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Abstract. We present an approach for handling non-local control flow
(goto and return statements) in the presence of allocation and dealloca-
tion of block scope variables in imperative programming languages.
We define a small step operational semantics and an axiomatic seman-
tics (in the form of a separation logic) for a small C-like language that
combines these two features, and which also supports pointers to block
scope variables. Our operational semantics represents the program state
through a generalization of Huet’s zipper data structure.
We prove soundness of our axiomatic semantics with respect to our op-
erational semantics. This proof has been fully formalized in Coq.

1 Introduction

There is a gap between programming language features that can be described
well by a formal semantics, and those that are available in widely used program-
ming languages. This gap needs to be bridged in order for formal methods to
become mainstream. However, interaction between the more ‘dirty’ features of
widely used programming languages tends to make an accurate formal semantics
even more difficult. An example of such interaction is the goto statement in the
presence of block scope variables in the C programming language.

C allows unrestricted gotos which (unlike break and continue) may not only
jump out of blocks, but can also jump into blocks. Orthogonal to this, blocks
may contain local variables, which can be “taken out of their block” by keeping
a pointer to them. This makes non-local control in C (including break and con-
tinue) even more unrestricted, as leaving a block results in the memory of these
variables being freed, and thus making pointers to them invalid. Consider:

int *p = NULL;

l: if (p) { return (*p); }

else { int j = 10; p = &j; goto l; }

Here, when the label l is passed for the first time, the variable p is NULL. Hence,
execution continues in the block containing j where p is assigned a pointer to
j. However, after the goto l statement, the block containing j is left, and the
memory of j is freed. After this, dereferencing p is no longer legal, making the
program exhibit undefined behavior.

If a program exhibits undefined behavior, the ISO C standard [8] allows it
to do literally anything. This is to avoid compilers having to insert (possibly
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expensive) dynamic checks to handle corner cases. In particular, in the case of
non-local control flow this means that an implementation can ignore allocation
issues when jumping, but a semantics cannot. Not describing certain undefined
behaviors would therefore mean that some programs can be proven correct with
respect to the formal semantic whereas they may crash or behave unexpectedly
when compiled with an actual C compiler.

It is well known that a small step semantics is more flexible than a big
step semantics for modeling more intricate programming language features. In
a small step semantics, it is nonetheless intuitive to treat uses of goto as big
steps, as executing them makes the program jump to a totally different place in
one step. For functional languages, there has been a lot of research on modeling
control (call/cc and variants thereof) in a purely small step manner (see [6] for
example). This indicates that the intuition that uses of non-local control should
be treated as big steps is not correct.

We show that a purely small step semantics is also better suited to handle the
interaction between gotos and block scope variables in imperative programming
languages. Our semantics lets the goto statement traverse in small steps through
the program to search for its corresponding label. The required allocations and
deallocations are calculated incrementally during this traversal.

Our choice of considering goto at all may seem surprising. Since the revolution
of structured programming in the seventies, many people have considered goto as
bad programming practice [4]. However, some have disagreed [9], and gotos are
still widely used in practice. For example, the current Linux kernel contains about
a hundred thousand uses of goto. Goto statements are particularly useful for
breaking from multiple nested loops, and for systematically cleaning up resources
after an error occurred. Also, gotos can be used to increase performance.

Approach. We define a small step operational semantics for a small C-like lan-
guage that supports both non-local control flow and block scope variables. To
obtain more confidence in this semantics, and to support reasoning about pro-
grams in this language, we define an axiomatic semantics for the same fragment,
and prove its soundness with respect to the operational semantics.

Our operational semantics uses a zipper -like data structure [7] to store both
the location of the substatement that is being executed and the program stack.
Because we allow pointers to local variables, the stack contains references to the
value of each variable instead of the value itself. Execution of the program occurs
by traversal through the zipper in one of the following directions: down ↘, up ↗,
jump y, or top ↑↑. When a goto l statement is executed, the direction is changed
to y l, and the semantics performs a small step traversal through the zipper until
the label l has been reached.

Related work. Goto statements (and other forms of non-local control) are often
modeled using continuations. Appel and Blazy provide a small step continuation
semantics for Cminor [2] that supports return statements. CompCert extends
their approach to support goto statements in Cmedium [12]. Ellison and Rosu [5]
also use continuations to model gotos in their C11 semantics, but whereas the
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CompCert semantics does not support block scope variables, they do. We further
discuss the differences between continuations and our approach in Section 3.

Tews [18] defines a denotational semantics for a C-like language that supports
goto and unstructured switch statements. His state includes variants for non-
local control corresponding to our directions y and ↑↑.

The most closely related work to our axiomatic semantics is Appel and
Blazy’s separation logic for Cminor in Coq [2]. Their separation logic supports
return statements, but does not support gotos, nor block scope variables. Von
Oheimb [15] defines an operational and axiomatic semantics for a Java-like lan-
guage in Isabelle. His language supports both local variables and mutually recur-
sive function calls. Although his work is fairly different from ours, our approach
to mutual recursion is heavily inspired by his. Furthermore, Chlipala [3] gives
a separation logic for a low-level language in Coq that supports gotos. His ap-
proach to automation is impressive, but he does not give an explicit operational
semantics and does not consider block scope variables.

