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Today’s compilers employ a variety of non-trivial optimizations to achieve good performance. One key trick
compilers use to justify transformations of concurrent programs is to assume that the source program has
no data races: if it does, they cause the program to have undefined behavior (UB) and give the compiler free
rein. However, verifying correctness of optimizations that exploit this assumption is a non-trivial problem. In
particular, prior work either has not proven that such optimizations preserve program termination (particularly
non-obvious when considering optimizations that move instructions out of loop bodies), or has treated all
synchronization operations as external functions (losing the ability to reorder instructions around them).

In this work we present Simuliris, the first simulation technique to establish termination preservation (under
a fair scheduler) for a range of concurrent program transformations that exploit UB in the source language.
Simuliris is based on the idea of using ownership to reason modularly about the assumptions the compiler
makes about programs with well-defined behavior. This brings the benefits of concurrent separation logics to the
space of verifying program transformations: we can combine powerful reasoning techniques such as framing
and coinduction to perform thread-local proofs of non-trivial concurrent program optimizations. Simuliris
is built on a (non-step-indexed) variant of the Coq-based Iris framework, and is thus not tied to a particular
language. In addition to demonstrating the effectiveness of Simuliris on standard compiler optimizations
involving data race UB, we also instantiate it with Jung et al.’s Stacked Borrows semantics for Rust and
generalize their proofs of interesting type-based aliasing optimizations to account for concurrency.
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1 INTRODUCTION

Modern compilers use many non-trivial optimizations to make programs run faster. As an example,
consider the following simple function, which sums up the value of *y until a counter reaches *x:

1 int foo(int *x, int *y) {

2

3 int i = 0; int sum = *y;

4 while (i != *x) {

5 i += 1; sum += *y;

6 }

7 return sum;

8 }

1 int foo_optimized(int *x, int *y) {

2 int n = *x; int m = *y;

3 int i = 0; int sum = m;

4 while (i != n) {

5 i += 1; sum += m;

6 }

7 return sum;

8 }

When passed the -O2 flag, Clang optimizes the body of this function to roughly the equivalent
of the code on the right.1 The compiler has moved all the pointer loads out of the loop, so it can
access memory once and then keep the values in registers.
Why is this transformation correct? In a sequential language, this is rather trivial, but if con-

currency needs to be considered then this optimization might seem incorrect: if another thread
changes first x, then y while foo is running, the optimized program may only use the updated
value of y, while the unoptimized program would also subsequently see the updated value of x.
Thus the optimized program can produce results not possible for the original program. The reason
this optimization is correct in languages like C, C++, and Rust is that unsynchronized concurrent
accesses (usually called data races) are undefined behavior (UB), which means the compiler may
assume that no such accesses happen. Under this assumption, no other thread may write to x or y,
thus validating the optimization.

Correctness of program transformations. The goal of our work is to formally establish
correctness of optimizations such as our motivating example. There is a lot of prior work on
verifying program transformations, which we briefly discuss to be able to explain the new aspects
our work brings to this space. An overview can be found in Figure 1.

When it comes to verifying program optimizations, the most obvious points of comparison are
verified optimizing compilers such as CompCert [Leroy 2006, 2009] and CakeML [Kumar et al. 2014].
Both of these flagship projects have verified correctness of a number of non-trivial optimization
passes. However, CakeML handles only sequential programs, so data races are not considered.

CompCert has seen many extensions with support for concurrency. CompCertTSO [Ševčík et al.
2013] uses the TSO (total store order) memory model, which does not treat data races as UB, thus
ruling out optimizations such as the one above. CASCompCert [Jiang et al. 2019] enriches the
sequential semantics with a notion of łfootprintsž such that correctness of optimizations on the
sequential language implies correctness in a concurrent context. A similar approach is also used
by the łConcurrent CompCertž line of work [Beringer et al. 2014; Cuellar 2020]. This approach
can in principle handle our motivating example, though CompCert does not actually perform such
transformations. However, it requires hiding all synchronizing operations behind external function
calls (łFFIž) in the sequential semantics; this rules out most optimizations that reorder instructions
around such synchronizing operations, such as the one we consider in ğ3.2. The same applies to
CCAL [Gu et al. 2018], which comes with a thread-safe variant of CompCertX [Gu et al. 2015]:
here, all accesses to shared memory (not just synchronizing operations) are treated as external
function calls and thus are not subject to optimizations.

1It then actually goes further and replaces the entire loop by a multiplication.
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DR Opt. Concurrent (Fair) TP Mech. SL

Ševčík [2009], Morisset et al. [2013]   # # #

Vafeiadis et al. [2015]   #  #

CompCertTSO [Ševčík et al. 2013] #  G# (no fairness)  #

CAS/Concurrent CompCert G# (NA) G# (FFI) G# (no fairness)  #

CCAL (CompCertX) [Gu et al. 2018] # G# (FFI)   #

Liang and Feng [2016] #   #  

ReLoC [Frumin et al. 2018] #  #   

Tassarotti et al. [2017] #  G# (bounded)   

Transfinite Iris [Spies et al. 2021] # # G# (sequential)   

Stacked Borrows [Jung et al. 2020] # # G# (sequential)  G# (model)

Simuliris      

Fig. 1. Comparison of related work (DR Opt = optimizations exploiting UB of data races; NA = only for
reordering non-atomics around non-atomics; FFI = only via external functions; TP = termination preservation;
Mech = Mechanized; SL = Separation Logic).

Fair termination preservation. The first work to verify transformations which leverage
undefined behavior of data races is found in Ševčík’s PhD thesis [Ševčík 2009, 2011]. However, they
do not consider the same notion of correctness as the CompCert variants we have discussed so far:
Ševčík only considers finite traces, and as such does not establish termination preservation. The same
limitation applies to later work on optimizations for C(-like) memory models [Morisset et al. 2013;
Vafeiadis et al. 2015]. Termination preservation ensures that the compiler is not allowed to turn a
terminating program into a diverging one. Such a transformation would not be considered łcorrectž
in practice, making termination preservation a key part of a compiler’s correctness condition.
However, when considering concurrent programs, even termination-preserving compilers can

perform optimizations that are, arguably, incorrect. This is because many concurrent programs
have unrealistic diverging executions that arise when the scheduler starves a thread by never letting
it take any more stepsÐother parts of the program might be waiting on the starving thread to
make progress, leading to divergence. The mere existence of such unrealistic diverging executions
should not give the compiler license to introduce infinite loops that actually diverge in practice. So
we only wish to consider infinite executions exhibited under a fair schedule, where no thread is
left starving. Fair termination preservation [Liang and Feng 2016] demands that if the optimized
program has such an infinite execution, then so does the source program.

Ourwork establishes fair termination preservation of the example optimizations. In contrast, most
variants of CompCert (with the exception of CCAL) do not establish fair termination preservation
as part of their correctness proof. (To our knowledge, these compilers are still fair termination-
preserving in practice, but that property is not established formally.)We have picked fair termination
preservation not because we aim to exploit the assumption of fairness, but because we consider it
the more realistic correctness condition for a concurrent compiler.

The remainder of our correctness condition is pretty standard: we demand refinement of the final
result(s) computed by the program, i.e., whenever the optimized program terminates with a result v,
then that should also be a possible result of the original program.2 Finally, optimizations typically

2We are considering languages with non-determinism here, so there might be more than one possible result, and the
optimized program might have a subset of the possible results of the original program.
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happen locally in some function without knowing the larger program they are a part of. We hence
need the optimization to be correct no matter the context that this function might be used in.

1.1 Simuliris

In this paper, we introduce Simuliris, the first simulation relation to establish fair termination-
preserving contextual refinement for concurrent program transformations that can exploit UB.

Iris-style ownership in a coinductive simulation relation. The key idea behind our approach
is to leverage the concept of ownership: we formulate our simulation relation in a separation logic

equipped with novel rules for exploiting that data races are undefined behavior. When applied to
the motivating example, our proof rules establish that after the unsynchronized load operation *x,
we gain ownership of the underlying memory. This ownership gain is justified due to the undefined
behavior of data races. We can hold on to this ownership throughout the entire loop, which lets us
prove that each time the original program accesses *x, the same result will be returned.

The basic idea of combining separation logic and a simulation relation has been explored before,
but prior work has mostly focused on verifying that an implementation of an abstract data type
implements a specification. As such, this line of work lacks the ability to exploit undefined behavior
in the way we require for our example (as reflected in Figure 1, and discussed further in ğ8).

Several of these prior publications explore the use of Iris [Jung et al. 2015, 2018b], a framework
for defining concurrent separation logics with a flexible form of łghost ownershipž, for the purpose
of refinement proofs. However, Iris’s use of step-indexing [Appel and McAllester 2001] means that
Iris-based approaches like ReLoC [Frumin et al. 2018] do not support reasoning about liveness
properties such as termination preservation. This limitation can be bent to some extent (see ğ8),
but those approaches have not been shown to apply to concurrent programs with unbounded
non-determinism.

Simuliris is based on Iris, and as such inherits its flexible notion of ghost state, which forms the
foundation for all our ownership reasoning. However, unlike Iris, Simuliris is not step-indexed:
verification of program transformations requires different tools than general program verification,
and we found that the powerful reasoning principles enabled by step-indexing are not required
for our task. Simuliris demonstrates how the heart of Iris, its flexible model of ghost state, can be
married together with the typical shape of a coinductive simulation to obtain a simulation relation
that supports both liveness properties and powerful ownership-based reasoning.

We also inherit the Iris ProofMode [Krebbers et al. 2017b, 2018], which lets us carry out interactive
proofs in the Coq proof assistant for all results presented in this paper (metatheory and examples).
The Coq proofs are available in the supplementary material [Gäher et al. 2022].

Fairness and implicit stuttering. One usually rather tedious aspect of termination-preserving
simulation relations is stuttering. In Simuliris, we manage to completely hide the bookkeeping that
is usually associated with stuttering by using a technique we call implicit stuttering.
Stuttering is required whenever a lock-step simulation between source and target (i.e., the

unoptimized and optimized programs) is insufficient. For example, in the optimization shown above,
when the optimized program performs the *x before the loop, this does not directly correspond to
any step in the source programÐso ideally we could just ignore the source when reasoning about
this part of the optimized program. However, we have to be careful not to violate termination
preservation: if we ignore the source infinitely often, we could end up with a diverging execution
in the optimized program even though the source always terminates!

The typical solution to this problem is to add a łstutter counter/metricž that keeps track of how
many more steps the target may make before a source step is required. This additional bookkeeping
is burdensome and makes it hard to give modular specifications. Instead, we define stuttering
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implicitly (as in [Spies et al. 2021]), with a least fixed-point instead of an explicit decreasing metric.
This approach interacts with fairness in non-trivial ways, so we had to develop a new soundness
proof to establish that our simulation relation indeed ensures fair termination preservation.

Simuliris instances: data races, Stacked Borrows. Like Iris, Simuliris is a language-generic
framework. The core simulation relation can be instantiated with multiple different programming
languages, providing them with many key proof rules (such as the frame rule from separation
logic), a parametric coinduction principle, and an adequacy theorem for fair termination-preserving
whole-program refinement łfor freež. In this paper, we instantiate Simuliris with two different
languages.

The first language, SimuLang, is used to demonstrate our ability to perform optimizations based
on UB of data races. SimuLang uses the memory model of 𝜆Rust [Jung et al. 2018a], which ensures
that programs with data races get stuck. We then perform all of our proofs under the assumption
that the source program will not get stuck. This permits us to prove correctness of optimizations
such as our motivating example by exploiting the absence of data races for unsynchronized accesses:
threads fully own locations that they perform non-atomic accesses on, hiding the complexity of
reasoning about traces of memory events. This layer of abstraction keeps the formal argument
fairly close to the intuitive idea of why such an optimization is correct. The language-independent
Simuliris infrastructure (in particular framing and coinduction) makes it easy to move from proving
individual reorderings to loop hoisting optimizations such as our motivating example.
Our second language is Stacked Borrows [Jung et al. 2020], a recently proposed aliasing model

for Rust that supports strong intraprocedural optimizations based on alias information derived from
the Rust type system. Originally, correctness of these optimizations was proven in a coinductive
ownership-based simulation relation not unlike the model of SimulirisÐbut without support for
concurrency, implicit stuttering, general Iris-style ghost state, or even a separation logic to abstract
away resource ownership. Using Simuliris, we verify correctness of the same optimizations as the
original paper, but for a new concurrent version of Stacked Borrows. We also establish correctness
of a new loop hoisting optimization based on Stacked Borrows.

Paper structure. The remainder of the paper is structured as follows: We first give a tour of
how Simuliris works in general (ğ2) and how its approach scales to exploiting undefined behavior
of data races (ğ3) in SimuLang. Then, we turn to the technical meat of the framework: we define our
notion of fair termination-preserving contextual refinement (ğ4), we explain the definition of our
underlying simulation relation and how it can be used to establish contextual refinement (ğ5), and
we show how the proof rules for exploiting data races are justified (ğ6). Finally, we briefly explain
how we applied Simuliris to Stacked Borrows (ğ7), before we conclude with related work (ğ8) and
an overview of limitations and future work (ğ9).

2 SIMULIRIS BY EXAMPLE: THE BASICS

In this section, we introduce Simuliris’s core reasoning principles and show how ownership
reasoning helps us to prove program optimizations. We start with a very brief explanation of our
setup, and then explain the key rules of Simuliris with a series of simple examples. We illustrate
how to use local ownership (ğ2.1), how to interface with unknown code (ğ2.2), and how to exploit
undefined behavior in the original program (ğ2.3). We then conclude with an optimization involving
loops (ğ2.4), illustrating that our ownership reasoning nicely composes with coinduction.
At the core of Simuliris lies a coinductive simulation relation defined in separation logic. We

write this simulation relation in the style of Relational Hoare Logic [Benton 2004]:

{𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {v𝑡 ,v𝑠 . Φ v𝑡 v𝑠 }
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Expr ∋ 𝑒 F v | 𝑥 | let 𝑥 := 𝑒1 in 𝑒2 | 𝑒1 + 𝑒2 | call 𝑒1 𝑒2 | fork{𝑒}

| ref(𝑒) | !𝑒 | 𝑒1 ← 𝑒2 | free(𝑒) | if 𝑒1 then 𝑒2 else 𝑒3 | while 𝑒1 do 𝑒2 od | . . .

