
Classical logic, control calculi and data types

Robbert Krebbers1

Radboud University Nijmegen

Master’s Thesis
in Foundations of Computer Science

Date:
October, 2010

Supervised by:
prof. dr. Herman Geuvers (herman@cs.ru.nl)

dr. James McKinna (james@cs.ru.nl)

Thesis number:
643

1mail@robbertkrebbers.nl

Summary

This thesis is concerned with the relation between classical logic and computa-
tional systems. For constructive logic we have the well-known Curry-Howard
correspondence, which states that there is a correspondence between formulas
and types, proofs and programs, and proof normalization and reduction. But
until quite recently, people believed that this correspondence was limited to
constructive logic.

Nonetheless already quite old results by Kreisel, Friedman and Gödel show
that certain classical proofs do contain computational content. However, these
results use a translation of classical proofs into constructive logic and do not
describe a direct correspondence between classical logic and computation. A
direct correspondence remained unknown until 1990, when Griffin extended the
Curry-Howard correspondence to classical logic by incorporation of Felleisen’s
control operator C.

In this thesis we continue on Griffin’s track. In the first part we investi-
gate various control calculi: Felleisen’s λC-calculus with Griffin’s typing rules,
Rehof and Sørensen’s λ∆-calculus and Parigot’s λµ-calculus. We are especially
interested in the main meta-theoretical properties: confluence, normal form the-
orems, subject reduction and strong normalization. Our research will indicate
that both the λC -calculus and λ∆-calculus suffer from various defects.

Since none of the discussed systems contain data types, we will extend
Parigot’s λµ-calculus with a data type for the natural numbers and a construct
for primitive recursion in the second part of this thesis. We prove that our
system satisfies subject reduction, has a normal form theorem, is confluent and
strongly normalizing. The last two proofs require various niceties to make the
standard proof methods work.

The long term goal of the research initiated in this thesis is to develop a
system that supports a limited amount of classical reasoning and also contains
dependent and inductive types. Such a system would have two major applica-
tions.

1. It could be used to prove the correctness of programs with control,

2. It could be used to obtain programs with control by program extraction
from classical proofs.

Contents

1 Introduction 7

1.1 Control mechanisms . 8

1.2 Our approach . 9

1.3 Related work . 11

1.4 Outline . 11

2 Background 13

2.1 First-order propositional logic . 13

2.2 The untyped λ-calculus . 15

2.3 The simply typed λ-calculus . 18

2.4 Second-order propositional logic 21

2.5 The second-order typed λ-calculus 22

3 Classical logic and control operators 26

3.1 The λC -calculus . 26

3.2 The λ∆-calculus . 31

3.3 The λµ-calculus . 34

3.4 The second-order λµ-calculus . 40

3.5 Continuation passing style . 42

4 The λµ-calculus with arithmetic 51

4.1 Gödel’s T . 52

4.2 The λT
µ -calculus . 55

4.3 Confluence of λT
µ . 59

4.4 Strong normalization of λT
µ . 71

4.4.1 Strong normalization of (A) 71

4.4.2 Strong normalization of (A) and (B) 79

4.5 CPS-translation of λT
µ into λT 81

4.6 Embedding λT
µ into λ2

µ . 86

6 CONTENTS

4.7 Correctness of programs . 89

5 Further research 94

5.1 Other data types . 94

5.1.1 Confluence . 96

5.1.2 Strong normalization . 97

5.2 Program extraction . 98

5.2.1 From the Calculus of Constructions 98

5.2.2 From classical proofs . 99

6 Conclusions 101

6.1 Comparison of the systems . 101

6.2 Call-by-name or call-by-value . 102

6.3 Primitive catch and throw . 102

6.4 Implementation . 103

A Classical program extraction in Coq 104

Chapter 1

Introduction

The Curry-Howard correspondence states that there is a correspondence be-
tween logic and computational systems: formulas correspond to types, proofs
to programs and proof normalization to reduction. This is an amazing result,
because it relates logic, which is generally considered as static, to computation,
which is generally considered as dynamic.

For quite some time this correspondence has been employed for the devel-
opment of provably correct functional programs. In particular, it has led to the
development of dependently typed λ-calculi. We can use these systems in two
ways so as to construct correct programs.

Correctness proofs. The system is used as a functional programming lan-
guage to write a certain program. Meanwhile, its rich type structure is
used to state the program’s specification and then one proves that the
program is correct with respect to its specification.

Program extraction. The system is used to state a specification and then
one proves that a solution to that specification exists. Now, by remov-
ing computationally irrelevant parts, a program that is guaranteed to be
correct with respect to its specification is extracted.

An example of such a formal system is the Calculus of Constructions (CC) and
its extension the Calculus of Inductive Constructions (CIC), which adds support
for inductive types. This system is the basis of the interactive proof assistant
Coq [CDT].

The Curry-Howard correspondence is originally considered with respect to
constructive logic and not with respect to classical logic. In fact, until quite
recently, people believed that the Curry-Howard correspondence was limited to
constructive logic. Nonetheless already quite old results by Kreisel, Friedman
and Gödel [Kre58, Fri78] show that certain classical proofs do contain computa-
tional content. More precisely, they have shown that provability of a Π0

2-formula
in Peano arithmetic and Heyting arithmetic coincides. However, these results
use a translation of classical proofs into constructive logic and do not describe
a direct correspondence between classical logic and computation.

A direct correspondence remained unknown until 1990, when Griffin [Gri90]
extended the Curry-Howard correspondence to classical logic by incorporation of

8 CHAPTER 1. INTRODUCTION

control operators. An interesting part of Griffin’s work is that CPS-translations,
which allow simulation of control operators in a system without it, correspond
to logical embeddings of classical logic into constructive logic.

Unfortunately, the correspondence for classical logic is generally studied with
respect to quite simple systems. Most of the systems present in today’s literature
do not contain inductive types, or actually, most do not even contain data types
for basic types as the natural numbers.

The long term goal of the research initiated in this thesis is to develop a
system that supports a limited amount of classical reasoning and also contains
dependent and inductive types. Such a system would have two major applica-
tions.

1. It could be used to prove the correctness of programs with control,

2. It could be used to obtain programs with control by program extraction
from classical proofs.

In this thesis we make a start by extending a system with control, namely
Parigot’s λµ-calculus [Par92], with data types.