Contribution. Our contribution is threefold:

– We define a small step operational semantics using a novel zipper based data
structure to handle the interaction between gotos and block scope variables
in a correct way (Section 2 and 3).

– We give an axiomatic semantics that allows reasoning about programs with
gotos, pointers to local variables, and mutually recursive function calls. We
demonstrate it by verifying Euclid’s algorithm (Section 4).

– We prove the soundness of our axiomatic semantics (Section 5). This proof
has been fully formalized in the Coq proof assistant (Section 6).

2 The language

Our memory is a finite partial function from natural numbers to values, where a
value is either an unbounded integer, a pointer represented by a natural number
corresponding to the index of a memory cell, or the NULL-pointer.

Definition 2.1. A partial function from A to B is a (total) function from A to
Bopt, where Aopt is the option type, defined as containing either ⊥ or x for some
x ∈ A. A partial function is called finite if its domain is finite. The operation
f [x := y] stores the value y at index x, and f [x := ⊥] deletes the value at index
x. Disjointness, notation f1 ⊥ f2, is defined as ∀x . f1 x = ⊥ ∨ f2 x = ⊥. Given
f1 and f2 with f1 ⊥ f2, the operation f1 ∪ f2 yields their union. Moreover, the
inclusion f1 ⊆ f2 is defined as ∀x y . f1 x = y → f2 x = y.

Definition 2.2. Values are defined as:

v ::= int n | ptr b | NULL

Memories (typically named m) are finite partial functions from natural numbers
to values. A value v is true, notation istrue v, if it is of the shape int n with
n 6= 0, or ptr b. It is false, notation isfalse v, otherwise.
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Expressions are side-effect free and will be given a deterministic semantics by
an evaluation function. The variables used in expressions are De Bruijn indexes,
i.e. the variable xi refers to the ith value on the stack. De Bruijn indexes avoid
us from having to deal with shadowing due to block scope variables. Especially
in the axiomatic semantics this is useful, as we do not want to lose information
by a local variable shadowing an already existing one.

Definition 2.3. Expressions are defined as:

} ::= == | ≤ | + | ∗ | / | %

e ::= xi | v | load e | e1 } e2

Stacks (typically named ρ) are lists of memory indexes rather than lists of
values. This allows us to treat pointers to both local and allocated storage in a
uniform way. Evaluation of a variable thus consists of looking up its address in
the stack, and returning a pointer to that address.

Definition 2.4. Evaluation [[ e ]]ρ,m of an expression e in a stack ρ and memory
m is defined by the following partial function:

[[xi ]]ρ,m := ptr a if ρ i = a

[[ v ]]ρ,m := v

[[ load e ]]ρ,m := ma if [[ e ]]ρ,m = ptr a

[[ e1 } e2 ]]ρ,m := [[ e1 ]]ρ,m}[[ e2 ]]ρ,m

Lemma 2.5. If m1 ⊆ m2 and [[ e ]]ρ,m1
= v, then [[ e ]]ρ,m2

= v.

Definition 2.6. Statements are defined as:

s ::= block s | el := er | f(~e) | skip | goto l
| l : s | s1 ; s2 | if (e) s1 else s2 | return

The construct block s opens a new scope with one variable. Since we use
De Bruijn indexes for variables, it does not contain the name of the variable.
For presentation’s sake, we have omitted functions that return values (these are
however included in our Coq formalization). In the semantics presented here, an
additional function parameter with a pointer for the return value can be used
instead. Given a statement s, the function labels s collects the labels of labeled
statements in s, and the function gotos s collects the labels of gotos in s.

3 Operational semantics

We define the semantics of statements by a small step operational semantics.
That means, computation is defined by the reflexive transitive closure of a re-
duction relation _ on program states. This reduction relation traverses through
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the program in small steps by moving the focus on the substatement that is be-
ing executed. Uses of non-local control (goto and return) are performed in small
steps rather than in big steps as well.

In order to model the concept of focusing on the substatement that is being
executed, we need a data structure to capture the location in the program. For
this we define program contexts as an extension of Huet’s zipper data struc-
ture [7]. Program contexts extend the zipper data structure by annotating each
block scope variable with its associated memory index, and furthermore contain
the full call stack of the program. Program contexts can also be seen as a gen-
eralization of continuations (as for example being used in CompCert [2,11,12]).
However, there are some notable differences.

– Program contexts implicitly contain the stack, whereas a continuation se-
mantics typically stores the stack separately.

– Program contexts also contain the part of the program that has been exe-
cuted, whereas continuations only contain the part that remains to be done.

– Since the complete program is preserved, looping constructs like the while
statement do not have to duplicate code (see the Coq formalization).

The fact that program contexts do not throw away the parts of the statement
that have been executed is essential for our treatment of goto. Upon an invo-
cation of a goto, the semantics traverses through the program context until the
corresponding label has been found. During this traversal it passes all block scope
variables that went out of scope, allowing it to perform required allocations and
deallocations in a natural way. Hence, the point of this traversal is not so much
to search for the label, but much more to incrementally calculate the required
allocations and deallocations.

In a continuation semantics, upon the use of a goto, one typically computes,
or looks up, the statement and continuation corresponding to the target label.
However, it is not very natural to reconstruct the required allocations and deal-
locations from the current and target continuations.