Val ∋ v F 𝑧 : Z | 𝑏 : B | ℓ : Loc | 𝑓 : FnName | () | . . .

Prog ∋ 𝜌 F (𝑓 𝑥 ≜ 𝑒), 𝜌 | ∅

Ectx ∋ 𝐾 F • | let 𝑥 := 𝐾 in 𝑒2 | 𝑒1 + 𝐾 | 𝐾 +v | call 𝑒1 𝐾 | call 𝐾 v

| ref(𝐾) | !𝐾 | 𝑒1 ← 𝐾 | 𝐾 ← v | free(𝐾) | if 𝐾 then 𝑒2 else 𝑒3 | . . .

Fig. 2. Excerpt of the grammar of SimuLang.

The idea of these quadruples is that under precondition 𝑃 , the source expression 𝑒𝑠 simulates the
target expression 𝑒𝑡 such that both terminate in values related by postcondition𝛷 , or both diverge
(as we show below, 𝛷 and 𝑃 are separation logic assertions that can assert facts about, e.g., the
source and target heaps).

Here, 𝑒𝑡 and 𝑒𝑠 are terms in SimuLang, our main example language. An excerpt of the grammar
of SimuLang is shown in Figure 2 (omitting some standard features such as products and sums).
SimuLang is a simple expression-based language with ML-style references, fork-based concurrency,
and function pointers. Evaluation order proceeds right-to-left, as determined by the definition of
evaluation contexts 𝐾 . Further details can be found in our appendix [Gäher et al. 2022, ğ2].
SimuLang does not have 𝜆-terms; one can think of it as a łpost-closure-conversionž language.

Correspondingly, function pointers simply consist of the name of a function. A whole SimuLang
program 𝜌 is a list of mutually recursive function declarations 𝑓 𝑥 ≜ 𝑒 (we implicitly assume that no
function name is declared more than once). Any call to this function call 𝑓 v reduces to 𝑒 with the
call argumentv substituted for 𝑥 . Local variables inside a function are bound via let. These variables
are immutable; to model mutable stack-allocated variables, we use ref(·). In other words, we do
not distinguish between stack-allocated and heap-allocated variables (following prior languages
designed for the verification of Rust or C code [Jung et al. 2018a; Sammler et al. 2021]). We use 𝑒1; 𝑒2
as sugar for let _ := 𝑒1 in 𝑒2. SimuLang features while loops: the term while 𝑒1 do 𝑒2 od reduces to
if 𝑒1 then (𝑒2;while 𝑒1 do 𝑒2 od) else () (and there is no evaluation context for loops).
In the following, when writing concrete programs, we will use sans-serif font for typesetting

concrete names of program variables or functions (represented as strings in the formal Coq devel-
opment), while using typical italic font for logical variables.

2.1 Optimizations on Local Memory Locations

To explain how we use ownership reasoning for compiler optimizations, let us consider a simple
example: removing a load from a local (unescaped) memory location. In SimuLang, the expression
let y := ref(42) in !y allocates a fresh location and then reads from it3. We would like to optimize
the load of !y away and directly return 42. This optimization is correct because the value stored
in y cannot change between the allocation and the load: no other thread can know about y and the
memory location it references. In other words, it is as if we exclusively own this location. In the
following, we will show how we can make this argument formal with Simuliris.
We verify the above optimization by showing the following quadruple:

{True} let y := ref(42) in 42 ⪯ let y := ref(42) in !y {v𝑡 ,v𝑠 .v𝑡 = v𝑠 }

3In order to simplify the presentation, many examples in this paper leak memory by omitting deallocations. Of course, our
framework supports the same optimizations in the presence of proper deallocation.
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Language-independent rules:
source-focus

{𝑃} 𝑒𝑠 {v𝑠 . Ψ v𝑠 }
src ∀v𝑠 . {Ψ v𝑠 } 𝑒𝑡 ⪯ 𝐾𝑠 [v𝑠 ] {𝛷}

{𝑃} 𝑒𝑡 ⪯ 𝐾𝑠 [ 𝑒𝑠 ] {𝛷}

sim-frame

{𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝛷}

{𝑃 ∗ 𝑅} 𝑒𝑡 ⪯ 𝑒𝑠 {v𝑡 ,v𝑠 . 𝛷 v𝑡 v𝑠 ∗ 𝑅}

sim-call

{V v𝑡 v𝑠 } call f v𝑡 ⪯ call f v𝑠
{
v ′𝑡 ,v

′
𝑠 .V v ′𝑡 v

′
𝑠

}

sim-bind

{𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {v𝑡 ,v𝑠 . Ψ v𝑡 v𝑠 } ∀v𝑡 ,v𝑠 . {Ψ v𝑡 v𝑠 } 𝐾𝑡 [v𝑡 ] ⪯ 𝐾𝑠 [v𝑠 ] {𝛷}

{𝑃} 𝐾𝑡 [ 𝑒𝑡 ] ⪯ 𝐾𝑠 [ 𝑒𝑠 ] {𝛷}

sim-value

{𝛷 v𝑡 v𝑠 }v𝑡 ⪯ v𝑠 {𝛷}

SimuLang rules:
source-alloc

{True} ref(v𝑠 )
{
v ′𝑠 . ∃ℓ𝑠 .v

′
𝑠 = ℓ𝑠 ∗ ℓ𝑠 ↦→

srcv𝑠
}src

target-alloc

{True} ref(v𝑡 )
{
v ′𝑡 . ∃ℓ𝑡 .v

′
𝑡 = ℓ𝑡 ∗ ℓ𝑡 ↦→

tgtv𝑡
}tgt

source-pure

𝑒𝑠 −→
∗
pure 𝑒

′
𝑠 {𝑃} 𝑒𝑡 ⪯ 𝑒

′
𝑠 {𝛷}

{𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝛷}

target-pure

𝑒𝑡 −→
∗
pure 𝑒

′
𝑡 {𝑃} 𝑒 ′𝑡 ⪯ 𝑒𝑠 {𝛷}

{𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝛷}

source-load{
ℓ𝑠 ↦→

srcv𝑠
}
!ℓ𝑠

{
v ′𝑠 .v

′
𝑠 = v𝑠 ∗ ℓ𝑠 ↦→

srcv𝑠
}src

target-load{
ℓ𝑡 ↦→

tgtv𝑡
}
!ℓ𝑡

{
v ′𝑡 .v

′
𝑡 = v𝑡 ∗ ℓ𝑡 ↦→

tgtv𝑡
}tgt

source-store{
ℓ𝑠 ↦→

src _
}
ℓ𝑠 ← v𝑠

{
v ′𝑠 .v

′
𝑠 = () ∗ ℓ𝑠 ↦→

srcv𝑠
}src

target-store{
ℓ𝑡 ↦→

tgt _
}
ℓ𝑡 ← v𝑡

{
v ′𝑡 .v

′
𝑡 = () ∗ ℓ𝑡 ↦→

tgtv𝑡
}tgt

Fig. 3. Core Simuliris and SimuLang rules.

Under the trivial precondition, we can execute the optimized (left, target) and the original (right,
source) program, resulting in the same value.

To prove such quadruples, our simulation relation allows us to łfocusž on the execution of source
and target individually by switching to special source and target triples, with rules like source-focus
(see Figure 3; the target rule is symmetric). As we will see below, most of the rules for these triples
are symmetric and reminiscent of a unary separation logic. With these triples, we can focus on
a subexpression of either the source or the target. The focusing rules combine sequencing and
implicit stuttering: we can focus on an expression in evaluation position (i.e., which is contained in
an evaluation context 𝐾) on one side and then show that that expression terminates in a value4

satisfying Ψ (it must not diverge). Meanwhile, the other side of the program łstuttersž, not making
any progress. Afterwards, the postconditionΨ can be used to continuewith the rest of the simulation.
(The reader might wonder at this point how stuttering without further side-conditions does not
break termination preservation. We will explain this in ğ5.)

With the focusing triples in hand, we can start the proof. First, we focus on ref(42) in the source
with source-focus to allocate a memory location, using source-alloc. As mentioned above, we
obtain local ownership of this memory locationÐno other parts of the program can know about
it.5 In ordinary separation logic, this notion of ownership can be expressed with the points-to
connective ℓ ↦→ v, stating both the knowledge that ℓ contains value v and exclusive ownership of

4As we will see in ğ2.4, our full system also supports leaving the focus early with an expression-based postcondition.
5In addition, allocation provides us with ownership of assertions about the size of allocations, which are relevant for
deallocation and pointer arithmetic. For simplicity, we omit this detail and refer to the supplementary material.
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location ℓ . As Simuliris is a relational separation logic [Yang 2007], it has two points-to connectives:
ℓ ↦→ tgtv for locations in the target, and ℓ ↦→ srcv for locations in the source. source-alloc picks a
fresh location ℓ𝑠 and provides the corresponding local ownership of this source location.

Having reduced the source expression, we are left with the goal
{
ℓ𝑠 ↦→

src 42
}
let y := ref(42) in 42 ⪯

let y := ℓ𝑠 in !y {v𝑡 ,v𝑠 .v𝑡 = v𝑠 }. To allocate the reference in the target, we follow the same steps as
in the source: we first apply the target focusing rule (which works exactly like source focusing), and
then use target-alloc. (Ownership of ℓ𝑠 ↦→ src 42 is maintained using the standard frame rule, which
we only show for the relational case: sim-frame.) To then execute ref(42), we use target-alloc. We
are left to prove

{
ℓ𝑡 ↦→

tgt 42 ∗ ℓ𝑠 ↦→
src 42

}
let 𝑦 := ℓ𝑡 in 42 ⪯ let 𝑦 := ℓ𝑠 in !ℓ𝑠 {v𝑡 ,v𝑠 .v𝑡 = v𝑠 }.

Next, we reduce the let-expression in source and target with the pure execution rules source-
pure and target-pure. We now end up with the remaining goal

{
ℓ𝑡 ↦→

tgt 42 ∗ ℓ𝑠 ↦→
src 42

}
42 ⪯

!ℓ𝑠 {v𝑡 ,v𝑠 .v𝑡 = v𝑠 }. At this point, we make a source execution step that is not mirrored in the target
(again using our focusing triples): we load 42 from ℓ𝑠 . To do so, it is crucial that we have ℓ𝑠 ↦→ src 42

in our precondition, since it means we exclusively own the location ℓ𝑠 and hence there was no
interference by other threads. Specifically, we apply the rule source-load.
We are left with

{
ℓ𝑡 ↦→

tgt 42 ∗ ℓ𝑠 ↦→
src 42

}
42 ⪯ 42 {v𝑡 ,v𝑠 .v𝑡 = v𝑠 }. Using sim-value, establishing

the postcondition is trivial since we only have to show the equality of 42 and 42.

2.2 Interfacing with External Code

The previous optimization exploits ownership to ensure that a memory location cannot be modified
between allocation and a load. However, ownership reasoning carries a lot further: we can also use
it to argue that external, unknown code in the current thread cannot modify the location.

Function calls. Consider the following example where function f (which we assume to know
nothing about6) is called between an allocation and a load:

{True}
let y := ref(42) in

call f 23; 42
⪯

let y := ref(42) in

call f 23; !y
{v𝑡 ,v𝑠 .v𝑡 = v𝑠 }

The start of the proof proceeds as before: we allocate the locations in source and target, so the
program variable y is replaced by some location ℓ𝑠 in the source and (potentially different) location ℓ𝑡
in the target. Next, we focus on the call to f with the sequencing rule sim-bind, which enables us
to first show a simulation of two subexpressions in evaluation position before considering the
surrounding context.
Thus, we are left with

{
ℓ𝑡 ↦→

tgt 42 ∗ ℓ𝑠 ↦→
src 42

}
call f 23 ⪯ call f 23

{
ℓ𝑡 ↦→

tgt 42 ∗ ℓ𝑠 ↦→
src 42

}
(the

return value does not matter in this case). We now exploit that our simulation relation allows us to
skip over calls to the same function f in source and target, provided that we call it with łsufficiently
similarž arguments v𝑠 and v𝑡 . We get to assume that the function behaves the same on both sides
and returns łsufficiently similarž values. Formally, this is captured by sim-call, where the value
relationV v𝑡 v𝑠 captures the notion of being łsimilarž. As shown in Figure 4, for simple cases like
integers, the value relation just requires syntactic equality, while for composite values like pairs it
is lifted componentwise. The more complicated case of locations will be discussed below.
Like all our proof rules, sim-call is compatible with framing, so we can just frame ownership

of ℓ𝑡 and ℓ𝑠 around the call. In this case, however, that is a remarkably powerful reasoning principle!
It reflects the idea that local locations are not accessible to unknown function calls, and thus not

6Simuliris also has rules for the (less interesting) case of functions for which we know the source code. In that case, we can
just step into the function and reason as if it was inlined. We can also prove and apply lemmas about individual functions in
source or target with non-trivial postconditions, using standard separation logic reasoning.
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V 𝑧𝑡 𝑧𝑠 ≜ 𝑧𝑡 = 𝑧𝑠 (value-int)

V 𝑏𝑡 𝑏𝑠 ≜ 𝑏𝑡 = 𝑏𝑠 (value-bool)

V ℓ𝑡 ℓ𝑠 ≜ ℓ𝑡 ↔ℎ ℓ𝑠 (value-loc)

V 𝑓𝑠 𝑓𝑡 ≜ 𝑓𝑠 = 𝑓𝑡 (value-fnptr)

V (v𝑡 ,𝑤𝑡 ) (v𝑠 ,𝑤𝑠 ) ≜ V v𝑡 v𝑠 ∗ V 𝑤𝑡 𝑤𝑠 (value-pair)

Fig. 4. Excerpt of the value relation. Values of different kinds (e.g., integers and locations) are not related.

affected by those calls. Separation logic lets us express this at a very high level of abstraction,
making this kind of reasoning effortless even when doing mechanized interactive proofs in Coq.
After using sim-call and sim-frame, we are left with the goal

{
ℓ𝑡 ↦→

tgt 42 ∗ ℓ𝑠 ↦→
src 42

}
42 ⪯

!ℓ𝑠 {v𝑡 ,v𝑠 .v𝑡 = v𝑠 }. We can now complete the proof in the same way as before.
But let us backtrack for a moment: how can it be sound to just skip over function calls for

arbitrary functions f? Intuitively, a compiler should be able to reason locally about function bodies,
without making strong assumptions about the behavior of unknown functions the program might
be linked against. The key to enabling this is to make our simulation relation open, allowing to
skip calls to the same function in the source and target. But of course, we have to work for this:
to enable sim-call, the function we skip over needs to respect ownership (which enabled us to
frame local ownership around the call)! The top-level adequacy proof (ğ5) will thus assume that all
functions in the program satisfy the simulation relation, tying a big mutually recursive knot.