1.1 Control mechanisms

Control mechanisms, also known as exception mechanisms, allow to clearly sep-
arate the unusual case from the normal case and can moreover help to write
more efficient programs. We distinguish the following kind of unusual cases
[Goo75].

1. Range failures. These failures occur when an operation is unable to satisfy
its postcondition. An example of such a failure is an IO-error while reading
or writing to a file.

2. Domain failures. These failures occur when an operation has been given
input that does not match its precondition. For example, such failure
might occur when one attempts to take the tail of an empty list or tries
to divide by zero.

In this thesis we solely consider domain failures because we study formal systems
instead of actual programming languages. Range failures cannot occur in the
considered formal systems because external dependencies as IO do not appear.
Furthermore, domain failures can help to write more efficient programs. We will
illustrate this by considering the following simple functional program1.

let rec listmult l = match l with
| nil -> 1
| x :: k -> x * (listmult k)

1Control mechanisms will most likely not improve the performance of this particular pro-
gram considered in a general purpose programming language, because arithmetic is performed
directly by the machine and thus very efficient. However, for more complex programs or data
types, control mechanisms will certainly help to improve the performance. For example, in
[CGU00] it is used to incorporate a sophisticated backtracking technique. But so as to keep
it simple we restrict ourselves to toy examples.

9 CHAPTER 1. INTRODUCTION

This program takes a list of natural numbers and yields the product of its
elements. If a list contains an element whose value is zero, this function yields
zero. Unfortunately, when a zero is encountered, it is multiplied by all elements
in the list. One could try to optimize this function by letting it stop multiplying
once a zero is encountered.

let rec listmult l = match l with
| nil -> 1
| 0 :: k -> 0
| x :: k -> x * (listmult k)

However, on its way out of the recursion, a zero is still multiplied by all elements
that were previously encountered. Instead, it would be nice if we could break out
of the recursion once a zero is encountered. We will incorporate Lisp’s control
operators catch and throw to achieve this goal. First we describe the intuitive
semantics of these operators.

Evaluation of the term catch α t results in evaluation of t. If evaluation
of t yields an actual result v, then catch α t yields v. In this case, we say
that t returns normally. However, if we encounter a term throw α s during
the evaluation of t, then catch α t yields s. In this case, we say that t returns
exceptionally.

Now, by incorporation of the control operators catch and throw, we let our
program break out of the recursion once a zero is encountered.

let listmult l = catch α (listmult2 l)

let rec listmult2 l = match l with
| nil -> 1
| 0 :: k -> throw α 0
| x :: k -> x * (listmult2 k)

Here, the function listmult2 is not defined for lists that contain an element
whose value is 0. So, if supplied with an list that contains an element whose
value is 0 one can say that a domain failure occurs.

In order to reason formally about functional programs one could cast them
into a formal framework, for example the λ-calculus. The ordinary λ-calculus
does, however, not support control mechanisms. Fortunately, initiated by the
work of Felleisen et al. [FF86, FFKD87], various extensions of the λ-calculus
with control mechanisms have been developed.

More surprisingly, Griffin [Gri90] discovered that control mechanisms can be
typed with classical proof rules and thereby extend the Curry-Howard corre-
spondence to classical logic.

1.2 Our approach

In the first part of this thesis (Chapter 3) we investigate various control cal-
culi: Felleisen’s λC-calculus [FF86, FFKD87] with Griffin’s typing rules [Gri90],
Rehof and Sørensen’s λ∆-calculus [RS94] and Parigot’s λµ-calculus [Par92]. By
studying these systems we determine which one is suitable for an extension with

10 CHAPTER 1. INTRODUCTION

data types. However, by no means we claim that our investigation is exhaustive,
because there are simply too many control calculi present in today’s literature.
Hence it is definitely possible that a more suitable system, which has not been
considered in this thesis, exists.

For each system we take a look at the desired meta theoretical properties. We
are especially interested in confluence, normal form theorems, subject reduction
and strong normalization. Based on our investigations we will indicate some
major defects in both the λC - and λ∆-calculus. Furthermore, we will show that
the λµ-calculus satisfies the main theoretical properties and is able to simulate
catch and throw.

In the second part (Chapter 4) we present our main technical contribu-
tion: a Gödel’s T version of the λµ-calculus, which we name λT

µ . Gödel’s T is
simple type theory extended with a base type for the natural numbers and a
construct for primitive recursion. The λT

µ -calculus is, however, not a straight-
forward “merge” of λµ and Gödel’s T. Some of its reduction rules closer are
closer to a call-by-value system than to the ones one would expect of a call-
by-name system (which λµ originally is). Firstly, it contains the reduction rule
Sµα.c → µα.c[α := α (S2)], which is necessary in order to maintain a normal
form theorem. Secondly, in order to unfold nrec r s (St) we have to reduce t to
an actual numeral. This is required because it would otherwise result in a loss
of confluence.

In the second part we moreover prove that λT
µ satisfies subject reduction,

has a normal form theorem, is confluent and strongly normalizing. The last two
proofs are quite non-trivial because various niceties are required to make the
standard proof methods work.

Our confluence proof uses the notion of parallel reduction and defines the
complete development of each term. Surprisingly, the author was unable to find
a confluence proof for the original untyped λµ-calculus. In [BHF01] there is
a confluence proof for λµ without the →µη-rule (µα.[α]t →µη t provided that
α /∈ FCV(t)). Although [BHF01] suggests how to extend parallel reduction for
the →µη-rule, a definition of the complete development and a proof are absent.
In this thesis we extend the methodology of [BHF01] to the case of λT

µ , which
also includes the →µη-rule.

Our strong normalization proof proceeds by defining reductions→A and→B

such that →=→A ∪ →B . First we prove that →A is strongly normalizing by
the reducibility method. Secondly, we prove that →B is strongly normalizing
and moreover that each infinite →AB-reduction sequence can be transformed
into an infinite →A-reduction sequence. The first phase is inspired by Parigot’s
proof of strong normalization for λµ [Par97] and the second phase is inspired
by Rehof and Sørensen’s proof of strong normalization for λ∆ [RS94].