Definition 3.1. Singular statement contexts are defined as:

ES ::= � ; s2 | s1 ;� | if (e) � else s2 | if (e) s1 else � | l :�

Given a singular statement context ES and a statement s, substitution of s for
the hole in ES , notation ES [ s ], is defined in the ordinary way.

A pair ( ~ES , s) consisting of a list of singular statement contexts ~ES and a
statement s forms a zipper for statements without block scope variables. That
means, ~ES is a statement turned inside-out that represents a path from the
focused substatement s to the top of the whole statement.

Definition 3.2. Singular program contexts are defined as:

E ::= ES | blockb � | call f ~e | params ~b

Program contexts (typically named k) are lists of singular program contexts.
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The previously introduced contexts will be used as follows.

– When entering a block, block s, the context blockb � is appended to the
head of the program context. It associates the block scope variable with its
corresponding memory index b.

– Upon a function call, f(~e), the context call f ~e is appended to the head of
the program context. It contains the location of the caller so that it can be
restored when the called function f returns.

– When a function body is entered, the context params ~b is appended to the
head of the program context. It contains a list of memory indexes of the
function parameters.

As program contexts implicitly contain the stack, we define a function to
extract it from them.

Definition 3.3. The corresponding stack getstack k of k is defined as:

getstack (ES :: k) := getstack k

getstack (blockb � :: k) := b :: getstack k

getstack (call f ~e :: k) := [ ]

getstack (params ~b :: k) := ~b ++ getstack k

We will treat getstack as an implicit coercion and will omit it everywhere.

We define getstack (call f ~e :: k) as [ ] instead of getstack k, as otherwise it
would be possible to refer to the local variables of the calling function.

Definition 3.4. Directions, focuses and program states are defined as:

d ::= ↘ | ↗ | y l | ↑↑

φ ::= (d, s) | call f ~v | return
S ::= S(k, φ, m)

A program state S(k, φ, m) consists of a program context k, the part of the
program that is focused φ, and the memory m. Like Leroy’s semantics for Cmi-
nor [11], we consider three kinds of states: (a) execution of statements (b) calling
a function (c) returning from a function. The CompCert Cmedium semantics [12]
also includes a state for execution of expressions and a stuck state for undefined
behavior. Since our expressions are side-effect free, we do not need an additional
expression state. Furthermore, since expressions are deterministic, we can easily
capture undefined behavior by letting the reduction get stuck.

Definition 3.5. The relation allocparams m1
~b ~v m2 (non-deterministically)

allocates fresh blocks ~b for function parameters ~v. It is inductively defined as:

allocparams m [ ] [ ] m

allocparams m1
~b ~v m2 m2 b = ⊥

allocparams m1 (b :: ~b) (v :: ~v) m2[b := v]
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Definition 3.6. Given a function δ assigning statements to function names, the
small step reduction relation S1 _ S2 is defined as:

1. For simple statements:

(a) S(k, (↘, e1 := e2), m) _ S(k, (↗, e1 := e2), m[a := v])
for any a and v such that [[ e1 ]]k,m = ptr a, [[ e2 ]]k,m = v and ma 6= ⊥.

(b) S(k, (↘, f(~e)), m) _ S(call f ~e :: k, call f ~v, m)
for any ~v such that [[ ei ]]k,m = vi for each i.

(c) S(k, (↘, skip), m) _ S(k, (↗, skip), m)

(d) S(k, (↘, goto l), m) _ S(k, (y l, goto l), m)

(e) S(k, (↘, return), m) _ S(k, (↑↑, return), m)

2. For compound statements:

(a) S(k, (↘, block s), m) _ S((blockb �) :: k, (↘, s), m[b := v])
for any b and v such that mb = ⊥.

(b) S(k, (↘, s1 ; s2), m) _ S((� ; s2) :: k, (↘, s1), m)

(c) S(k, (↘, if (e) s1 else s2), m) _ S((if (e) � else s2) :: k, (↘, s1), m)
for any v such that [[ e ]]k,m = v and istrue v.

(d) S(k, (↘, if (e) s1 else s2), m) _ S((if (e) s1 else �) :: k, (↘, s2), m)
for any v such that [[ e ]]k,m = v and isfalse v.

(e) S(k, (↘, l : s), m) _ S((l :�) :: k, (↘, s), m)

(f) S((blockb �) :: k, (↗, s), m) _ S(k, (↗, block s), m[b := ⊥])

(g) S((� ; s2) :: k, (↗, s1), m) _ S((s1 ;�) :: k, (↘, s2), m)

(h) S((s1 ;�) :: k, (↗, s2), m) _ S(k, (↗, s1 ; s2), m)

(i) S((if (e) � else s2) :: k, (↗, s1), m) _ S(k, (↗, if (e) s1 else s2), m)

(j) S((if (e) s1 else �) :: k, (↗, s2), m) _ S(k, (↗, if (e) s1 else s2), m)

(k) S((l :�) :: k, (↗, s), m) _ S(k, (↗, l : s), m)

3. For function calls:

(a) S(k, call f ~v, m1) _ S(params ~b :: k, (↘, s), m2)

for any s, ~b and m2 such that δ f = s and allocparams m1
~b ~v m2.