Passing pointers to functions. Above, we have postponed discussion of the value relation for
locations. To illustrate what happens if we pass a location to a function, we consider the following
example: we optimize away a load from a pointer that we pass to a function afterwards.

{True}

let y := ref(42) in

let z := 42 in

call f y; !y + z

⪯

let y := ref(42) in

let z := !y in

call f y; !y + z

{v𝑡 ,v𝑠 .v𝑡 = v𝑠 }

As before, we start by (1) allocating the pointers in source and target and (2) loading from the
pointer in the source, leveraging local ownership. We end up with the goal:

{
ℓ𝑡 ↦→

tgt 42 ∗ ℓ𝑠 ↦→
src 42

}
call f ℓ𝑡 ; !ℓ𝑡 + 42 ⪯ call f ℓ𝑠 ; !ℓ𝑠 + 42 {v𝑡 ,v𝑠 .V v𝑡 v𝑠 }

When passing pointers to unknown functions, we have to ensure that they in turn point to
łsufficiently similarž values, as those can be observed by the callee. Moreover, the location must
not be exclusively owned, since the callee could mutate memory and thus violate the ownership
discipline. Both of these aspects are captured by the assertion ℓ𝑡 ↔ℎ ℓ𝑠 which states that target
location ℓ𝑡 and source location ℓ𝑠 form an escaped pair of locations. We can convert locally owned
locations to escaped locations by giving up ownership with the rule loc-escape:

loc-escape

{ℓ𝑡 ↔ℎ ℓ𝑠 ∗ 𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝛷}
{
ℓ𝑡 ↦→

tgtv𝑡 ∗ ℓ𝑠 ↦→
srcv𝑠 ∗ V v𝑡 v𝑠 ∗ 𝑃

}
𝑒𝑡 ⪯ 𝑒𝑠 {𝛷}

sim-load-escaped

{ℓ𝑡 ↔ℎ ℓ𝑠 } !ℓ𝑡 ⪯ !ℓ𝑠 {v𝑡 ,v𝑠 .V v𝑡 v𝑠 }

The assertion ℓ𝑡 ↔ℎ ℓ𝑠 represents knowledge, not exclusive ownership, and as such it is freely
duplicable. We can thus retain it beyond the function call and are left with the remaining goal
{ℓ𝑡 ↔ℎ ℓ𝑠 } !ℓ𝑡 +42 ⪯ !ℓ𝑠 +42 {v𝑡 ,v𝑠 .v𝑡 = v𝑠 }. Now, for the last step, we load both locations simultane-
ously in with sim-load-escaped (see above). Since the loaded values are integers related byV , they
must therefore be equal, establishing the postcondition.7 Note that, as we have given up ownership
of ℓ𝑠 to escape it, we cannot be sure that ℓ𝑠 still stores 42, and thus cannot optimize away the load

7Here we implicitly exploit that addition would go wrong if these were not integers; this technique is described more
precisely in the next subsection.
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sim-src-safe

𝑒𝑠 ⇝ 𝑄 {𝑄 ∗ 𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝛷}

{𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝛷}

safe-div-int-nonzero

v/𝑤 ⇝ ∃𝑧1, 𝑧2 : Z.v = 𝑧1 ∧𝑤 = 𝑧2 ∧ 𝑧2 ≠ 0

Fig. 5. Subset of the rules for exploiting source UB.

{True}
let x := ref(0) in let r := !x in

while (call f r) do call g r od
⪯

let x := ref(0) in

while (call f !x) do call g !x od
{v𝑡 ,v𝑠 . True}

Fig. 6. Loop-invariant code motion for a load.

after the call as we did before. This is for a good reason: the function we have passed the location
to could just have written a different value to it.

2.3 Exploiting Undefined Behavior

So far, we have seen how our simulation relation allows us to prove optimizations that rely on
ownership reasoning. We now introduce another core component of Simuliris: the ability to exploit
undefined behavior (UB) in the source program. We will later leverage this feature for reasoning
about data races (ğ3), but for now we focus on a simple example:

{True}

let (x, y) := call f () in

let z := x/y in

call g z

⪯

let (x, y) := call f () in

let z := x/y in

if y ≠ 0 then call g z else call h z

{v𝑡 ,v𝑠 . True}

Here, we optimize away the conditional and, instead, always pick the łthenž branch in the optimized
program. The reason why this optimization is correct is that, in SimuLang (similar to C), division
by 0 is UB. As a compiler, we may assume that the original program (the source program) does not
have UB. It then follows that in all relevant (UB-free) executions, 𝑦 ≠ 0.
In Simuliris, this kind of reasoning is exposed through the judgment 𝑒𝑠 ⇝ 𝑄 , which expresses

that 𝑄 follows from the assumption that 𝑒𝑠 does not have UB.8 The relevant rules for our example
are given in Figure 5. In the case of division, we can use them to prove the quadruple {True} v/𝑤 ⪯
v/𝑤 {v𝑡 ,v𝑠 .v𝑡 = v𝑠 ∗𝑤 ≠ 0}. This quadruple not only ensures that the resulting values are the
same, but also that the value𝑤 , the divisor, is not 0. Importantly, the fact that𝑤 is not 0 is not a
precondition that we need to provideÐit appears in our postcondition, so it is something we learn!
We can then use𝑤 ≠ 0 afterwards to prove that the conditional will always pick the left branch.

2.4 Reasoning About Loops

All the examples we have considered so far did not contain any loops. We now show that the above
reasoning principles extend naturally to programs with loops.
To this end, we use the example of hoisting a load out of a loop. More precisely, as depicted

in Figure 6, we avoid repeated loads from the pointer x inside a while-loop and, instead, load only
once from x before the loop starts. The condition and body of the loop are defined by arbitrary
functions f and g, demonstrating that the reasoning works without any knowledge of what the
loop is actually doing or whether it even terminates. (One could trivially optimize this code further,
but we focus on loop reasoning here.)

8The assumed UB-freedom states a property not only about the next reduction step, but about any execution of 𝑒𝑠 .
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Intuitively, this optimization is correct because we have local ownership of x and, additionally, x is
not modified in the loop. We will now make this argument formal in Simuliris. The initial allocation
of x and also the new load in the target are covered using the principles we have seen before. What
is more interesting is what we do about the loop: we will use a coinductive argument to justify this
optimization. Specifically, we will use the following coinduction principle for while-loops:

while-coind

{𝐼 } 𝑐𝑡 ⪯ 𝑐𝑠 {v𝑡 ,v𝑠 .V v𝑡 v𝑠 ∗ ((v𝑠 = true ∗ 𝐽 ) ∨ (v𝑠 ≠ true ∗𝑄))} {𝐽 } 𝑒𝑡 ⪯ 𝑒𝑠 {𝐼 }

{𝐼 } while 𝑐𝑡 do 𝑒𝑡 od ⪯ while 𝑐𝑠 do 𝑒𝑠 od {𝑄}

The idea of this rule is the following: when we apply it, we may pick a loop invariant 𝐼 . We then
first show that given the invariant 𝐼 , either the loop conditions 𝑐𝑡 and 𝑐𝑠 (ordinary expressions)
both evaluate to true and a proposition 𝐽 holds, or they both do not evaluate to true and the
postcondition 𝑄 of the loop holds. (The postcondition is not simply the negation of the loop
condition, because we also need to transfer ownership.) Second, we need to show that if we execute
the loop bodies 𝑒𝑡 and 𝑒𝑠 assuming 𝐽 , then the loop invariant 𝐼 is preserved.
Applying this rule is the key step of verifying the example in Figure 6. At the point where we

have to reason about the loop, our current precondition is ℓ𝑡 ↦→ tgt 0 ∗ ℓ𝑠 ↦→
src 0 where ℓ𝑡 and ℓ𝑠 are

the source and target values of 𝑥 . We proceed by applying first sim-bind to focus on the loops and
then while-coind to reason about the loop. As the invariant, we pick 𝐼 ≜ (ℓ𝑡 ↦→ tgt 0 ∗ ℓ𝑠 ↦→

src 0) (our
precondition). It is straightforward to show both premises of the rule while-coind.

Parameterized coinduction. The rule while-coind is already sufficient to verify the previous
example. However, there are interesting loops for which while-coind is not strong enough. For
example, what if 𝐼 only holds after every other iteration (e.g., it asserts that some loop counter is
even)? To also cover such cases, our simulation supports parameterized coinduction [Hur et al.
2013]. Whereas regular coinduction requires re-establishing the invariant after each iteration,
parameterized coinduction says that we can take any number of rounds through the loop and then
re-establish the invariant whenever we are łback at the beginningž:

while-paco

𝑊𝑡 = while 𝑐𝑡 do 𝑒𝑡 od 𝑊𝑠 = while 𝑐𝑠 do 𝑒𝑠 od
{𝐼 } if 𝑐𝑡 then 𝑒𝑡 ;𝑊𝑡 else () ⪯ if 𝑐𝑠 then 𝑒𝑠 ;𝑊𝑠 else ()

{
𝑒 ′𝑡 , 𝑒

′
𝑠 . 𝛷 𝑒 ′𝑡 𝑒

′
𝑠 ∨ (𝑒

′
𝑡 =𝑊𝑡 ∗ 𝑒

′
𝑠 =𝑊𝑠 ∗ 𝐼 )

}

{𝐼 }𝑊𝑡 ⪯𝑊𝑠

{
𝑒 ′𝑡 , 𝑒

′
𝑠 . 𝛷 𝑒 ′𝑡 𝑒

′
𝑠

}

In while-paco, the while loops are first reduced for one step, entering the first loop iteration
(as a guard for the coinduction). Thereafter, we can finish the proofÐat any pointÐby showing
either (1) the postcondition 𝛷 or (2) that the current target and source expressions are the𝑊𝑡

and𝑊𝑠 that we started with and the invariant 𝐼 holds again. The latter condition is expressed by
łparameterizingž the new proof goal through an additional disjunct in the postcondition. To enable
this, we generalize our simulation relation (and the source/target triples) from a postcondition on
values to a postcondition on expressions, such that one can finish the proof at any time if the current
expressions satisfy the postcondition: {𝛷 𝑒𝑡 𝑒𝑠 } 𝑒𝑡 ⪯ 𝑒𝑠

{
𝑒 ′𝑡 , 𝑒

′
𝑠 . 𝛷 𝑒 ′𝑡 𝑒

′
𝑠

}
. The reasoning principles

that we have seen so far (e.g., sim-bind, source-focus, and sim-frame) all generalize to a simulation
relation with expression postconditions and the generalized rules can be found in the supplementary
material [Gäher et al. 2022]. The simulation relation with a postcondition on values can be derived
from the more general form, by requiring in the postcondition that the expressions have terminated.

Adding and removing finite loops. The rules while-coind and while-paco can be used to
reason about situations where a loop exists in both the source and target programs, and we need to
łmatch upž their loop iterations to argue that we are not introducing an infinite loop or making
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{𝑧1 ≥ 0} 𝑧1 ∗ 𝑧2 ⪯

let n := ref(𝑧1) in let x := ref(0) in

while 0 < !n do x← !x + 𝑧2; n← !n − 1 od;

!x

{v𝑡 ,v𝑠 .v𝑡 = v𝑠 }

Fig. 7. Optimization for replacing repeated addition with primitive multiplication.

previously unreachable code reachable. Simuliris also supports reasoning principles for loops
that occur only on one side of the simulation, provided that we can ensure that the loop only
takes a finite number of iterations. For instance, consider the simulation shown in Figure 7: here
we replace the multiplication of two integers 𝑧1 and 𝑧2 through repeated addition with a single
primitive multiplication instruction.9 Our proof exploits the fact that the loop is terminating. After
initializing n and x, we perform induction on the value stored in n (initially 𝑧1). We unfold the source
loop for one step, using the reduction rulewhile 𝑐 do 𝑒 od −→pure if 𝑐 then (𝑒 ;while 𝑐 do 𝑒 od) else ()
and source-pure. If the loop condition is true, the value stored in n is decreased before the next
iteration, and so we can use the inductive hypothesis.
The reason this example works is that we embed standard reasoning principles from the meta

level into Simuliris, including support for reasoning about integers and induction. More precisely,
the mechanization of Simuliris is a shallow embedding into Coq’s logic. As a consequence, Coq’s
existing types and the reasoning principles for their elements become readily available in Simuliris.
In particular, Simuliris inherits from Coq standard data types (e.g., integers, finite maps, lists, and
strings), recursive functions, and induction principles for inductive types.

3 SIMULIRIS BY EXAMPLE: EXPLOITING NON-ATOMIC ACCESSES

Now that we have seen the basics of Simuliris, let us look at a class of challenging optimizations
where the ownership reasoning provided by Simuliris enables an elegant verification technique:
optimizations around non-atomic accesses as found in languages like C. First, we introduce the basic
principles of non-atomic accesses (ğ3.1), then we introduce proof rules for verifying optimizations
around such accesses (ğ3.2), and finally we verify the optimization from the introduction (ğ3.3).

3.1 Basics of Non-atomics

Previously, we have seen how ownership enables a wide variety of optimizations (ğ2) for local
memory locations that have not been leaked to other, unknown code yet. However, what about
escaped locations? At first, it may seem impossible to optimize accesses to escaped locations since
other threads might interfere and invalidate the optimization by overwriting the memory in a racy
way. This is reflected in the fact that one has to give up ownership of the location when escaping it.

However, compilers have another trick up their sleeve to enable optimizations even for escaped
locations: it is based on the observation that only very few accesses to escaped locations actually
race with other threads (which would invalidate optimizations), so the programmer should mark
such accesses as atomic accesses. Atomic accesses can be used to provide synchronization between
different threads and are for example used for the implementation of synchronization primitives
like locks. For all other accesses, called non-atomic accesses, the programmer guarantees that they
will not race with other threads, and thus they can be optimized more heavily. Technically, this
works by assigning undefined behavior (UB) to executions with races on non-atomic accesses, and
thus such executions do not have to be considered when verifying an optimization.

