
Verified Interpreters for Dynamic Languages with
Applications to the Nix Expression Language

RUTGER BROEKHOFF, Radboud University Nijmegen, The Netherlands

ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands

To study the semantics of a programming language, it is useful to consider different specification forms—e.g.,
a substitution-based small-step operational semantics and an environment-based interpreter—because they

have mutually exclusive benefits. Developing these specifications and proving correspondences is challenging

for ‘dynamic’/‘scripting’ languages such as JavaScript, PHP and Bash. We study this challenge in the context

of the Nix expression language, a dynamic language used in the eponymous package manager and operating

system. Nix is a Turing-complete, untyped functional language designed for the manipulation of JSON-style

attribute sets, with tricky features such as overloaded use of variables for lambda bindings and attribute

members, subtle shadowing rules, a mixture of evaluation strategies, and tricky mechanisms for recursion.

We show that our techniques are applicable beyond Nix by starting from the call-by-name lambda calculus,

which we extend to a core lambda calculus with dynamically computed variable names and dynamic binder

names, and finally to Nix. Our key novelty is the use of a form of deferred substitutions, which enables us to give
a concise substitution-based semantics for dynamic variable binding. We develop corresponding environment-

based interpreters, which we prove to be sound and complete (for terminating, faulty and diverging programs)

w.r.t. our operational semantics based on deferred substitutions.

We mechanize all our results in the Rocq prover and showcase a new feature of the Rocq-std++ library for

representing syntax with maps in recursive positions. We use Rocq’s extraction mechanism to turn our Nix

interpreter into executable OCaml code, which we apply to the official Nix language tests. Altogether this

gives rise to the most comprehensive formal semantics for the Nix expression language to date.

CCS Concepts: • Theory of computation→ Semantics and reasoning.

Additional Key Words and Phrases: Interpreters, substitution, lambda calculus, Nix, Rocq

ACM Reference Format:
Rutger Broekhoff and Robbert Krebbers. 2025. Verified Interpreters for Dynamic Languages with Applications

to the Nix Expression Language. Proc. ACM Program. Lang. 9, ICFP, Article 268 (August 2025), 30 pages.

https://doi.org/10.1145/3747537

1 Introduction
Mechanized specifications of programming languages often come with multiple specification

forms because these have mutually exclusive benefits. For example, mechanized specifications of

C [12, 31, 35], LLVM [55], Java [38] and JavaScript [8] come with both an operational semantics

and an interpreter/executable semantics. An operational semantics is a good fit for verification

(of e.g., type soundness, compilers, program logics) due to its mathematical/abstract nature. An

interpreter is closer to a language implementation and hence inherently less mathematical/abstract,

but has the benefit of enabling one to exercise the language specification on ‘real-life’ tests.

Another trade-off is whether to use substitution or environments. A substitution-based seman-

tics is more concise (particularly because one does not have to model closures explicitly) but is

Authors’ Contact Information: Rutger Broekhoff, rutger@fautchen.eu, Radboud University Nijmegen, The Netherlands;

Robbert Krebbers, mail@robbertkrebbers.nl, Radboud University Nijmegen, The Netherlands.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/8-ART268

https://doi.org/10.1145/3747537

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://orcid.org/0009-0009-3716-5638
https://orcid.org/0000-0002-1185-5237
https://doi.org/10.1145/3747537
https://orcid.org/0009-0009-3716-5638
https://orcid.org/0000-0002-1185-5237
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3747537

268:2 Rutger Broekhoff and Robbert Krebbers

computationally inefficient. This trade-off becomes more evident for functional languages, and

even more so for lazy/call-by-name languages where every expression is a thunk/closure in an

environment-based setting. To obtain the best of both worlds, our goal is to verify soundness and

completeness of environment-based interpreters w.r.t. substitution-based operational semantics.

We consider ‘dynamic’/‘scripting’ languages, with a focus on the Nix expression language, which

is a cornerstone of the eponymous package manager and operating system. Nix has a strong

focus on reproducibility, so studying its semantics is a valuable goal. More broadly, Nix has many

challenging features that have not (or only partly) been covered in prior work. Similar to other

dynamic languages (such as JavaScript, PHP, and Bash), Nix has dynamic binding. But we also
consider Nix’s subtle shadowing rules and its mixture of evaluation strategies (shallow and deep).

For some of these features it is not even clear how to write a concise operational semantics or

interpreter in the very first place. To make sure that the semantics of evaluation strategies is correct,

it is crucial to prove soundness and completeness for faulty and diverging programs, in addition to

terminating programs. On top of that, we address the challenge of finding a representation of the

syntax and semantics that is amenable for mechanization in a proof assistant.

Main challenge: Dynamic binding. Most scripting languages have constructs to dynamically

compute variables names or to dynamically introduce variable bindings. Bash and PHP have ${e},

which gives the value of the variable denoted by the string expression e. To see this construct in

action, consider the PHP program $y = "x"; $x = 10; echo ${$y}, which prints 10. Nix has with r; e

(which is similar to extract in PHP, and with in non-strict JavaScript) to introduce a variable binding

for each member of the attribute set r in the scope of the expression e. For example, take the

following Nix program (we indicate when we consider examples in other languages):

let r = { x = 10; y = 12; }; in with r; x + y

Here, the variable r is bound to the JSON-style attribute set with members x and y. Using the with

construct, these members are turned into variables that can be used in the expression x + y. Hence,

this program prints 22. The situation becomes more complicated when the computed variable

names or attribute sets are the result of a function call. Consider:

with g {}; x + y

This program is only closed (i.e., every variable has a corresponding binder) if the attribute set

computed by g contains members x and y. This example thus shows that the basic property of

closedness—which arguably every program should satisfy—is not statically checkable in dynamic

languages. Similarly, one cannot statically check if a variable is shadowed:

let r = { x = 10; y = 12; }; in with r; with g {}; x + y

Whether x and y refer to the members of the attribute set r depends on the attribute set returned

by g. In other words, these examples indicate that the choice of names is relevant for program

execution. The choice of names is also relevant in the presence of the notorious eval function (in

e.g., JavaScript and PHP) using which one can interpret strings as open programs. For example, the

outcome of the JavaScript program y = 12; eval(g()); console.log(y) depends on string returned

by g. If g returns "y = 10", the value of y would be overwritten.

The fact that variable names matter at runtime impacts the choice of a formal representation.

Commonly used representations include De Bruijn indices [15], nominal syntax [21], higher-order

abstract syntax [48] and locally nameless [13]. The strength of these representations is that they

abstract away the concrete names of bound variables, but that immediately makes them unsuitable

for dynamic languages. In the examples above we see that the names of variables are relevant, so

they need to be treated as strings. Consequently, most formal semantics of dynamic languages

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:3

(such as JavaScript and PHP) either use a string-based variable representation with environments

or avoid dynamic constructs such as $ and with (§ 7.3). A notable exception is the substitution-based

semantics of Nix by Dolstra [16], but that does not handle variable binding correctly (§ 7.2).

It is well-known that string-based variable representations can be tedious due to 𝛼-conversion

and variable capture. However, since the result of a functional program should never contain any

free variables, it is folklore that variable capture problems can be avoided by restricting reduction to

closed programs [47, §11.3.2].
1
Unfortunately, in the presence of dynamic variable binding, this trick

does not work because we cannot statically determine if expressions are closed (see with g {}; x + y

above, where closedness depends on the result of g). This brings us to the question: can we define
a concise substitution-based semantics for dynamic languages that is sound and complete w.r.t. an
environment-based interpreter, and scales to non-trivial language features?

Solution to main challenge: A form of deferred substitutions. Our key insight is to “defer”

substitutions in dynamic constructs such as $ and eval. Substitution should not happen right away,

but only at the moment the operand of $ or eval has been fully reduced to a string literal. We do

so by taking inspiration from the calculus of explicit substitutions [1], which reifies substitutions

as explicit constructs in the expression syntax. But instead of allowing explicit substitutions to

appear anywhere in the expression syntax, we only allow them to occur at dynamic constructs

such as $ and eval. More formally, in our operational semantics, we annotate ${𝑒}𝑑 with a deferred
substitution 𝑑 , which is a finite map from strings to expressions. In the source program all deferred

substitutions are empty. When reducing a 𝛽-redex, a new mapping is added to all enclosed deferred

substitutions. For example, (𝜆 𝑥. . . . ${𝑒1}𝑑 . . .) 𝑒2 is reduced to . . . ${𝑒′
1
}𝑑 ⟨𝑥 :=𝑒2 ⟩ . . ., where 𝑒′1 is the

result of substituting 𝑒2 for 𝑥 in 𝑒1. (We substitute 𝑥 in 𝑒1 to support nested lookups, e.g., ${${"x"}} .)
Then finally when 𝑒 in ${𝑒}𝑑 is reduced to a string 𝑥 , we look up 𝑥 in the deferred substitution 𝑑 .

That is, ${𝑥}𝑑 is reduced to 𝑒 for 𝑥 := 𝑒 ∈ 𝑑 . (In an unpublished manuscript, Lippmeier [37] proposes

a different form of deferred substitutions, with other applications, see § 7.1.)

We show that deferred substitutions enjoy some good properties. They correctly handle variable

capture without the need for 𝛼-conversion and without a restriction to closed expressions, they

naturally support variable shadowing in the presence of with, and they can easily be adjusted to

support different combinations of language features (e.g., with, eval, $). To show the correctness of

deferred substitutions, we prove soundness and completeness of an environment-based interpreter

w.r.t. them. We moreover prove that for the call-by-name lambda calculus, our semantics is sound

and complete w.r.t. an ordinary substitution-based semantics for closed expressions.

Sub-challenge #1: Subtle shadowing rules. Many languages have subtle shadowing rules,

whose semantics are difficult to specify. Consider the following examples in Nix:

let x = 10; in let x = 12; in x # returns 12

with { x = 10; }; with { x = 12; }; x # returns 12

let x = 10; in with { x = 12; }; x # returns 10

with { x = 10; }; let x = 12; in x # returns 12

Naively one might expect the third program to return 12, because x is shadowed. However, in Nix

let has priority over with, regardless of whether the let is enclosed in the with or not. These rules

are a well-known source of confusion [11, 43, 54], and the prior semantics of Nix by Dolstra [16]

(which uses ordinary substitutions) got these rules wrong (§ 7.2).

Deferred substitutions are a good fit to model such shadowing rules because substitutions are

deferred to the moment that variables are reduced. More formally, we extend deferred substitutions

1
This trick is used in practice in the Rocq-based textbook Programming Language Foundations [49] and the Rocq-based

verification tools Iris [28, 33] and CFML [14].

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

268:4 Rutger Broekhoff and Robbert Krebbers

to track whether each variable expression mapping belongs to a with or a let. If a substitution for a

let is performed after one for a with, we simply overwrite it in the deferred substitution.

Sub-challenge #2: Mixture of evaluation strategies. Many lazy languages have a mixture of

evaluation strategies. Nix has deepSeq e1 e2, which if e1 results in a list or attribute set, evaluates all

elements/members recursively, and then proceeds with e2. Getting the semantics of terminating

and faulty programs correct is surprisingly subtle. Consider:

Omega = (x: x x) (x: x x)

deepSeq { x = Omega; y = 0 0; } 10

There are two possible behaviors: either the program faults (when the faulty application 0 0 is

evaluated first) or diverges (when the loop Omega is evaluated first). The behavior depends on the

order in which the members of the attribute set are evaluated. In Nix, it appears that numbers are

assigned to attribute members, and attribute sets are processed in a deterministic order based on

that numbering. To model this behavior correctly, we parameterize our operational semantics and

interpreter by a total order on names,
2
which neatly aligns with our use of strings for names.

The equality operator == (which is primitive in Nix) also performs a deep evaluation to compare

its operands. Interestingly, its semantics w.r.t. divergence is different from deepSeq. Consider:

{ x = Omega; } == { x = Omega; y = 10; }

One might expect the operands of == to be evaluated deeply and the program to diverge, but it will

actually terminate. What happens is that Nix will first compare the set of attribute names, and only

if these compare equal, proceed recursively to compare the attribute values.

These examples clearly emphasize the need to prove soundness and completeness not just for

terminating programs, but also for faulty and diverging programs. More precisely, we wish to prove

that the substitution-based semantics terminates, faults or diverges iff the interpreter has that same

behavior. Up to our knowledge, this correspondence has never been proved in a proof assistant for

even a basic version of an interpreter for the call-by-name lambda calculus.

Sub-challenge #3: Recursion through finite maps in Rocq. To mechanize a language in a

proof assistant, suitable data structures to represent the syntax are important. A key challenge for us

is finding a representation of finite maps that can be used in nested positions and provides the right

reasoning principles. We need that because variables in expressions contain deferred substitutions,

which are finite maps from strings to expressions themselves. Finite maps also occur in nested

position to model attribute sets and thunks/closures. We make use of the recently improved gmap

data structure from the Rocq-std++ library by the second author [32], which allows us to write:

Inductive expr :=

| EId (ds : gmap string expr) (ex : expr) // ${ex}ds
| ...

The gmap data structure is based on the canonical binary trie data structure by Appel and Leroy [4],

but generalized to arbitrary keys (we use string). Similar to the data structure by Appel and Leroy

[4], gmap has a number of important features. First, it enjoys extensional equality, i.e.,maps are equal

iff they have the same value for every key (without axioms like functional extensionality or proof

irrelevance), which makes reasoning in Rocq much more concise (e.g., no need for setoid rewriting).
Second, it enables efficient computation (the lookup, insert an delete operations have logarithmic

time complexity, both with vm_compute in Rocq and extraction to OCaml). We demonstrate that the

data structure is well-suited to represent syntax with nested occurrences of maps and allows us to

2
Alternatively one could make the operational semantics non-deterministic, but since the interpreter needs to pick a concrete

evaluation order, that would result in a weaker soundness and completeness theorem, see § 4.4.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:5

define recursive definitions (i.e., Fixpoints) without Rocq’s guardedness checker being a burden.

Neither Rocq nor Rocq-std++ automatically provide the necessary induction principles for our

proofs, but we show that these can be easily derived.

Contributions. We develop techniques for developing sound and complete interpreters for

dynamic languages using a form of deferred substitutions, which we put to practice to develop the

most comprehensive semantics of the Nix expression language to date. Concretely:

• As the baseline of our work, we develop a soundness and completeness proof for an interpreter

for the call-by-name lambda calculus, which accounts for terminating, faulty, and diverging

programs (§ 2). While this result is likely folklore, we believe we are the first to present a

mechanized proof in a proof assistant.

• We develop a form of deferred substitutions to give a substitution-based operational semantics

for dynamic languages, which we apply to a core language with versions of with, $ and eval

(§ 3). We prove soundness and completeness of an environment-based interpreter w.r.t. our

operational semantics based on deferred substitutions.

• We put deferred substitutions to practice to develop a large-scale operational semantics and

interpreter for Nix (§ 4). The results in this section extend the prior semantics of Nix by

Dolstra [16] with additional features (e.g., deepSeq, __functor, matching with recursive defaults,

deep comparison operator semantics, IEEE floats based on the Flocq library [9] in Rocq) and

mechanized proofs in a proof assistant. We discovered bugs in the prior semantics of Nix

related to dynamic binding and divergence, see § 7.2.

• We use Rocq’s extraction mechanism [36] to turn our Nix interpreter into executable OCaml

code, which combined with a frontend (parser and elaborator) allows us to exercise the

interpreter on the official Nix language tests (§ 5).

• We demonstrate how the new gmap data structure from the Rocq-std++ library can be used to

represent syntax with nested recursion through finite maps (§ 6).

We conclude with related (§ 7) and future work (§ 8). The Rocq and OCaml source code for all

sections can be found in our artifact [10]. Hyperlinks to the Rocq development are marked ().

Limitations. Although we believe that our techniques are general purpose, our core focus is on

the Nix language. Other dynamic languages (such as JavaScript, PHP or Bash) have an abundance

of other subtle features, and it remains to be investigated how our techniques can be transferred.