(b) S(params ~b :: k, (↗, s), m) _ S(k, return, m[~b := ~⊥])

(c) S(params ~b :: k, (↑↑, s), m) _ S(k, return, m[~b := ~⊥])

(d) S(call f ~e :: k, return, m) _ S(k, (↗, f(~e)), m)

4. For non-local control flow:

(a) S((blockb �) :: k, (↑↑, s), m) _ S(k, (↑↑, block s), m[b := ⊥])

(b) S(ES :: k, (↑↑, s), m) _ S(k, (↑↑, ES [ s ]), m)

(c) S(k, (y l, block s), m) _ S((blockb �) :: k, (y l, s), m[b := v])
for any b and v such that mb = ⊥, and provided that l ∈ labels s.

(d) S(k, (y l, l : s), m) _ S((l :�) :: k, (↘, s), m)

(e) S(k, (y l, ES [ s ]), m) _ S(ES :: k, (y l, s), m) provided that l ∈ labels s.

(f) S(blockb � :: k, (y l, s), m) _ S(k, (y l, block s), m[b := ⊥])
provided that l /∈ labels s.

(g) S(ES :: k, (y l, s), m) _ S(k, (y l, ES [ s ]), m) provided that l /∈ labels s.
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Note that the rules 4d and 4e overlap, and that the splitting into ES and s in
rule 4e is non-deterministic. We let _∗ denote the reflexive-transitive closure,
and _n paths of ≤ n steps.

Execution of a statement S(k, (d, s), m) is performed by traversing through
the program context k and statement s in direction d. The direction down ↘

(respectively up ↗) is used to traverse downwards (respectively upwards) to the
next substatement to be executed. Consider the example from the introduction
(with the return expression omitted).

int *p = NULL;

l: if (p) { return; }

else { int j = 10; p = &j; goto l; }

Figure 1 below displays some states corresponding to execution of this program
starting at p = &j in downwards direction.

Execution of a function call S(k, (↘, f(~e)), m) consists of two reductions.
The reduction to S(call f ~e :: k, call f ~v, m) evaluates the function parameters
~e to values ~v, and stores the location of the calling function on the program
context. The subsequent reduction to S(params ~b :: call f ~e :: k, (↘, s), m′)
looks up the called function’s body s, allocates storage for the parameters ~v,
and then performs a transition to execute the called function’s body.

We consider two directions for non-local control flow: jump y l and top ↑↑.
After a goto l the direction y l is used to traverse to the substatement labeled
l. Although this search is non-deterministic, there are some side conditions on
it so as to ensure it not going back and forth between the same locations. This
is required as it otherwise may impose non-terminating behavior on terminating
programs. The non-determinism could be removed entirely by adding additional
side conditions. However we omitted doing so in order to ease formalization.

The direction ↑↑ is used to traverse to the top of the statement after a
return. When it reaches the top, there will be two reductions to leave the
called function. The first reduction, from S(params ~b :: call f ~e :: k, (↑↑, s), m) to

S(call f ~e :: k, return, m[~b := ~⊥]), deallocates the function parameters, and the
second, to S(k, (↗, f(~e)), m), reinstates the calling function.

k1 = � ; goto l
:: x0 := int 10 ;�
:: blockbj �

:: if (load x0) return
else �

:: l :�
:: x0 := NULL ;�
:: blockbp �

φ1 = (↘, x1 := x0)

m1 = {bp 7→ NULL, bj 7→ 10}
S1 = S(k1, φ1, m1)

k2 = � ; goto l
:: x0 := int 10 ;�
:: blockbj �

:: if (load x0) return
else �

:: l :�
:: x0 := NULL ;�
:: blockbp �

φ2 = (↗, x1 := x0)

m2 = {bp 7→ ptr bj , bj 7→ 10}
S2 = S(k2, φ2, m2)

k3 = x1 := x0 ;�
:: x0 := int 10 ;�
:: blockbj �

:: if (load x0) return
else �

:: l :�
:: x0 := NULL ;�
:: blockbp �

φ3 = (↘, goto l)

m3 = {bp 7→ ptr bj , bj 7→ 10}
S3 = S(k3, φ3, m3)

Fig. 1. An example reduction path S1 _ S2 _ S3.
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When we relate our operational and axiomatic semantics in Section 5, we
will have to restrict the traversal through the program to remain below a certain
context.

Definition 3.7. The k-restricted reduction S1 _k S2 is defined as S1 _ S2

provided that k is a suffix of the program context of S2. We let _∗k denote the
reflexive-transitive closure, and _n

k paths of ≤ n steps.

Lemma 3.8. If S(k, (d, s), m) _∗k S(k, (d′, s′), m′), then s = s′.

The previous lemma shows that the small step semantics indeed behaves as
traversing through a zipper. Its proof is not entirely trivial due to the presence
of function calls, as these add the statement of the called function to the state.

4 Axiomatic semantics

Judgments of Hoare logic are triples {P} s {Q}, where s is a statement, and P
and Q are assertions called the pre- and postcondition. The intuitive reading
of such a triple is: if P holds for the state before executing s, and execution of
s terminates, then Q holds afterwards. To deal with non-local control flow and
function calls, our judgments become sextuples ∆; J ; R ` {P} s {Q}, where:

– ∆ is a finite function from function names to their pre- and postconditions.
This environment is used to cope with (mutually) recursive functions.

