH,0

abstract C CH20 core C

Soundness &
Completeness

esmsEmEmmEns
Pure expression

evaluation
[e]r,p‘m =

“ssssssmanmnsn

essmnmnw
R

ammnnnns

Type preservation
Type soundness & progress
EEELLLLLLE N

cassmmEmEEEEE,
Refinement &
judgment .
151 Cf S5 ¢ faaint

tesnnnnnnnnnns’

IXEEEYS

Invariance

T CILLITLLL
. . : Axiom. .
= Operational = H . .
. . = Soundness a semantics .
M semantics T .
. A
H = RJ,T kFrs :

D .
°. " .

Soundness &
Completeness

sasmssdEEnEEm,

Executable

semantics .
H

LTS

2S) € execr 5 S *

tannnnnnnnnnns?

Part 1

Our experience with standardization

Does this have to print the same value?

int a[1];
/* intentionally uninitialized */

printf ("%d\n", al0]);
printf ("%d\n", al[0]);

Does this have to print the same value?

unsigned char a[1];
/* intentionally uninitialized */

printf ("%d\n", al0]);
printf ("%d\n", al[0]);

Does this have to print the same value?

unsigned char a[1];
/* intentionally uninitialized */

printf ("%d\n", al0]);
printf ("%d\n", al[0]);

For types without trap values (e.g. unsigned char or int32_t):

indeterminate value = unspecified value

What can we do with these values?

Defect Report # 260

Question (2001-09-07):

If an object holds an indeterminate value, can that value
change other than by an explicit action of the program?

Defect Report # 260

Question (2001-09-07):

If an object holds an indeterminate value, can that value
change other than by an explicit action of the program?

Answer (2003-03-06):

An object with indeterminate value has a bit pattern
representation which remains constant during its lifetime.

Answer (2004-09-28):

In the case of an indeterminate value [...] the actual bit-
pattern may change without direct action of the program.

Status of Defect Report # 260

v

Decided no change to the standard text was needed
Defect report about C99

v

v

Defect report superseded by C11
All relevant text in C11 identical to the same text in C99

v

Why do we care about indeterminate values?

struct S { short x; short *r; } s1 = { 10, &sl1.x };
unsigned char *p = (unsigned char*)&si;

X padding r

01010000 00000000 F555555F F555555% ®eccccece XYY TY XYY ®cccccee ecccccee

N A N

P p+1 p+t2

Why do we care about indeterminate values?

struct S { short x; short *r; } s1 = { 10, &sl1.x };
unsigned char *p = (unsigned char*)&si;

X padding r
01010000 00000000 | ££75555% §555555F | eoeececee | e0eccece | s0ceccee | soccccee
~ A~ N~
P p+1 p+t2

Byte-wise copy:

struct S s2;
for (size_t i1 = 0; i < sizeof(struct S); i++)
((unsigned char*)&s2)[i] = ((unsigned char*)&s1)[i];

Defect Report # 451 [Krebbers & Wiedijk 2013]

Question (2013-08-30):

Can an uninitialized variable with automatic storage
duration [...| change its value without direct action of
the program?

Answer (2014-04-07):

an uninitialized value under the conditions described can
appear to change its value.

This viewpoint reaffirms the C99 DR260 position.

The committee agrees that this area would benefit from
a new definition of something akin to a “wobbly” value
and that this should be considered in any subsequent
revision of this standard.

Resolution in CH,O

Special indeterminate “wobbly” bit:

Inductive bit :=
| BIndet : bit
| BBit : bool — bit
| BPtr : ptr_bit — bit.

> Indeterminate bits can be copied as unsigned char

» Operations on values with indeterminate bits (cast, addition,
if-then-else, ...) give undefined behavior

Resolution in CH,O

Special indeterminate “wobbly” bit:
Inductive bit :=

| BIndet : bit

| BBit : bool — bit

| BPtr : ptr_bit — Dbit.

> Indeterminate bits can be copied as unsigned char

» Operations on values with indeterminate bits (cast, addition,
if-then-else, ...) give undefined behavior

Possibly too much undefined behavior, but that is sound for
program verification

Part 2
Separation logic for C

Non-determinism and sequence points

int x = 0, y = 0, *p = &x;
int £O { p = &y; return 17; }
int main() {

*p = £O;

printf ("x=%d,y=%d\n", x, y);
}

Non-determinism and sequence points

int x = 0, y = 0, *p = &x;
int £(0) { p = &y; return 17; }
int main() {

xp = £O;

printf ("x=Jd,y=%4d\n", x, y);
}

Let us try some compilers
» Clang prints x=0,y=17
» GCC prints x=17,y=0

Non-determinism appears even in innocently looking code

Brief introduction to separation logic [Reynolds et al.]

Hoare triple {P} s {Q}: if P holds beforehand, then:

» s does not crash

> @ holds afterwards when terminating with v

Brief introduction to separation logic [Reynolds et al.]

Hoare triple {P} s {Q}: if P holds beforehand, then:
» s does not crash

> @ holds afterwards when terminating with v

Separating conjunction P x Q: subdivide the memory into
disjoint parts P and Q

Points-to predicate a — v: the memory consists of only a value
v at address a

Example: {x — 0 xy+— 0}x:=10; y:=12{x — 10 xy — 12}

Brief introduction to separation logic [Reynolds et al.]