9We can also prove the inverse direction in exactly the same way. This is a good example of the power of implicit stuttering:
we are adding an unbounded number of program steps, and the proof implicitly shows that the program still terminates.
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In this paper, we follow the definition of non-atomic accesses used by RustBelt [Jung et al. 2018a]
and RefinedC [Sammler et al. 2021]: first, we distinguish between non-atomic accesses (x ← y
and !x) and sequentially consistent atomic accesses (x ←sc y and !scx). Second, we extend the
operational semantics with a data-race detector that raises UB if two threads access the same
location at the same time, where at least one access is a store and at least one access is non-atomic.10

As an example of optimizations enabled by the addition of data-races, consider the following
transformation that replaces a load from xwith the value of a previous (non-atomic) store (assuming
that the omitted code in . . . does not write to x or perform atomic stores):

x← 42; . . . ; !x
optimized to
−−−−−−−−−→ x← 42; . . . ; 42

The optimization can be justified as follows: if there is no store to x by another thread between
the first and the second statement, x still contains the value 42 (because the code in . . . does not
write to x) and the optimization is correct. Otherwise, the programs behave differently, but the
optimization is still correct because we can show that this case is impossible for well-defined
executions (without UB). We do this as follows: we know that there is another thread that performs
a store to x. If this concurrent store occurs at the same time as our store to x, the race detector
raises UB and we are done. However, what if in the execution we are considering, the other store
is delayed, so that the two stores do not occur at the same time? The race detector would miss
that data race. But in this case we can construct an alternative thread interleaving where the
concurrent stores do happen at the same time, and in this interleaving the race detector raises
UBÐthis reordering is possible because there is no atomic store in the omitted code. Since we can
assume that no interleaving raises UB, we are done.

3.2 Justifying Optimizations of Non-atomic Accesses via Ownership

We have seen that the correctness of optimizations of non-atomic accesses relies on some subtle
reasoning about UB and alternative thread interleavings. This section shows how we build a
verification technique for SimuLang that abstracts over these details and only exposes simple
yet powerful separation logic rules for justifying optimizations around non-atomic accesses. The
key insight is that we can use the presence of a non-atomic access to gain ownership of exposed
locations, which in turn enables many of the proof rules seen before for local locations to apply. For
the example above, we know that no other thread could access the location x without raising UB,
giving us exclusive ownership of x. With this ownership, we can prove that the load of x returns 42.
To make this argument formal, we prove the following quadruple:

{𝑥𝑡 ↔ℎ 𝑥𝑠 ∗ 𝑦𝑡 ↔ℎ 𝑦𝑠 ∗ exploit 𝜋 ∅}

𝑥𝑡 ← 42; !sc𝑦𝑡 ; 42 𝑥𝑠 ← 42; !sc𝑦𝑠 ; !𝑥𝑠⪯𝜋

{v𝑡 ,v𝑠 .v𝑡 = v𝑠 ∗ exploit 𝜋 ∅}

Note that this quadruple uses an atomic load from an escaped location𝑦 as a concrete but interesting
instance of the code between the store and the load.11 We also need a new logical assertion,
exploit 𝜋 ∅, that we will explain during the proof.

Rules for exploiting UB of non-atomic accesses. The first step of verifying the example
is to gain ownership of 𝑥𝑠 and 𝑥𝑡 by łexploitingž the non-atomic store to 𝑥𝑠 . We do this via the
rule exploit-store in Figure 8: it lets us acquire ownership of a source location ℓ𝑠 (here 𝑥𝑠 ↦→ srcv𝑠 )
and related target location ℓ𝑡 (here 𝑥𝑡 ↦→ tgtv𝑡 ) given a reachable non-atomic store in the source

10A detailed description of the data-race detector can be found in Jung [2020, ğ9.2] and Gäher et al. [2022, ğ2].
11We have also verified this example for arbitrary read-only code between the store and the load, but this requires some
further machinery that we omit for the purpose of presentation.
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exploit-store

𝐶 (ℓ𝑠 ) = ⊥ 𝑒𝑠 →
∗
? 𝐾 [ ℓ𝑠 ← v0 ]

∀v𝑡 ,v𝑠 .
{
ℓ𝑠 ↦→

srcv𝑠 ∗ ℓ𝑡 ↦→
tgtv𝑡 ∗ V v𝑡 v𝑠 ∗ exploit 𝜋 (𝐶, ℓ𝑠 ↦→Wr) ∗ 𝑃

}
𝑒𝑡 ⪯𝜋 𝑒𝑠 {𝛷}

{ℓ𝑡 ↔ℎ ℓ𝑠 ∗ exploit 𝜋 𝐶 ∗ 𝑃} 𝑒𝑡 ⪯𝜋 𝑒𝑠 {𝛷}

exploit-load

𝐶 (ℓ𝑠 ) = ⊥ 𝑒𝑠 →
∗
? 𝐾 [ !ℓ𝑠 ]

∀v𝑡 ,v𝑠 , 𝑞.
{
ℓ𝑠

𝑞
↦→ srcv𝑠 ∗ ℓ𝑡

𝑞
↦→ tgtv𝑡 ∗ V v𝑡 v𝑠 ∗ exploit 𝜋 (𝐶, ℓ𝑠 ↦→ Rd(𝑞)) ∗ 𝑃

}
𝑒𝑡 ⪯𝜋 𝑒𝑠 {𝛷}

{ℓ𝑡 ↔ℎ ℓ𝑠 ∗ exploit 𝜋 𝐶 ∗ 𝑃} 𝑒𝑡 ⪯𝜋 𝑒𝑠 {𝛷}

release-exploit

𝐶 (ℓ𝑠 ) = 𝑐 𝑞 = exploit_frac(𝑐) {exploit 𝜋 (𝐶 \ ℓ𝑠 ) ∗ 𝑃} 𝑒𝑡 ⪯𝜋 𝑒𝑠 {𝛷}
{
ℓ𝑠

𝑞
↦→ srcv𝑠 ∗ ℓ𝑡

𝑞
↦→ tgtv𝑡 ∗ V v𝑡 v𝑠 ∗ ℓ𝑡 ↔ℎ ℓ𝑠 ∗ exploit 𝜋 𝐶 ∗ 𝑃

}
𝑒𝑡 ⪯𝜋 𝑒𝑠 {𝛷}

exploit_frac(Rd(𝑞)) ≜ 𝑞 exploit_frac(Wr) ≜ 1

Fig. 8. Rules for exploiting and releasing ownership from non-atomic accesses.

program.12 These ownership assertions are the same as for local locations, which consequently
allows us to use the rules for loads and stores presented in Figure 3 (ğ2.1) for the verification of our
example. However, we need to ensure that exploit-store is not used twice for the same location,
as it is not sound to gain exclusive ownership of the same location twice. This is achieved via the
assertion exploit 𝜋 𝐶 , which tracks which locations have been exploited by the current thread 𝜋
via exploit-store. (exploit 𝜋 𝐶 is also relevant for other rules as we will see later.) exploit-store
first checks that ℓ𝑠 is currently not already exploited (via the side-condition 𝐶 (ℓ𝑠 ) = ⊥ which holds
trivially in our example since 𝐶 = ∅). Then it records that one has acquired ownership for ℓ𝑠 via a
store (denoted by Wr for łwritež) in 𝐶 (resulting in exploit 𝜋 (𝑥𝑠 ↦→ Wr) in our example). To be
able to talk about the łcurrent threadž, we also equip the simulation relation with a thread id 𝜋 .
The rule for exploiting loads exploit-load is similar to exploit-store except that it does not

provide full ownership but only fractional ownership [Boyland 2003; Bornat et al. 2005] with some
fraction 𝑞. This gives us permission to introduce extra loads in the target program, but we cannot
introduce extra stores as that would require full ownership. Correspondingly, exploit-load records
that one has acquired the fraction 𝑞 by adding Rd(𝑞) (for łreadž) to exploit 𝜋 𝐶 .

For our example, after using exploit-store and obtaining ownership of 𝑥𝑡 ↦→ tgtv𝑡 and 𝑥𝑠 ↦→ srcv𝑠
for somev𝑡 ,v𝑠 , we execute the stores in source and target and transform the ownership to 𝑥𝑡 ↦→ tgt 42

and 𝑥𝑠 ↦→ src 42. Next, we verify the atomic load in both source and target via the rule sim-load-sc in
Figure 9. This rule is similar to sim-load-escaped except that we need to prove that the location ℓ𝑠
(here 𝑦𝑠 ) is not in 𝐶 . (In fact, as we will see in ğ6, sim-load-escaped is no longer sound when adding
the ability to exploit non-atomic accesses and must be replaced by sim-load-na with a similar
sidecondition.) We only consider the case 𝑥𝑠 ≠ 𝑦𝑠 where this side-condition holds. (For 𝑥𝑠 = 𝑦𝑠 ,
we can use the ownership of 𝑥𝑠 gained earlier to perform the loads.) For the final load, we use
source-load to prove that the load in the source returns 42, which ensures that both sides return
the same value. Finally, we reestablish exploit 𝜋 ∅ by giving back 𝑥𝑡 ↦→ tgt 42 and 𝑥𝑠 ↦→ src 42 via
release-exploit, which lets us end the exploitation of a location.

12The notion of reachability 𝑒 →∗? 𝑒
′ used by exploit-store and exploit-load will be explained in ğ3.3 where it is

used in a non-trivial way.
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sim-load-sc

{𝐶 (ℓ𝑠 ) = ⊥ ∗ ℓ𝑡 ↔ℎ ℓ𝑠 ∗ exploit 𝜋 𝐶} !
scℓ𝑡 ⪯𝜋 !scℓ𝑠 {v𝑡 ,v𝑠 .V v𝑡 v𝑠 ∗ exploit 𝜋 𝐶}

sim-load-na

{𝐶 (ℓ𝑠 ) = ⊥ ∗ ℓ𝑡 ↔ℎ ℓ𝑠 ∗ exploit 𝜋 𝐶} !ℓ𝑡 ⪯𝜋 !ℓ𝑠 {v𝑡 ,v𝑠 .V v𝑡 v𝑠 ∗ exploit 𝜋 𝐶}

sim-store-sc

{ℓ𝑡 ↔ℎ ℓ𝑠 ∗ V v𝑡 v𝑠 ∗ exploit 𝜋 ∅} ℓ𝑡 ←
sc v𝑡 ⪯𝜋 ℓ𝑠 ←

sc v𝑠
{
v ′𝑡 ,v

′
𝑠 .v
′
𝑡 = () ∗v

′
𝑠 = () ∗ exploit 𝜋 ∅

}

sim-call-revised

{V v𝑡 v𝑠 ∗ exploit 𝜋 ∅} call f v𝑡 ⪯𝜋 call f v𝑠
{
v ′𝑡 ,v

′
𝑠 .V v ′𝑡 v

′
𝑠 ∗ exploit 𝜋 ∅

}

Fig. 9. Some revised rules.

Returning ownership and revised rules. At this point, one may wonder what forces us to
ever give up ownership of exploited locations. Intuitively, it is only sound to retain ownership until
the thread synchronizes with other threadsÐif there is proper synchronization, there is no data
race, and thus no UB. It turns out that for SimuLang, we only need to be concerned with atomic
stores here: atomic loads do not release any information to other threads, so they cannot be used by
those threads to avoid data races. Hence, the rule for atomic stores sim-store-sc in Figure 9 requires
giving up ownership of all exploited locations.13 This is enforced via the precondition exploit 𝜋 ∅: to
establish exploit 𝜋 ∅, one has to stop exploiting any location by applying release-exploit, which in
turn requires giving up ownership of the exploited locations. exploit_frac determines which fraction
needs to be returned. The values stored at these locations must be related byV to reestablish the
invariant that all escaped non-exploited locations contain related values (similar to loc-escape).

The exploit 𝜋 ∅ precondition of sim-store-sc also explains why the postcondition in the example
from ğ3.2 needs to contain exploit 𝜋 ∅: since we do not know the following code, it could perform
an atomic store so we need to provide it with exploit 𝜋 ∅. For similar reasons, the revised rule
sim-call-revised for calling unknown functions also has that precondition (and postcondition).

3.3 Combining Data-Race Exploitation and Coinductive Reasoning

To finish up the expository part of this paper, we revisit the example from ğ1. This will demonstrate
the benefit of the unifying logic provided by Simuliris: we can seamlessly combine the reasoning
principles presented in this section with the coinduction principles for loops from ğ2.4 to verify the
challenging optimization in Figure 10, hoisting read accesses out of a (potentially diverging) loop.
The source program initializes a counter i and a result accumulator r. Then, it enters a loop

where each iteration increments r by the value stored at 𝑦𝑠 and increments i by 1, until i reaches
the value stored at 𝑥𝑠 . The optimized target program replaces the repeated loads of 𝑥𝑠 and 𝑦𝑠 with
a single load for each location, using n and m to store the loaded values.
With the rules in Figure 9 and while-coind it is straightforward to verify the optimization

in Figure 10: first, we use exploit-load twice to gain ownership of 𝑥𝑠 , 𝑥𝑡 , 𝑦𝑠 , and 𝑦𝑡 .14 Here, we
leverage that, for exploit-load to apply, it is sufficient for the non-atomic load to be reachable (via
the relation →∗? ). Intuitively, proving 𝑒𝑠 →

∗
? 𝑒
′
𝑠 requires constructing a (thread-local) execution

from 𝑒𝑠 to 𝑒 ′𝑠 starting in an arbitrary state. For this proof, one can assume that all executions of 𝑒𝑠
are safe (i.e., do not lead to UB). In the current example, both the load from 𝑦𝑠 and from 𝑥𝑠 can be

13We have also verified a stronger rule that allows retaining ownership over atomic stores if there is another non-atomic
access reachable after the atomic store. This allows to e.g., reorder non-atomic accesses before atomic stores.
14We only present the case where 𝑥𝑠 ≠ 𝑦𝑠 . The 𝑥𝑠 = 𝑦𝑠 case works the same except that we only use exploit-load once.
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{𝑥𝑡 ↔ℎ 𝑥𝑠 ∗ 𝑦𝑡 ↔ℎ 𝑦𝑠 ∗ exploit 𝜋 ∅}
let (n,m) := (!𝑥𝑡 , !𝑦𝑡 ) in

let (i, r) := (ref(0), ref(m)) in

while !i ≠ n do

𝑖 ← !i + 1; r← !r +m

od; !r

let (i, r) := (ref(0), ref(!𝑦𝑠 )) in

while !i ≠ !𝑥𝑠 do

𝑖 ← !i + 1; r← !r + !𝑦𝑠

od; !r

⪯𝜋

{v𝑡 ,v𝑠 .v𝑡 = v𝑠 ∗ exploit 𝜋 ∅}

Fig. 10. Simulation for the optimization from ğ1.