– J is a function that gives the jumping condition for each goto. When exe-
cuting a goto l, the assertion J l has to hold.

– R is the assertion that has to hold when executing a return.

The assertions P , Q, J and R correspond to the four directions ↘, ↗, y and
↑↑ in which traversal through a statement can be performed. We therefore often
treat the sextuple as a triple ∆; P̄ ` s, where P̄ is a function from directions to
assertions such that P̄ ↘ = P , P̄ ↗ = Q, P̄ (y l) = J l and P̄ ↑↑ = R.

We use a shallow embedding for the representation of assertions. This treat-
ment is similar to that of Appel and Blazy [2] and Von Oheimb [15].

Definition 4.1. Assertions are predicates over the the stack and the memory.
We define the following connectives on assertions.

P → Q := λρm .P ρm→ Qρm

P ∧ Q := λρm .P ρm ∧Qρm
P ∨ Q := λρm .P ρm ∨Qρm
¬P := λρm .¬P ρm

∀x . P x := λρm . ∀x . P x ρm
∃x . P x := λρm . ∃x . P x ρm

P := λρm .P

e ⇓ v := λρm . [[ e ]]ρ,m = v

e ⇓ – := ∃v . e ⇓ v
e ⇓ > := ∃v . istrue v ∧ e ⇓ v
e ⇓ ⊥ := ∃v . isfalse v ∧ e ⇓ v

P [a := v] := λρm .P ρm[a := v]

We treat as an implicit coercion, for example, we write True instead of
True . Also, we often lift the above connectives to functions to assertions, for

example, we write P ∧ Q instead of λv . P v ∧ Qv.
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Definition 4.2. An assertion P is stack independent if P ρ1m → P ρ2m for
each memory m and stacks ρ1 and ρ2, and similarly is memory independent if
P ρm1 → P ρm2 for each stack ρ and memories m1 and m2.

Next, we define the assertions of separation logic [14]. The assertion emp
asserts that the memory is empty. The separating conjunction P ∗ Q asserts
that the memory can be split into two disjoint parts such that P holds in the
one part, and Q in the other. Finally, e1 7→ e2 asserts that the memory consists
of exactly one cell at address e1 with contents e2, and e1 ↪→ e2 asserts that the
memory contains at least a cell at address e1 with contents e2.

Definition 4.3. The connectives of separation logic are defined as follows.

emp := λρm .m = ∅
P ∗ Q := λρm . ∃m1m2 .m = m1 ∪ m2 ∧m1 ⊥ m2 ∧ P ρm1 ∧Qρm2

e1 7→ e2 := λρm . ∃b v . [[ e1 ]]ρ,m = ptr b ∧ [[ e2 ]]ρ,m = v ∧m = {(b, v)}
e1 7→ – := ∃e2 . e1 7→ e2

e1 ↪→ e2 := λρm . ∃b v . [[ e1 ]]ρ,m = ptr b ∧ [[ e2 ]]ρ,m = v ∧mb = v

e1 ↪→ – := ∃e2 . e1 ↪→ e2

To deal with block scope variables we need to lift an assertion such that the
De Bruijn indexes of its variables are increased. We define the lifting P ↑ of an
assertion P semantically, and prove that it indeed behaves as expected.

Definition 4.4. The assertion P ↑ is defined as λρm .P (tail ρ)m.

Lemma 4.5. We have (e ⇓ v) ↑ = (e↑) ⇓ v and (e1 7→ e2) ↑ = (e1 ↑) 7→ (e2 ↑),
where the operation e↑ replaces each variable xi in e by xi+1. Furthermore, ( ) ↑
distributes over the connectives →, ∧, ∨, ¬, ∀, ∃, and ∗.

In order to relate the pre- and postcondition of a function, we allow universal
quantification over arbitrary logical variables ~y. The specification of a function
with parameters ~v consists therefore of a precondition P ~y ~v and postcondition
Q~y ~v. These should be stack independent because local variables will have a
different meaning at the calling function than in the called function’s body. We
will write such a specification as ∀~y ∀~v . {P ~y ~v} {Q~y ~v}.

Definition 4.6. Given a function δ assigning statements to function names, the
rules of the axiomatic semantics are defined as:

∆; J ; R ` {P} s {Q}
∆; A ∗ J ; A ∗ R ` {A ∗ P} s {A ∗ Q}

∀x.(∆; J ; R ` {P x} s {Q})
∆; J ; R ` {∃x . P x} s {Q}

(frame & exists)

(∀l ∈ labels s . J ′l→ Jl) (∀l /∈ labels s . Jl→ J ′l) R→ R′

P ′ → P ∆; J ; R ` {P} s {Q} Q→ Q′

∆; J ′; R′ ` {P ′} s {Q′}
(weaken)

∆; J ; R ` {P} skip {P} ∆; J ; R ` {R} return {Q} (skip & return)
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∆; J ; R ` {∃a v . e1 ⇓ a ∧ e2 ⇓ v ∧ ptr a ↪→ – ∧ P [a := v]} e1 := e2 {P} (assign)

∆; J ; R ` {J l} s {Q}
∆; J ; R ` {J l} l : s {Q} ∆; J ; R ` {J l} goto l {Q}

(label & goto)

∆; x0 7→ – ∗ J ↑; x0 7→ – ∗ R ↑ ` {x0 7→ – ∗ P ↑} s {x0 7→ – ∗ Q ↑}
∆; J ; R ` {P} block s {Q}