Hoare triple {P} s {Q}: if P holds beforehand, then:

» s does not crash

> @ holds afterwards when terminating with v
Separating conjunction P x Q: subdivide the memory into
disjoint parts P and Q

Points-to predicate a — v: the memory consists of only a value
v at address a

Example: {x — 0%y — 0} x:=10; y:=12{x+— 10 %y — 12}
Frame rule: for local reasoning

{Pys{Q}
{Px R}s{Q * R}

Separation logic for C expressions

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} er {Q1} {P2} &2 {Q2}
{P1* P} er ® e {Q1 * Q}

Separation logic for C expressions

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} er {Q1} {P2} &2 {Q2}
{P1* P} er ® e {Q1 * Q}

What does this mean:
» Split the memory into two disjoint parts
> Prove that e; and e can be executed safely in their part

» Now e; ® e» can be executed safely in the whole memory

Separation logic for C expressions

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} er {Q1} {P2} &2 {Q2}
{P1* P} er ® e {Q1 * Q}

What does this mean:
» Split the memory into two disjoint parts

> Prove that e; and e can be executed safely in their part

» Now e; ® e» can be executed safely in the whole memory

Disjointness = no sequence point violation (accessing the same
location twice in one expression)

Hoare “triples”

Statement judgmtny Fw’gs {Q}

EGoto/return/switch conditions} EType environments

Hoare “triples”

Statement judgmtny Fw’gs {Q}

EGoto/return/switch conditions} EType environments

Expression judgment: s {P}e{Q}

Hoare “triples”

Statement judgmtny Fw’gs {Q}\

EGoto/return/switch conditions} EType environments} [Q : assert]

Expression judgment: r; {P}e {?}

EQ sval — assert]

If P holds beforehand, then
» e does not crash

» Q@ v holds afterwards when terminating with v

Some actual rules

Binary operators:

Fro {Pi} e {@} Frs {P2} e {Q2}
Vvivy. (Ql vi % Qo v ’:r75 v’ (V1 © Vz) [} VA Q! V/)

|—r7§ {Pl * P2} e1 @ e {Q’}

Some actual rules
Binary operators:
Fro {Pi}e {@1} Frs {P2} e { @2}

Vvivy. (Ql vi % Qo v ’:r75 v’ (V1 © Vz) [} VA Q! V/)
Frs {P1* P}er©® e {Q'}

Simple assignments:

Frs {Pi} e {Qi} Fr.s {P2} e {Q:2} Writable C kind
Vpv. (le* QviErs IV . (T)viv A
(P =) (P55 [V o 7) = Q')

Frs {P1* Pa}er = e{Q'}

Some actual rules
Binary operators:
Fro {Pi}e {@1} Frs {P2} e { @2}

Vvivy. (Ql vi % Qo v ’:r75 v’ (V1 © Vz) [} VA Q! V/)
Frs {P1* P}er©® e {Q'}

Simple assignments:

Frs {Pi} e {Qi} Fr.s {P2} e {Q:2} Writable C kind
Vpv. (le* QviErs IV . (T)viv A
(P =) (P55 [V o 7) = Q')

Frs {P1* Pa}er = e{Q'}

Comma:

|—r75 {P} €1 {)\, Pl 0} l—r75 {Pl} €2 {Q}
Frs {P} (e, &) {Q}

Part 3

Conclusions & Future work

Conclusion

Formal methods can be applied to real programming languages

> Large part of the C11 standard formalized in Coq

v

Many oddities in the C11 standard text discovered

Metatheory is important to establish sanity of specification

v

Executable semantics important to test specification

v

v

Extensions of separation logic developed

More features

» Formalized parser and preprocessor
> Floating point arithmetic

> Bitfields

» Untyped malloc

» Variadic functions

> Register storage class

» Type qualifiers

» External functions and 1/0

Symbolic execution for separation logic for expressions

Expression judgment: At {P}e{Q}

Invariant

Symbolic execution:
» Use static analysis to determine which objects are written to

» Put read-only objects in invariant:

Ar x Ay brs {Pe{Q}
Arbrs {A2 x PYe{A x Q}

> Invariant can be freely shared, but must be maintained by
each atomic expression

Concurrency

» Concurrency primitives: locks, message passing, ...
» Rule out any racy concurrency

» Well-understood and easy to reason about [Hobor, Appel, ...

» Sequentially consistent concurrency
» Thread-pool semantics
» Difficult to reason about
» Works well in separation logic [O'Hearn, Svendsen,
Dinsdale-Young, Birkedal, Parkinson, Dreyer, Turon, ...]
» Not sound with respect to C11 concurrency
» Weak memory concurrency

» Still open problems w.r.t. semantics [Sewell, Batty, .. .]
» Very challenging in separation logic [Vafeiadis, .. .]

Questions

Robbert Krebbers

PhD thesis & Coq sources:
http://robbertkrebbers.nl/thesis.html

http://robbertkrebbers.nl/thesis.html