reached from the start of the program since both the code before the loop and the loop condition are
executed unconditionally. For reaching !𝑥𝑠 , one has to skip over !𝑦𝑠 . This is allowed since one can
assume that there is no undefined behavior in the source. One cannot assume anything about the
value returned by !𝑦𝑠 during the reachability proof, but this does not matter since !𝑥𝑠 is executed
regardless of which value is returned.
After acquiring ownership of 𝑥𝑠 , 𝑥𝑡 , 𝑦𝑠 , and 𝑦𝑡 , storing values v𝑥𝑠 , v

𝑥
𝑡 , v

𝑦
𝑠 , and v

𝑦
𝑡 with V v𝑥𝑡 v𝑥𝑠

and V v
𝑦
𝑡 v

𝑦
𝑠 , the rest of the verification is standard separation logic reasoning: we begin with

the loads from 𝑥𝑡 and 𝑦𝑡 in the target program, then we allocate i and r on both sidesÐusing the
ownership of 𝑦𝑠 to justify !𝑦𝑠 . After that, we apply while-coind with the loop invariant:

∃𝑧𝑖 ,v
𝑟
𝑡 ,v

𝑟
𝑠 . 𝑖𝑡 ↦→

tgt 𝑧𝑖 ∗ 𝑖𝑠 ↦→
src 𝑧𝑖 ∗ 𝑟𝑡 ↦→

tgtv𝑟𝑡 ∗ 𝑟𝑠 ↦→
srcv𝑟𝑠 ∗ 𝑥𝑡

𝑞𝑥
↦→ tgtv𝑥𝑡 ∗ 𝑥𝑠

𝑞𝑥
↦→ srcv𝑥𝑠 ∗ 𝑦𝑡

𝑞𝑦
↦→ tgtv

𝑦
𝑡 ∗

𝑦𝑠
𝑞𝑦
↦→ srcv

𝑦
𝑠 ∗ V v𝑟𝑡 v

𝑟
𝑠 ∗ V v𝑥𝑡 v

𝑥
𝑠 ∗ V v

𝑦
𝑡 v

𝑦
𝑠 ∗ exploit 𝜋 (𝑦𝑠 ↦→ Rd(𝑞𝑦), 𝑥𝑠 ↦→ Rd(𝑞𝑥 ))

This invariant might seem complicated, but it just contains ownership of all source and target
locations and ensures that they point to related values. With this invariant, it is straightforward
to verify the rest of the function. The optimization is justified because the loop invariant ensures
that 𝑥𝑠 always points to v𝑥𝑠 when the condition executes, which is related byV to the value v𝑥𝑡 used
in the target programÐthis makes sure that the comparison evaluates the same in both source and
target. A similar argument applies for optimizing the non-atomic load in the loop.

4 CONTEXTUAL REFINEMENT

We have seen how to prove simulations between source and target expressions with pre- and
postconditions. However, for program transformations we are interested in a different relation:
contextual refinement 𝑒𝑡 ⊑ctx 𝑒𝑠 . Contextual refinement ensures that a compiler can replace the
(possibly) open expression 𝑒𝑠 with the expression 𝑒𝑡 in any part of the program without introducing
additional behaviors. For instance, for the simple data race example (from ğ3.2) we want:

x← 42; !scy; 42 ⊑ctx x← 42; !scy; !x (data-race-ctx)

where x and y are free variables. In the following, we define contextual refinement for SimuLang (in
ğ4.1) and then show how it can be proven using the simulation relation {𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝛷} (in ğ4.2).

4.1 Fair Termination-Preserving Contextual Refinement

To define contextual refinement, we start by defining whole-program refinement. This is basically
standard, except that we have to account for our particular notion of łwhole programsž.
As already shown in Figure 2, a whole program is given by a list of function declarations.

In Figure 11, we show an excerpt of how program execution is defined: the current machine
configuration is given by a list of expressions (the thread pool) and the global state. The thread-pool
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𝑇 ∈ TPool ≜ List(Expr)

𝜎 ∈ State ≜ Loc
fin
−⇀ MemCell

Beh ∋ 𝑏 F V (v) | 𝜔 | ⊤

(𝐾 [fork{𝑒}], 𝜎) 𝜌−→ (𝐾 [()], 𝜎, [𝑒])

(𝑇 (𝜋), 𝜎) 𝜌−→ (𝑒 ′, 𝜎 ′, 𝑒 𝑓 )

(𝑇, 𝜎) 𝜌−→tp (𝑇 [𝜋 ↦→ 𝑒 ′] ++ 𝑒 𝑓 , 𝜎
′)

Fig. 11. Excerpt of the operational semantics of SimuLang.

step relation −→tp picks an arbitrary thread and performs a per-thread reduction step −→ . (Here, ++
is list concatenation, adding the new threads to the end of the threadpool.) As an example of a
per-thread step, we show the reduction rule for fork: the last component of the per-thread step
relation indicates a list of new threads that are created by this step. All step relations are indexed
by the list of functions 𝜌 , which is relevant for call expressions.

To execute a given program 𝜌 , we assume a fixed function name main indicating the entry point
of the program, so that the initial machine configuration of a whole-program execution is given by
I ≜ ( [call main ()], ∅): a single main thread, and the empty heap.15 The (always non-empty) set of
possible behaviors of this program is then defined by

B(𝜌) ≜
{
V (v) | I has a finite 𝜌−→tp execution where the main thread returns v

}

∪
{
𝜔 | I has a fair, infinite 𝜌−→tp execution

}

∪
{
⊤ | I can via 𝜌−→tp reach a configuration which is stuck

}

The last case defines when a program has undefined behavior (denoted by⊤): we follow the standard
approach of using stuck states to model undefined behavior. A program has reached a stuck state if
one of its threads is neither a value nor can it take another step of reduction. Various kinds of safety
violations cause programs to get stuck in our setting (e.g., accessing unallocated memory, data
races). Importantly, it is impossible to be stuck in a łgood wayž: we use a non-blocking concurrency
model, which means that there are no synchronization operations that halt the execution of one
thread (in a good way) until another thread makes progress.

Moving to the case of a diverging program execution (denoted by 𝜔), we crucially only consider
fair infinite executions using the traditional definition of weak fairness [Lehmann et al. 1981]: an
infinite execution of a thread pool is fair if every thread which is eventually always enabled does
always eventually take a step. We consider a thread to be enabled when it can take a step:

enabled(𝜌, 𝜎,𝑇 , 𝜋) ≜ ∃𝑒, 𝑒 ′, 𝜎 ′. 𝑇 (𝜋) = 𝑒 ∧ (𝑒, 𝜎) 𝜌−→ (𝑒 ′, 𝜎 ′)

Since Simuliris uses a non-blocking concurrency model, this notion of fairness is equivalent to
saying: each thread will either terminate in a value or take infinitely many steps.16

Refinement. We define a notion of refinement on behaviors as follows:

V (v𝑡 ) ⊑beh V (v𝑠 ) if O(v𝑡 ,v𝑠 ) 𝜔 ⊑beh 𝜔 𝑏 ⊑beh ⊤

In particular, if a program has undefined behavior in the source, then any target behavior is allowed.
Here, O defines the possible observations on return values. For SimuLang, this is mostly defined as
equality, except that we assume that no observations are possible on locations, so O(ℓ𝑡 , ℓ𝑠 ) holds

15In our formal development, we also support non-empty initial heaps.
16This equivalence only holds for executions that do not get stuck, but programs that do get stuck anyway have undefined
behavior.
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for any two locations (as is standard). We can lift this notion of refinement to programs:

𝜌𝑡 ⊑prog 𝜌𝑠 ≜ ∀𝑏t ∈ B(𝜌𝑡 ). ∃𝑏s ∈ B(𝜌𝑠 ). 𝑏t ⊑beh 𝑏s

And finally, we lift this to contextual refinement of open terms by quantifying over an arbitrary
closing context:

𝑒𝑡 ⊑ctx 𝑒𝑠 ≜ ∀𝜌, 𝑓 , 𝑥,𝐶. (FreeVars(𝐶 [𝑒𝑡 ]) ∪ FreeVars(𝐶 [𝑒𝑠 ]) ⊆ {𝑥}) ∧ wf (𝐶) ∧

(∀(𝑓 ′ 𝑥 ′ ≜ 𝑒 ′) ∈ 𝜌. FreeVars(𝑒 ′) ⊆ {𝑥 ′} ∧ wf (𝑒 ′)) ⇒

(𝑓 𝑥 ≜ 𝐶 [𝑒𝑡 ], 𝜌) ⊑prog (𝑓 𝑥 ≜ 𝐶 [𝑒𝑠 ], 𝜌)

The łclosing contextž consists of two parts: a context𝐶 (i.e., an expression with a hole at an arbitrary
place) to turn the expressions into function bodies (with the argument variable 𝑥 as the only free
variable), and a program 𝜌 to supply all the other functions of the program (which must also be
appropriately closed). Furthermore, both context and program must not contain any location values,
which is captured by the well-formedness predicate wf.

4.2 Logical Relation

Now that we have defined contextual refinement, the question isÐhow can we prove it? Here we
follow the usual recipe of (language-specific) logical relations. We already have a powerful simulation
relation that works on closed expressions. We can lift it to open expressions by quantifying over
a closing substitution 𝛾 that replaces free variables by related valuesÐhere we reuse the value
relationV that we already used for external function calls:

𝑒𝑡 ≤log 𝑒𝑠 ≜ ∀𝛾 : FreeVars(𝑒𝑡 ) ∪ FreeVars(𝑒𝑠 ) → Val × Val.

{exploit 𝜋 ∅ ∗ ∀𝑥,v𝑡 ,v𝑠 . 𝛾 (𝑥) = (v𝑡 ,v𝑠 ) ⇒ V v𝑡 v𝑠 } 𝛾tgt (𝑒𝑡 ) ⪯ 𝛾src (𝑒𝑠 )
{
v ′𝑡 ,v

′
𝑠 . exploit 𝜋 ∅ ∗ V v ′𝑡 v

′
𝑠

}

Here we use 𝛾src and 𝛾tgt to refer to the source and target projections of 𝛾 (which assigns two values
to each free variable), respectively. The final values that the terms reduce to must also be in the
value relation. As in sim-call-revised, we also ensure no data-race exploitation is ongoing at the
beginning and end of this simulation.
As one would expect from a logical relation, ≤log is compatible with all expression formers, in

the sense that when all subexpressions are related, then so are the compound expressions. This
gives rise to the fundamental theorem of our logical relation, and the fact that it is a precongruence
with respect to language contexts:

Theorem 4.1 (Fundamental Theorem). Let 𝑒 be a well-formed expression. Then 𝑒 ≤log 𝑒 .

Theorem 4.2 (Contextual closure). Assume 𝑒𝑡 ≤log 𝑒𝑠 and wf (𝐶). Then 𝐶 [𝑒𝑡 ] ≤log 𝐶 [𝑒𝑠 ].

As usual, the fundamental theorem establishes that the logical relation is reflexiveÐfor terms
that do not contain literal location values ℓ .

The core property of the logical relation is that it can be used to establish contextual refinement:

Statement 4.3 (Adeqacy). If 𝑒𝑡 ≤log 𝑒𝑠 , then 𝑒𝑡 ⊑ctx 𝑒𝑠 .

We prove Statement 4.3 in the next section (see Theorem 5.2).
How does this help to establish our contextual refinement example (data-race-ctx)? First we

can apply adequacy, which turns the goal into x ← 42; !scy; 42 ≤log x ← 42; !scy; !x. Now we
unfold the definition of ≤log: the closing substitution 𝛾 will assign a source and target value to each
free variable, and we learn that those values are related. The free variables of our example are x
and y, so we obtain almost exactly the statement we proved in ğ3.2. The only difference is that we
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sim 𝑒𝑡 𝑒𝑠 𝛷 = ∀𝜎𝑡 , 𝜎𝑠 , 𝜌𝑡 , 𝜌𝑠 . S(𝜌𝑡 , 𝜎𝑡 , 𝜌𝑠 , 𝜎𝑠 ) ∗ safe(𝜌𝑠 , 𝑒𝑠 , 𝜎𝑠 ) −∗ |⇛
(
Base case: ∃𝑒 ′𝑠 , 𝜎

′
𝑠 . (𝑒𝑠 , 𝜎𝑠 )

𝜌𝑠−−→
∗
(𝑒 ′𝑠 , 𝜎

′
𝑠 ) ∗ S(𝜌𝑡 , 𝜎𝑡 , 𝜌𝑠 , 𝜎

′
𝑠 ) ∗𝛷 𝑒𝑡 𝑒

′
𝑠

)
∨

(
Step case: reducible(𝜌𝑡 , 𝑒𝑡 , 𝜎𝑡 ) ∗ ∀𝑒

′
𝑡 , 𝜎
′
𝑡 ,𝑇𝑡 . (𝑒𝑡 , 𝜎𝑡 )

𝜌𝑡−−→ (𝑒 ′𝑡 , 𝜎
′
𝑡 ,𝑇𝑡 ) −∗ |⇛

(
Source stutter: 𝑇𝑡 = [] ∗ S(𝜌𝑡 , 𝜎

′
𝑡 , 𝜌𝑠 , 𝜎𝑠 ) ∗ sim 𝑒 ′𝑡 𝑒𝑠 𝛷

)
∨

(
Source step: ∃𝑒 ′𝑠 , 𝑒

′′
𝑠 , 𝜎

′
𝑠 , 𝜎
′′
𝑠 ,𝑇s . (𝑒𝑠 , 𝜎𝑠 )

𝜌𝑠−−→
∗
(𝑒 ′𝑠 , 𝜎

′
𝑠 ) ∗ (𝑒

′
𝑠 , 𝜎
′
𝑠 )

𝜌𝑠−−→ (𝑒 ′′𝑠 , 𝜎
′′
𝑠 ,𝑇𝑠 ) ∗

S(𝜌𝑡 , 𝜎
′
𝑡 , 𝜌𝑠 , 𝜎

′′
𝑠 ) ∗ sim 𝑒 ′𝑡 𝑒

′′
𝑠 𝛷 ∗ |𝑇𝑡 | = |𝑇𝑠 | ∗ ∗

(𝑒′′′𝑡 ,𝑒′′′𝑠 ) ∈ zip(𝑇𝑡 ,𝑇𝑠 )

sim 𝑒 ′′′𝑡 𝑒 ′′′𝑠 V
) )

Fig. 12. Simplified simulation weakest precondition.

only learn that 𝑥𝑡 and 𝑥𝑠 (and 𝑦𝑡 and 𝑦𝑠 ) are in the value relation, not that they are related escaped
locationsÐbut the proof is easily adjusted to this.
In other words, to prove correctness of optimizations that replace 𝑒𝑠 by 𝑒𝑡 anywhere in the

program, it is sufficient to establish 𝑒𝑡 ≤log 𝑒𝑠Ðwhich we can in turn do with the proof techniques
we have introduced in the previous two sections.