Similar to Dolstra [16], we use call-by-name whereas the official Nix implementation is lazy

(i.e., uses sharing). This means that there are some cases where we are not lazy enough (e.g., cycle
detection in recursive attributes) or are too inefficient to execute certain test programs. We also omit

Nix features for interaction with the file system (e.g., paths) and package manager (e.g., derivations).

2 The Call-by-Name Lambda Calculus
We present a substitution-based operational semantics (§ 2.1) and environment-based interpreter

(§ 2.2) for the call-by-name lambda calculus, called LambdaLang, which will serve as a baseline to

present our form of deferred substitutions (§ 3) and our semantics of Nix (§ 4). We provide a proof

of soundness and completeness of the interpreter w.r.t. the operational semantics for terminating,

faulty and diverging programs (§ 2.3). While the proof might be folklore, we believe that we are the

first to spell out the details and mechanize it in a proof assistant.

2.1 Syntax and Operational Semantics
The syntax of LambdaLang is given in Figure 1. It is mostly standard with variables (𝑥 ∈ Var),
lambda abstraction (𝜆 𝑥. 𝑒) and application (𝑒1 𝑒2), but extended with string literals (𝑠 ∈ Str) as

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

268:6 Rutger Broekhoff and Robbert Krebbers

Syntax:

Expr ∋ 𝑑, 𝑒 F 𝑠 ∈ Str | 𝑥 ∈ Var | 𝜆 𝑥. 𝑒 | 𝑒 𝑒

Operational semantics: 𝑒 → 𝑒′

app

𝑒1 → 𝑒′
1

𝑒1 𝑒2 → 𝑒′
1
𝑒2

𝛽

(𝜆 𝑥. 𝑒1) 𝑒2 → 𝑒1 [𝑥 ≔ 𝑒2]

Final expressions: final 𝑒

final 𝑠 final (𝜆 𝑥. 𝑒)

Parallel substitution: 𝑒 [𝑑] = 𝑒′

𝑠 [𝑑] := 𝑠

𝑥 [𝑑] :=
{
𝑒 if 𝑥 := 𝑒 ∈ 𝑑
𝑥 otherwise

(𝜆 𝑥. 𝑒) [𝑑] := 𝜆 𝑥. 𝑒 [𝑑 \ {𝑥}]
(𝑒1 𝑒2) [𝑑] := 𝑒1 [𝑑] 𝑒2 [𝑑]

Interpreter: ⟦𝑒⟧𝐸
𝛿
= 𝑟

⟦𝑒⟧𝐸
0
:= Timeout

⟦𝑠⟧𝐸
𝛿
:= ret 𝑠

⟦𝑥⟧𝐸
𝛿
:= (thu𝐸′ 𝑒) ← 𝐸 𝑥 ;

⟦𝑒⟧𝐸′
𝛿−1

⟦𝜆 𝑥. 𝑒⟧𝐸
𝛿
:= ret (clo𝐸 𝑥 . 𝑒)

⟦𝑒1 𝑒2⟧𝐸𝛿 := (clo𝐸′ 𝑥 . 𝑒′) ← ⟦𝑒1⟧𝐸𝛿−1;

⟦𝑒′⟧𝐸
′ ⟨𝑥 :=thu𝐸 𝑒2 ⟩

𝛿−1

Data structures:

Env ∋ 𝐸 ≔ Var fin−⇀ Thunk

Thunk ∋ 𝑡 F thu𝐸 𝑒

Val ∋ 𝑣 F 𝑠 | clo𝐸 𝑥 . 𝑒

Fig. 1. The operational semantics and interpreter for LambdaLang.

Option 𝐴 ∋ 𝑥? F None | Some (𝑥 : 𝐴) ret (𝑥 : 𝐴) : Res 𝐴 := Done (Some 𝑥)
Res 𝐴 ∋ 𝑟 F Timeout | Done (𝑥? : Option 𝐴) fail : Res 𝐴 := Done None

(𝑟 : Res 𝐴) >>= (𝑓 : 𝐴→ Res 𝐵) : Res 𝐵 :=


𝑓 𝑥 if 𝑟 = Done (Some 𝑥)
Done None if 𝑟 = Done None

Timeout if 𝑟 = Timeout

Fig. 2. Options and the result monad.

primitive data. The semantics is given using a standard small-step operational semantics (𝑒 → 𝑒′)
(), which reduces the left-most outer-most 𝛽-redex. The judgment final 𝑒 () describes normal

forms that are valid results of a program, namely string literals and lambda abstractions.

In the definition of 𝛽-reduction we make use of parallel substitution 𝑒 [𝑑] (), where 𝑑 is a finite

map from variable names to expressions, rather than a single substitution. The notation 𝑥 := 𝑒 ∈ 𝑑
denotes that 𝑑 has a mapping from 𝑥 to 𝑒 , the notation 𝑑 ⟨𝑥 := 𝑒⟩ gives the map in which the key 𝑥

is associated with 𝑒 , and 𝑑1
<∪ 𝑑2 denotes the left-biased union of the maps 𝑑1 and 𝑑2.

Parallel substitutions make it easy to state auxiliary lemmas about our interpreters (Lemmas 2.2

and 2.4). Its definition needs care because variables are strings (i.e., Var := Str). First, in the lambda

case (𝜆 𝑥. 𝑒) [𝑑] = 𝜆 𝑥. 𝑒 [𝑑 \ {𝑥}], we remove 𝑥 from 𝑑 to handle shadowing (we do not assume

Barendregt [6]’s variable convention). Second, our parallel substitution is not capture avoiding,

which is only correct if we restrict reduction to closed expressions, i.e., we only consider “top-level”

programs without free variables [47, §11.3.2]. With that restriction, the arguments of a 𝛽-redex are

always closed, and thus parallel substitution 𝑒 [𝑑] is only applied if all expressions in 𝑑 are closed.

A counterexample is (𝜆𝑦. 𝜆 𝑥 .𝑦) 𝑥 "a"→ (𝜆 𝑥. 𝑥) "a"→ "a". Formally, all theorems in § 2.3 have

the precondition closed 𝑒 , where closed𝑋 𝑒 means FV(𝑒) ⊆ 𝑋 , and closed 𝑒 is short for closed∅ 𝑒 .

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/operational.v#L21
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/operational.v#L28
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/operational.v#L12

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:7

2.2 Implementation of the Interpreter
Figure 1 gives an environment-based interpreter for LambdaLang (). Our interpreter makes use

of partiality fuel [2] to handle non-termination, and environments and thunks in the style of the

Krivine [34] machine to model call-by-name evaluation.

The interpreter has type Expr→ Env→ N→ Res Val, where the N argument is the fuel value.
The fuel value provides a bound on the number of computation steps, allowing one to define the

interpreter as a structurally recursive function in which each recursive call decreases the fuel.
3
The

monad Res (Figure 2) models that the interpreter can either run out of fuel (Timeout), fault (fail),

or return with the result of the program (ret 𝑥). We implicitly lift Option 𝐴 into Res 𝐴 using Done.

The notation 𝑝 ← 𝑚1;𝑚2 (much like Haskell’s ‘do notation’) should be read as𝑚1 >>= (𝜆𝑝.𝑚2).
When 𝑝 is a pattern and the provided value does not match, fail is implicitly returned.

The key data structures of the interpreter are environments (Env), thunks (Thunk) and values

(Val). An environment is a finite map from variable names (i.e., strings) to thunks. A thunk thu𝐸 𝑒 is a

suspended computation 𝑒 in an environment 𝐸, and is key to model call-by-name evaluation. Thunks

are evident in the case for application 𝑒1 𝑒2, where 𝑒2 is not evaluated directly, but thu𝐸 𝑒2 is inserted

in the environment. Consequently, in the case of a variable 𝑥 , the thunk thu𝐸′ 𝑒 for 𝑥 is retrieved

from the environment 𝐸, and the suspended computation 𝑒 is evaluated in its corresponding

environment 𝐸′. Values represent the results of the interpreter, they are either string literals 𝑠 or

closures clo𝐸 𝑥 . 𝑒 . Similar to thunks, closures contain an environment 𝐸.

Already for the call-by-name lamda calculus, we see that a substitution-based semantics is simpler

than an environment-based interpreter. The latter needs additional data structures—environments,

thunks, and values—which are not needed in the former. In the definition for application (⟦𝑒1 𝑒2⟧𝐸𝛿),
one has to be careful to use the right environment, making it more complicated than just 𝛽-reduction.

2.3 Soundness and Completeness
LambdaLang programs can have three kinds of behaviors: they can terminate with a value, can

fault (e.g., a wrong function application such as "foo" "bar"), or can diverge (e.g., (𝜆 𝑥. 𝑥 𝑥) (𝜆 𝑥. 𝑥 𝑥)).
In the operational semantics these correspond to a finite reduction to a final expression, a finite
reduction to a non-final stuck expression, and an infinite reduction, respectively. In the interpreter

these correspond to returning ret 𝑠 for some fuel value, returning fail for some fuel value, and

returning Timeout for any fuel value, respectively. The following theorems state that the interpreter

is sound and complete w.r.t. the operational semantics for these behaviors.

Theorem 2.1. The interpreter is sound and complete w.r.t. the operational semantics for:
(1) terminating programs, i.e., (∃𝛿. ⟦𝑒⟧∅

𝛿
= ret 𝑠) iff 𝑒 →∗ 𝑠 (), and

(2) faulty programs, i.e., (∃𝛿. ⟦𝑒⟧∅
𝛿
= fail) iff (∃𝑒′. 𝑒 →∗ 𝑒′ ↛ ∧¬final 𝑒′) (), and

(3) diverging programs, i.e., (∀𝛿. ⟦𝑒⟧∅
𝛿
= Timeout) iff (∀𝑒′. 𝑒 →∗ 𝑒′ =⇒ red 𝑒′) ().

We let red 𝑒 denote ∃𝑒′. 𝑒 → 𝑒′. Item 1 is specialized to string results 𝑠 ∈ Str, but can be

generalized to any final value (), namely (∃𝑤, 𝛿. ⟦𝑒⟧∅
𝛿
=𝑤 ∧ |𝑣 | = |𝑤 |) iff 𝑒 →∗ |𝑣 | (we introduce

|_| in the following; this statement does not hold without the ∃ for𝑤 since |_| is not injective). This
result implies confluence up to normal forms, but not determinism in general, which is proved

separately in Rocq (). These remarks also apply to the languages in the other sections.

The left-to-right directions (soundness) of Items 1 and 2 rely on a helping lemma that generalizes

over the environment 𝐸 and combines the ret/fail cases by quantifying over an optional value 𝑣?:

3
To enable simple proofs by induction on the fuel value in Rocq, we follow the convention from Amin and Rompf [2] to

decrease the fuel in every recursive call, even if the term is structurally smaller. Particularly, we decrease the fuel in the

recursive call ⟦𝑒1⟧ in the application case whereas that is not needed for the recursion to be well-formed.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp.v#L34
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L575
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L585
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L594
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L563
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/operational_props.v#L19

268:8 Rutger Broekhoff and Robbert Krebbers

Lemma 2.2 (). If ⟦𝑒⟧𝐸
𝛿
= Done 𝑣?, then there exists some 𝑒′ such that 𝑒L𝐸M →∗ 𝑒′ and if 𝑣? is

Some 𝑣 , then |𝑣 | = 𝑒′; or if 𝑣? is None, then 𝑒′ ↛ and ¬final 𝑒′.
This lemma is proved by induction over the fuel value 𝛿 . The lemma statement relies on lifting

the parallel substitution to environments and the conversion from values to expressions:

|thu𝐸 𝑒 | ≔ 𝑒L𝐸M |𝑠 | ≔ 𝑠

𝑒L𝐸M ≔ 𝑒 [{𝑥 ≔ |𝑡 | | 𝑥 ≔ 𝑡 ∈ 𝐸}] |clo𝐸 𝑥 . 𝑒 | ≔ 𝜆 𝑥. 𝑒L𝐸 \ {𝑥}M
Here, |𝑡 | converts a thunk 𝑡 into an expression (), 𝑒L𝐸M performs a parallel substitution of an

environment 𝐸 in an expression 𝑒 by converting all thunks to expressions (), and finally |𝑣 |
converts a value 𝑣 into an expression (). The first two definitions are mutually recursive.

The right-to-left directions (completeness) of Items 1 and 2 of Theorem 2.1 are proved by induction

over the multi-step reduction (→∗). The base cases are trivial, for the inductive cases we show that

the interpreter is preserved under reductions:

Lemma 2.3 (). If 𝑒1 → 𝑒2 and ⟦𝑒2⟧∅𝛿2 = Done 𝑣?
2
, then there exist an optional value 𝑣?

1
and a fuel

value 𝛿1 such that ⟦𝑒1⟧∅𝛿1 = Done 𝑣?
1
and |𝑣?

1
| = |𝑣?

2
|.

We again quantify over optional values 𝑣?
1
and 𝑣?

2
to unify the ret and fail cases. The key complexity

of this lemma is that the interpreter does not necessarily give the same value for 𝑒1 and 𝑒2. Consider

𝑒1 ≔ (𝜆 𝑥. 𝜆 𝑦. 𝑥) "a" and 𝑒2 ≔ 𝜆𝑦. "a", for which the interpreter returns clo𝑥≔thu∅ "a" 𝑦. 𝑥 and

clo∅ 𝑦. "a", respectively. We thus compare 𝑣?
1
and 𝑣?

2
by converting them to expressions. Throughout

the proof of Lemma 2.3 we need to show that for inputs related up to conversion, the interpreter

gives outputs related up to conversion:

Lemma 2.4 (). If 𝑒1L𝐸1M = 𝑒2L𝐸2M and ⟦𝑒1⟧𝐸1

𝛿1
= Done 𝑣?

1
, then there exist an optional value 𝑣?

2
and

a fuel value 𝛿2 such that ⟦𝑒2⟧𝐸2

𝛿2
= Done 𝑣?

2
and |𝑣?

1
| = |𝑣?

2
|.

An important detail that we omitted is that all results only hold for closed expressions. Formally,

Theorem 2.1 has precondition closed 𝑒 (). The presence of this precondition causes two problems.

First, for dynamic languages such as Nix we cannot statically determine if a program is closed

because of dynamically computed binder names (see § 1). Second, the closedness conditions induce

an abundance of boilerplate in the mechanized proofs. We need to lift closedness to environments

() and values (), prove that substitution, the reduction relation and the interpreter preserve

closedness, and so on. The preconditions for some lemmas therefore become very complicated, e.g.,
Lemma 2.4 requires closed 𝐸1 and closed 𝐸2 and closeddom 𝐸1

𝑒1 and closeddom 𝐸2
𝑒2. Our solution

based on a form of deferred substitutions that we will present in § 3 remedies both of these problems.

3 Deferred Substitutions
We present the basic ideas of deferred substitutions by defining a substitution-based semantics for

a core language with dynamic features, called DynLang (§ 3.1). We implement a corresponding

environment-based interpreter (§ 3.2). We prove soundness and completeness of our interpreter w.r.t.

our semantics, and prove soundness and completeness of our semantics w.r.t. the ordinary semantics

from § 2 when restricted to closed LambdaLang expressions (§ 3.3). Finally, we demonstrate the

versatility of our form of deferred substitutions by describing some variations, in particular, a

substitution-based semantics of a core language with eval (§ 3.4).