Moreover we show that our system can be embedded into Gödel’s T and into
the λ2

µ-calculus, which is a polymorphic variant of Parigot’s λµ-calculus [Par92].
Finally we present a program in our system and prove that it is correct with
respect to its specification.

11 CHAPTER 1. INTRODUCTION

1.3 Related work

To the author’s knowledge there is little evidence of research in which control
calculi are combined with data types. Also, there is little evidence of research
in which program extraction, by removing computational irrelevant parts, from
classical proofs is discussed. We will summarize relevant research.

Murthy considered a system with control operators, arithmetic, products
and sums in his PhD thesis [Mur90]. However, he was mainly concerned with
CPS-translations while we would like to reason directly about programs in our
system.

Parigot has described a second-order variant of his λµ-calculus [Par92]. Al-
though this system is very powerful, it suffers from the same weakness as System
F, namely its efficiency is pretty poor. Also, as noticed in [Par92, Par93], this
system does not ensure unique representation of data types. For example, there
is not a one-to-one correspondence between natural numbers and closed normal
forms of the type of Church numerals.

Berger, Buchholz and Schwichtenberg have described a form of program ex-
traction from classical proofs [BBS00]. Their method extracts a Gödel’s T term
from a classical proof in which all computational irrelevant parts are removed.
To prove the correctness of their approach they have given a realizability inter-
pretation. However, since their target language is Gödel’s T, resulting programs
do not contain control mechanisms.

Caldwell, Gent and Underwood considered program extraction from classical
proofs in the proof assistant NuPrl [CGU00]. In their work they extended NuPrl
with a proof rule for Peirce’s law and associated call/cc for its extraction.
Now, program extraction indeed results in a program with control. However,
the authors were mainly interested in using program extraction to obtain effi-
cient search algorithms and did not prove any meta theoretical results so it is
unclear whether their approach is correct for arbitrary classical proofs. In fact,
in Appendix A we will repeat their approach in the proof assistant Coq and
show that we can construct incorrect programs.

Herbelin developed an intuitionistic predicate logic that supports a limited
amount of classical reasoning [Her10]. His system proves a variant of Markov’s
principle, which is computationally associated with an exception mechanism.
Although his system does not contain data types and realizability is left for
further research, it seems like a good candidate to extend with data types. As
this research is very recent (July 2010), we have not been able to incorporate it
into our work, which was by then nearly finished.

1.4 Outline

We give a brief overview of the contents of each chapter.

• Chapter 2 discusses the background that is required to read this thesis.
On the one hand we present some logics and on the other hand some
typed λ-calculi. We will relate these seemingly unrelated notions by means
of the Curry-Howard correspondence, which establishes a correspondence
between terms and proof and between types and logical formulas.

12 CHAPTER 1. INTRODUCTION

Furthermore, this chapter presents some important meta theoretical prop-
erties of the systems: confluence, normal form theorems, subject reduction
and strong normalization. These properties will return when we discuss
various other systems in the subsequent chapters.

• Chapter 3 considers extensions of the λ-calculus with control operators.
Control operators allow to create more efficient programs and extend the
Curry-Howard correspondence to classical logic. We will present various
systems and show that for some of them important meta theoretical prop-
erties, which we have discussed in Chapter 2, fail. Also, this chapter
discusses CPS-translations, which allow simulation of control operators in
a system without it.

• Chapter 4 deals with extensions of the λ-calculus with both basic data
types and control operators. This is a fairly new topic in the literature,
because such extensions are usually discussed separately. This chapter in-
cludes the main result of this thesis: an extension of Gödel’s T with control
operators. We will prove various non-trivial meta theoretical properties
of this system. Also, we will show how this system relates to previously
discussed systems by means of translations into those systems. Finally,
we will consider an example program and prove its correctness.

• Chapter 5 discusses some extensions of our work. First we discuss exten-
sions with other data types, as lists and products. Secondly, we introduce
program extraction and indicate how our system could be used for extrac-
tion of programs with control from classical proofs.

• Chapter 6 finishes with conclusions.

Acknowledgements

I would like to thank Herman Geuvers and James McKinna for their supervision,
without their help this thesis would not be as it is now. I would also like to
thank Herman Geuvers for initiating this project by introducing me to the
Curry-Howard correspondence for classical logic. Moreover, I would like to
thank Hugo Herbelin for answering various questions.

Chapter 2

Background

In this chapter we will briefly introduce various well-known notions that play an
important role in this thesis. In Section 2.1 we discuss minimal, intuitionistic
and classical variants of first-order propositional logic, in Section 2.2 we discuss
the untyped λ-calculus, in Section 2.3 we discuss the simply-typed λ-calculus
and the Curry-Howard correspondence with first-order minimal logic, in Section
2.4 we discuss minimal and classical variants of second-order propositional logic
and in Section 2.5 we discuss the second-order typed λ-calculus.

2.1 First-order propositional logic

In this section we present minimal, intuitionistic and classical first-order propo-
sitional logic and the relation between these logics.

Definition 2.1.1. Minimal first-order propositional formulas are built from an
infinite set of atoms (X,Y, . . .) and an implication arrow (→).

A,B ::= X | A→ B

Moreover, an environment (Γ,Σ, . . .) is a finite set of formulas.

Definition 2.1.2. A judgment Γ ` A is derivable in minimal first-order propo-
sitional logic if it can be derived by the natural deduction rules shown in Fig-
ure 2.1.

A ∈ Γ
Γ ` A

(a) axiom

Γ, A ` B
Γ ` A→ B

(b) →i

Γ ` A→ B Γ ` A
Γ ` B
(c) →e

Figure 2.1: Natural deduction for minimal first-order propositional logic.

By saying that Γ ` A is derivable we mean that there exists a finite tree
whose nodes are labeled by judgments Σ ` B such that [SU06]:

1. The root is labeled by Γ ` A,

14 CHAPTER 2. BACKGROUND

2. Each leaf is labeled by an axioms of the system,

3. Each label of a parent node is obtained from the labels of its children using
one of the rules of the system.

For example, let Γ = {A → B → C,A → B}, now the following tree is a
valid derivation.