5 MODEL AND ADEQUACY

Now that we have stated adequacy, the question of course is: how can we prove it? To discuss this
proof, we first explain how our relational Hoare quadruples are defined (in ğ5.1), and then we give
an idea of the key lemma that enables the adequacy proof of the logical relation (in ğ5.2). Most of
what we discuss in this section is defined in a language-generic way, so while the definitions and
proofs are involved, they have to be done only once and can be reused many times.

5.1 Simulation Relation

The simulation relation {𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝛷} forms the heart of Simuliris. It is itself defined in separation
logic; more specifically, it is defined in a variant of Iris [Jung et al. 2018b] that we dub Irislight.
Irislight is essentially łIris without the step-indexingž: we keep the basic logic of bunched implica-
tions [O’Hearn and Pym 1999] and the persistence modality, but we ignore all the step-indexing
aspects of Iris (e.g., the later modality ⊲ 𝑃 , guarded recursion, and impredicative invariants). Techni-
cally, instead of defining a new logic, we found it easier to literally reuse the model of Iris itself, but
fix the step-index to be 0. This lets us directly use all of the Iris infrastructure.
Inspired by Iris’s weakest precondition, we define the simulation relation as

{𝑃} 𝑒𝑡 ⪯ 𝑒𝑠 {𝛷} ≜ �(𝑃 −∗ sim 𝑒𝑡 𝑒𝑠 𝛷)

where sim 𝑒𝑡 𝑒𝑠 𝛷 is the weakest precondition that we need to impose such that 𝑒𝑠 simulates 𝑒𝑡 with
postcondition𝛷 , and the persistence modality � ensures that the simulation relation is duplicable
(i.e., the fact that 𝑒𝑠 simulates 𝑒𝑡 can be used arbitrarily many times). The interesting part of this
definition is, of course, sim 𝑒𝑡 𝑒𝑠 𝛷 itself. A simplified17 version of sim 𝑒𝑡 𝑒𝑠 𝛷 is shown in Figure 12,
with a focus on our four essential features: ownership reasoning, undefined behavior, concurrency,
and fair termination preservation.

17The simplified version glosses over two details: an extension for exploiting UB of data races (see ğ6) and an additional
case for skipping function calls to obtain an open simulation. A complete definition can be found in the supplementary
material [Gäher et al. 2022, ğ1].

Proc. ACM Program. Lang., Vol. 6, No. POPL, Article 28. Publication date: January 2022.



28:20 L. Gäher, M. Sammler, S. Spies, R. Jung, H.-H. Dang, R. Krebbers, J. Kang, and D. Dreyer

We assume that the setup of the language roughly matches SimuLang in the sense that there is a
per-thread step relation 𝜌−→ indexed by some łprogramž that maps function names to łfunction
bodiesž (the definition of which is left up to the language). We write (𝑒, 𝜎) 𝜌−→ (𝑒 ′, 𝜎 ′) for a step
where no threads are forked off. Finally, we say that an expression 𝑒 is safe in state 𝜎 and program 𝜌 ,
written safe(𝜌, 𝑒, 𝜎), if it cannot reach a stuck configuration, i.e., a state and expression which is
neither a value nor reducible, in any number of steps.
We start the explanation of sim with a discussion of the general structure, before we focus

on the four essential features. In general, the simulation weakest precondition factors into two
cases: the base case and the step case. In the base case, we have reached the postcondition: we
allow executing some more steps of the source expression (for target stuttering) and afterwards
we prove the postcondition𝛷 𝑒𝑡 𝑒

′
𝑠 , which is a separation-logic assertion and thus can also make

statements about the final states. We do not generally require termination in the base case in order
to enable while-paco, but termination can be stated in the postcondition by requiring 𝑒𝑡 and 𝑒 ′𝑠 to
be values. In the step case, we have to prove that 𝑒𝑡 is reducible and that for each target step we can
find a matching source stepÐor perform source stuttering. In the source stutter case, we can relate
the new target expression 𝑒 ′𝑡 to the same source expression. In the source step case, we have to
execute at least one source step (but we can execute more, which again would be target stuttering).
The source has to fork exactly as many threads as the target step. We then have to show that the
resulting target expression simulates the source expression.

Ownership reasoning. The support for ownership reasoning in Simuliris is inherited from
Irislight. In particular, the update modality |⇛𝑃 expresses that we are allowed to perform frame-

preserving updates on the ghost state in order to obtain the resources satisfying 𝑃 . This incorporates
the Iris approach to ghost state [Jung et al. 2018b] into Simuliris.

The state interpretation S(𝜌𝑡 , 𝜎𝑡 , 𝜌𝑠 , 𝜎𝑠 ) connects that ghost state to the physical states 𝜎𝑡 and 𝜎𝑠
of the target and source program. (This follows the same setup as typical Hoare triples in Iris.)
For example, in SimuLang, the state interpretation governs which locations are currently local
and which are escaped. It also ensures that all escaped locations store values related in the value
relationV . Additionally, it connects the target and source programs 𝜌𝑡 and 𝜌𝑠 to separation logic
assertions that provide knowledge of a function’s source code, to enable local reasoning when
calling them. (This is not needed for the examples so we have omitted it from the paper.)

Concurrency. Our simulation relation enforces a one-to-one mapping between threads in the
source and target programs: for each thread forked in the target, there must be a matching thread
simulating it in the source. This is restrictive, but sufficient for the vast majority of compiler
optimizationsÐand it is crucial to our proof of fair termination preservation.

Note how in the source step case, we use a separating conjunction to concisely express that the
simulation proofs of the forked-off threads, and of the original thread, are all based on disjoint
resources.18 This ensures that the simulation of one thread does not interfere with the resources
required by another thread.

Undefined behavior. We model UB via stuck expressions. Thus, the assumption that the source
does not have UB is reflected in sim by assuming safe(𝜌𝑠 , 𝑒𝑠 , 𝜎𝑠 ). This is exploited by the 𝑒𝑠 ⇝ 𝑄

judgement that we have seen in ğ2.3, which is defined as:

𝑒𝑠 ⇝ 𝑄 ≜ (∀𝜌𝑠 , 𝜎𝑠 . safe(𝜌𝑠 , 𝑒𝑠 , 𝜎𝑠 ) ⇒ 𝑄)

18For the postcondition of the forked-off threads, we require the value relation V , overloading the notation to implicitly lift
it to a relation on expressions: V 𝑒𝑡 𝑒𝑠 ≜ ∃v𝑡 ,v𝑠 . 𝑒𝑡 = v𝑡 ∗ 𝑒𝑠 = v𝑠 ∗ V v𝑡 v𝑠 .
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𝑒𝑡 ≤log 𝑒𝑠

𝜌𝑡 ≤prog 𝜌𝑠

𝑒𝑡 ⊑ctx 𝑒𝑠

𝜌𝑡 ⊑prog 𝜌𝑠

(language-specific)

(language-independent)

Theorem 5.2

Lemma 5.1

Logic Level Meta Level

Fig. 13. Overview of the proof of Statement 4.3 (proven in Theorem 5.2) in terms of Lemma 5.1.

Fair termination preservation. Where do fairness and termination preservation factor into
the definition? As already mentioned, we simulate threads pairwise. Thus, if we did a lockstep
simulation, then fair termination preservation would be easy: for every target step, there would be
exactly one source step of the corresponding thread. Hence, if the target diverges, then the source
divergesÐand both executions execute threads in the same order, so fairness is preserved.
What makes fairness and termination preservation challenging is implicit stuttering. We have

seen that implicit stuttering is quite useful for reasoning about target and source individually
without counting the steps (e.g., see source-focus). Here we have to pay the price: given a fair
diverging execution of the target, we have to ensure that no source thread gets łforgottenž for too
long such that the corresponding source execution is still fair.
To achieve this, we use a mixed fixed-point to define sim. More specifically, we nest two fixed-

points: a greatest fixed-point and a least fixed-point. We define sim ≜ 𝜈𝐺.𝜇𝐿. simbody(𝐺, 𝐿) where
simbody is what we obtain in Figure 12 if we replace the red occurrences of sim with 𝐺 (łgreatest
fixed-pointž) and the blue occurrence with 𝐿 (łleast fixed-pointž). The resulting definition satisfies
sim = simbody(sim, sim), but it is neither the greatest nor the least fixed-pointÐit is in between.

The greatest fixed-point part of it gives rise to a language-independent parametric coinduction
principle, from which language-specific rules such as while-paco can be derived. The least fixed-
point on the inside ensures that we can stutter the source, but we can only do so finitely often,
which will be crucial for the adequacy proof of fair termination preservation.

5.2 Adequacy

Equipped with the simulation relation, we turn to our main result, Statement 4.3, the adequacy
of the logical relation. The proof proceeds in multiple steps: As a stepping stone, we define a
logical whole-program relation 𝜌𝑡 ≤prog 𝜌𝑠 and show in Lemma 5.1 that it implies whole-program
refinement. This part is the heart of our adequacy proof and is language-independent. Using the
stepping stone, we show that ≤log implies ⊑ctx in Theorem 5.2. This part is fairly straight-forward
and language-specific. The proof steps are sketched in Figure 13.
We define 𝜌𝑡 ≤prog 𝜌𝑠 by lifting the simulation relation to whole programs:

𝜌𝑡 ≤prog 𝜌𝑠 ≜ ∀(𝑓 𝑥 ≜ 𝑒𝑠 ) ∈ 𝜌𝑠 . ∃(𝑓 𝑥 ≜ 𝑒𝑡 ) ∈ 𝜌𝑡 . ∀v𝑡 ,v𝑠 . {V v𝑡 v𝑠 } 𝑒𝑡 [v𝑡/𝑥] ⪯ 𝑒𝑠 [v𝑠/𝑥] {V}

That is, for every source function 𝑓 𝑥 ≜ 𝑒𝑠 , there must be an implementation 𝑓 𝑥 ≜ 𝑒𝑡 in the
target such that if we insert related values into the function bodies 𝑒𝑡 and 𝑒𝑠 , then the resulting
target expression simulates the resulting source expression. (The definition of how to substitute
the argument into the function body is left to the language.) This definition satisfies:

Lemma 5.1 (Whole-program adeqacy). If S(𝜌𝑡 , ∅, 𝜌𝑠 , ∅) ∗ 𝜌𝑡 ≤prog 𝜌𝑠 , then 𝜌𝑡 ⊑prog 𝜌𝑠 .

Proof Sketch. The proof of this lemma factors into two steps. Step one is concerned with the
fact that sim is an open simulation that can skip matching function calls (sim-call), which we
omitted from Figure 12. We prove that this open simulation implies a closed simulation that looks
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almost exactly like Figure 12. This proof ties the big recursive knot over all the mutually recursive
function definitions in the source and target programs. It essentially łinlinesž the simulation of the
calls that were skipped. Since open simulations are a well-known technique [Kang et al. 2015; Hur
et al. 2012], we do not focus on them here.
In the second step, we prove that the closed simulation implies whole-program refinement.

Roughly speaking, this step factors into three cases (corresponding to the cases of B(𝜌)):

(1) Undefined Behavior. To prove that the target does not have UB, we leverage reducibility in
the step case in Figure 12. That is, the target will never be stuck, because all the expressions
it can reach are reducible.

(2) Result Value. To prove that the target only terminates with values that are also possible in
the source, we leverage the postcondition: if the target terminates, then the postcondition
ensures that the source must also terminate in a value and both satisfyV . The value relation,
in turn, implies that the result values are related by O.

(3) Fair Divergence. Proving that a fair diverging target execution implies a fair diverging source
execution is by far the most challenging case. Intuitively, we are termination-preserving
because we do not allow infinite stuttering (since stuttering uses a least fixpoint), and we are
fair termination-preserving because we simulate threads in a one-to-one correspondence.
Unfortunately, there is a caveat to this intuitive argumentÐin a sense, through stuttering, the
order in which threads are executed can change. For example, we can delay the execution of
some source steps in one thread until steps in another thread have passed. Nevertheless, the
heart of the intuitive argument can still be recovered (with a coinduction and three nested
inductions)19 and, hence, we obtain fair termination preservation. □

We now have all the pieces that we need to prove our main theorem, following the structure laid
out in Figure 13 (reading the arrows backwards, since we are doing a goal-directed proof).

Theorem 5.2 (Adeqacy, Statement 4.3). If 𝑒𝑡 ≤log 𝑒𝑠 , then 𝑒𝑡 ⊑ctx 𝑒𝑠 .

Proof Sketch. We assume some well-formed closing program 𝜌 and a closing context 𝐶 . Let
us define 𝜌𝑡 ≜ (𝑓 𝑥 ≜ 𝐶 [𝑒𝑡 ]), 𝜌 and 𝜌𝑠 ≜ (𝑓 𝑥 ≜ 𝐶 [𝑒𝑠 ]), 𝜌 . It remains to show 𝜌𝑡 ⊑prog 𝜌𝑠 .
With Lemma 5.1, it suffices to show S(𝜌𝑡 , ∅, 𝜌𝑠 , ∅) ∗ 𝜌𝑡 ≤prog 𝜌𝑠 . A proof of the initial state interpre-
tation S(𝜌𝑡 , ∅, 𝜌𝑠 , ∅) is assumed to be supplied by the specific language instance of Simuliris. The
required whole-program refinement follows from 𝑒𝑡 ≤log 𝑒𝑠 and contextual closure of ≤log (for the
function 𝑓 ), and from reflexivity of the logical relation (for all the other functions). □

6 SOUNDNESS OF EXPLOITING NON-ATOMIC ACCESSES

This section explains the core of the soundness argument for the rules that exploit undefined
behavior of non-atomic accesses in SimuLang for optimizations from ğ3.