3.1 Syntax and Operational Semantics
The syntax and operational semantics () of DynLang is given in Figure 3. It extends LambdaLang
with dynamically computed variable names (a core version of $) and dynamic binder introduction (a

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L516
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L29
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L31
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L56
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L402
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L297
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L112
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L124
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/lambda/interp_proofs.v#L126
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/dynlang/operational.v#L21

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:9

Syntax:

Expr ∋ 𝑑, 𝑒 F 𝑠 ∈ Str | ${𝑒}𝑑 | 𝜆 𝑒. 𝑒 | 𝑒 𝑒

Operational semantics: 𝑒 → 𝑒′

id-str

𝑠 := 𝑒 ∈ 𝑑
${𝑠}𝑑 → 𝑒

id

𝑒 → 𝑒′

${𝑒}𝑑 → ${𝑒′}𝑑

abs

𝑒1 → 𝑒′
1

𝜆 𝑒1. 𝑒2 → 𝜆 𝑒′
1
. 𝑒2

app

𝑒1 → 𝑒′
1

𝑒1 𝑒2 → 𝑒′
1
𝑒2

𝛽

(𝜆 𝑠. 𝑒1) 𝑒2 → 𝑒1 [𝑠 ≔ 𝑒2]

Parallel substitution: 𝑒 [𝑑] = 𝑒′

𝑠 [𝑑] ≔ 𝑠

(${𝑒}𝑑 ′) [𝑑] ≔ ${𝑒 [𝑑]}𝑑 <∪𝑑 ′

(𝜆 𝑒1 . 𝑒2) [𝑑] ≔ 𝜆 𝑒1 [𝑑] . 𝑒2 [𝑑]
(𝑒1 𝑒2) [𝑑] ≔ 𝑒1 [𝑑] 𝑒2 [𝑑]

Final expressions: final 𝑒

final 𝑠 final (𝜆 𝑠. 𝑒)

Interpreter: ⟦𝑒⟧𝐸
𝛿
= 𝑟

⟦𝑒⟧𝐸
0
≔ Timeout

⟦𝑠⟧𝐸
𝛿
≔ ret 𝑠

⟦${𝑒}⟧𝐸
𝛿
≔ 𝑠 ← ⟦𝑒⟧𝐸

𝛿−1;

(thu𝐸′ 𝑒′) ← 𝐸 𝑠;

⟦𝑒′⟧𝐸′
𝛿−1

⟦𝜆 𝑒1. 𝑒2⟧𝐸𝛿 ≔ 𝑠 ← ⟦𝑒1⟧𝐸𝛿−1;
ret (clo𝐸 𝑠 . 𝑒2)

⟦𝑒1 𝑒2⟧𝐸𝛿 ≔ (clo𝐸′ 𝑠 . 𝑒′) ← ⟦𝑒1⟧𝐸𝛿−1;

⟦𝑒′⟧𝐸
′ ⟨𝑠 :=thu𝐸 𝑒2 ⟩

𝛿−1
Data structures:

Env ∋ 𝐸 ≔ Str fin−⇀ Thunk

Thunk ∋ 𝑡 F thu𝐸 𝑒

Val ∋ 𝑣 F 𝑠 | clo𝐸 𝑠 . 𝑒

Fig. 3. The operational semantics and interpreter for DynLang.

core version of with, in the sense that with r; e dynamically introduces a binding for every attribute

in the attribute set resulting from r) by generalizing the constructs for variables ${𝑒} and lambda

abstractions 𝜆 𝑒1 . 𝑒2. The operand 𝑒 of ${𝑒} is an arbitrary expression that computes a string, and the

result of ${𝑒} is the value of the variable corresponding to the computed string. Similarly, the first

operand 𝑒1 of the generalized lambda abstraction 𝜆 𝑒1. 𝑒2 is an arbitrary expression that computes

a string, which is used as the name of the binder. Ordinary variables x are written as ${"x"} ,
and ordinary lambda abstractions 𝜆 x. 𝑒 as 𝜆 "x". 𝑒 . The identity function becomes 𝜆 "x". ${"x"} .
A more complicated example is ((𝜆 "x". 𝜆 "y". ${${"y"}}) "a" "x"). After reducing the 𝛽-redexes,

${"y"} reduces to "x", and ${${"y"}} thus reduces to the value of "x", i.e., the string "a". Also

consider ((𝜆 "x". 𝜆 ${"x"} . ${"y"}) "y" "a"), where 𝜆 ${"x"} reduces to 𝜆 "y", and the result of the

whole program is therefore the string "a".

Our technique of deferred substitutions is inspired by the calculus of explicit substitutions [1]

and related to a slightly different proposal by Lippmeier [37] (see § 7.1 for details), which reifies

substitutions as an explicit constructor in the expression syntax. Instead of allowing explicit

substitutions to appear anywhere in the expression syntax, we only let them occur at constructs

that compute variables or refer to dynamically computed names. For DynLang this means we

annotate ${𝑒}𝑑 with a deferred substitution 𝑑 , which is a finite map from strings to expressions.

We write ${𝑒} instead of ${𝑒}∅ in case the substitution is empty.

All deferred substitutions in source programs (i.e., programs written by a user) are empty, they

only become non-empty as the result of reduction steps. Non-empty deferred substitutions are

created by 𝛽-reduction, which reduces (𝜆 𝑠. 𝑒1) 𝑒2 to 𝑒1 [𝑠 ≔ 𝑒2]. Here, 𝑒 [𝑑] performs parallel

substitution (), with two differences compared to the standard definition from § 2.1. First, instead

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/dynlang/operational.v#L12

268:10 Rutger Broekhoff and Robbert Krebbers

of replacing values (𝑥 [𝑑] ≔ 𝑒 if 𝑥 := 𝑒 ∈ 𝑑 , as done in § 2.1), we add 𝑑 to the deferred substitution in

every variable ${𝑒′}𝑑 ′ in 𝑒 . Second, we do not prevent shadowing in the lambda case (𝜆 𝑒1 . 𝑒2) [𝑑] ≔
𝜆 𝑒1 [𝑑] . 𝑒2 [𝑑] by removing the binding for 𝑒1 from 𝑑 . We cannot do so because 𝑒1 could be an

arbitrary computation whose resulting string literal is not yet known, so we do not know which

binding to remove from 𝑑 . Shadowing is instead handled by taking the left-biased union in the

variable case, i.e., (${𝑒}𝑑 ′) [𝑑] ≔ ${𝑒 [𝑑]}𝑑 <∪𝑑 ′ . In other words, parallel substitutions overwrite prior

deferred substitutions. Consider the LambdaLang term ((𝜆 𝑥. 𝜆 𝑥 . 𝑥) "a" "b"). Converted toDynLang,
it reduces as (𝜆 "x". 𝜆 "x". ${"x"}) "a" "b"→ (𝜆 "x". ${"x"}x:="a") "b"→ ${"x"}x:="b" → "b".

Deferred substitutions are used when the expression 𝑒 in ${𝑒}𝑑 is reduced to a string literal 𝑠 .

Using id-str ${𝑠}𝑑 is reduced to 𝑒 for 𝑠 := 𝑒 ∈ 𝑑 . Finally, the compatibility rules id, abs and app

allow reduction to happen in a call-by-name order.

We stress that there is no need for closedness conditions because deferred substitutions are well-

behaved for programs with free variables, whereas ordinary non-capture avoiding substitutions are

not. Consider the counterexample ((𝜆𝑦. 𝜆 𝑥 .𝑦) 𝑥 "a") from § 2.1. When converted into DynLang
it reduces as (𝜆 "y". 𝜆 "x". ${"y"}) ${"x"} "a"→ (𝜆 "x". ${"y"}y≔${"x"}) "a"→ ${"y"}x≔"a",y≔${"x"} →
${"x"} . Our semantics thus correctly gets stuck because the variable x is not bound, instead of

reducing to a nonsensical result which the semantics from § 2.1 does.

3.2 Implementation of the Interpreter
Figure 3 gives an environment-based interpreter for DynLang (). The interpreter follows the

same structure as the one for LambdaLang (§ 2.2) with the expected modifications for the new

constructs. To evaluate ${𝑒} , we evaluate 𝑒 to a string literal, and look up the thunk in the envi-

ronment 𝐸. Similarly, for 𝜆 𝑒1. 𝑒2, we evaluate 𝑒1 to a string literal, and return a closure. Like the

semantics, the interpreter is well-behaved for programs with free variables. Reconsider the example

((𝜆𝑦. 𝜆 𝑥 .𝑦) 𝑥 "a") from § 2.1 and 3.1. As expected, the interpreter fails (with sufficient fuel):

⟦(𝜆 "y". 𝜆 "x". ${"y"}) ${"x"} "a"⟧∅ = ⟦(𝜆 "x". ${"y"}) "a"⟧y:=thu∅ ${"x"} =
⟦${"y"}⟧x:="a",y:=thu∅ ${"x"} = ⟦${"x"}⟧∅ = fail

The interpreter is only defined on source programs, i.e., programs without deferred substitutions,

as there is no case ${𝑒}𝑑 for non-empty 𝑑 . This is well-formed because when given an expression

with empty deferred substitutions as input, there are only recursive calls on expressions with empty

deferred substitutions, and only expressions with empty deferred substitutions are inserted into

the environment. In § 3.3, we generalize the interpreter to all expressions to carry out our proofs.

3.3 Soundness and Completeness
We establish soundness and completeness of the interpreter w.r.t. the operational semantics for

terminating, faulty, and diverging programs. The main theorem is analogous to Theorem 2.1. It is

worth noting that unlike the results in § 2.3, there is no need for closedness preconditions because

deferred substitutions are well-behaved for programs with free variables.

Themain theorem () is proven using the same helping lemmas and definitions that we developed

in § 2.3. There are two important observations. First, since the closedness conditions are gone,

there is much less boilerplate when carrying out a mechanized proof in Rocq. Second, to state a

variant of Lemma 2.3, which says that the interpreter is preserved under reductions (), we need

to lift the interpreter from source programs to expressions with non-empty deferred substitutions

(𝛽-reduction creates deferred substitutions). This is done by extending the variable case:

⟦${𝑒}𝑑⟧𝐸𝛿 ≔ 𝑠 ← ⟦𝑒⟧𝐸
𝛿−1; (thu𝐸′ 𝑒

′) ← (𝐸 <∪ {𝑥 ≔ thu∅ 𝑑 | 𝑥 ≔ 𝑑 ∈ 𝑑}) 𝑠; ⟦𝑒′⟧𝐸′
𝛿−1

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/dynlang/interp.v#L39
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/dynlang/interp_proofs.v#L391-L424
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/dynlang/interp_proofs.v#L184

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:11

We use the left-biased union to first lookup the variable 𝑠 in the environment 𝐸, and if that fails,

look it up in the deferred substitution 𝑑 . With the lifted version of the interpreter at hand, all

remaining proofs are analogous to those in § 2.3 (but without closedness boilerplate).

To get additional confidence in our method, we prove that our semantics is sound and complete

w.r.t. the ordinary substitution-based semantics from § 2 when restricted to closed LambdaLang
expressions. To state this result, recall that every LambdaLang expression can be converted into

DynLang by transforming variables x into ${"x"} and lambda abstractions 𝜆 x. 𝑒 into 𝜆 "x". 𝑒 ().

Theorem 3.1. The DynLang semantics is sound and complete w.r.t. the LambdaLang semantics for:
(1) terminating programs, i.e., for all closed 𝑒 ∈ Exprlam we have 𝑒 →∗dyn 𝑠 iff 𝑒 →

∗
lam 𝑠 (), and

(2) faulty programs, i.e., for all closed 𝑒 ∈ Exprlam we have (∃𝑒′. 𝑒 →∗dyn 𝑒
′ ↛dyn ∧¬finaldyn 𝑒′) iff

(∃𝑒′. 𝑒 →∗lam 𝑒
′ ↛lam ∧¬finallam 𝑒′) (), and

(3) diverging programs, i.e., for all closed 𝑒 ∈ Exprlam we have (∀𝑒′. 𝑒 →∗dyn 𝑒
′ =⇒ reddyn 𝑒′) iff

(∀𝑒′. 𝑒 →∗lam 𝑒
′ =⇒ redlam 𝑒′) ().

This theorem is derived from the soundness and completeness theorems of the interpreters for

LambdaLang and DynLang, and the observation that these interpreters are nearly identical for any

LambdaLang expression (only the fuel value might differ). Unlike Item 1 of Theorem 2.1 and Item 1

of Theorem 4.1, which generalize to all values, Item 1 of Theorem 3.1 does not generalize to all

values, since DynLang and LambdaLang have different notions of values and expressions.

3.4 Variations of Deferred Substitutions
Deferred substitutions can easily be adjusted to different language features. We show that they can

be simplified if one leaves out dynamic computation of variable names (i.e., no $) and that they

transfer to a semantics for a functional version of eval.

Without $. First consider a variation of DynLang that only supports dynamic introduction of

binders (akin to with in Nix, see § 4.1), but not computing variable names:

Expr ∋ 𝑑, 𝑒 F 𝑠 ∈ Str | 𝑥𝑒? | 𝜆 𝑒. 𝑒 | 𝑒1 𝑒2
Since variables are static, the deferred substitution is no longer a finite map, but an option, i.e., we
let 𝑒? ∈ Option Expr. The rule id-str is adjusted to 𝑥Some 𝑒 → 𝑒 , while 𝑥None is stuck because it

means the variable is unbound. As per convention, we assume that source programs contain only

empty deferred substitutions (variables are of the form 𝑥None). Parallel substitution is defined as:

𝑥𝑒? [𝑑] ≔
{
𝑥Some 𝑑 if 𝑥 := 𝑑 ∈ 𝑑
𝑥𝑒? otherwise

Eval. Now consider EvalLang, a variation of the prior language with an eval construct ():

Expr ∋ 𝑑, 𝑒 F 𝑠 ∈ Str | 𝑥𝑒? | 𝜆 𝑒. 𝑒 | 𝑒1 𝑒2 | eval𝑑 𝑒
The intuitive semantics of eval 𝑒 is that it evaluates 𝑒 to a string, then parses it as an expression, and

executes that. For example, the result of eval "(x: y: eval! y) \"a\" \"x\"" is the string "a". (Like

Nix, x: e is syntax for lambda abstractions and " is escaped as \", we use the exclamation mark to

disambiguate eval! from the variable eval.) With deferred substitutions it is straightforward to give

an operational semantics. The reduction rules () and case in the interpreter () for eval are:
eval-str

parse 𝑠 = Some 𝑒

eval𝑑 𝑠 → 𝑒 [𝑑]

eval

𝑒 → 𝑒′

eval𝑑 𝑒 → eval𝑑 𝑒′

⟦eval 𝑒⟧𝐸
𝛿
≔ 𝑠 ← ⟦𝑒⟧𝐸

𝛿−1;

𝑒′ ← parse 𝑠;

⟦𝑒′⟧𝐸
𝛿−1

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/dynlang/equiv.v#L11
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/dynlang/equiv.v#L120
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/dynlang/equiv.v#L131
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/dynlang/equiv.v#L142
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/evallang/operational.v#L7
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/evallang/operational.v#L119
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/evallang/interp.v#L42

268:12 Rutger Broekhoff and Robbert Krebbers

The deferred substitution 𝑑 in eval𝑑 𝑒 allows us to defer substitution until the moment that the

operand 𝑒 has been reduced to a string and has been parsed. Proving soundness and completeness

of the interpreter w.r.t. the operational semantics of EvalLang follows the same recipe as § 3.3. The

main additional work (done in Rocq) is implementing the parse function ().

4 A Semantics for the Nix Expression Language
We present our semantics of Nix using deferred substitutions (§ 4.2) and our interpreter (§ 4.3). We

prove soundness and completeness of the interpreter w.r.t. the operational semantics (§ 4.4). We

first give a brief introduction to the Nix language, highlighting its challenging features (§ 4.1).

4.1 Introduction to Nix
Attribute sets. A key feature of Nix are JSON-style attribute sets, which are constructed using

the syntax { x1 = e1; ...; x𝑛 = e𝑛 }. The members of an attribute set r can be accessed using the

selection operator r.x. For example, let r = { x = 10; y = 12; }; in r.x returns 10. The members

of attribute sets are evaluated lazily, so { x = Omega; y = 2; }.y returns 2.

What makes Nix’s attribute sets special is that when prefixed with the rec keyword, the members

can refer to each other, even (mutually) recursively. For example, rec { y = x; x = 2; }.y returns 2,

and rec { x = x; }.x diverges. Recursive attribute sets become interesting when used in combination

with functions. For example (x: e is a lambda abstraction and ! is Boolean negation):

rec { f = x: if x == 0 then true else !(f (x - 1)); }.f n

This program returns true iff n is even. Attribute sets are allowed to have a special "__functor"

member, which allows them to be used as a function:

{ "__functor" = r: x: if x == 0 then true else !(r (x - 1)); } n

Note that r is not the argument supplied to the record set (here, n), but the entire attribute set itself,

allowing one to write recursive functions. This program thus also returns true iff n is even.