Γ, A ` A→ B → C Γ, A ` A
Γ, A ` B → C

Γ, A ` A→ B Γ, A ` A
Γ, A ` B

Γ, A ` C

Γ ` A→ C

However, if we let Γ = {(A → B) → A} and A 6= B, then the following tree is
not a valid derivation because Γ, A ` B is not an axiom.

Γ ` (A→ B)→ A

Γ, A ` B

Γ ` A→ B

Γ ` A

In fact, there does not even exist a derivation of the judgment (A→ B)→ A ` A
in minimal classical logic as we will obtain by Theorem 2.1.7.

As we have seen, minimal first-order propositional formulas do merely consist
of atoms and arrows. Now we present intuitionistic logic, in which we extend
formulas with a nullary connective false (⊥).

Definition 2.1.3. First-order propositional formulas are minimal propositional
formulas extended with a unary connective false (⊥).

A,B ::= X | ⊥ | A→ B

In minimal logic one could treat the connective false (⊥) as any other atom.
Obviously, since there is no additional rule for that atom, it does not have an
exceptional meaning. However, in intuitionistic logic we will add an additional
rule. The connective false should be interpreted as absurd, that means, any
formula can be derived from it.

Definition 2.1.4. A judgment holds in intuitionistic first-order propositional
logic if it can be derived by the rules shown in Figure 2.1 and the Ex Falso
Quodlibet (EFQ) rule, which is shown in Figure 2.2.

Γ ` ⊥
Γ ` A

(a) Ex Falso Quodlibet

Figure 2.2: Intuitionistic rules.

Notation 2.1.5. We abbreviate ¬A (not A) as A→ ⊥.

Definition 2.1.6. A judgment holds in minimal classical first-order proposi-
tional logic if it can be derived by the rules shown in Figure 2.1 and Peirce’s law
(PL). A judgment holds in classical logic if it can be derived by the rules shown
in Figure 2.1 and double negation (DN). These rules are shown in Figure 2.3.

15 CHAPTER 2. BACKGROUND

Γ ` (A→ B)→ A

Γ ` A
(a) Peirce’s law

Γ ` ¬¬A
Γ ` A

(b) Double negation

Figure 2.3: Classical rules.

Theorem 2.1.7. The following diagram indicates the relations between mini-
mal, intuitionistic and classical first-order propositional logic. An arrow from
logic L to K indicates that K is strictly stronger than L.

Minimal logic //

��

Intuitionistic logic

��
Minimal classical logic // Classical logic

Moreover, a judgment Γ ` B holds in minimal classical logic with the EFQ rule
assumed iff Γ ` B holds in classical logic.

Proof. This is proven in [AH03].

2.2 The untyped λ-calculus

In this section we describe the λ-calculus: a formal system for function defi-
nition. The λ-calculus is of great interest because in the forthcoming sections
we will show that terms in typed λ-calculi correspond to derivations in various
logics. Therefore a correspondence between proofs and programs is created.

Definition 2.2.1. Untyped λ-terms are inductively defined over an infinite set
of variables (x, y, . . .) as follows.

t, r, s ::= x | λx.t | ts

Throughout this thesis we let FV(t) denote the set of free variables of a term
t, let BV(t) denote the set of bound variables, and let t[x := r] denote capture
avoiding substitution of r for x in t. Moreover a term t is closed if FV(t) = ∅
and open if FV(t) 6= ∅.

Convention 2.2.2. In this thesis we will present many different languages, of
which many contain binders (like λx.t or ∀X.A). However, in such languages,
we always consider equality up to α-equivalence. That means, expressions that
only differ in their bound variables are considered equal. Since we consider
expressions up to α-equivalence, we use, when necessary, the Barendregt con-
vention. That is, given an expression, we may assume that:

1. Bound variables are distinct from free variables,

2. Binders always bind fresh variables.

Definition 2.2.3. Given a binary relation over λ-terms R, then a binary rela-
tion over λ-terms R̂ is defined as follows.

16 CHAPTER 2. BACKGROUND

1. If t1 R t2, then t1 R̂ t2.

2. If t1 R̂ t2, then (t1s) R̂ (t2s).

3. If s1 R̂ s2, then (ts1) R̂ (ts2).

4. If t1 R̂ t2, then (λx.t1) R̂ (λx.t2).

We say that R̂ is the compatible closure of R.

Definition 2.2.4. Reduction t→ t′ on λ-terms t and t′ is defined as the com-
patible closure of the following rule.

(λx.t)r →β t[x := r]

We write � for the reflexive/transitive closure, �+ for the transitive closure
and = for the reflexive/symmetric/transitive closure. A term is in (β-) normal
form if no (β-) reduction steps are possible.

It is allowed to perform β-reduction steps in arbitrary order at arbitrary
places, hence the previous definition does not specify a deterministic reduction
strategy. Fortunately, the following theorem has as a consequence that no mat-
ter what reduction steps are performed, it is always possible to obtain a unique
normal form (if such normal form exists).

Theorem 2.2.5. (Church-Rosser) β-reduction is confluent, that is, if t1 � t2
and t1 � t3, then there exists a term t4 such that t2 � t4 and t3 � t4.

Proof. Proven in [Tak95, for example].

Theorem 2.2.6. For arbitrary terms t1 and t2 it is undecidable if t1 = t2.

Proof. Proven in [SU06, for example].

In order to write a compiler for a functional programming language based on
the λ-calculus it is desired to specify a deterministic evaluation strategy. There-
fore we will make a distinction between reduction and evaluation. Contrary to
reduction, evaluation works on whole terms and should be deterministic. The
first evaluation strategy that we describe is call-by-name evaluation, this strat-
egy evaluates the leftmost β-redex first. To describe this strategy we define the
notion of evaluation contexts.

Definition 2.2.7. A call-by-name evaluation context is defined as follows.

E ::= 2 | Et

Definition 2.2.8. Given a call-by-name evaluation context E and a term s,
then E[s], substitution of s for the hole in E, is defined as follows.

2[s] := s

(Et)[s] := E[s]t

Definition 2.2.9. Call-by-name evaluation t�β t
′ on λ-terms t and t′ is defined

as follows.
E[(λx.t)r] �β E[t[x := r]]

Here, E is a call-by-name evaluation context.

17 CHAPTER 2. BACKGROUND

We use the symbol � instead of → in order to clearly distinguish reduction
and evaluation. Since we are trying to specify a deterministic evaluation strategy
it is important that the evaluation rule �β can be applied at exactly one place.
This is a direct consequence of the following definition and lemma.

