
Formalizing the C99 standard

Robbert Krebbers
Joint work with Freek Wiedijk

Radboud University Nijmegen

November 15, 2011 @ ICT.OPEN, Veldhoven

The C programming language

Among the two currently most used languages:

▸ LangPop.com - Programming Language Popularity

▸ TIOBE Software - Programming Community index

Used for the smallest microcontroller to the largest supercomputer.

C programs can be very dangerous!

It is very easy to have programs that contain bugs

▸ NULL-pointers can be dereferenced

▸ arrays can be accessed outside their bounds

▸ memory can be used after it is freed

▸ . . . or can be forgotten to be freed

A major cause of security vulnerabilities, viruses, crashes. . .

C programs can be very dangerous!

It is very easy to have programs that contain bugs

▸ NULL-pointers can be dereferenced

▸ arrays can be accessed outside their bounds

▸ memory can be used after it is freed

▸ . . . or can be forgotten to be freed

A major cause of security vulnerabilities, viruses, crashes. . .

How to improve this situation? (1)

Use a more modern language, e.g. Haskell

Advantages:

▸ high level of abstraction

▸ strong type system

▸ easy to reason about such programs

Disadvantages:

▸ efficiency

▸ programs have to be rewritten

▸ small body of programmers

How to improve this situation? (2)

Use C together with tools, e.g. static analyzers or model checkers

Advantages:

▸ all the advantages of using C

▸ original programs can be used

Disadvantages:

▸ such tools rely on an ad-hoc C semantics

▸ neither sound nor complete

▸ behavior is unpredictable

How to improve this situation? (3)

Use C together with formal proofs

Advantages:

▸ all the advantages of using C

▸ original programs can be used

▸ highest level of confidence

▸ verification is fully transparent and coherent

Disadvantages:

▸ can be very costly

▸ the C standard is not suitable for a proof assistant

C together with formal proofs

The C99 standard is not in a shape that is usable in a proof
assistant

▸ written in English

▸ no mathematically precise formalism

▸ inherently incomplete and ambiguous

Related projects

▸ Michael Norrish
C and C++ semantics (L4.verified)

▸ Xavier Leroy et al.
Verified C compiler in Coq (Compcert)

▸ Chucky Ellison and Grigore Rosu
Executable C semantics in Maude (KCC)

▸ Peter Sewell et al.
Relaxed-Memory concurrency for C/C++

The Formalin project

▸ Formalize the full C99 standard in
Coq, Isabelle and HOL4.

▸ Include features that are commonly
left out:

▸ aliasing rules,
▸ alignment,
▸ volatile, const, restrict,
▸ non local control flow,
▸ etc. . .

C99

COQ

Isabelle/

HOLHOL4

Example: continuously allocated objects

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

30 31

&x &y

Example: continuously allocated objects

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

30 31

&x &y&x + 1

Example: continuously allocated objects

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

30 31

qp

Example: continuously allocated objects

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

30 31

p q

Example: continuously allocated objects

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

30 31

p q

Example: continuously allocated objects

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

printf("%d\n", *p);

}

Defect report #260:

The implementation is permitted to use the derivation of
a pointer value in determining whether or not access
through that pointer is undefined behaviour, . . .

Why not just ignore defect report #260?

Defect report #260

▸ allows many optimizations,

▸ is extremely unclear,

▸ is not yet part of the official standard.

But compilers really perform optimizations based on DR #260

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

*q = 34;

printf("%d\n", *p);

}

prints 31 instead of 34 in gcc -O2

Why not just ignore defect report #260?

Defect report #260

▸ allows many optimizations,

▸ is extremely unclear,

▸ is not yet part of the official standard.

But compilers really perform optimizations based on DR #260

int x = 30, y = 31;

int *p = &x + 1, *q = &y;

if (memcmp(&p, &q, sizeof(p)) == 0) {

*q = 34;

printf("%d\n", *p);

}

prints 31 instead of 34 in gcc -O2

In case of doubt

▸ Soundness is more important than completeness.
▸ When a program that is proved correct with respect to our

semantics is compiled with an optimizing compiler, it should
not crash.

▸ If the standard is unclear, we should make it undefined.
▸ That means, our semantics does not guarantee anything about

such programs.

In case of doubt

▸ Soundness is more important than completeness.
▸ When a program that is proved correct with respect to our

semantics is compiled with an optimizing compiler, it should
not crash.

▸ If the standard is unclear, we should make it undefined.
▸ That means, our semantics does not guarantee anything about

such programs.

Stages of the Formalin project

1. The memory: abstract and bit level

int a[2][2] = {13,21,34,55}

⋅

13 21

⋅

34 55

*p = &a[1][1]

00001101 00010101 00100010 00110111 00100010 11110111

2. The control flow

3. The syntax and preprocessor

4. The standard library

Stages of the Formalin project

1. The memory: abstract and bit level

int a[2][2] = {13,21,34,55}

⋅

13 21

⋅

34 55

*p = &a[1][1]

00001101 00010101 00100010 00110111 00100010 11110111

2. The control flow

3. The syntax and preprocessor

4. The standard library

Conclusions

▸ C programs are potentially dangerous

▸ Formal proofs can improve this situation

▸ Requires a mathematically precise C semantics

▸ The current C semantics is inconsistent

▸ Formalizing the standard has many uses!

Questions

C99

COQ

Isabelle/

HOLHOL4