The let/with constructs. Let bindings in Nix are allowed to refer to each other, possibly mutu-

ally recursively. For example let y = x; x = true; in y returns true. Due to laziness, the program

let x = x; in true also returns true as we do not use x. The with r; e construct adds all members of

an attribute set r to the scope of the expression e. For example, with { x = 10; y = 12; }; x returns

10. The evaluation of the attribute set is lazy, so with rec { x = x; }; true returns true as we do not

use x. As described in § 1, what makes with and let special is their subtle shadowing rules, namely

a let binding has priority over with regardless of the order in which nesting occurs:

let x = 10; in with { x = 12; }; x # returns 10

with { x = 10; }; let x = 12; in x # returns 12

Variables bound by lambda abstractions have the same binding priority as let bindings.

Matching lambdas and recursion through defaults. Nix supports lambda abstractions that

match on attribute sets. For example, ({ x, y }: x) { x = 10; y = 12; } returns 10. A matching

lambda can either be strict (the members of attribute set and the bindings in the pattern should

be the same) or non-strict (the attribute set is allowed to have more members than the pattern).

Strict matching is the default, while non-strict matching is enabled by adding the ... suffix to the

matching pattern. For example, ({ x }: x) { x = 10; y = 12; } faults because there is no binder for y

in the pattern, while ({ x, ... }: x) { x = 10; y = 12; } returns 10.

To deal with the situation where the pattern has more members than the attribute set, defaults
can be given using the ? d syntax. The default d is allowed to be an arbitrary expression that can

even refer to other members in the pattern. For example, ({ x, y ? x }: y) { x = 10; } returns 10.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/evallang/operational.v#L103

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:13

Defaults might be recursive, so ({ x ? x }: x) {} diverges, while ({ x ? x }: true) {} returns true

because of laziness. The program ({ x ? y, y ? x }: x) r diverges iff the attribute set r contains

neither x nor y. Defaults can be functions, enabling (mutual) recursion:

({ f ? (x: if x == 0 then true else !(f (x - 1)))}: f) {} n

Similar to the prior recursive examples, this program returns true iff n is even.

Sequencing. Because Nix is lazy, a program like let x = e1; in e2 only executes e1 when x

is used in e2. For example, let x = Omega; in true returns true. It is sometimes useful to ‘force’

a computation using the builtins seq e1 e2 and deepSeq e1 e2, which will evaluate e1 before e2.

The difference between the two is that deepSeq evaluates attribute sets and lists in e1 recursively,

while seq only evaluates the outermost one. Both seq Omega true and deepSeq Omega true diverge. The

program seq rec { x = x; } true returns true as the recursive attribute set is unfolded once, while

deepSeq rec { x = x; } true diverges because the recursive unfolding of rec { x = x; } is infinite.

As described in § 1, what makes deepSeq interesting is the order of evaluation:

deepSeq { x = Omega; y = 0 0; } 10

This program either faults (when the faulty application 0 0 is evaluated first) or diverges (when

the loop Omega is evaluated first). Both behaviors (i.e., both evaluation orders) can be observed in

the actual implementation of Nix. It appears that numbers are assigned to attribute members, and

attribute sets are processed deterministically based on that numbering.

Operators. Nix provides many operators, e.g., for arithmetic, comparison, merging attribute sets,

and inspecting the type of an expression. An interesting aspect of these operators is their behavior

w.r.t. faults and divergence. Binary operations are lazy in the second operand. For example, we know

that attribute member selection is not defined on Booleans, so true . Omega fails, but Omega . true

diverges because Nix tries to inspect the type of the first operand first. Similarly, true == Omega

diverges because == is overloaded for any data type.

As described in § 1, the semantics of == is not obvious. When comparing two attribute sets, only

when the domain of the attribute sets is the same, the attribute values are compared pairwise. So

the following program terminates, returning false:

{ x = Omega; } == { x = Omega; y = 10; }

If the domains are the same, the behavior depends on the evaluation order. For example, using the

actual implementation of Nix, the program { x = Omega; y = 12; } == { x = Omega; y = 10; } can be

observed to both return false and diverge.

Integers and floats. Nix supports 64-bit integers and floating-point numbers. Integer overflow

results in a fault (unlike C, a fault causes an exception, not undefined behavior where any behavior

is allowed). Floating-point numbers are IEEE 754, binary64, with platform-dependent quirks.

4.2 Syntax and Operational Semantics
Since Nix source programs contain redundancy in terms of language constructs, we formalize our

semantics for a core language, called NixLang. In § 5 we present an elaborator that translates Nix

source code into NixLang. Figure 4 gives the syntax () and operational semantics (), which we

explain below.

Attribute sets. Attribute sets in NixLang are of the form {𝑥1 := 𝛼1, . . . , 𝑥𝑛 := 𝛼𝑛}, where each
member 𝛼 is either nonrec 𝑒 or rec 𝑒 (). We keep track of the recursivity of each member instead

of the attribute set as a whole, to easily support Nix’s inherit keyword in our elaborator. This

means that { x1 = e1; ...; x𝑛 = e𝑛 } is elaborated into {𝑥1 := nonrec 𝑒1, . . . , 𝑥𝑛 := nonrec 𝑒𝑛}, and

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L67
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L444
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L80

268:14 Rutger Broekhoff and Robbert Krebbers

Syntax:

BaseLit ∋ 𝑏 F 𝑠 ∈ Str | 𝑛 ∈ Z | 𝑞 ∈ FIEEE | null | true | false
Matcher ∋𝑚 F {𝑒?} | {𝑒?, ...}
BinOp ∋ ⊚ F == | < | . | + | . . .
Expr ∋ 𝑑, 𝑒 F 𝑏 | [®𝑒] | {𝛼} | 𝑥𝜎? | 𝜆 𝑥. 𝑒 | 𝜆𝑚. 𝑒 | 𝑒 𝑒

| let/𝑘 𝑒 in 𝑒 | if 𝑒 then 𝑒 else 𝑒 | 𝑒 ⊚ 𝑒 | seq/𝜇 𝑒 𝑒

Attr ∋ 𝛼 F 𝜏 𝑒

Subst ∋ 𝜎 F 𝑘 𝑒

Rec ∋ 𝜏 F rec | nonrec
Kind ∋ 𝑘 F abs | with
Mode ∋ 𝜇 F shallow | deep

Operational semantics: 𝑒 →𝜇 𝑒
′

attr-rec

∃𝑥, 𝑑. 𝑥 := rec 𝑑 ∈ 𝛼
{𝛼} →𝜇 {unfold1 𝛼}

id-str

𝑥Some (𝑘 𝑒) →𝜇 𝑒

𝛽

(𝜆 𝑥. 𝑒1) 𝑒2 →𝜇 𝑒1 [𝑥 ≔ abs 𝑒2]

𝛽-match

𝑚 ∼ 𝑑 { 𝛼

(𝜆𝑚. 𝑒1) {nonrec 𝑑} →𝜇 𝑒1 [indirects 𝛼]

functor

"__functor" := 𝑒1 ∈ 𝑑
{nonrec 𝑑} 𝑒2 →𝜇 (𝑒1 {nonrec 𝑑}) 𝑒2

let-attr-attr

let/𝑘 {nonrec 𝑑} in 𝑒 →𝜇 𝑒 [{𝑥 := 𝑘 𝑑 | 𝑥 := 𝑑 ∈ 𝑑}]

if-true

if true then 𝑒1 else 𝑒2 →𝜇 𝑒1

if-false

if false then 𝑒1 else 𝑒2 →𝜇 𝑒2

bin-op

finalshallow𝑒1 finalshallow𝑒2 𝑒1 ⇓⊚ Φ Φ 𝑒2 𝑒

𝑒1 ⊚ 𝑒2 →𝜇 𝑒

seq-final

final𝜇′ 𝑒1
seq/𝜇′ 𝑒1 𝑒2 →𝜇 𝑒2

ctx

𝑒 →𝜇′ 𝑒
′

𝐾
𝜇′

𝜇 [𝑒] →𝜇 𝐾
𝜇′

𝜇 [𝑒′]
Evaluation contexts:

𝐾
deep
deep F [®𝑒1,□, ®𝑒2] if ∀𝑒1 ∈ ®𝑒1. finaldeep 𝑒1

| {nonrec 𝑑, 𝑥 := nonrec □} if ∀𝑦 := 𝑑 ∈ 𝑑. finaldeep 𝑑 ∨ 𝑥 ⊏ 𝑦

𝐾 shallow
𝜇 F □ 𝑒2 | (𝜆𝑚. 𝑒1) □ | let/𝑘 □ in 𝑒2 | if □ then 𝑒2 else 𝑒3 | □ ⊚ 𝑒2

| 𝑒1 ⊚ □ if finalshallow 𝑒1 and ∃Φ. 𝑒1 ⇓⊚ Φ

𝐾
𝜇′

𝜇 F seq/𝜇′ □ 𝑒2

Final expressions: final𝜇 𝑒

𝑏 ∈ Z =⇒ −263 ≤ 𝑏 < 2
63

final𝜇 𝑏
finalshallow [®𝑒]

∀𝑒 ∈ ®𝑒. finaldeep 𝑒
finaldeep [®𝑒]

finalshallow {nonrec 𝑒}

∀𝑥 := 𝑒 ∈ 𝑒. finaldeep 𝑒
finaldeep {nonrec 𝑒}

final𝜇 (𝜆 𝑥. 𝑒) final𝜇 (𝜆𝑚. 𝑒)

Auxiliaries:

unfold1 𝛼 := {𝑥 := nonrec 𝑒 | 𝑥 := nonrec 𝑒 ∈ 𝛼} <∪ {𝑥 := nonrec 𝑒 [indirects 𝛼] | 𝑥 := rec 𝑒 ∈ 𝛼}
indirects 𝛼 := {𝑥 := abs {𝛼}.𝑥 | 𝑥 ∈ dom 𝛼}

Fig. 4. Syntax and operational semantics of NixLang.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:15

Binary operator semantics: 𝑒1 ⇓⊚ (Φ ⊆ Expr × Expr)
binop-add

𝑛1 ⇓+ {(𝑛2,𝑚) | 𝑚 = 𝑛1 + 𝑛2 and − 263 ≤𝑚 < 2
63}

binop-select-attr

{nonrec 𝑒} ⇓. {(𝑠, 𝑒) | 𝑠 := 𝑒 ∈ 𝑒}
binop-eq-str

𝑠1 ⇓== {(𝑠1, true)} ∪ {(𝑠2, false) | 𝑠1 ≠ 𝑠2}
binop-eq-list

[®𝑒] ⇓== {([®𝑑], false) | len ®𝑒 ≠ len
®𝑑} ∪ {([®𝑑], 𝑒1==𝑑1 && · · · && 𝑒𝑛==𝑑𝑛) | len ®𝑒 = len

®𝑑 = 𝑛}
binop-eq-attr

{nonrec 𝑒} ⇓== {({nonrec 𝑑}, false) | dom 𝑒 ≠ dom 𝑑} ∪
{({nonrec 𝑑}, 𝑒𝑥1==𝑑𝑥1 && · · · && 𝑒𝑥𝑛==𝑑𝑥𝑛) |
dom 𝑒 = dom 𝑑 and 𝑥1 ⊏ . . . ⊏ 𝑥𝑛 cover dom 𝑒}

Argument matching: 𝑚 ∼ 𝑑 { 𝛼

{∅, ...} ∼ 𝑑 { ∅
{𝑒?, ...} ∼ 𝑑 { 𝛼 𝑥 ∉ dom 𝑒? 𝑥 ∉ dom 𝑑

{𝑒?⟨𝑥 := 𝑒?⟩, ...} ∼ 𝑑 ⟨𝑥 := 𝑑⟩ { 𝛼 ⟨𝑥 := nonrec 𝑑⟩

{𝑒?, ...} ∼ 𝑑 { 𝛼 dom 𝑑 ⊆ dom 𝑒?

{𝑒?} ∼ 𝑑 { 𝛼

{𝑒?, ...} ∼ 𝑑 { 𝛼 𝑥 ∉ dom 𝑒? 𝑥 ∉ dom 𝑑

{𝑒?⟨𝑥 := Some 𝑒⟩, ...} ∼ 𝑑 { 𝛼 ⟨𝑥 := rec 𝑒⟩
Fig. 5. Matching semantics and excerpt of the operator semantics of NixLang.

rec { x1 = e1; ...; x𝑛 = e𝑛 } is elaborated into {𝑥1 := rec 𝑒1, . . . , 𝑥𝑛 := rec 𝑒𝑛}. Like Dolstra [16] we
let the operational semantics expand recursive attribute sets into non-recursive ones by unfolding

them one level. For instance {𝑥 := rec 𝑥} reduces to {𝑥 := nonrec ({𝑥 := rec 𝑥}.𝑥)} (omitting

details about deferred substitutions) using attr-rec (). The rule functor () makes sure that an

application of an attribute set is reduced to an application of the __functor member.

Substitution and the let/with constructs. Since Nix does not feature a construct to refer to

dynamically computed variables, NixLang employs the approach of deferred substitutions from

§ 3.4 where variables 𝑥𝜎? are annotated with an option 𝜎? instead of a finite map 𝜎 . To account for

the shadowing rules of let and with, we do not let 𝜎? be just an optional expression (like § 3.4), but

we let it be an optional pair 𝑘 𝑑 ∈ Subst. The kind 𝑘 () tracks whether the last substitution came

from a let binding/lambda abstraction (𝑘 = abs) or a with binding (𝑘 = with). Similarly, parallel

substitutions now take a finite map 𝜎 ∈ Str fin−⇀ Subst from strings to expression/kind pairs. An

excerpt of the definition of parallel substitution () is:

𝑥𝜎? [𝜍] ≔

𝑥Some (abs 𝑑) if 𝑥 := with 𝑒 ∈ 𝜍 and 𝜎? = Some (abs 𝑑)
𝑥Some (𝑘 𝑒) if 𝑥 := 𝑘 𝑒 ∈ 𝜍
𝑥𝜎? otherwise

(𝜆 𝑥. 𝑒) [𝜍] ≔ 𝜆 𝑥. 𝑒 [𝜍]
There are three cases for the variable 𝑥𝜎? . The first ensures that with does not shallow abs. The
second ensures that the new binding is used otherwise, both if 𝜎? is Some (shadowing) or None (the

variable still being free). The third accounts for the variable not being in the deferred substitution 𝜍 .

Parallel substitution for lambda abstractions and the rules 𝛽 () and id-str () are similar to § 3.

NixLang has a generalized let/with construct let/𝑘 𝑑 in 𝑒 where 𝑘 is a kind (abs or with) ().

Thus let x1 = d1; ...; x𝑛 = d𝑛; in e is elaborated into let/abs {𝑥1 := rec 𝑑1, . . . , 𝑥𝑛 := rec 𝑑𝑛} in 𝑒

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L112
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L452
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L14
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L112
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L445
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L472
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L14

268:16 Rutger Broekhoff and Robbert Krebbers

and with d; e is elaborated into let/with 𝑑 in 𝑒 . Our generalized let construct allows for a uniform
reduction rule let-attr-attr (), where 𝑘 is used in the parallel substitution {𝑥 := 𝑘 𝑑 | 𝑥 := 𝑑 ∈ 𝑑}.

Matching lambdas and recursion through defaults. NixLang has both strict 𝜆 {𝑒?} . 𝑒 and
non-strict 𝜆 {𝑒?, ...} . 𝑒 matching lambdas. We let 𝑒? ∈ Str fin−⇀ Option Expr, where None mappings

account for bindings without a default, and Some mappings account for bindings with a default.