Definition 2.2.10. Values are defined as follows.

v, w ::= x | λx.r

Lemma 2.2.11. Each closed λ-term is either a value or can be written uniquely
as E[(λx.t)r] where E is a call-by-name evaluation context.

Another well-known evaluation strategy is call-by-value evaluation. This
evaluation strategy is used in many functional programming languages, for ex-
ample Scheme and OCaml. In order to describe this strategy we introduce
the call-by-value λ-calculus (henceforth λv-calculus) by Plotkin [Plo75]. The
λv-calculus simply restricts the β-reduction rule in such a way that an argu-
ment is evaluated first.

(λx.t)v →βv t[x := v]

Just like the ordinary λ-calculus, the λv-calculus is confluent [Plo75].
In order to define an evaluation strategy we define call-by-value evaluation

contexts first.

Definition 2.2.12. A call-by-value evaluation context is defined as follows.

E ::= 2 | vE | Et

The notion of substitution of s for the hole in E is extended to call-by-value
evaluation contexts in the obvious way.

Definition 2.2.13. Call-by-value evaluation t�βt
′ on λ-terms t and t′ is defined

as follows.
E[(λx.t)v] �βv E[t[x := v]]

Here, E is a call-by-value evaluation context.

Again we have to verify that this is indeed a deterministic specification.

Lemma 2.2.14. Each closed λ-term is either a value or can be written uniquely
as E[(λx.t)v] where E is a call-by-value evaluation context.

Call-by-name evaluation is usually less efficient than call-by-value evaluation
because an abstraction could duplicate its argument. As a result, arguments
may be evaluated multiple times. However, as a consequence of the the following
lemma this strategy has also some advantages.

Lemma 2.2.15. If it is possible to reduce a λ-term to a value, then call-by-name
evaluation terminates.

For example, let us consider the term (λy.I) Ω where Ω := (λx.xx)λx.xx. If
we perform call-by-value evaluation, then it results in an infinite loop.

(λy.I)Ω ≡ (λy.I) ((λx.xx)λx.xx)
� (λy.I) ((λx.xx)λx.xx)
� · · ·

18 CHAPTER 2. BACKGROUND

However, call-by-name evaluation results in a normal form, because the non-
terminating argument Ω is thrown away and therefore not evaluated.

(λy.I) Ω � I

Because unused arguments are not evaluated there is great interest in optimiza-
tions of call-by-name. Lazy evaluation is such optimization, it keeps track of
the arguments and evaluates them only the first time they are required. Lazy
evaluation is used in functional programming languages as Haskell and Clean.
For a nice account of a formal description of a lazy evaluation semantics for the
λ-calculus we refer to [Lau93].

2.3 The simply typed λ-calculus

If one considers an untyped λ-term as a function it does not have a fixed do-
main and range. To resolve this problem, typed versions of the λ-calculus were
introduced. These typed λ-calculi form a foundation for many functional pro-
gramming languages. In this section we describe the simply typed λ-calculus
(henceforth λ→).

Definition 2.3.1. Simple types are built from an infinite set of type variables
(α, β, . . .) and an implication arrow (→).

ρ, δ ::= α | ρ→ δ

An environment (Γ,Σ, . . .) is an association list of types indexed by λ-variables.

The most commonly used presentations of a typed λ-calculus are Church-
style and Curry-style [Bar92, Geu08]. In Church-style, each abstraction is an-
notated by a type, for example λx : α.λy : α→ β.yx. Here, each term has a
unique type because of the type annotations. Systems in Curry-style just use
untyped λ-terms, hence abstractions are not annotated by types, for example
λxy.yx. Terms in such a system can have multiple types, for example λxy.yx
can be typed with α → (α → β)→ β and α→ (α→ γ → γ)→ γ → γ. In this
thesis we study systems à la Church.

Convention 2.3.2. Although we study systems à la Church, we omit type an-
notations when they are obvious or just irrelevant.

Definition 2.3.3. The terms of λ→ are inductively defined over an infinite set
of variables (x, y, . . .) as follows.

t, r, s ::= x | λx : ρ.t | ts

Definition 2.3.4. A λ→-typing judgment Γ ` t : ρ denotes that a term t has
type ρ in an environment Γ. The derivation rules for such judgments are shown
in Figure 2.4.

As the preceding definition indicates, type derivations of λ→ have a lot in
common with derivations in minimal logic. The Curry-Howard correspondence
establishes a correspondence between terms and proofs and between types and
logical formulas. Implication introduction corresponds to a λ-abstraction and
implication elimination corresponds to an application.

19 CHAPTER 2. BACKGROUND

x : ρ ∈ Γ
Γ ` x : ρ
(a) var

Γ, x : ρ ` t : δ
Γ ` λx : ρ.t : ρ→ δ

(b) lambda

Γ ` t : ρ→ δ Γ ` s : ρ
Γ ` ts : δ
(c) app

Figure 2.4: The typing rules of λ→.

Theorem 2.3.5. We have Γ ` A in minimal first-order logic iff Γ ` t : A for
some term t in λ→.

The simply typed λ-calculus has some convenient properties, we will describe
some of these properties now.

Lemma 2.3.6. (Thinning) If Γ ` t : ρ and ∆ ⊇ Γ, then ∆ ` t : ρ

Proof. By induction on the derivation Γ ` t : ρ.

Lemma 2.3.7. Typing in λ→ is preserved under substitution. That is, if
Γ, x : δ,∆ ` t : ρ and Γ ` r : δ, then Γ,∆ ` t[x := r] : ρ.

Proof. By induction on the derivation Γ, x : δ,∆ ` t : ρ. The only interesting
case is Γ, x : δ,∆ ` y : ρ. Here we distinguish the cases y 6= x and y = x. The
former case holds by assumption because y[x := r] ≡ y. In the latter case we
also have ρ = δ, so it remains to prove that Γ,∆ ` x[x := r] : δ. But we have
Γ ` r : δ by assumption, so by Lemma 2.3.6 we are done.

Lemma 2.3.8. (Subject reduction) If Γ ` t : ρ and t→ t′, then Γ ` t′ : ρ.