The state interpretation. To understand how exploit-store hands out ownership of escaped
locations, we first need to see how the ownership of escaped locations is managed in general.
The basic idea is that we maintain a bijection between the escaped locations in the source and
target programs, and ensure that matching locations carry related values. This is expressed by the
heapbij(𝐻 ) predicate that is part of the state interpretation S and is (roughly) defined as follows:20

heapbij(𝐻 ) ≜ ∃𝐿. bijauth(𝐿) ∗∗(ℓ𝑡 ,ℓ𝑠 ) ∈𝐿 ∃𝑞ℎ,v𝑡 ,v𝑠 . 𝐻 (ℓ𝑠 , 𝑞ℎ) ∗ V v𝑡 v𝑠 ∗ ℓ𝑡
𝑞ℎ
↦→ tgtv𝑡 ∗ ℓ𝑠

𝑞ℎ
↦→ srcv𝑠

Here, the set 𝐿 is the bijection containing the escaped locations. The assertion bijauth(𝐿) represents
ownership of Iris ghost state which tracks full knowledge of the current bijection. The ℓ𝑡 ↔ℎ ℓ𝑠 that

19For space reasons, we are omitting the details from the paper.
20Technically, heapbij uses a slightly non-standard notion of points-to predicates that is defined for 𝑞 = 0 (as True).
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we have already seen talks about the same ghost state and reflects knowledge that (ℓ𝑡 , ℓ𝑠 ) is in the
bijection 𝐿. This is realized with the standard Iris mechanism of łauthoritative ghost statež [Jung
et al. 2018b]; the details of this technique do not matter here.
heapbij further says that for every pair of locations in 𝐿, we have ownership of those locations

and their values are in the value relation. Since heapbij is part of the state interpretation S, each
thread can use this ownership to justify executing a step, but it has to give it back at the end of the
instruction and cannot keep the ownership between instructions.
However, to justify exploit-store and exploit-load, we need to remove (some part of) this

ownership from heapbij. This is the purpose of the𝐻 parameter of heapbij: this relation determines
which fraction 𝑞ℎ is stored in heapbij for each escaped location ℓ𝑠 . A simple state interpretation
would just use𝐻 (ℓ𝑠 , 𝑞ℎ) ≜ 𝑞ℎ = 1 and for such a state interpretation one can prove sim-load-escaped
from ğ2.2. However, for exploiting data races we need a more complicated 𝐻 that lets us store
less than the full fraction for exploited locations. In particular, assume that the list 𝐶 contains the
collections of exploited locations for all threads (i.e., the collection of thread 𝜋 is 𝐶𝜋 and is exposed
through the assertion exploit 𝜋 𝐶𝜋 ). Then, for each location ℓ𝑠 , the fraction 𝑞ℎ stored in heapbij
and the fractions handed out through exploitation should sum up to 1:21

𝐻𝐶 (ℓ𝑠 , 𝑞ℎ) ≜ 1 = 𝑞ℎ +
∑︁

𝜋





exploit_frac(𝑐) if 𝐶𝜋 (ℓ𝑠 ) = 𝑐

0 otherwise

While the above choice of 𝐻 allows us to remove ownership from heapbij, this does not come for
free. In particular, the ownership inside heapbijwas used to justify rules like sim-load-escaped. How
can such a rule still be sound if there is no ownership in heapbij? This is where data races come in.
The basic idea is simple: we can only remove ownership from heapbij if we prove that each access
expecting this ownership to be in heapbij has a data race and thus need not be considered.
Concretely, consider the case where thread 𝜋 uses exploit-store to remove the ownership of

a location ℓ𝑠 from heapbij. Now another thread 𝜋 ′ tries to load ℓ𝑠 but does not find the necessary
ownership to justify the load in heapbij. So instead we show that there must be an execution with a
data race: we know that thread 𝜋 can reach a non-atomic store (due to the premise of exploit-store)
and thread 𝜋 ′ is ready to perform a loadÐand these two accesses form a data race, so we are done!

To make this argument formal, we need to make sure that for each 𝑐 such that 𝐶𝜋 (ℓ𝑠 ) = 𝑐 there
is a safe configuration (i.e., a thread pool 𝑇 and a state 𝜎), where thread 𝜋 can reach a non-atomic
store (if 𝑐 = Wr) or a non-atomic load (if 𝑐 = Rd(𝑞)).22 That safe configuration must be the current
source configuration, except that thread 𝜋 can differ. Formally speaking:

exploit_wf (𝜌𝑠 , 𝜎𝑠 ,𝑇𝑠 ,𝐶) ≜ ∀𝜋, ℓ𝑠 , 𝑐 . 𝐶𝜋 (ℓ𝑠 ) = 𝑐 ⇒

∃𝐾, 𝑒,v. pool_safe(𝜌𝑠 ,𝑇𝑠 [𝜋 ↦→ 𝑒], 𝜎𝑠 ) ∧ 𝑒 →
∗
? 𝐾 [𝑐 = Wr ? ℓ𝑠 ← v : !ℓ𝑠 ]

𝑒𝑠 →
∗
? 𝑒
′
𝑠 ≜ ∀𝜌𝑠 , 𝜎𝑠 . safe(𝜌𝑠 , 𝑒𝑠 , 𝜎𝑠 ) ⇒ ∃𝜎

′
𝑠 . (𝑒𝑠 , 𝜎𝑠 )

𝜌𝑠−−→
∗
(𝑒 ′𝑠 , 𝜎

′
𝑠 )

One can view exploit_wf as keeping track of alternative interleavings where thread 𝜋 is łpausedž
while the other source threads step along with the target. Since all interleavings must be data-race
free, demonstrating a race in one of these alternative interleavings is sufficient. The reachability
relation →∗? is defined as described in ğ3.3, i.e., 𝑒 ′𝑠 is reachable from 𝑒𝑠 via a thread-local execution
from an arbitrary state under the assumption that 𝑒𝑠 is safe.

In the above scenario where the thread 𝜋 has exploited ℓ𝑠 with𝐶𝜋 (ℓ𝑠 ) = Wr and another thread 𝜋 ′

is ready to perform a load of ℓ𝑠 (i.e., 𝑇𝑠 (𝜋 ′) = 𝐾 ′[!ℓ𝑠 ]), exploit_wf implies pool_safe(𝜌𝑠 ,𝑇𝑠 [𝜋 ′ ↦→

21The additional𝐶 parameter of this 𝐻 is fixed before it is passed to heapbij as shown later.
22pool_safe(𝜌𝑠 ,𝑇𝑠 , 𝜎𝑠 ) is similar to safe(𝜌𝑠 , 𝑒𝑠 , 𝜎𝑠 ) except for a thread pool𝑇𝑠 instead of an expression 𝑒𝑠 .
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𝐾 ′[!ℓ𝑠 ]] [𝜋 ↦→ 𝐾 [ℓ𝑠 ← v]], 𝜎 ′𝑠 ) (by executing thread 𝜋 to reach the store). This supposedly safe
thread pool has a data race between the load and the store, and thus is not safeÐa contradiction!

To finish the proof of the rule for loading from escaped locations, we need to consider one more
case: what if the thread 𝜋 that exploited ℓ𝑠 is also the thread 𝜋 ′ performing the load, i.e., 𝜋 = 𝜋 ′?
Then there is no data race as a thread cannot race with itself. Thus, the load rule cannot apply
in this situation. We hence weaken sim-load-escaped to not permit loading from locations that
are being exploited by the current thread and arrive at sim-load-na. This argument also works for
atomic loads and thus also gives us a proof of sim-load-sc.
Now we have all the ingredients to define the state interpretation S:

S(. . . , 𝜌𝑠 , 𝜎𝑠 ,𝑇𝑠 ) ≜ . . . ∗ ∃𝐶. exploitauth(𝐶) ∗ exploit_wf (𝜌𝑠 , 𝜎𝑠 ,𝑇𝑠 ,𝐶) ∗ heapbij(𝐻𝐶 )

We make use of the fact that our full simulation relation gives the state interpretation access
to the source program 𝜌𝑠 and the current source thread pool 𝑇𝑠 . We omit the parts of the state
interpretation that are responsible for defining the points-to predicates.𝐶 is linked to the exploit 𝜋 𝐶
assertions via the authoritative exploitauth(𝐶). exploit_wf and heapbij appear as described above.

Proving exploit-store. With the state interpretation in hand, let us see how we can prove
exploit-store (exploit-load is analogous), assuming exploit 𝜋 𝐶 and ℓ𝑡 ↔ℎ ℓ𝑠 from the precondition
as well as 𝐶 (ℓ𝑠 ) = ⊥ and 𝑒𝑠 →∗? 𝐾 [ ℓ𝑠 ← v0 ]. There are two cases to consider.

Suppose no thread has exploited ℓ𝑠 . In this case we know that heapbij contains the full ownership
of ℓ𝑠 and ℓ𝑡 . We add ℓ𝑠 ↦→Wr to 𝐶 which allows us to remove this ownership from heapbij and we
can establish exploit_wf for the modified collection by adding pool_safe(𝜌𝑠 ,𝑇𝑠 , 𝜎𝑠 ) for the current
thread pool and source state.23

Alternatively, there is another thread that has exploited ℓ𝑠 (we know that this cannot be the
current thread thanks to the𝐶 (ℓ𝑠 ) = ⊥ precondition). But then we can construct a data race between
the non-atomic access used to justify the exploitation by the other thread and the non-atomic
access given to exploit-store and we are done.

Maintaining the state interpretation. We have seen proof sketches for some of the rules,
but there is an important proof obligation that we have not discussed so far: for each opera-
tion we need to prove that it maintains the state interpretation. Since the state interpretation is
parametrized by the thread pool, this is non-trivial even for pure operations! In particular, for
reestablishing exploit_wf (𝜌𝑠 , 𝜎 ′𝑠 ,𝑇

′
𝑠 ,𝐶) for the new thread pool 𝑇 ′𝑠 and state 𝜎 ′𝑠 , we need to update

the pool_safe(𝜌𝑠 ,𝑇 ′𝑠 [𝜋 ↦→ 𝑒], 𝜎 ′𝑠 ) assertions for exploited locations (i.e., making sure that we can
still construct data races for conflicting accesses).

For a pure step in thread 𝜋 ′, we consider two cases: if 𝜋 ≠ 𝜋 ′, we can just replay the step in the
alternative configuration of pool_safe(𝜌𝑠 ,𝑇𝑠 [𝜋 ↦→ 𝑒], 𝜎𝑠 ). (Basically, we are reordering this step
around the exploited non-atomic access.) If 𝜋 = 𝜋 ′, we can ignore this step since only the other
threads matter (𝑇𝑠 [𝜋 ↦→ 𝑒] overwrites the current thread) and the state 𝜎𝑠 do not change.
However, the latter case is more complicated for steps that interact with the heap and where

possibly 𝜎 ′𝑠 ≠ 𝜎𝑠 . Most of these operations can be dealt with via careful extensions of exploit_wf
(see Gäher et al. [2022, ğ4]). Here we will focus on the most interesting case, which is an atomic
store, i.e., maintaining the invariant when proving sim-store-sc. This will also show why this
rule is only provable for exploit 𝜋 ′ ∅ (assuming the store is executed in thread 𝜋 ′). First, we can
assume that no other thread is exploiting the location ℓ𝑠 as there would be a data race otherwise.
This means that heapbij contains full ownership of ℓ𝑡 and ℓ𝑠 , which we use to justify the store in
source and target. It is also easy to reestablish pool_safe(𝜌𝑠 ,𝑇 ′𝑠 [𝜋 ↦→ 𝑒], 𝜎 ′𝑠 ) for threads 𝜋 ≠ 𝜋 ′ by

23The full simulation relation uses pool_safe(𝜌𝑠 ,𝑇𝑠 , 𝜎𝑠 ) instead of safe(𝜌𝑠 , 𝑒𝑠 , 𝜎𝑠 ) as shown in ğ5.
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*x = 42;

let r = *x;

f();

return r;

// x: &mut i32

*x = 42;

f();

return *x;

⪯

(a) Moving a load across unknown code.

let r = *x;

while f(r) {

g();

}

// x: &i32

while f(*x) {

g();

}

⪯

(b) A new loop hoisting optimization.

Fig. 14. Two examples of Stacked Borrows optimizations done in Simuliris.

replaying the store. However, there is a problem when updating the pool_safe(𝜌𝑠 ,𝑇𝑠 [𝜋 ′ ↦→ 𝑒], 𝜎𝑠 )

to pool_safe(𝜌𝑠 ,𝑇 ′𝑠 [𝜋
′ ↦→ 𝑒], 𝜎 ′𝑠 ) for exploited locations of the current thread (𝜋 = 𝜋 ′): the current

expression of the thread 𝜋 ′ in the alternative execution is 𝑒 and not the atomic store, so we cannot
just mirror the atomic store in the alternative execution. But without this we have a problem as
the source state is not in sync any more! The only way out is to require that the current thread
does not exploit any locations, which leads to the exploit 𝜋 ′ ∅ precondition of sim-store-sc. For
non-atomic stores, we similarly cannot update the state in the pool_safe for locations exploited
by the current thread. However, this can be fixed by tweaking the definition of exploit_wf as any
thread that would observe this difference in states would race with the non-atomic store.

7 SIMULIRIS MEETS STACKED BORROWS

To demonstrate the flexibility of Simuliris as a language-generic framework, we instantiate it with
the language of Stacked Borrows [Jung et al. 2020], a memory model for Rust proposed to enable
aliasing-based optimizations. In ğ7.1, we give a brief overview of Stacked Borrows to explain how
the correctness proofs of such optimizations benefit from Simuliris. In particular, Simuliris helped a
lot when extending the soundness proofs of these optimizations to concurrency (with sequentially
consistent accesses). We verify correctness not only of the original paper’s optimizations, but also
of a new loop hoisting optimization that makes use of Simuliris’s support for coinduction.