For instance, { x, y ? x }: y is elaborated into 𝜆 {𝑥 := None, 𝑦 := Some 𝑥} . 𝑦.
The rule 𝛽-match () gives an operational semantics to matching lambdas. It makes use of the

matching relation𝑚 ∼ 𝑑 { 𝛼 (). This relation is inspired by Dolstra and Löh [17], but extended to

support recursion through defaults by transforming a matcher𝑚 and arguments 𝑑 into a recursive
attribute set 𝛼 , which we then substitute with via an indirection. Attributes in 𝑑 matched against

by𝑚 appear as non-recursive attributes in 𝛼 . When an argument with a default value is given in𝑚

but no matching attribute exists in 𝑑 , the default value appears as a recursive attribute in 𝛼 . For

example, we have {𝑥 := None, 𝑦 := Some 𝑥} ∼ {𝑥 := 10} { {𝑥 := nonrec 10, 𝑦 := rec 𝑥}.

Sequencing. NixLang has a generalized sequencing operator seq/𝜇 𝑒1 𝑒2 that is equipped with

a mode 𝜇 (), which is either shallow (for Nix’s seq) or deep (for Nix’s deepSeq). In our operational

semantics, we parameterize the reduction relation→𝜇 () and the final𝜇 𝑒 () predicate with a

mode 𝜇. The idea is that some reduction steps only happen in deep mode, and similarly fewer

expressions in deep mode are final. Concretely, the members 𝛼 of attribute sets {𝛼} and elements ®𝑒
of lists [®𝑒] are only reduced in deep mode, and consequently attribute sets {𝛼} and lists [®𝑒] are
only final in deep mode when all members 𝛼 and elements ®𝑒 are recursively final.

The rule seq-final () ensures that we only reduce seq/𝜇 𝑒1 𝑒2 to 𝑒2 once the expression 𝑒1 is final
for mode 𝜇. To let reduction occur in the first operand of seq (and other operators) we use evaluation
contexts [19]. We index evaluation contexts 𝐾

𝜇′

𝜇 () with an input 𝜇 and output 𝜇′ mode, similar to

how evaluation contexts in CompCertC [35] are indexed by an l-value and r-value kind. The rule ctx

() expresses that 𝐾
𝜇′

𝜇 [𝑒] can take a step in 𝜇 mode if 𝑒 can take a step in 𝜇′ mode. The evaluation

context [®𝑒1,□, ®𝑒2] for deep evaluation of lists requires all expressions in ®𝑒1 to be final, ensuring
that reduction goes in left-to-right direction. For example, take seq/deep [1 + 2, Ω] true→shallow
seq/deep [3,Ω] true→shallow seq/deep [3,Ω] true→shallow · · · , where Ω ≔ (𝜆 𝑥. 𝑥 𝑥) (𝜆 𝑥. 𝑥 𝑥).
The seq/deep forces us to deeply evaluate [1+2,Ω] (which must be evaluated in order). But since Ω
loops, the deep evaluation of the list and thereby the entire program also loop.

The evaluation context {nonrec 𝑑, 𝑥 := nonrec □} for deep evaluation of attribute sets is more

complicated. Recall deepSeq { x = Omega; y = 0 0; } true, which either diverges or faults depending

on the order on names. To account for this behavior, we parameterize our semantics (and interpreter)

by a strict order (⊏) ⊆ Str × Str on strings, which is used to select which member is evaluated first.

Operators. Recall that Nix’s binary operations are lazy in their second operand. We therefore

should only allow 𝑒2 to take a reduction step in 𝑒1 ⊚ 𝑒2 at the moment that 𝑒1 is final (i.e., fully
reduced) and we know that 𝑒1 is a valid operand for the operator ⊚. To account for this laziness, we
give a semantics to binary operators using the judgment 𝑒1 ⇓⊚ Φ (). If 𝑒1 is an invalid input for the
first operand of ⊚, then 𝑒1 ⇓⊚ Φ simply does not hold. For example, true ⇓.Φ does not hold for any

relation Φ because attribute selection (.) is not defined on Booleans. If 𝑒1 is a valid input for the first
operand of ⊚, then 𝑒1 ⇓⊚ Φ gives a binary relation Φ ⊆ Expr×Expr that assigns outputs to inputs for
the second operand. For example, binop-select-attr () assigns the relation {(𝑠, 𝑒) | 𝑠 := 𝑒 ∈ 𝑒}
to the selection operator (.) on an attribute set {nonrec 𝑒}. The use of the judgment becomes most

clear from bin-op (), where 𝑒1 ⊚ 𝑒2 reduces to 𝑒 if there exists a relation Φ with 𝑒1 ⇓⊚ Φ and Φ 𝑒2 𝑒 .
In the evaluation context 𝑒1 ⊚ □ for binary operators, we require there to exist a Φ with 𝑒1 ⇓⊚ Φ so

that reduction in the second operand only happens if the first operand is a valid input.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L458
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L447
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L398
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L13
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L444
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L139
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L456
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L418
https://compcert.org/doc/html/compcert.cfrontend.Csem.html#context
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L474
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L297
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L346
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L465

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:17

Recall that the equality operator == compares lists and attribute sets recursively. Inspired by the

Nix implementation [45, src/libexpr/eval.cc, EvalState::eqValues], the rules binop-eq-list
() and binop-eq-attr () expand the comparison operators on lists and attribute sets into a

series of equalities on their members/elements, conjoined with the lazy && operator. Note that

if the lengths/domains are different, these rules immediately give false. As usual, care has to be

taken due to the order attribute members. The rule binop-eq-attr therefore generates a series of

equalities based on the order (⊏) ⊆ Str × Str by which our semantics is parameterized.

Integers and floats. To model 64-bit signed integers, we check that integers are in bounds after

every binary operation, see e.g., binop-add. We use the Flocq library [9] to support 64-bit binary

IEEE 754 floats. Flocq is highly configurable, with many settings for e.g., NaNs and rounding, so

we tried our best to make these settings match with the Nix implementation (). Nix has implicit

casts from integers to floats, which are handled in NixLang by overloading the semantics for binary

operators, i.e., by adding rules for int/float and float/int inputs to 𝑒1 ⇓⊚ Φ (rules not shown here).

4.3 Implementation of the Interpreter
The environment-based interpreter for NixLang is shown in Figure 6. By convention, all interpreter

functions that take a fuel parameter 𝛿 time out when 𝛿 = 0. Similarly, functions fail when no case

applies or a pattern in ‘do notation’ does not match. We discuss the most important aspects of the

interpreter in the following.

Data structures. Entries in the environment contain a kind, which tracks whether a variable

binding belongs to a let construct/lambda abstraction (kind abs) or a with construct (kind with).
The merge operator on environments, which is used in the interpretation of the let construct,
ensures that with bindings cannot shadow abs bindings:

𝐸1 ⊔ 𝐸2 := {𝑥 := (𝑘, 𝑡) ∈ 𝐸1 | 𝑘 = abs ∨ 𝑥 := (abs, _) ∉ 𝐸2} <∪ 𝐸2
Compared to the interpreters in § 2 and 3, the Thunk data structure needs to extended (). Thunks

can either be a forced value (forced 𝑣), a suspended computation (thu𝐸 𝑒), or the selection of a

recursive attribute set (ind𝐸 𝛼𝑡 .𝑥). We need to explicitly consider forced values to support __functor.

Let us consider { __functor = r: x: e1; } e2. Here, the interpreter first evaluates the attribute set

(which could be the result of an arbitrary computation) to a value. That value then needs to be

bound to the variable r in the environment used for the interpretation of e1.

The Val structure also needs to be extended (). Values can be base literals (b), closures (clo𝐸 𝑥 . 𝑒

and clo𝐸𝑚. 𝑒 , for ordinary and matching lambda, respectively), lists ([®𝑡]), or attribute sets ({𝑡}).
The elements ®𝑡 of list values and the members 𝑡 of attribute values are thunks because of laziness.

Mutually-recursive definition of the interpreter functions. The interpreter for expressions
⟦𝑒⟧𝐸

𝛿
() has the same signature as the simple interpreters from § 2 and 3. Aside from the complex-

ities of Nix, the conceptional differences can be found in the cases for variables (𝑥), application

(𝑒1 𝑒2) and deepseq (seq/deep), for which we use three additional functions, which are defined in a

mutually-recursive manner with the interpreter itself.

The interpreter for thunks T⟦𝑡⟧𝛿 () forces a thunk 𝑡 into a value. Its primary use is in the

variable case (𝑥). If the thunk is already forced (forced 𝑣), it is a no-op. If the thunk is a suspended

computation (thu𝐸 𝑒), it recursively calls the interpreter on 𝑒 . If the thunk is the selection of a

recursive attribute set (ind𝐸 𝛼𝑡 .𝑥), it looks up the member 𝑥 in 𝛼𝑡 and recursively calls the interpreter.

The interpreter for applicationsA⟦𝑣 @ 𝑡⟧𝛿 () computes the result of the application 𝑣 𝑡 . We use

a separate function because unlike the interpreters in § 2 and 3, Nix has multiple constructs that can

be used as functions (and thus appear as the first operand of an application). The first operand of an

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L216
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/operational.v#L219
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/floats.v#L20
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp.v#L15
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp.v#L7
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp.v#L329
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp.v#L334
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp.v#L339

268:18 Rutger Broekhoff and Robbert Krebbers

Interpreter: ⟦𝑒⟧𝐸
𝛿
= 𝑟

⟦𝑏⟧𝐸
𝛿
≔ guard (base_lit_ok 𝑏); ret 𝑏

⟦[®𝑒]⟧𝐸
𝛿
≔ ret [thu𝐸 𝑒 | 𝑒 ∈ ®𝑒]

⟦{𝛼}⟧𝐸
𝛿
≔ let 𝛼𝑡 = {𝑦 := nonrec (thu𝐸 𝑒) | 𝑦 := nonrec 𝑒 ∈ 𝛼} <∪

{𝑦 := rec 𝑒 | 𝑦 := rec 𝑒 ∈ 𝛼} in
ret ({𝑦 := thu𝐸 𝑒 | 𝑦 := nonrec 𝑒 ∈ 𝛼} <∪
{𝑦 := thuindirects_env 𝐸 𝛼𝑡 𝑒 | 𝑦 := rec 𝑒 ∈ 𝛼})

⟦𝑥⟧𝐸
𝛿
≔ 𝑡 ← 𝐸 𝑥 ; T⟦𝑡⟧𝛿−1

⟦𝜆 𝑥. 𝑒⟧𝐸
𝛿
≔ clo𝐸 𝑥 . 𝑒

⟦𝜆𝑚. 𝑒⟧𝐸
𝛿
≔ clo𝐸𝑚. 𝑒

⟦𝑒1 𝑒2⟧𝐸𝛿 ≔ 𝑣1 ← ⟦𝑒1⟧𝐸𝛿−1; A⟦𝑣1 @ thu𝐸 𝑒2⟧𝛿−1
⟦let/𝑘 𝑒1 in 𝑒2⟧𝐸𝛿 ≔ {𝑡} ← ⟦𝑒1⟧𝐸𝛿−1; ⟦𝑒2⟧

{𝑦:=(𝑘,𝑡) |𝑦:=𝑡 ∈𝑡 }⊔𝐸
𝛿−1�

if 𝑑 then 𝑒1
else 𝑒2

�𝐸
𝛿

≔ 𝑏 ← ⟦𝑑⟧𝐸
𝛿−1;

{
⟦𝑒1⟧𝐸𝛿−1 if 𝑏 = true
⟦𝑒2⟧𝐸𝛿−1 if 𝑏 = false

⟦𝑒1 ⊚ 𝑒2⟧𝐸𝛿 ≔ 𝑣1 ← ⟦𝑒1⟧𝐸𝛿−1; 𝑓 ← B⟦𝑣1⟧
⊚
; 𝑣2 ← ⟦𝑒2⟧𝐸𝛿−1; 𝑡2 ← 𝑓 𝑣2; T⟦𝑡2⟧𝛿−1

⟦seq/𝜇 𝑒1 𝑒2⟧𝐸𝛿 ≔

{
𝑣1 ← ⟦𝑒1⟧𝐸𝛿−1; force_deep𝛿−1 𝑣1; ⟦𝑒2⟧

𝐸
𝛿−1 if 𝜇 = deep

𝑣1 ← ⟦𝑒1⟧𝐸𝛿−1; ⟦𝑒2⟧
𝐸
𝛿−1 if 𝜇 = shallow

force_deep𝛿 𝑣 ≔


®𝑤 ← list.mapM force_thunk𝛿 ®𝑡 ; [forced𝑤 | 𝑤 ∈ ®𝑤] if 𝑣 = [®𝑡]
𝑤 ← map.mapM force_thunk𝛿 𝑡 ; {𝑥 := forced𝑤 | 𝑥 :=𝑤 ∈𝑤} if 𝑣 = {𝑡}
𝑣 otherwise

force_thunk𝛿 𝑡 ≔ 𝑣 ← T⟦𝑡⟧𝛿−1; force_deep𝛿−1 𝑣
Interpreter (thunks): T⟦𝑡⟧𝛿 = 𝑟

T⟦forced 𝑣⟧𝛿 ≔ 𝑣

T⟦thu𝐸 𝑒⟧𝛿 ≔ ⟦𝑒⟧𝐸
𝛿−1

T⟦ind𝐸 𝛼𝑡 .𝑥⟧𝛿 ≔ 𝛼𝑡 ← 𝛼𝑡 𝑥 ;

{
⟦𝑒⟧indirects_env 𝐸 𝛼𝑡

𝛿−1 if 𝛼𝑡 = rec 𝑒
T⟦𝑡⟧𝛿−1 if 𝛼𝑡 = nonrec 𝑡

Interpreter (application): A⟦𝑣 @ 𝑡⟧𝛿 = 𝑟

A⟦clo𝐸 𝑥 . 𝑒 @ 𝑡2⟧𝛿 ≔ ⟦𝑒⟧𝐸⟨𝑥 :=(abs,𝑡2) ⟩
𝛿−1

A⟦clo𝐸𝑚. 𝑒 @ 𝑡2⟧𝛿 ≔ {𝑡} ← T⟦𝑡2⟧𝛿−1; 𝛼𝑡 ← match 𝑡 𝑚; ⟦𝑒⟧indirects_env 𝐸 𝛼𝑡
𝛿−1

A⟦{𝑡} @ 𝑡2⟧𝛿 ≔ 𝑡 ← 𝑡 "__functor"; 𝑣𝑡 ← T⟦𝑡⟧𝛿−1;
𝑣 ← A⟦𝑣𝑡 @ forced {𝑡}⟧𝛿−1; A⟦𝑣 @ 𝑡2⟧𝛿−1

Data structures:

Env ∋ 𝐸 ≔ Str fin−⇀ Kind × Thunk Val ∋ 𝑣 F 𝑏 | clo𝐸 𝑥 . 𝑒 | clo𝐸𝑚. 𝑒 | [®𝑡] | {𝑡}
Thunk ∋ 𝑡 F forced 𝑣 | thu𝐸 𝑒 | ind𝐸 𝛼𝑡 .𝑥 TAttr ∋ 𝛼𝑡 F rec 𝑒 | nonrec 𝑡

Fig. 6. The interpreter for NixLang. (The base cases for Timeout/fail are elided.)

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:19

application can either be an ordinary closure (clo𝐸 𝑥 . 𝑒), a matching closure (clo𝐸𝑚. 𝑒), or an attribute

set with a __functor member ({𝑡}). The interpreter for applications has a non-trivial recursive

structure because __functor members can be nested, i.e., { __functor = { __functor = ...; }; }.

The function force_deep𝛿 𝑣 () is used in the interpretation of seq/deep, and recursively forces

all thunked list elements and attribute members in 𝑣 . The function makes use of the well-known

monadic combinator list.mapM : (𝐴→ Res 𝐵) → List 𝐴→ Res (List 𝐵), which maps a monadic

action in left-to-right direction over a list. The function map.mapM is similar, and uses the order

(⊏) ⊆ Str × Str by which our semantics is parameterized.

Operators and matching. In the interpretation of binary operators (𝑒1 ⊚ 𝑒2) we call the inter-
preter for binary operators B⟦𝑣1⟧⊚ () on the result value 𝑣1 of 𝑒1. This interpreter returns an

Option (Val → Option Val) to account for the fact that operators are lazy in their first operand.