Proof. This result follows from the following derivation.

Γ, x : δ ` t : ρ
Γ ` λx.t : δ → ρ Γ ` r : δ

Γ ` (λx.t)r : ρ
→β Γ ` t[x := r] : ρ

Here we have Γ ` t[x := r] : ρ by Lemma 2.3.7.

As the previous proof indicates, a β-redex corresponds to a detour in logic
and β-reduction corresponds to detour elimination.

Theorem 2.3.9. λ→ is confluent. That is, if t1 � t2 and t1 � t3, then there
exists a term t4 such that t2 � t4 and t3 � t4.

Proof. This result follows immediately from confluence of the untyped λ-calculus
(Theorem 2.2.5) and subject reduction of λ→ (Lemma 2.3.8).

Lemma 2.3.10. λ→ is strongly normalizing. That is, given a term t such that
Γ ` t : ρ for some type ρ, then each reduction path yields a normal form.

Proof. Proven in [GTL89, Geu08, for example].

20 CHAPTER 2. BACKGROUND

Contrary to the untyped λ-calculus (Theorem 2.2.6), it is decidable whether
two well-typed λ→-terms are β-equivalent. This is done by reducing both terms
to a normal form, which will terminate because λ→ is strongly normalizing
(Lemma 2.3.10). Moreover, we know that that each term has a unique normal
form because λ→ is confluent (Lemma 2.3.8). Hence it is sufficient to test
whether those normal forms are α-equivalent.

In λ→, it is possible to encode most well-known data types (integers, lists,
trees, etc.). For example, we can encode the natural numbers as the first-order
Church numerals.

Definition 2.3.11. The type Nρ of the first-order Church numerals over a type
ρ is defined as follows.

Nρ := (ρ→ ρ)→ ρ→ ρ

A natural number n is encoded by a λ-term as follows.

cn,ρ := λf : ρ→ ρ.λx : ρ . fnx

Fact 2.3.12. The Church numerals are well-typed. That is, Γ ` cn,ρ : Nρ.

An important property of the Church numerals in λ→ is that closed normal
forms of type Nα are of the shape cn,α for some n ∈ N. Hence there is a one-to-
one correspondence between natural numbers and closed normal forms of type
Nα. In order to prove this result we state the following auxiliary lemma.

Lemma 2.3.13. Given a term t that is in normal and moreover such that
f : α→ α, x : α ` t : ρ, then:

1. If ρ = α, then t ≡ fnx for some n ∈ N.

2. If ρ = γ → δ, then t ≡ λy.r for a variable y and term r or t ≡ f provided
that γ = δ = α.

Proof. By induction on the derivation ∆ ` t : ρ.

(var) Let Γ ` y : ρ. Now y ≡ f or y ≡ x by assumption, so we are done.

(λ) Let Γ ` λy.r : γ → δ. Now we are immediately done.

(app) Let Γ ` rs : ρ with Γ ` r : δ → ρ and Γ ` s : δ. Now, by the induction
hypothesis, we have either r ≡ λx.r′ or r ≡ f provided that ρ = δ = α.
In the first case we are done, because rs should be in normal form. In
the latter case we also have s ≡ fnx for some n ∈ N by the induction
hypothesis, hence rs ≡ fn+1x.

Corollary 2.3.14. Given a closed term t that is in normal form and such that
` t : Nα, then t ≡ cn,α for some n ∈ N.

Proof. This result follows immediately from Lemma 2.3.13.

Now we can define the basic operations, like the successor function, addition
and multiplication functions as follows.

Sρ := λn : Nρ.λf : ρ→ ρ.λx : ρ . f(nfx)
plusρ := λn : Nρ.λm : Nρ.λf : ρ→ ρ.λx : ρ . nf(mfx)x

timesρ := λn : Nρ.λm : Nρ.λf : ρ→ ρ . n(mf)

21 CHAPTER 2. BACKGROUND

It is not too hard to extend this method of encoding to more interesting
data types. For example, lists with elements of type δ can be encoded by the
type (δ → ρ → ρ) → ρ → ρ and then a list [r1, . . . rn] is encoded by the
term λf : δ → ρ→ ρ.λx : ρ . f r1 (f r2 . . . (f rn x)). Moreover, binary trees with
labels of type δ can be encoded by the type (δ → ρ→ ρ→ ρ)→ ρ→ ρ, etc. Un-
fortunately, the class of definable functions on these data types is quite limited
since one has to fix a type ρ for each encoding. For example, the predecessor
on Church numerals cannot be defined. More specifically, the λ→ definable
functions are exactly the extended polynomials [SU06, Geu08].

2.4 Second-order propositional logic

In first-order propositional logic it is merely possible to say something about a
single formula instead of saying something about many formulas. Second-order
logic has the ability to quantify over propositions and is therefore able to say
something about many formulas.

Definition 2.4.1. Second-order proposition formulas are built from an infinite
set of atoms (X,Y, . . .), an implication arrow (→) and a universal quantifier
over propositions (∀).

A,B ::= X | A→ B | ∀X.A

We adopt the usual notion of capture avoiding substitution A[X := B] for
second-order formulas.

Definition 2.4.2. A judgment Γ ` A is derivable in second-order propositional
logic if it can be derived by the natural deduction rules shown in Figure 2.5.

A ∈ Γ
Γ ` A

(a) axiom

Γ, A ` B
Γ ` A→ B

(b) →i

Γ ` A→ B Γ ` A
Γ ` B
(c) →e

Γ ` A X /∈ FV(Γ)
Γ ` ∀X.A

(d) ∀i

Γ ` ∀X.A
Γ ` A[X := B]

(e) ∀e

Figure 2.5: Natural deduction for second-order propositional logic.

For first-order propositional logic we made a distinction between minimal
and intuitionistic logic. However, this distinction vanishes in second-order logic
because the connective false can be defined as ⊥ := ∀P.P and Ex Falso Quodli-
bet then follows from ∀-elimination.

Definition 2.4.3. A judgment holds in second-order classical logic if it can be
derived by minimal second-order natural deduction and Peirce’s law.

Similarly, the distinction between minimal classical second-order and clas-
sical second-order logic vanishes because Peirce’s law and double negation are
logically equivalent in second-order logic.