(block)

∆; J ; R ` {P} s1 {P ′} ∆; J ; R ` {P ′} s2 {Q}
∆; J ; R ` {P} s1 ; s2 {Q}

(comp)

∆; J ; R ` {e ⇓ > ∧ P} s1 {Q} ∆; J ; R ` {e ⇓ ⊥ ∧ P} s2 {Q}
∆; J ; R ` {e ⇓ – ∧ P} if (e) s1 else s2 {Q}

(cond)

∆f = {P} {Q} ~e ⇓ ~v ∧ P ~y ~v → A A memory independent

∆; J ; R ` {~e ⇓ ~v ∧ P ~y ~v} f(~e) {A ∧ Q~y ~v}
(call)

∀f P ′Q′ .∆′f = (∀~z ∀~w . {P ~z ~w} {Q~z ~w})→ ∀~y ~v .
(∆′ ∪∆;λl.False;Π∗[xi 7→ –] ∗ Q′~y ~v ` {Π∗[xi 7→ vi] ∗ P ′~y ~v} δ f {Π∗[xi 7→ –] ∗ Q′~y ~v})

∆′ ∪∆; J ; R ` {P} s {Q} dom ∆′ ⊆ dom δ

∆; J ; R ` {P} s {Q}
(add funs)

The traditional frame rule of separation logic [14] includes the side-condition
vars s ∩ varsA = ∅ on the free variables in the statement s and assertion A.
However, as our local variables are just (immutable) references into the memory,
we do not need this side-condition. Also, the (frame) and (block) rule are uniform
in all assertions, allowing us to write:

∆; P̄ ` s
∆; A ∗ P̄ ` s

∆; P̄ ` block s
∆; x0 7→ – ∗ P̄ ↑ ` s

Since the return and goto statements leave the normal control flow, the post-
conditions of the (goto) and (return) rules are arbitrary.

Our rules for function calls are similar to those by Von Oheimb [15]. The
(call) rule is to call a function that is already in ∆. It is important to notice that
its postcondition is not ~e ⇓ ~v ∧ Q~y ~v, as after calling f evaluation of ~e may be
different after all. However, in case ~e contains no load expressions, we have that
~e ⇓ ~v is memory independent, and we can simply take A to be ~e ⇓ ~v.

The (add funs) rule can be used to add an arbitrary family ∆′ of specifications
of (possibly mutually recursive) functions to ∆. For each function f in ∆′ with
precondition P ′ and postcondition Q′, it has to be verified that the function body
δ f is correct for all instantiations of the logical variables ~y and input values ~v.
The precondition Π∗[xi 7→ vi] ∗ P ′~y ~v, where Π∗[xi 7→ vi] denotes the assertion
xi 7→ vi ∗ . . . xn 7→ vn, states that the function parameters ~x are allocated with
values ~v for which the precondition P ′ of the function holds. The post- and
returning condition Π∗[xi 7→ –] ∗ Q′~y ~v ensure that the parameters have not
been deallocated while executing the function body and that the postcondition
P ′ of the function holds on a return. The jumping condition λl.False ensures
that all gotos jump to a label that occurs in the function body.
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Euclid’s algorithm in C:

void swap(int *p, int *q) {
int z = *p; *p = *q; *q = z;

}

int gcd(int y, int z) {
l: if (z) {

y = y % z; swap(&y, &z); goto l;
}
return y;

}

Verification of the body of swap:

{x0 7→ p ∗ x1 7→ q ∗ p 7→ y ∗ q 7→ z}
block (

{x0 7→ – ∗ x1 7→ p ∗ x2 7→ q ∗ p 7→ y ∗ q 7→ z}
x0 := load (load x1) ;

{x0 7→ y ∗ x1 7→ p ∗ x2 7→ q ∗ p 7→ y ∗ q 7→ z}
load x1 := load (load x2) ;

{x0 7→ y ∗ x1 7→ p ∗ x2 7→ q ∗ p 7→ z ∗ q 7→ z}
load x2 := load x0

{x0 7→ y ∗ x1 7→ p ∗ x2 7→ q ∗ p 7→ z ∗ q 7→ y}
)

{x0 7→ p ∗ x1 7→ q ∗ p 7→ z ∗ q 7→ y}

Verification of the body of gcd:

{x0 7→ int y ∗ x1 7→ int z}
l :

{J l}
if (load x1) (

{load x1 ⇓ > ∧ J l}

{x0 7→ int y
′ ∗ x1 7→ int z

′ ∧
z
′ 6= 0 ∧ gcd y z = gcd y′ z′}
x0 := load x0 % load x1 ;

{x0 7→ int (y
′
% z

′
) ∗ x1 7→ int z

′ ∗
(z

′ 6= 0 ∧ gcd y z = gcd y′ z′ ∧ emp)}
swap(x0, x1) ;

{x0 7→ int z
′ ∗ x1 7→ int (y

′
% z

′
) ∗

(z
′ 6= 0 ∧ gcd y z = gcd y′ z′ ∧ emp)}

{J l}
goto l

{x0 7→ int (gcd y z) ∗ x1 7→ int 0}
) else

{load x1 ⇓ ⊥ ∧ J l}

{x0 7→ int y
′ ∗ x1 7→ int 0 ∧ gcd y z = gcd y′ 0}

skip

{x0 7→ int (gcd y z) ∗ x1 7→ int 0}

Fig. 2. Verification of Euclid’s algorithm.