It returns None if the operator ⊚ does not support the first operand 𝑣1, or Some 𝑓 where 𝑓 is a

function that takes the value of the second operand and produces the result of the operator. In the

interpretation of matching closures (clo𝐸𝑚. 𝑒) we call match (), which is an algorithmic version

of the matching relation𝑚 ∼ 𝑑 { 𝛼 that is used in the operational semantics.

Recursive attribute sets and defaults. To support recursive attribute sets there is a fair amount

of map surgery in the interpretation of attribute sets ({𝛼}). Recursive attributes need to be encoded
as thunks whose environment is extended with entries for the recursive selections, for which we

use the following variant of the indirects function from the operational semantics on TAttr ():

indirects_env 𝐸 𝛼𝑡 := {𝑥 := abs (ind𝐸 𝛼𝑡 .𝑥) | 𝑥 ∈ dom 𝛼𝑡 } <∪ 𝐸
Like the indirects function from the operational semantics (Figure 4), this function brings the

attributes of a recursive attribute set into scope, but produces an environment instead of a sub-

stitution. We use the indirect attribute selection thunk constructor ind𝐸 𝛼𝑡 .𝑥 to keep track of the

environment 𝐸 of the attributes 𝛼𝑡 .

Comparison with the substitution-based semantics. Similarly to the call-by-name lambda

calculus, the substitution-based semantics is more concise than the environment-based interpreter.

This lack of conciseness is exacerbated—the definition of thunks becomes more complicated, and

the interpreter consists of several mutually defined parts.

Aside from the use of substitutions or environments, there are also other differences. We set up

our development so that the definitions for the operational semantics are inductive relations and the

interpreter uses computable (monadic) functions. These definitions are often subtly different because

they operate on expressions (operational semantics) or values/thunks (interpreter). Most prominent

are matching and binary operators. The inductive definition of matching (𝑚 ∼ 𝑑 { 𝛼) is very

simple, whereas the computable function involves subtle map surgery. The handling of deep/shallow

evaluation is also different, the operational semantics uses (kinded) evaluation contexts whereas

the interpreter relies on force_deep being called correctly.

4.4 Soundness and Completeness
To state the main soundness and completeness theorem for both deep and shallow reduction, we

lift the interpreter to a variant that takes the mode 𝜇 as an additional argument ():

⟦𝑒⟧𝐸,𝜇
𝛿

≔

{
𝑣 ← ⟦𝑒⟧𝐸

𝛿
; force_deep𝛿 𝑣 if 𝜇 = deep

⟦𝑒⟧𝐸
𝛿

if 𝜇 = shallow

With this definition at hand, the main theorem has the same shape as the ones in § 2 and 3:

Theorem 4.1. The NixLang interpreter is sound and complete w.r.t. the operational semantics for:

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp.v#L324
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp.v#L96
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp.v#L216
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp.v#L240
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp.v#L348

268:20 Rutger Broekhoff and Robbert Krebbers

(1) terminating programs, i.e., (∃𝛿. ⟦𝑒⟧∅,𝜇
𝛿

= ret 𝑠) iff 𝑒 →∗𝜇 𝑠 (), and

(2) faulty programs, i.e., (∃𝛿. ⟦𝑒⟧∅,𝜇
𝛿

= fail) iff (∃𝑒′. 𝑒 →∗𝜇 𝑒′ ↛𝜇 ∧¬final𝜇 𝑒′) (), and

(3) diverging programs, i.e., (∀𝛿. ⟦𝑒⟧∅,𝜇
𝛿

= Timeout) iff (∀𝑒′. 𝑒 →∗𝜇 𝑒′ =⇒ red𝜇 𝑒′) ().

Our proof involves similar helper lemmas as in § 2 and 3, but due to the additional features of

NixLang, we need some additional ingredients. Since the interpreter is defined using a number of

mutually-recursive functions, we prove variants of Lemmas 2.2 and 2.4 by mutual induction.

Lemma 4.2 (). If ⟦𝑒⟧𝐸,𝜇
𝛿

= Done 𝑣?, then there exists some 𝑒′ such that 𝑒L𝐸M →∗𝜇 𝑒′ and if 𝑣? is
Some 𝑣 , then |𝑣 | = 𝑒′; or if 𝑣? is None, then 𝑒′ ↛𝜇 and ¬final𝜇 𝑒′.

This lemma follows by proving the following properties mutually by induction on 𝛿 ():

(1) If ⟦𝑒⟧𝐸
𝛿
= Done 𝑣?, then there exists some 𝑒′ such that 𝑒L𝐸M→∗shallow 𝑒

′
and if 𝑣? is Some 𝑣 ,

then |𝑣 | = 𝑒′; or if 𝑣? is None, then 𝑒′ ↛shallow and ¬finalshallow 𝑒′.
(2) If T⟦𝑡⟧𝛿 = Done 𝑣?, then there exists some 𝑒′ such that |𝑡 | →∗shallow 𝑒′ and if 𝑣? is Some 𝑣 ,

then |𝑣 | = 𝑒′; or if 𝑣? is None, then 𝑒′ ↛shallow and ¬finalshallow 𝑒′.
(3) If A⟦𝑤 @ 𝑡⟧𝛿 = Done 𝑣?, then there exists some 𝑒′ such that |𝑤 | |𝑡 | →∗shallow 𝑒

′
and if 𝑣? is

Some 𝑣 , then |𝑣 | = 𝑒′; or if 𝑣? is None, then 𝑒′ ↛shallow and ¬finalshallow 𝑒′.
(4) If force_deep𝛿 𝑤 = Done 𝑣?, then there exists some 𝑒′ such that |𝑤 | →∗deep 𝑒

′
and if 𝑣? is

Some 𝑣 , then |𝑣 | = 𝑒′; or if 𝑣? is None, then 𝑒′ ↛deep and ¬finaldeep 𝑒′.

Lemma 4.3 (). If 𝑒1 →𝜇 𝑒2 and ⟦𝑒2⟧∅,𝜇𝛿2
= Done 𝑣?

2
, then there exist an optional value 𝑣?

1
and a

fuel value 𝛿1 such that ⟦𝑒1⟧∅,𝜇𝛿1
= Done 𝑣?

1
and |𝑣?

1
| = |𝑣?

2
|.

This lemma follows by proving the following properties mutually by induction on (→𝜇) ():

(1) If 𝑒1 →𝜇 𝑒2 and finalshallow 𝑒2 and ⟦𝑒2⟧∅𝛿2 = Done 𝑣?
2
, then there exist an optional value 𝑣?

1
and

a fuel value 𝛿1 such that ⟦𝜇⟧∅
𝛿1
𝑒1 = Done 𝑣?

1
and |𝑣?

1
| = |𝑣?

2
|.

(2) If |𝑤1 | →deep |𝑤2 | and force_deep𝛿2
𝑤2 = Done 𝑣?

2
, then there exist an optional value 𝑣?

1
and

a fuel value 𝛿1 such that force_deep𝛿1
𝑤1 = Done 𝑣?

1
and |𝑣?

1
| = |𝑣?

2
|.

As part of the above proofs, we need versions of Lemma 2.4 for all components of the interpreter

(): ⟦𝑒⟧𝐸
𝛿
, T⟦𝑡⟧𝛿 ,A⟦𝑤 @ 𝑡⟧𝛿 , and force_deep𝛿 𝑤 . That is, we need to show that for inputs related

up to conversion, the components of the interpreter give outputs related up to conversion. Again,

these properties are proved by mutual induction on the fuel value. To handle the cases for deepSeq

in the proofs, we need some lemmas about the function force_deep. We prove that the result of

force_deep𝛿 𝑣 is final for deepmode (), and conversely that if a value is final for deepmode, then

the function force_deep gives a related outcome (). Finally, we first need to prove soundness and

completeness lemmas for the interpretation of binary operators B⟦𝑣⟧⊚ and the match function.

The proofs are mostly straightforward, but involve a fair number of cases.

Non-deterministic semantics. Instead of parameterizing our operational semantics by an

order (⊏) ⊆ Str × Str that specifies in which order the members of attribute sets are evaluated, we

could have made a non-deterministic version (but have not done so). Since the interpreter needs to

make a concrete choice for the evaluation order, this means that Items 2 and 3 of our soundness and

completeness theorem would have to be weakened. Item 1 would not need to be weakened because

non-deterministic evaluation of attribute sets cannot influence the result of terminating programs.

5 Frontend and Evaluation
We describe our frontend that turns Nix source programs into NixLang programs, and how we

have used it to evaluate our Nix semantics on the official Nix language tests.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp_proofs.v#L2655
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp_proofs.v#L2665
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp_proofs.v#L2673
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp_proofs.v#L2619
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp_proofs.v#L2267
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp_proofs.v#L2029
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp_proofs.v#L1519
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp_proofs.v#L985
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp_proofs.v#L166
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/interp_proofs.v#L1461

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:21

Frontend. We use the parser by Korzunov [30] (written in OCaml) to turn Nix source files

into an AST. We use Rocq’s extraction mechanism [36] to turn the NixLang data structures and

interpreter into OCaml code. Our elaborator (also written in OCaml) transforms the Nix AST into

an NixLang AST. Finally, we use the pretty printer by Korzunov [30] (together with some glue

code) to transform the outputs of our interpreter into textual output that can be compared against

expected test outputs. Finally, we have implemented a number of the Nix builtins using Nix itself.

Noteworthy features of our elaborator. Nix allows one to define attribute names with string
interpolation, i.e., arbitrary expressions may appear as attribute members, as long as they evaluate to

strings. Furthermore, these expressions may refer to other members when used in recursive attribute

sets. For example, rec { x = "foo"; ${x + "bar"} = 10; } evaluates to { foobar = 10; x = "foo"; }.

The dynamic attributes are evaluated after the rest of the attribute set, and may not describe

members that already appear. Normal attributes cannot refer to dynamic attributes in recursive

attribute sets for this reason, and neither can dynamic attributes refer to each other. Dynamic

attribute members are evaluated in the order in which they appear. We elaborate dynamic attribute

members into a sequence of operations that ‘insert’ members in NixLang.
In Nix, recursive attribute sets and let bindings are allowed to contain inherit x declarations,

e.g., rec { ... inherit x; ... }, which include a variable x from the enclosing scope in the attribute

set. We elaborate inherit x into a member (x := nonrec x) in NixLang. There is also a version

inherit (e) x, which inserts a binding x = e.x. Unlike inherit x, the recursivity of the inserted

binding depends on the attribute set in which it appears. Surprisingly, it is also allowed to write

inherit ${"x"}, but not inherit ${x}. We make sure to handle such edge cases.

Nix allows writing { x.a = 10; x = { b = 20; }; } as sugar for { x = { a = 10; b = 20; }; }. This

syntax has many edge cases, especially in combination with recursive attribute sets and dynamic

attributes. We have done our best to replicate these edge cases by studying the Nix language tests

and pull requests on GitHub (e.g., [26]). We handle these edge cases by implementing an extra

elaboration step on the Nix AST that takes care of unfolding attribute paths before the elaboration

from Nix toNixLang, so that the latter never encounters attribute paths with more than one element.

Evaluation on the official Nix language tests. Nix (version 2.25.0) comes with 182 test files,

108 are supported by NixLang, and for 103 of which we agree. For 5 tests we disagree:

• (2 tests) Our interpreter is strictly call-by-name, which is much less efficient than Nix’s native

implementation which is lazy (i.e., uses term sharing).

• (1 test) The Nix interpreter uses term sharing and pointer equality to detect cycles, e.g.,
deepSeq (let x = { y = x; }; in x) true terminates in Nix, but diverges in NixLang. The cases
in which term sharing is able to detect loops appear very ad-hoc.

• (2 tests) In some corner cases the semantics of with is more lazy in Nix than NixLang. Given
with r; e, it sometimes happens that r is not evaluated at all in Nix (in NixLang, r is al-
ways shallowly evaluated to an attribute set). For instance, with Omega; true returns true

in Nix, but diverges in NixLang. Interestingly, minor variations such as with Omega; x and

with { x = 10; }; with Omega; x diverge in both Nix and NixLang. It is unclear how to accu-

rately capture this lazy semantics in a principled core language like NixLang.

These disagreements manifest in the tests timing out, either due to exhausting the fuel value

(i.e., they perform too many reduction steps) or when running for longer than one minute.

There are plenty of tests that are simply out of scope. We have implemented the builtins that are

relatively generic, but 27 of the Nix language tests depend on builtins that are very specific, such

as performing SHA256 hashing, conversion to/from JSON and XML, operations on version strings,

Flake references, and looking up the location of a term in sources. More generally, our interpreter

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

268:22 Rutger Broekhoff and Robbert Krebbers

Table 1. LOC for our Rocq development (not including the OCaml frontend, nor blank lines and comments).

Op. sem. (+ proofs) Interpreter (+ proofs) Tests Extra Total

Shared — — — — 304

LambdaLang 30 + 22 35 + 561 — — 648

DynLang 33 + 26 40 + 391 — 143 633

EvalLang 121 + 26 43 + 439 26 — 655

NixLang 472 + 624 326 + 2599 150 368 4539

Total 6779

lacks support for I/O, file system paths, retrieving source locations, derivations and file system

paths. Another 47 tests that fall into one of these categories have been ignored.

Instrumenting our interpreter using Bisect_ppx [5] while running it against the Nix language

tests gives us 91.77% coverage for the interpreter code extracted from Rocq.

Program logic. As a proof of concept, we define a weakest preconditions-based program logic

for total correctness of NixLang programs in terms of the operational semantics ():

WP𝜇 𝑒 {𝑥 . 𝑃} := ∃𝑒′. 𝑒 →∗𝜇 𝑒′ ∧ final𝜇 𝑒′ ∧ 𝑃 [𝑥 := 𝑒]
From the operational semantics, we derive structural rules for WP, e.g., for application ():

WPshallow 𝑒1 {𝑒′1.WP𝜇 (𝑒′1 𝑒2) {𝑥 . 𝑃}}
WP𝜇 (𝑒1 𝑒2) {𝑥 . 𝑃}

We prove total correctness of the recursive program from § 4.1 that determines whether a number

is even using recursive attribute sets (), the “__functor” attribute (), and recursion through

default arguments (). For all these variants we prove that they return true iff n is even (assuming

that n evaluates to some valid integer). We can also reason about open programs, for example:

let x = 1; in with e; with { y = 2; }; x == y

We prove that this program returns false for any non-recursive attribute set e (). Although not

very difficult, the verification of these programs is a bit tedious because we have not implemented

tactic support in Rocq for applying the WP rules and simplifying the resulting programs.

6 Rocq Mechanization
We give an overview of our Rocq development and demonstrate how the new gmap data structure

from the Rocq-std++ library [32] can be used to represent syntax with nested recursion through

finite maps, particularly deferred substitutions.

Overview of the Rocq development. Table 1 shows an overview of our Rocq development.

For every language, the interpreter proofs encompass a soundness and completeness theorem w.r.t.

the operational semantics, of which we separately prove properties (such as determinism). Since all

languages already differ in their syntax, little reuse is possible. The row ‘Shared’ concerns the monad

Res (Figure 2), a tactic to simplify monad equations, and some utilities for finite maps. For DynLang,
we have two main proofs besides those of the properties of the operational semantics. The first

part (391 LOC) is the soundness and completeness proof for the interpreter w.r.t. the operational

semantics. The second part (143 LOC, counted under ‘Extra’) corresponds to the equivalence proof

between LambdaLang and DynLang for closed LambdaLang terms. Despite DynLang being more

complicated than LambdaLang, we observe that the soundness and completeness proof is 70%

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/wp.v#L4
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/wp.v#L54
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/wp_examples.v#L84
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/wp_examples.v#L132
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/wp_examples.v#L157
https://gitlab.science.ru.nl/pl/verified-dyn-lang-interp/-/blob/icfp25/theories/nix/wp_examples.v#L11

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:23

in size due to the lack of boilerplate related to closedness conditions. Note that the operational

semantics for EvalLang is significantly bigger than DynLang due to the parser that is present there

(and is shared with the interpreter), which comprises of about 83 LOC. The extra part for NixLang
concerns the program logic proof of concept and some examples, as shown in § 5.