22 CHAPTER 2. BACKGROUND

Lemma 2.4.4. Peirce’s law ∀XY.((X → Y) → X) → X and double negation
∀X.¬¬X → X are logically equivalent.

Proof. Let us assume that Peirce’s law holds.

∀XY.((X → Y)→ X)→ X

(¬X → X)→ X

[¬¬X] [¬X]
⊥
X

¬X → X

X
∀X.¬¬X → X

Conversely, let us assume that double negation holds.

∀X.¬¬X → X
¬¬X → X

[¬X]
[(X → Y)→ X]

[¬X] [X]
⊥
Y

X → Y

X

⊥
¬¬X

X
∀XY.((X → Y)→ X)→ X

2.5 The second-order typed λ-calculus

In this section we discuss the second-order typed λ-calculus (henceforth λ2),
which is also known as System F. The λ2-calculus is basically an extension
of the λ→-calculus obtained by adding abstraction over types, which turns out
to be very powerful. Abstraction over types also extends the Curry-Howard
correspondence to second-order propositional logic.

As we have shown in Section 2.3, we can encode all well-known data types
(integers, lists, trees, etc.) in λ→. Unfortunately, for each encoding we had to
fix a type ρ and as a result the λ→ definable functions are exactly the extended
polynomials. In λ2, we are however able to abstract over this type ρ and are
able to encode all primitive recursive functions [BB85].

Definition 2.5.1. Second-order types are built from an infinite set of type
variables (α, β, . . .), an implication arrow (→) and a universal quantifier over
types (∀).

ρ, δ ::= α | ρ→ δ | ∀α.ρ

Definition 2.5.2. The terms of λ2 are inductively defined over an infinite set
of variables (x, y, . . .) as follows.

t, r, s ::= x | λx : ρ.t | ts | λα.t | tρ

23 CHAPTER 2. BACKGROUND

As usual, we let FV(t) and FTV(t) denote the set of free variables, and
free type variables of a term t, respectively. Moreover, the operation of capture
avoiding substitution t[x := r] of r for x in t and capture avoiding substitution
t[α := ρ] of ρ for α in t generalize to λ2-terms in the obvious way.

Definition 2.5.3. A λ2-typing judgment Γ ` t : ρ denotes that a term t has
type ρ in an environment Γ. The derivation rules for such judgments are shown
in Figure 2.6.

x : ρ ∈ Γ
Γ ` x : ρ
(a) var

Γ, x : ρ ` t : δ
Γ ` λx : ρ.t : ρ→ δ

(b) lambda

Γ ` t : ρ→ δ Γ ` s : ρ
Γ ` ts : δ
(c) app

Γ ` t : ρ
α /∈ FTV(Γ)

Γ ` λα.t : ∀α.ρ
(d) ∀i

Γ ` t : ∀α.ρ
Γ ` tδ : ρ[α := δ]

(e) ∀e

Figure 2.6: The typing rules of λ2.

Now we can extend the Curry-Howard correspondence to second-order logic:
∀-introduction corresponds to a λ-abstraction over types and ∀-elimination cor-
responds to an application of a term to a type.

Theorem 2.5.4. We have Γ ` A in minimal second-order logic iff Γ ` t : A
for some term t in λ2.

In Section 2.3, we did not explicitly define the notion of β-reduction for
λ→-terms. However, in λ2 we have two kinds of lambdas, one to abstract
over terms and one to abstract over types. Therefore we define the notion of
β-reduction for λ2-terms explicitly.

Definition 2.5.5. Reduction t → t′ on λ2-terms is defined as the compatible
closure of the following rules.

(λx : ρ.t)r →β t[x := r]
(λα.t)ρ →β∀ t[α := ρ]

As usual, � denotes the reflexive/transitive closure and = denotes the reflex-
ive/symmetric/transitive closure.

Just like the λ→-calculus, the λ2-calculus is confluent, satisfies subject re-
duction and is strongly normalizing [Bar92, SU06, Geu08].

In the preceding section, we have defined the natural numbers as first-order
Church numerals over a fixed type ρ as (ρ→ ρ)→ ρ→ ρ. However, abstraction
over types allows us to do this polymorphically in λ2.

Definition 2.5.6. The type N of the second-order Church numerals is defined
as follows.

N := ∀α.(α→ α)→ α→ α

A natural number n is encoded by a λ2-term cn as follows.

cn := λαλf : α→ α.λx : α . fnx

24 CHAPTER 2. BACKGROUND

Fact 2.5.7. The Church numerals are well-typed. That is, Γ ` cn : N.

In the same way as we have proven for λ→ we can prove that there is a
one-to-one correspondence between natural numbers and closed normals forms
of type N in λ2.

Lemma 2.5.8. Given a closed term t that is in normal form and such that
` t : N, then t ≡ cn for some n ∈ N.

Proof. Similarly to the proof of Corollary 2.3.14.

Now we define the basic operations, like the successor function, addition and
multiplication functions as follows.

S := λn : N.λαλf : α→ α.λx : α . f(nαfx)
plus := λn : N.λm : N.λα.λf : α→ α.λx : α . nαf(mαfx)x

times := λn : N.λm : N.λα.λf : α→ α . nα(mαf)

In order to show that λ2 has more expressive power than λ→, we will encode
primitive recursion on Church-numerals. Fortunately, primitive recursion can
be encoded in terms of iteration and products. As one could see, the Church
numerals basically include iteration, so we get that for free. That leaves us to
encode products.

Definition 2.5.9. The product type ρ1 × ρ2 is defined as follows.

ρ1 × ρ2 := ∀α.(ρ1 → ρ2 → α)→ α

The pair 〈t1, t2〉 of the λ2-terms t1 : ρ1 and t2 : ρ1, and the projections πir of
a product r : ρ1 × ρ2, are defined as follows.

〈t1, t2〉 := λα.λf : ρ1 → ρ2 → α . f t1 t2

πir := r ρi (λx1 : ρ1.λx2 : ρ2 . xi)

Fact 2.5.10. Pairs and projections are well-typed. That is:

1. Given terms t1 : ρ1 and t2 : ρ2, then 〈t1, t2〉 : ρ1 × ρ2.

2. Given a term r : ρ1 × ρ2, then πir : ρi.

Lemma 2.5.11. Projections are defined correctly. That is, πi〈t1, t2〉� ti.