7.1 Stacked Borrows: An Aliasing Model for Rust

Rust is a systems programming language that gives strong static guarantees through an ownership-
based type system and enforces an aliasing principle of Aliasing XOR Mutability (AXM): at any
point in time, data in memory either has one mutable reference &mut T that is unique and allows
mutation, or multiple shared references &T that only allow read access.
In principle, these guarantees can enable aliasing-based optimizations, such as the one given

in Figure 14a (łExample 1ž in [Jung et al. 2020]). It works on the body of a Rust function whose
argument is a mutable reference x: &mut i32 to a 32-bit signed integer, and whose return type
is i32. As the function takes a mutable reference x, by AXM, the unknown function f should not
have an alias to the memory location referenced by x. Thus, the call to f() should not change the
value of 𝑥 , making it safe to move the load from x up across the call. (And this in turn should enable
constant propagation of 42 to avoid the load altogether.)

But there is a problem: Rust makes heavy use of unsafe code. The purpose of unsafe code is to let
programmers write code that is correct for reasons that are too subtle for the compiler to understand.
However, this also means that Rust’s type system guarantees are not implicitly upheld any more
when unsafe code is being used. We thus need to explicitly demand that unsafe code follows the
aliasing discipline. Stacked Borrows makes this precise, while still allowing pointer-based data
structures with heavy aliasing to be implemented in unsafe code. The basic idea is to associate
each reference with a tag, and each location with a borrow stack of tags. The stack tracks which
tags may access this location; using a reference with a different tag is undefined behavior.
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The original Stacked Borrows formalization verifies several optimizations in a sequential language
with an ad-hoc ownership-based coinductive open simulation relation not unlike the model of
Simuliris. More specifically, the correctness of an optimization relies on the notion of ownership
of some tag 𝑡 . In the example in Figure 14a, when the function gets the argument x as a mutable
reference to a location ℓ𝑥 , it also acquires the ownership OwnTag(𝑡𝑥 ) of a unique tag 𝑡𝑥 associated
with x. OwnTag(𝑡𝑥 ) intuitively enforces that the tag 𝑡𝑥 is at the top of ℓ𝑥 ’s stack. The correctness
argument then relies on two points: (i) as the function body keeps OwnTag(𝑡𝑥 ) throughout its
operations, the function f has no ownership of 𝑡𝑥 , and so f cannot use the tag 𝑡𝑥 to access ℓ𝑥 ;
and (ii) f cannot use any other tag to access ℓ𝑥 either, as such an access would pop 𝑡𝑥 from ℓ𝑥 ’s
stack, making the load *x in the source (right after the call of f) undefined behavior. Ultimately the
ownership of OwnTag(𝑡𝑥 ) prevents f from accessing ℓ𝑥 , so moving the load up is sound.

7.2 Stacked Borrows in Simuliris

The use of ownership-based reasoning makes Stacked Borrows an excellent candidate application
of Simuliris. We have instantiated Simuliris with the Stacked Borrows language, derived a logic
for proving optimizations (closely following the original setup), and ported all the optimization
proofs. The place where Simuliris shines is that a lot of the simulation infrastructure can be shared
with SimuLang (whole-program adequacy, coinduction, basic structural rules), and that we obtain
a proper separation logic with an interactive proof mode for carrying out proofs of optimizations
without directly reasoning about the underlying model of resources.

Using this infrastructure, it was easy to prove a new loop hoisting optimization (Figure 14b).
Here, f and g are closures and x is an immutable shared reference. We have proven that the repeated
loads *x in each iteration can be replaced by a single load before the loop. The intuition is that
ownership of the tag 𝑡𝑥 for the shared reference x can be maintained through the entire loop.

A concurrent version of Stacked Borrows. Jung et al. [2020] only consider a sequential
language. We have extended the Stacked Borrows language with support for concurrency and
shown that the original optimizations are still correct. As part of this we discovered that a direct
port of the original semantics to a concurrent setting would not give the desired results: with the
original Stacked Borrows semantics, load instructions (e.g., *x) directly trigger UB when the tag is
not in the borrow stack. In a concurrent setting, this choice invalidates moving loads up like in
Figure 14a: if the tag is removed from the stack by a concurrent thread, the target would trigger UB
at the load in line 2 before f is even called, whereas the source would avoid UB entirely if f never
returns (and the load *x is never performed). Thus the optimization may introduce new UB!
We have thus relaxed the original semantics: instead of directly triggering UB when doing a

load with an invalid tag, the load returns poison, a special value which only triggers UB when it is
being used (a form of deferred UB [Lee et al. 2017]). We can elegantly reflect this into separation
logic: when the target load from ℓ yields poison, we obtain ownership of the assertion Tainted(𝑡, ℓ)
stating that a tag 𝑡 can never be contained in the source stack for ℓ again. Later in the proof, we
use this assertion to prove that the source also loads poison, so both executions are in sync again.

8 RELATED WORK

Simuliris is, to our knowledge, the first separation logic designed for verifying concurrent compiler
optimizations. This brings together two broad lines of research, of which we discuss the most
closely related work here. Also see Figure 1 in the introduction for an overview.

Concurrent compiler optimizations. As already mentioned in the introduction, there are
several projects with the goal of equipping CompCert with support for concurrency. However,
even for purely sequential code, CompCert will not hoist loads from escaped pointers out of a loop
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(which is quite hard to do in a general optimization algorithm, a problem that we are side-stepping
by considering only concrete optimizations). Correspondingly, our main motivating example (ğ1)
is not (to our knowledge) verified by any of these variants of CompCert.
That said, the infrastructure for reasoning about sequential code in CompCert is in some ways

more powerful than what we built for SimuLang. For example, CompCert’s łmemory injectionž,
which corresponds to our heap bijection managing escaped locations, supports mapping multiple
memory blocks of the source program into a single target block, whereas we enforce a one-to-
one mapping of source and target blocks. On the other hand, since our bijection is managed via
separation logic ghost state, it is arguably more convenient to work with. We leave it to future
work to find a nice separation logic interface for the full power of CompCert’s memory injection.

Most concurrent variants of CompCert establish a termination-preserving refinement, omitting
the fairness constraint on infinite executions. While we are not aware of examples where CompCert
would violate fair termination preservation, this property is not formally established. Likewise, we
do not establish that our simulation relation is termination-preserving for the (unrealistic) case of
unfair infinite executions, but we believe it is. (These two notions of correctness are incomparable.)

CASCompCert [Jiang et al. 2019] and Concurrent CompCert [Beringer et al. 2014; Cuellar 2020]
show that sequential reasoning can be applied to non-synchronizing fragments of concurrent
programs. This should, in principle, be sufficient to verify our main example using sequential
reasoning only (except, as already mentioned, CompCert does not perform this optimization even
for sequential code). However, in both of these approaches, the sequential semantics that they use
for reasoning about program transformations does not model synchronization directlyÐrather,
synchronization is performed as a side-effect of opaque external function calls. This rules out any
optimization for which one has to reason in detail about the behavior of a synchronizing operation,
such as in our example in ğ3.2.
The Concurrent Abstraction Layers [Gu et al. 2018] variant of CompCertX [Gu et al. 2015] is

(to our knowledge) the only concurrent variant of CompCert that establishes fair termination
preservation. Their łpush/pullž model of shared memory is akin to our data-race detector, though
we do not need a łglobal logž. However, in their work, all interactions with shared memory (not
just synchronization, i.e., atomic accesses) are handled via external function calls. This appears to
rule out even the most basic optimizations on non-atomic accesses.
CompCertTSO [Ševčík et al. 2013] uses the same approach as ours: they build concurrency

into the operational semantics. However, the TSO (total store order) model of concurrency gives
well-defined behavior to racy programs, and thus does not permit optimizations such as the example
from the introduction.
Besides the work on CompCert, there also has been a lot of work on models of weak-memory

concurrency, and the set of supported program transformations is a relevant point of comparison
in this space. In particular, some of that work verifies correctness of various memory access
reorderings [Ševčík 2011; Morisset et al. 2013; Vafeiadis et al. 2015; Kang et al. 2017]. Those models
often consider a larger subset of C11 atomics (whereas we just support non-atomic and sequentially
consistent accesses). However, all of that work only considers finite program executions, i.e., they
do not verify termination preservation. They also only verify reorderings of immediately adjacent
instructions and do not formally prove that this is sufficient for more complex optimizations such
as hoisting an instruction out of a loop. We have verified all reorderings established by this prior
work that involve only the accesses supported by our system and at least one non-atomic access
(i.e., the reorderings that are related to data races); see our supplementary material [Gäher et al.
2022] for details. We have also verified one more reordering that has not been verified in prior work:
moving a non-atomic load before a sequentially consistent load. This optimization is correct in
our system, but it is interestingly incorrect in memory models with C11-style relaxed accessesÐto
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account for the particularly weak behavior of ARM processors (which ignore control dependencies
between loads), the definition of data races around relaxed accesses has the side-effect that this
optimization can introduce a race into a previously race-free program, rendering it invalid.

Separation logic for contextual refinement. The idea of using separation logic reasoning in
a simulation relation has been explored before. CompCert contains a separation-logic-style library
for heap predicates24 to simplify reasoning about the shape of stack framesÐbut this library does
not provide a full-fledged logic. Other logics for simulations have mostly been developed in the
context of using refinement for program verification: the goal is to show that an implementation

of an abstract data type implements a specification. As such, this line of work lacks the ability to
exploit undefined behavior, as we require for our example. However, that is not the only limitation.

The line of work by Liang et al. [2014]; Liang and Feng [2016, 2018] on rely-guarantee style rela-
tional separation logics supports concurrency and fair termination preservation. Unlike Simuliris,
this work supports blocking operations [Liang and Feng 2018] and can be used to reason explicitly
about fairness assumptions, such as when proving that an efficient, concurrent implementation
with spinlocks implements a particular specification. However, it does not support passing pointers
between the context and library (as would be the case in our motivating example). Moreover, this
work has not been mechanized.

Another family of work uses Iris [Jung et al. 2015, 2016, 2018b; Krebbers et al. 2017a], a framework
for defining concurrent separation logics with a flexible form of łghost ownershipž, as the logical
basis for refinement proofs. In particular, ReLoC [Frumin et al. 2018] shows how to define a binary
logical relation in the (usually unary) Iris program logic, and establishes a number of contextual
refinement results. However, Iris uses the technique of step-indexing to define impredicative invari-

ants [Svendsen and Birkedal 2014], which are used by lots of prior work to great effect, but which
come with a serious downside: step-indexing implies that Iris can only be used to reason about
safety properties, not liveness properties such as termination preservation. In ReLoC, a diverging
implementation refines all specification programs. Tassarotti et al. [2017] bend that limitation by
showing that Iris can in fact be used to establish fair termination preservation under the assumption
that the non-determinism in the language under consideration is finitely bounded.

Recent work by Spies et al. [2021] shows that transfinite step-indexing permits the use of Iris for
verifying liveness properties such as termination without such an assumption, but this work has so
far only been applied to sequential programs.

In our work, we avoid the need for step-indexing in the first place. The main feature enabled by
step-indexing in Iris is a very modular treatment of invariants: any part of the proof can establish
an arbitrary invariant on shared state and then communicate knowledge about that invariant to
other threads or functions. In contrast, Simuliris only requires a single global invariant (namely,
that escaped pointers point to related values in the source and target heaps). With all invariants
being statically determined upfront, there isÐ for nowÐno need for step-indexing in Simuliris. In
the future, it would be interesting to explore which new reasoning principles can be obtained in
Simuliris by making use of transfinite step-indexing.

9 LIMITATIONS AND FUTURE WORK

Fairness reasoning. In Section 5.2, we prove that our logical relation 𝑒𝑡 ≤log 𝑒𝑠 implies fair
termination-preserving contextual refinement. For the fairness part of the proof, we get to assume
that the target is executed on a fair scheduler. This assumption is not reflected into the logic and,
hence, we also have no reasoning principles in the logic which exploit the fair scheduling of the
target. Instead, we use the assumption in the adequacy proof to show that the simulated source

24See https://compcert.org/doc/html/compcert.common.Separation.html.
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execution must also be fair. This way, we are guaranteed that our simulation relation cannot be
used to verify bogus optimizations, e.g., by exploiting a single unfair, diverging source execution to
make a program always diverge (e.g., replacing a spinlock by a trivially diverging program).

However, Simuliris cannot be used to show, for example, that it is sound to replace a sequential
program with a more efficient, concurrent implementation which uses spinlocks to synchronize.
The goal of Simuliris is to verify compiler transformations, and we are not aware of any compiler
that would automatically perform such optimizations. Hence, we have opted for not exposing
the fairness assumption into the logic, making the logic less powerful but also simpler to use by
avoiding the bookkeeping typically needed to reason directly about fairness.

Whole-program optimizations. In Theorem 5.2, we show that our logical relation implies a
contextual refinement, which is our top-level soundness result. Due to the nature of contextual
refinement, which requires correctness of optimizations for any surrounding context, Simuliris can
currently not be used for optimizations that require knowledge of the entire program (e.g., removing
global variables). However, since the core of this result, Lemma 5.1, states a property about whole
programs, Simuliris could conceivably be extended to verify whole-program optimizations.

Optimization algorithms. In this work, we have verified concrete concurrent program trans-

formations. We have not verified optimization algorithms (which automatically apply program
transformations based on a program analysis), as would be required in a compiler correctness proof.
Verifying an actual optimization pass is a bigger task than just verifying a few particular program
transformations in isolation: one needs to prove a simulation not for a concrete piece of code, but
for any possible result of the optimization algorithm. In the future, it would be interesting to explore
the integration of Simuliris into a compiler correctness proof. This poses a number of challenges,
for instance on the question of when to escape locations: for verifying individual optimizations, we
can escape locations as soon as possible, but for general verification of optimization algorithms, it
can be more sensible to delay escaping until it is necessary, thus escaping complicated structures
at once [Stewart et al. 2015]. While our logic supports escaping tree-shaped data structures using
induction, the current rules do not allow escaping cyclic structures like doubly-linked lists (but we
think the existing model would permit us to add such reasoning principles).

Weak memory models. SimuLang provides a memory model with sequentially consistent and
non-atomic accesses. It would be interesting to extend this work to weak memory models like the
C11 model that provide more kinds of accesses (e.g., relaxed accesses). One challenge here will be
adapting the reasoning principles for exploiting data-race undefined behavior, since (as discussed
in ğ8) the addition of relaxed accesses makes some currently supported optimizations unsound.

I/O. Our model languages do not have support for I/O. An interesting future direction would
be to integrate Simuliris with recent advances in reasoning about I/O (in particular, interaction
trees [Xia et al. 2020]) to prove correctness of optimizations in the presence of I/O.
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