As an example we verify Euclid’s algorithm for computing the greatest com-
mon divisor. We first verify the swap function, which takes two pointers p and q
and swaps their contents. Its specification is as follows:

∀y z ∀p q . {p 7→ y ∗ q 7→ z} {p 7→ z ∗ q 7→ y}

Here, universal quantification over the logical variables y and z is used to relate
the contents of the pointers p and q in the pre- and postcondition. In order to
add this function to the context ∆ of verified functions using the (add funs) rule,
we have to prove that the body satisfies the above specification. An outline of
this proof (with implicit uses of weakening) is displayed in Figure 2.

To verify the body of the gcd function, we use a jumping environment J that
assigns ∃y′z′ . x0 7→ int y′ ∗ x1 7→ int z′ ∧ gcd y z = gcd y′ z′ to the label l. For
the function call to swap, we use the (frame) rule with the framing condition
z′ 6= 0 ∧ gcd y z = gcd y′ z′ ∧ emp as displayed in Figure 2. We refer to the Coq
formalization for the full details of these proofs.

5 Soundness of the axiomatic semantics

We define ∆; J ; R � {P} s {Q} for Hoare sextuples in terms of our operational
semantics. Proving soundness of the axiomatic semantics then consists of show-
ing that ∆; J ; R ` {P} s {Q} implies that ∆; J ; R � {P} s {Q}.
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We want ∆; J ; R � {P} s {Q} to ensure partial program correctness. In-
tuitively, that means: if P km and S(k, (s, ↘), m) _∗ S(k, (s, ↗), m′), then
Qkm′. However, due to the additional features, this is too simple.

1. We also have to account for reductions starting in ↑↑ or y direction. Hence,
we take the four assertions J , R, P and Q together as one function P̄ and
write ∆; J ; R � {P} s {Q} as ∆; P̄ � s. The intuitive meaning of ∆; P̄ � s
is: if P̄ d km and S(k, (s, d), m) _∗ S(k, (s, d′), m′), then P̄ d′ km′.

2. We have to enforce the reduction S(k, (s, d), m) _∗ S(k, (s, d′), m′) to
remain below k as it could otherwise take too many items off the context.

3. Our language has various kinds of undefined behavior (e.g. invalid pointer
dereferences). We therefore also want ∆; P̄ � s to guarantee that s does not
exhibit such undefined behaviors. Hence, ∆; P̄ � s should at least guarantee
that if P̄ d km and S(k, (s, d), m) _∗k S, then S is either:
– reducible (no undefined behavior has occurred); or:
– of the shape S(k, (s, d′), m′) with P̄ d′ km′ (execution is finished).

4. The program should satisfy a form of memory safety so as the make the frame
rule derivable. Hence, if before execution the memory can be extended with
a disjoint part, that part should not be modified during the execution.

5. We take a step indexed approach in order to relate the assertions of functions
in ∆ to the statement s.

Together this leads to the following definitions:

Definition 5.1. Given a predicate P̄ over stacks, focuses and memories, spec-
ifying valid ending states, the relation P̄ �n Ŝ(k, φ, m ∪ �) is defined as: for
each reduction S(k, φ, m ∪ mf ) _n

k S(k′, φ′, m′), we have that m′ is of the
shape m′ = m′′ ∪ mf for some memory m′′, and either:

1. there is a state S such that S(k′, φ′, m′) _k S; or:
2. k′ = k and P̄ k′ φ′m′′.

Definition 5.2. Validity of the environment ∆, notation �n ∆ is defined as: if
∆f = (∀~y .∀~v . {P ~y ~v} {Q~y ~v}) and P ~y ~v km, then Q′ �n Ŝ(k, call f ~v, m ∪ �),
where Q′ := λρ φ m′ . (φ = return) ∧Q~y ~v ρ m′.
Definition 5.3. Validity of a statement s, notation ∆; P̄ � s is defined as: if
�n ∆, down d s, and P̄ d km, then Q′ �n Ŝ(k, (d, s), m ∪ �), where

Q′ := λρφm′ .∃d′ s′ . φ = (d′, s′) ∧ ¬down d′ s′ ∧ P̄ d′ ρ m′

The predicate down holds if down ↘ s′ or down (y l) s′ with l ∈ labels s′.

Proposition 5.4 (Soundness). ∆; P̄ ` s implies ∆; P̄ � s.

This proposition is proven by induction on the derivation of ∆; P̄ ` s. Thus,
for each rule of the axiomatic semantics, we have to show that it holds in the
model. The rules for the skip, return, assignment, goto and function calls are
proven by chasing all possible reduction paths. In the case of the assignment
statement, we need weakening of expression evaluation (Lemma 2.5).

All structural rules are proven by induction on the length of the reduction.
These proofs involve chasing all possible reduction paths. We refer to the Coq
formalization for the proofs of these rules.
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6 Formalization in Coq

All proofs in this paper have been fully formalized using the Coq proof assistant.
Formalization has been of great help in order to develop and debug the semantics.
We used Coq’s notation mechanism combined with unicode symbols and type
classes for overloading to let the Coq development correspond as well as possible
to the definitions in this paper.