The Rocq mechanisation of each language closely follows the structure on paper. Most proofs

involve induction on the fuel value. For NixLang, we often need to prove a number of variants

of a theorem in a mutual fashion (see § 4.4), for which we use the Fixpoint lem1 ... with lem2 ...

pattern in Rocq. Key to most proofs is simplifying the interpreter according to its definition. We

aimed to set up our definitions so that simpl is well-behaved (which sometimes poses challenges,

see the remark about subst_env below). We make little use of custom proof automation, with the

exception of a simple tactic simplify_res to simplify equations in the monad Res, and a simple tactic

inv_step to repeatedly perform inversion on the reduction relation.

Nested recursion through finite maps. Finite maps play a central role in our mechanization,

e.g., to represent parallel substitutions, attribute sets, patterns in matching lambda abstractions,

and environments. What makes the use of finite maps even more interesting is that they often

occur in nested recursive positions, in the sense that the constructors of a data type contain a finite

map whose elements contain the data type itself. For instance, the variable constructor ${𝑒}𝑑 in

expressions contains a deferred substitution 𝑑 , which is a finite maps from strings to expressions

themselves. Finite maps also occur in nested position to model attribute sets and thunks.

To make mechanization of our results feasible, we use the recently improved gmap data structure

from the Rocq-std++ library [32], which provides some important features. First, it allows us to

define the desired syntax and data structures without complaints from Rocq’s positivity checker.

Second, it allows us to define mutually/nested recursive functions (such as parallel substitution and

the conversion from thunks to expressions) without complaints from Rocq’s guardedness checker.

Third, it provides suitable reasoning principles, such as extensional Leibniz equality on maps, the

ability to prove the right induction principles, and many operations and lemmas to deal with the

map surgery for recursive attribute sets in Nix. Fourth, it provides reasonable performance allowing

us to run the interpreter, both inside of Rocq (using vm_compute) and when extracted to OCaml. To

showcase these features, let us consider the definition of environments and thunks in DynLang:

Inductive thunk :=

Thunk { thunk_env : gmap string thunk; thunk_expr : expr }.

Notation env := (gmap string thunk).

The definitions of these data types are in one-to-one correspondence with Thunk ∋ 𝑡 F thu𝐸 𝑒

and Env ∋ 𝐸 ≔ Str fin−⇀ Thunk in Figure 3. The functions |𝑡 | (which converts a thunk 𝑡 into an

expression) and 𝑒L𝐸M (which performs a parallel substitution of an environment 𝐸 in 𝑒 by converting

all thunks to expressions) would ideally be written to exactly match the definitions in § 2.3:

Fixpoint thunk_to_expr (t : thunk) : expr :=

subst_env (thunk_env t) (thunk_expr t)

with subst_env (E : env) : expr → expr := subst (thunk_to_expr <$> E).

Unfortunately, Rocq does not allow us to use the syntax for mutually recursive functions on nested

inductive data structures. In the actual definition we therefore first define the helper subst_env',

which takes thunk_to_expr as an argument, and define subst_env as notation:

Definition subst_env ' (thunk_to_expr : thunk → expr)

(E : env) : expr → expr := subst (thunk_to_expr <$> E).

Fixpoint thunk_to_expr (t : thunk) : expr :=

subst_env ' thunk_to_expr (thunk_env t) (thunk_expr t).

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

268:24 Rutger Broekhoff and Robbert Krebbers

Notation subst_env := (subst_env ' thunk_to_expr).

(We use Notation to make the simpl tactic behave well. Consider thunk_to_expr (Thunk E e), the simpl

tactic reduces this to subst_env E e. If subst_env were a Definition, then thunk_to_expr (Thunk E e)

would reduce to subst_env' thunk_to_expr E e. That is, simpl would not refold subst_env.)

The next step, after having defined the data types and functions on them, is to carry out some

proofs. An essential feature of the gmap data structure is its support for extensional equality on

maps. That is, we have that two maps are equal, if they are element-wise equal:

Lemma map_eq (m1 m2 : gmap K A) : (∀ i, m1 !! i = m2 !! i) → m1 = m2.

This property holds (without axioms) because gmap is based on binary tries in canonical form [4].

Extensional equality is important for lemmas about our functions, for example:

Lemma subst_env_union E1 E2 e :

subst_env (E1 ∪ E2) e = subst_env E1 (subst_env E2 e).

Recall from Figure 3 that parallel substitution in DynLang performs a left-biased union in the

variable constructors ${𝑒}𝑑 in the syntax. Proving the lemma requires us to show that the finite

maps in the variable constructors are the same, which is achieved using map_eq. Another important

reasoning principle is induction. The induction principle on environments (which we actually do

not use in practice, but we use more complicated induction principles for NixLang) is:

Lemma env_ind (P : env → Prop) :

(∀ E, map_Forall (𝜆 i, P ◦ thunk_env) E → P E) →
∀ E : env , P E.

This induction principle says that in order to prove a property of environments, we can assume

it holds for the environments in all thunks (the induction hypothesis). To state the induction

hypothesis, we use the map_Forall combinator from Rocq-std++. Proving this induction principle

requires a couple of lines of boilerplate, involving the definition of a ‘size’ function on thunks and

environments. It would thus be nice to automatically generate these induction principles using e.g.,
Rocq-Elpi [53] or Template-Rocq [3] in the future.

The gmap data structure is based on the canonical binary trie data structure by Appel and Leroy [4],

and is fairly efficient as far as purely functional data structures in a proof assistant go. Operations

such as lookup, insert, and deletion are logarithmic in the size of the key (byte-length of the string).

The data structure is fast enough to run our interpreter in Rocq (using vm_compute) and via extraction

to OCaml on non-trivial test cases.

Finally, we point out that these features scale to more complicated languages, such as NixLang.
Environments, thunks and values are mutually dependent, and defined as follows in Rocq:

Inductive val :=

| VLit (bl : base_lit) (Hbl : base_lit_ok bl)

| VClo (x : string) (E : gmap string (kind * thunk)) (e : expr)

| VCloMatch (E : gmap string (kind * thunk))

(ms : gmap string (option expr))

(strict : bool) (e : expr)

| VList (ts : list thunk)

| VAttr (ts : gmap string thunk)

with thunk :=

| Forced (v : val) : thunk

| Thunk (E : gmap string (kind * thunk)) (e : expr) : thunk

| Indirect (x : string)

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:25

(E : gmap string (kind * thunk))

(t𝛼s : gmap string (expr + thunk)).

Notation env := (gmap string (kind * thunk)).

To define the operational semantics, interpreter, and to carry out our proofs we need to perform a

good amount of surgery on recursive attribute sets. Fortunately, Rocq-std++ comes with plenty of

operations on finite maps and lemmas about those to that make that goal feasible. For instance, we

need operators that transform keys and values element-wise, we need to consider the domain as a

finite set, and need to perform merging and biased unions.

7 Related Work
7.1 Explicit Substitutions
Up to our knowledge, we are the first to use ideas from the calculus of explicit subsitutions [1]

to model dynamic languages. Lippmeier [37] also modifies the calculus of explicit substitutions

by limiting the substitutions to appear only at abstractions, whereas we limit them to variables.

Both approaches avoid the need for 𝛼-conversion when reducing open programs, but our approach

scales to dynamic features such as $, eval, and with. The applications are also different, Lippmeier

applies his approach to a proof of progress and preservation of simply-typed lambda calculus,

whereas we apply it to verified interpreters of dynamic languages.

7.2 Prior Semantics of Nix
The Nix language was originally developed by Dolstra [16] as part of his PhD thesis, in which he

described the Nix package manager. An integral part of his PhD thesis is the Nix language, for

which he focused on the design, semantics and implementation. Subsequent papers by Dolstra

and Löh [17] and Dolstra et al. [18] used Nix as the basis of the Linux distribution NixOS, but also

presented variations of the Nix language and its semantics. This line of work used a substitution-

based operational semantics, and already covered some of the key features of Nix, in particular

recursive attribute sets by unfolding them one level.

Compared to the aforementioned work by Dolstra and collaborators, our paper only focuses

on the semantics of the Nix language instead of its applications, but covers a much larger set of

language features. Notably, we provide the most complete support for matching lambda abstractions

(Dolstra [16] supports only non-recursive defaults, Dolstra et al. [18] support non-strict matchers,

but no paper supports the combination nor recursive defaults), and investigate features that were

not supported by any of their papers, e.g., __functor, deepSeq, deep equality of lists and attribute sets,

and IEEE floats. We also provide mechanized results in a proof assistant and test our semantics

against the official language tests through a verified interpreter.

We repair various bugs in their semantics. The first bug is related to shadowing of let/with. For

example, with { x = 10; }; with { x = 12; }; x returns 10 in Dolstra et al., whereas the official ref-

erence interpreter returns 12. Through deferred substitutions, we ensure that shadowing is handled

correctly. The second bug is that their semantics cannot distinguish between non-terminating and

faulty programs. This is most evident in their rule for the selection operator (.):

𝑒 →∗ {𝛼} 𝑥 := 𝑒′ ∈ 𝛼
𝑒.𝑥 → 𝑒′

Due to the big-step premise, their semantics gives a stuck/faulty behavior instead of a diverging be-

havior to Omega.x. We are able to distinguish stuck and diverging behaviors by giving an operational

semantics that is fully small-step.

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

268:26 Rutger Broekhoff and Robbert Krebbers

Table 2. Comparison with other semantics of dynamic languages (?: not clear, P: partial).

Maffeis et al. 𝜆JS S5 JSCert KPHP KJS JaVerT JSkel NixLang

Binding SO(C)s Subst. ERs ERs Env. ERs ERs ERs Def. subst.

Mechanization — Redex/Rocq OCaml/Rocq Rocq K K OCaml Skel Rocq

Program logic ✓ — — P ✓ ✓ ✓ — P

Closures, eval, with ✓✓✓ ✓—✓ ✓✓✓ ✓✓✓ ——? ✓✓✓ ✓ P✓ ✓—✓ ✓N/A✓
Language tests — ✓ ✓ ✓ ✓ ✓ ✓ — ✓
Correspondence N/A — ✓ ✓ N/A N/A ✓ N/A ✓

7.3 Semantics of Other Dynamic Languages
There is an abundance of work on the semantics of dynamic languages such as JavaScript [8, 25, 29,

39, 46, 50–52], PHP [20], Bash [41], and Posix Shell [23]. Table 2 contains an overview of the most

relevant related projects. The row ‘Language tests’ corresponds to testing against test262 for JS

(or the Mozilla test suite for 𝜆JS), the Zend test suite for PHP, and the Nix language tests. The row

‘Correspondence’ indicates if a (formal) proof between different kinds of the semantics exists (for

NixLang, we consider the correspondence between the operational semantics and interpreter).

With the exception of 𝜆JS [25] (mechanized in PLT Redex and later in Rocq [24]), none of these

projects consider a truly substitution-based semantics. 𝜆JS supports with by elaboration of source

JavaScript (ES3). Variable names that appear under with are changed so that they first perform a

lookup into the object associated with the with statement before checking the wider scope. A similar

approach is used for Nix [11] as part of the transpilation to Nickel, a configuration language with

compatability for Nix. The desugaring relies on the observation that one can statically determine

which variables are bound by let binders and lambda abstractions. Hence one can rewrite variables

that are otherwise free to a sequential lookup from the innermost with up unto the outermost with

to find a binding associated with that variable, or fail if it is not bound. This way, one also gets the

lazy behavior of with (see the last two tests that fail in § 5), e.g., with Omega; with { x = 10; }; x is

roughly desugared into (the ? operator tests if a member is present):

if { x = 10; } ? x then { x = 10; }.x else

if Omega ? x then Omega.x else abort "unbound variable"

Here, Omega will not be evaluated, and so this program terminates successfully. But clearly, there is

a trade-off between desugaring with and giving a native semantics (as done by Dolstra [16] and us)

because the desugaring can blow up the size of the source program significantly.

Since programs provided to evalmust have access to the outer scope, some mechanism is required

that keeps track of all variables in the surrounding scope. Naive substitution does not do this, so it

is not too surprising that 𝜆JS does not provide support for eval. For the other JavaScript semantics

considered, which practically make use of Environment Records (ERs), eval is comparatively easy

to implement, since the ERs keep track of the entire scope in one place. With EvalLang in § 3.4, we

have shown how we can recover support for eval using a form of deferred substitutions, albeit in a

language with much lower complexity than JavaScript.

Maffeis et al. [39] were the first to define an operational semantics of JavaScript using pen and

paper. Their semantics closely follow the ECMAScript standard, version 3 (ES3). This means that,

instead of substitution, Scope Object Chains are employed, which are comparable to modern-day

ERs. Later, Gardner et al. [22] gave a program logic based on this semantics.

S5 [50] uses a core language that is substitution based, but performs desugaring to abstract away

all JavaScript variables into object lookups, akin to an ER semantics. It is therefore marked as

having an ER semantics instead of substitution-based semantics in Table 2. Mechanization was

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:27

originally done in PLT Redex, and an interpreter was written in OCaml. For a slightly modified

version of S5, a correspondence proof in Rocq between the interpreter and operational semantics

and partial proof of the desugaring mechanism was given by Materzok [40].

JSCert [8] is a Rocq development that consists of two parts: a mechanized semantics for ES5

(JSCert) and a reference interpreter (JSRef). JSCert is described on a high level, such that it can

easily be compared with the ES specification. An advantage of such a specification is that it can be

used to verify (desugaring to) more concise semantics. The correspondence entails the soundness

proof of the JSRef interpreter with respect to JSCert. In his PhD thesis, Bodin [7] presents an

(incomplete) program logic based on JSCert.

KPHP [20] is a semantics of PHP in the K framework. KJS [46] uses the same approach. The

semantics corresponds closely to the original specification while getting, e.g., concrete and symbolic

execution for free. This helps with the trustworthiness of the formalization. Proving properties about

programs is also possible using a kind of Hoare logic. However, one does not get the full flexibility

that one would have when working with a proof assistant, for instance, to verify soundness and

completeness of different language specifications.

JaVerT [51, 52] is a framework for verifying the correctness of JavaScript (ES5 strict) programs. It

consists of two parts: compilation to JSIL (an intermediate language) and verification with a Hoare-

style logic. The top-level JavaScript semantics is based on JSCert. The JSIL interpreter is written in

OCaml. JaVerT has a partial pen-and-paper correctness proof for the JS-2-JSIL compiler [51, §6.1],

shown by Naudžiūnienė [44]. JaVerT allows proving properties about JavaScript programs using a

kind of Hoare logic. However, it does not seem to be possible to use a proof assistant like Rocq in

combination with it, particularly to verify the meta theory. The eval construct is only supported in

direct, strict mode, hence it is marked as ‘partial’ in Table 2.

JSkel [29] focuses on defining the semantics of JavaScript using skeletal semantics. Language

specifications written in Skel, such as JSkel, can automatically be translated into both Rocq (for

a formalization) and OCaml (for an interpreter). Convenient here is the single source of truth,

compared to, e.g., NixLang having two specifications and a correspondence proof.

8 Conclusions and Future Work
We presented a form of deferred substitutions to give concise substitution-based semantics for

‘dynamic’/‘scripting’ languages. We proved soundness and completeness of environment-based

interpreters w.r.t. deferred substitutions, and applied our results to give the most comprehensive

semantics of Nix to date, which we evaluated on the official Nix language tests. In future work it

would be interesting to use differential testing [42] to compare our interpreter more thoroughly

with the official Nix implementation. It would also be useful to investigate a lazy semantics and

interpreter of Nix, instead of a call-by-name one. A lazy interpreter is more efficient (due to term

sharing), but it also opens the door to support some features from Nix that we are missing, e.g.,
equality of functions and cycle detection. One could also investigate the lazy semantics of with

that we discovered in two of the Nix language tests (§ 5). Finally, one could investigate whether

deferred substitutions could be applied to other languages, e.g., JavaScript, Bash or Makefile. An

important question is how to deal with mutation. Perhaps one could use the same approach as

S5 [50], Iris [28] and RustBelt [27], where variables are substituted for references on the heap.

Data Availability Statement
The Rocq development for the languages LambdaLang (§ 2), DynLang and EvalLang (§ 3) and

NixLang (§ 4), the elaborator from Nix to NixLang (written in OCaml) and the code to exercise the

Nix language tests on the NixLang interpreter extracted from Rocq to OCaml (§ 5) can all be found

in Broekhoff and Krebbers [10].

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

268:28 Rutger Broekhoff and Robbert Krebbers

Acknowledgments
We thank the anonymous reviewers for their suggestions. This work is supported in part by ERC

grant COCONUT (grant no. 101171349), funded by the European Union. Views and opinions

expressed are however those of the author(s) only and do not necessarily reflect those of the

European Union or the European Research Council Executive Agency. Neither the European Union

nor the granting authority can be held responsible for them.

References
[1] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. 1991. Explicit Substitutions. JFP 1, 4 (1991),

375–416. doi:10.1017/S0956796800000186

[2] Nada Amin and Tiark Rompf. 2017. Type soundness proofs with definitional interpreters. In POPL. 666–679. doi:10.
1145/3009837.3009866

[3] Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau, and Nicolas Tabareau. 2018. Towards Certified

Meta-Programming with Typed Template-Coq. In ITP (LNCS, Vol. 10895). 20–39. doi:10.1007/978-3-319-94821-8_2
[4] Andrew W. Appel and Xavier Leroy. 2023. Efficient Extensional Binary Tries. JAR 67, 1 (2023), 8. doi:10.1007/S10817-

022-09655-X

[5] Anton Bachin. 2023. Bisect_ppx. https://github.com/aantron/bisect_ppx

[6] Hendrik Pieter Barendregt. 1985. The lambda calculus - its syntax and semantics. Studies in logic and the foundations

of mathematics, Vol. 103. North-Holland.

[7] Martin Bodin. 2016. Certified semantics and analysis of JavaScript. Ph. D. Dissertation. Université Rennes 1, France.
[8] Martin Bodin, Arthur Charguéraud, Daniele Filaretti, Philippa Gardner, Sergio Maffeis, Daiva Naudžiūnienė, Alan

Schmitt, and Gareth Smith. 2014. A trusted mechanised JavaScript specification. In POPL. 87–100. doi:10.1145/2535838.
2535876

[9] Sylvie Boldo and Guillaume Melquiond. 2011. Flocq: A Unified Library for Proving Floating-Point Algorithms in Coq.

In ARITH. 243–252. doi:10.1109/ARITH.2011.40
[10] Rutger Broekhoff and Robbert Krebbers. 2025. Artifact for “Verified interpreters for dynamic languageswith applications

to the Nix expression language”. doi:10.5281/zenodo.15839106

[11] François Caddet. 2023. Nix with; with Nickel. https://tweag.io/blog/2023-01-24-nix-with-with-nickel/

[12] Brian Campbell. 2012. An Executable Semantics for CompCert C. In CPP (LNCS, Vol. 7679). 60–75. doi:10.1007/978-3-
642-35308-6_8

[13] Arthur Charguéraud. 2012. The Locally Nameless Representation. JAR 49, 3 (2012), 363–408. doi:10.1007/S10817-011-

9225-2

[14] Arthur Charguéraud. 2020. Separation logic for sequential programs (functional pearl). PACMPL 4, ICFP (2020),

116:1–116:34. doi:10.1145/3408998

[15] Nicolaas Govert de Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula

manipulation, with application to the Church-Rosser theorem. In Indagationes Mathematicae, Vol. 75. 381–392. doi:10.
1016/1385-7258(72)90034-0

[16] Eelco Dolstra. 2006. The purely functional software deployment model. Ph. D. Dissertation. Utrecht University, Nether-
lands. http://dspace.library.uu.nl/handle/1874/7540

[17] Eelco Dolstra and Andres Löh. 2008. NixOS: A purely functional Linux distribution. In ICFP. 367–378. doi:10.1145/
1411204.1411255

[18] Eelco Dolstra, Andres Löh, and Nicolas Pierron. 2010. NixOS: A purely functional Linux distribution. JFP 20, 5-6

(2010), 577–615. doi:10.1017/S0956796810000195

[19] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and Bruce F. Duba. 1987. A Syntactic Theory of

Sequential Control. TCS 52 (1987), 205–237. doi:10.1016/0304-3975(87)90109-5
[20] Daniele Filaretti and Sergio Maffeis. 2014. An Executable Formal Semantics of PHP. In ECOOP (LNCS, Vol. 8586).

567–592. doi:10.1007/978-3-662-44202-9_23

[21] Murdoch Gabbay and Andrew M. Pitts. 2002. A New Approach to Abstract Syntax with Variable Binding. FAC 13, 3-5

(2002), 341–363. doi:10.1007/S001650200016

[22] Philippa Gardner, Sergio Maffeis, and Gareth David Smith. 2012. Towards a program logic for JavaScript. In POPL.
31–44. doi:10.1145/2103656.2103663

[23] Michael Greenberg and Austin J. Blatt. 2020. Executable formal semantics for the POSIX shell. PACMPL 4, POPL (2020),

43:1–43:30. doi:10.1145/3371111

[24] Arjun Guha, Claudiu Saftoiu, Spiridon Eliopoulos, Benjamin Lerner, and Joe Gibbs Politz. 2013. The LambdaJS GitHub

repository. https://github.com/brownplt/LambdaJS

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1007/978-3-319-94821-8_2
https://doi.org/10.1007/S10817-022-09655-X
https://doi.org/10.1007/S10817-022-09655-X
https://github.com/aantron/bisect_ppx
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.5281/zenodo.15839106
https://tweag.io/blog/2023-01-24-nix-with-with-nickel/
https://doi.org/10.1007/978-3-642-35308-6_8
https://doi.org/10.1007/978-3-642-35308-6_8
https://doi.org/10.1007/S10817-011-9225-2
https://doi.org/10.1007/S10817-011-9225-2
https://doi.org/10.1145/3408998
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
http://dspace.library.uu.nl/handle/1874/7540
https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1145/1411204.1411255
https://doi.org/10.1017/S0956796810000195
https://doi.org/10.1016/0304-3975(87)90109-5
https://doi.org/10.1007/978-3-662-44202-9_23
https://doi.org/10.1007/S001650200016
https://doi.org/10.1145/2103656.2103663
https://doi.org/10.1145/3371111
https://github.com/brownplt/LambdaJS

Verified Interpreters for Dynamic Languages with Applications to the Nix Expression Language 268:29

[25] Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The Essence of JavaScript. In ECOOP (LNCS, Vol. 6183).
126–150. doi:10.1007/978-3-642-14107-2_7

[26] Ryan Hendrickson. 2024. Nix Pull Request #11294, parser-state: fix attribute merging. https://github.com/NixOS/nix/

pull/11294

[27] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: Securing the foundations of

the Rust programming language. PACMPL 2, POPL (2018), 66:1–66:34. doi:10.1145/3158154

[28] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from

the ground up: A modular foundation for higher-order concurrent separation logic. JFP 28 (2018), e20. doi:10.1017/

S0956796818000151

[29] Adam Khayam, Louis Noizet, and Alan Schmitt. 2021. JSkel: Towards a Formalization of JavaScript’s Semantics. In

JFLA. 95–116. https://inria.hal.science/hal-03509431

[30] Denis Korzunov. 2018. A Nix code formatter written in OCaml using Menhir and OCamllex. https://github.com/d2km/

nixformat/

[31] Robbert Krebbers. 2015. The C standard formalized in Coq. Ph. D. Dissertation. Radboud University Nijmegen,

Netherlands.

[32] Robbert Krebbers. 2023. Efficient, Extensional, and Generic Finite Maps in Coq-std++. https://coq-workshop.gitlab.io/

2023/abstracts/coq2023_finmap-stdpp.pdf Extended abstract at “The Coq Workshop 2023”, see also https://gitlab.mpi-

sws.org/iris/stdpp/-/merge_requests/461.

[33] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation

logic. In POPL. 205–217. doi:10.1145/3009837.3009855
[34] Jean-Louis Krivine. 2007. A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation 20, 3

(2007), 199–207. doi:10.1007/S10990-007-9018-9

[35] Xavier Leroy. 2009. Formal verification of a realistic compiler. CACM 52, 7 (2009), 107–115. doi:10.1145/1538788.1538814

[36] Pierre Letouzey. 2002. A New Extraction for Coq. In TYPES (LNCS, Vol. 2646). 200–219. doi:10.1007/3-540-39185-1_12
[37] Ben Lippmeier. 2016. Don’t Substitute into Abstractions. https://benl.ouroborus.net/papers/2016-dsim/lambda-dsim-

20160328.pdf Unpublished manuscript.

[38] Andreas Lochbihler and Lukas Bulwahn. 2011. Animating the Formalised Semantics of a Java-Like Language. In ITP
(LNCS, Vol. 6898). 216–232. doi:10.1007/978-3-642-22863-6_17

[39] Sergio Maffeis, John C. Mitchell, and Ankur Taly. 2008. An Operational Semantics for JavaScript. In APLAS (LNCS,
Vol. 5356). 307–325. doi:10.1007/978-3-540-89330-1_22

[40] Marek Materzok. 2016. Certified Desugaring of JavaScript Programs using Coq. Presented at CoqPL’16.

http://arthur.chargueraud.org/events/coqpl2016/CoqPL_2016_paper_3.pdf, archived at [https://web.archive.org/web/

20220302171941/http://www.chargueraud.org/events/coqpl2016/CoqPL_2016_paper_3.pdf]

[41] Karl Mazurak and Steve Zdancewic. 2007. ABASH: finding bugs in bash scripts. In PLAS. 105–114. doi:10.1145/1255329.
1255347

[42] William M. McKeeman. 1998. Differential Testing for Software. Digital Technical Journal 10, 1 (1998), 100–

107. https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf, archived at [https://web.archive.org/web/

20230306000947/https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf]

[43] Alexey Muranov. 2017. Nix issue #1361, Language feature proposal: exclusive ‘with’. https://github.com/NixOS/nix/

issues/1361

[44] Daiva Naudžiūnienė. 2018. An infrastructure for tractable verification of JavaScript programs. Ph. D. Dissertation.

Imperial College London, UK. https://vtss.doc.ic.ac.uk/publications/Naudziuniene2018Infrastructure.pdf

[45] NixOS contributors. 2025. The Nix GitHub repository. https://github.com/NixOS/nix/tree/2.25.0

[46] Daejun Park, Andrei Stefănescu, and Grigore Roşu. 2015. KJS: a complete formal semantics of JavaScript. In PLDI.
346–356. doi:10.1145/2737924.2737991

[47] Simon L. Peyton Jones. 1987. The Implementation of Functional Programming Languages. Prentice-Hall.
[48] Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In PLDI. 199–208. doi:10.1145/53990.54010
[49] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael Greenberg, Cătălin

Hriţcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey. 2024. Programming Language Foundations. In Software
Foundations, Benjamin C. Pierce (Ed.). https://softwarefoundations.cis.upenn.edu/plf-current/index.html

[50] Joe Gibbs Politz, Matthew J. Carroll, Benjamin S. Lerner, Justin Pombrio, and Shriram Krishnamurthi. 2012. A tested

semantics for getters, setters, and eval in JavaScript. In DLS. 1–16. doi:10.1145/2384577.2384579
[51] José Fragoso Santos, Petar Maksimović, Daiva Naudžiūnienė, Thomas Wood, and Philippa Gardner. 2018. JaVerT:

JavaScript verification toolchain. PACMPL 2, POPL (2018), 50:1–50:33. doi:10.1145/3158138

[52] José Fragoso Santos, Petar Maksimović, Gabriela Cunha Sampaio, and Philippa Gardner. 2019. JaVerT 2.0: compositional

symbolic execution for JavaScript. PACMPL 3, POPL (2019), 66:1–66:31. doi:10.1145/3290379

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://doi.org/10.1007/978-3-642-14107-2_7
https://github.com/NixOS/nix/pull/11294
https://github.com/NixOS/nix/pull/11294
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://inria.hal.science/hal-03509431
https://github.com/d2km/nixformat/
https://github.com/d2km/nixformat/
https://coq-workshop.gitlab.io/2023/abstracts/coq2023_finmap-stdpp.pdf
https://coq-workshop.gitlab.io/2023/abstracts/coq2023_finmap-stdpp.pdf
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/461
https://gitlab.mpi-sws.org/iris/stdpp/-/merge_requests/461
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/S10990-007-9018-9
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/3-540-39185-1_12
https://benl.ouroborus.net/papers/2016-dsim/lambda-dsim-20160328.pdf
https://benl.ouroborus.net/papers/2016-dsim/lambda-dsim-20160328.pdf
https://doi.org/10.1007/978-3-642-22863-6_17
https://doi.org/10.1007/978-3-540-89330-1_22
http://arthur.chargueraud.org/events/coqpl2016/CoqPL_2016_paper_3.pdf
https://web.archive.org/web/20220302171941/http://www.chargueraud.org/events/coqpl2016/CoqPL_2016_paper_3.pdf
https://web.archive.org/web/20220302171941/http://www.chargueraud.org/events/coqpl2016/CoqPL_2016_paper_3.pdf
https://doi.org/10.1145/1255329.1255347
https://doi.org/10.1145/1255329.1255347
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://web.archive.org/web/20230306000947/https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://web.archive.org/web/20230306000947/https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://github.com/NixOS/nix/issues/1361
https://github.com/NixOS/nix/issues/1361
https://vtss.doc.ic.ac.uk/publications/Naudziuniene2018Infrastructure.pdf
https://github.com/NixOS/nix/tree/2.25.0
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/53990.54010
https://softwarefoundations.cis.upenn.edu/plf-current/index.html
https://doi.org/10.1145/2384577.2384579
https://doi.org/10.1145/3158138
https://doi.org/10.1145/3290379

268:30 Rutger Broekhoff and Robbert Krebbers

[53] Enrico Tassi. 2019. Deriving Proved Equality Tests in Coq-Elpi: Stronger Induction Principles for Containers in Coq. In

ITP (LIPIcs, Vol. 141). 29:1–29:18. doi:10.4230/LIPICS.ITP.2019.29
[54] Jude Taylor. 2015. Nix issue #490, Scoping is unintuitive. https://github.com/NixOS/nix/issues/490

[55] Jianzhou Zhao, Santosh Nagarakatte, MiloM. K. Martin, and Steve Zdancewic. 2012. Formalizing the LLVM intermediate

representation for verified program transformations. In POPL. 427–440. doi:10.1145/2103656.2103709

Received 2025-02-27; accepted 2025-06-27

Proc. ACM Program. Lang., Vol. 9, No. ICFP, Article 268. Publication date: August 2025.

https://doi.org/10.4230/LIPICS.ITP.2019.29
https://github.com/NixOS/nix/issues/490
https://doi.org/10.1145/2103656.2103709

	Abstract
	1 Introduction
	2 The Call-by-Name Lambda Calculus
	2.1 Syntax and Operational Semantics
	2.2 Implementation of the Interpreter
	2.3 Soundness and Completeness

	3 Deferred Substitutions
	3.1 Syntax and Operational Semantics
	3.2 Implementation of the Interpreter
	3.3 Soundness and Completeness
	3.4 Variations of Deferred Substitutions

	4 A Semantics for the Nix Expression Language
	4.1 Introduction to Nix
	4.2 Syntax and Operational Semantics
	4.3 Implementation of the Interpreter
	4.4 Soundness and Completeness

	5 Frontend and Evaluation
	6 Rocq Mechanization
	7 Related Work
	7.1 Explicit Substitutions
	7.2 Prior Semantics of Nix
	7.3 Semantics of Other Dynamic Languages

	8 Conclusions and Future Work
	Data Availability Statement
	Acknowledgments
	References