There are some small differences between the Coq development and this
paper. Firstly, we omitted while statements and functions with return values
here, whereas they are included in the Coq development. Secondly, in this paper,
we presented the axiomatic semantics as an inference system, and then showed
that it has a model. Since we did not consider completeness, in Coq we directly
proved all rules to be derivable with respect to the model.

We used type classes to provide abstract interfaces for commonly used struc-
tures like finite sets and finite functions, so we were able to prove theory and
implement automation in an abstract way. Our approach is greatly inspired by
the unbundled approach of Spitters and van der Weegen [17]. However, whereas
their work heavily relies on setoids (types equipped with an equivalence rela-
tion), we tried to avoid that, and used Leibniz equality wherever possible. In
particular, our interface for finite functions requires extensionality with respect
to Leibniz equality. That means m1 = m2 ↔ ∀x .m1 x = m2 x.

Intensional type theories like Coq do not satisfy extensionality. However, fi-
nite functions indexed by a countable type can still be implemented in a way
that extensionality holds. For the memory we used finite functions indexed by
binary natural numbers implemented as radix-2 search trees. This implementa-
tion is based on the implementation in CompCert [12]. But whereas CompCert’s
implementation does not satisfy canonicity, and thus allows different trees for
the same finite function, we have equipped our trees with a proof of canonicity.
This way, equality on these finite functions as trees becomes extensional.

Extensional equality on finite functions is particularly useful for dealing with
assertions, which are defined as predicates on the stack and memory (Defini-
tion 4.1). Due to extensionality, we did not have to equip assertions with a proof
of well-definedness with respect to extensional equality on memories.

Although the semantics described in this paper is not extremely big, it is
still quite cumbersome to be treated without automation in a proof assistant. In
particular, the operational semantics is defined as an inductive type consisting
of 32 constructors. To this end, we have automated many steps of the proofs. For
example, we implemented the tactic do_cstep to automatically perform reduc-
tion steps and to solve the required side-conditions, and the tactic inv_cstep

to perform case analyzes on reductions and to automatically discharge impos-
sible cases. Ongoing experiments show that this approach is successful, as the
semantics can be extended easily without having to redo many proofs.

Our Coq code, available at http://robbertkrebbers.nl/research/ch2o/,
is about 3500 lines of code including comments and white space. Apart from
that, the library on general purpose theory (finite sets, finite functions, lists,
etc.) is about 7000 lines, and the gcd example is about 250 lines.

http://robbertkrebbers.nl/research/ch2o/
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7 Conclusions and further research

The further reaching goal of this work is to develop an operational semantics
for a large part of the C11 programming language [8] as part of the Formalin
project [10]. In order to get there, support for non-local control flow is a necessary
step. The operational semantics in this paper extends easily to most other forms
of non-local control in C: the break and continue statement, and non-structured
switch statements (e.g. Duff’s device). To support these, we just have to add an
additional direction and its corresponding reduction rules.

In this paper we have also defined an axiomatic semantics. The purpose of
this axiomatic semantics is twofold. Firstly, it gives us more confidence in the
correctness and usability of our operational semantics. Secondly, in order to
reason about actual C programs, non-local control flow and pointers to block
scope variables have to be supported by the axiomatic semantics.

Unfortunately, the current version of our axiomatic semantics is a bit cumber-
some to be used for actual program verification. The foremost reason is that our
way of handling local variables introduces some overhead. In traditional separa-
tion logic [14], there is a strict separation between local variables and allocated
storage: the values of local variables are stored directly on the stack, whereas
the memory is only used for allocated storage. To that end, the separating con-
junction does not deal with local variables, and many assertions can be written
down in a shorter way. For example, even though we do not use pointers to the
local variables of the swap function (Figure 2), we still have to deal with two
levels of indirection.

It seems not too hard to make allocation of local variables in the memory
optional, so that it can be used only for variables that actually have pointers
to them. Ordinary variables then correspond nicely to those with the register

keyword in C. Alternatively, the work of Parkinson et al. [16] on variables as
resources may be useful.

Another requirement to conveniently use an axiomatic semantics for program
verification is strong automation. Specific to the Coq proof assistant there has
been work on this by for example Appel [1] and Chlipala [3]. As our main pur-
pose is to develop an operational semantics for a large part of C11, we consider
automation a problem for future work.

In order to get closer to a semantics for C11 we are currently investigating
the following additional features of the C11 standard.

– Expressions with side effects and sequence points.
– The C type system including structs, unions, arrays and integer types.
– The non-aliasing restrictions (effective types in particular).

We intend to support these features in both our operational and axiomatic se-
mantics. Ongoing work shows that our current operational semantics can easily
be extended with non-deterministic expressions using a similar approach as Nor-
rish [13] and Leroy [12]. As non-determinism in expressions is closely related to
concurrency, we use separation logic for a Hoare logic for expressions.
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In this paper we have not considered completeness of the axiomatic semantics
as it is not essential for program verification. Also, our future extension for non-
deterministic expressions with side-effects will likely be incomplete.

Another direction for future research is to relate our semantics to the Comp-
Cert semantics [12] (by eliminating block scope variables). That way we can link
it to actual non-local jumps in assembly.
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