Proof. Let t1 : ρ1 and t2 : ρ1. Now:

πi〈t1, t2〉 ≡ (λα.λf : ρ1 → ρ2 → α.f t1 t2) ρi (λx1 : ρ1.λx2 . xi)
� (λx1x2.xi) t1 t2
� ti

Now we define primitive recursion in the ordinary way.

Definition 2.5.12. Given terms r : ρ, s : N→ ρ→ ρ and t : N, then primitive
recursion nrecρ r s t is defined as follows.

nrecρ r s t := π1(t (ρ× N) (λh.〈s (π2h) (π1h),S(π2h)〉) 〈r, c0〉)

25 CHAPTER 2. BACKGROUND

Fact 2.5.13. Primitive recursion is well-typed. That is, given terms t : N, r : ρ
and s : N→ ρ→ ρ, then nrecρ r s t : ρ.

Lemma 2.5.14. Primitive recursion is defined correctly. That is, given terms
r : ρ and s : N→ ρ→ ρ, then:

nrecρ r s c0 = r

nrecρ r s cn+1 = s cn (nrecρ r s cn)

Proof. In order to prove this result we have to generalize it slightly. Given terms
r : ρ, s : N→ ρ→ ρ and t : N, define:

nrecρ r s t := t (ρ× N) f ′ x′

where f ′ := (λh.〈s (π2h) (π1h),S(π2h)〉) and x′ := 〈r, c0〉. Now we also prove:

nrecρ r s cn = 〈nrecρ r s cn, cn〉

We proceed by induction on n.

1. Suppose that n = 0. Now we have the following.

nrecρ r s c0 ≡ (λαλfλx.x) (ρ× N) f ′ x′

� x′

≡ 〈r, c0〉

So we also have nrecρ r s c0 = r.

2. Suppose that n > 0. By the induction hypothesis:

〈nrecρ r s cn, cn〉 = nrecρ r s cn

≡ (λαλfλx.fnx) f ′ x′

� f ′nx′

Now we have the following.

nrecρ r s cn+1 ≡ (λαλfλx.fn+1x) (ρ× N) f ′ x′

� (λh.〈s (π1h) (π2h),S(π2h)〉) (f ′nx′)
→ 〈s (π1(f ′nx′)) (π2(f ′nx′)),S(π2(f ′nx′))〉)
= 〈s cn (nrecρ r s cn),Scn〉

So we also have nrecρ r s cn+1 = s cn (nrecρ r s cn).

By primitive recursion we can define functions that were impossible to define
in λ→. For example, the predecessor: pred := λz.nrec 0 (λxy.x) z.

We can again extend this method of encoding to more interesting data
types. For example, lists with elements of type δ can be encoded by the
type ∀α.(δ → α → α) → α → α, binary trees with labels of type δ by
∀α.(δ → α→ α→ α)→ α→ α, etc. For an extensive discussion of these en-
codings we refer to [BB85].

Chapter 3

Classical logic and control
operators

In this chapter we will investigate various extensions of the λ-calculus that
support control mechanisms. In Section 3.1 we discuss Felleisen [FF86] and
Griffin’s [Gri90] pioneering work in this field. The former was the first to define
an extension of the λ-calculus with control, while the latter was the first to
find out that typed λ-calculi with control operators extend the Curry-Howard
isomorphism to classical logic.

Unfortunately, Felleisen’s calculus is “not pure”. That is, some rules are only
allowed to be applied at the top-level rather than at arbitrary places. Because
of this defect it is very hard to reason equationally about programs in their
calculus. In order to repair this issue Felleisen and Hieb introduced the revised
theory of control [FH92], but this theory still suffers from various weaknesses
[AH08]. Therefore we will look at two alternatives: the λ∆-calculus by Rehof
and Sørensen [RS94] in Section 3.2 and the λµ-calculus by Parigot [Par92] in
Section 3.3.

Finally, in Section 3.5 we will discuss CPS-translations, a way to simulate
control in a system without it.

3.1 The λC-calculus

In this section we present the λC-calculus by Felleisen et al. [FF86, FFKD87]
and the corresponding typing rules by Griffin [Gri90]. Before we present the
typed λC-calculus, we present its untyped version, which basically extends the
λv-calculus with unary operators C and A.

Definition 3.1.1. Untyped λC-terms are inductively defined over an infinite
set of variables (x, y, . . .) as follows.

t, r, s ::= x | λx.t | ts | Ct | At

The control operators A and C abort the current evaluation context and
resume in an empty evaluation context. Whereas the operator A discards the

27 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

current context, the operator C stores it for invocation at a later time. This
behavior is best described by the following evaluation strategy.

Definition 3.1.2. Call-by-value evaluation t � t′ on terms t and t′ is defined
as the union of the following rules.

E[(λx.t)v] �βv E[t[x := v]]
E[At] �A t

E[Ct] �C t(λx.AE[x])

Here, E is a call-by-value evaluation context (Definition 2.2.13).

Again we have to verify that we have indeed specified a deterministic eval-
uation strategy.

Lemma 3.1.3. Each closed λ-term is either a value or can be written uniquely
as E[(λx.t)v], E[At] or E[Ct] where E is a call-by-value evaluation context.

Whenever the �C -rule is applied, it stores the current evaluation context
E as λx.AE[x]. At a later moment the program is able to invoke the term
λx.AE[x] and thereby jump back to the evaluation context E. It is essential
that the operator A is present, because on invocation of λx.AE[x], it makes
sure that the current context is discarded and that the program jumps back to
the required evaluation context.

Using these control operators we can mimic the control operators catch and
throw in the λC-calculus as follows.

catch k t := C(λk.kt)
throw k t := kt

Let us consider the term E[catch k t]. This term evaluates as follows.

E[catch k t] � (λk.kt)(λx.AE[x])
� (λx.AE[x])(t[k := λx.AE[x]])
�AE[t[k := λx.AE[x]]]
� E[t[k := λx.AE[x]]]

Now, the term λx.AE[x] is substituted for all occurrences of the variable k in t.
Hence each subterm throw k s becomes (λx.AE[x])s. Let us see what happens
when such a subterm is evaluated.

F [(λx.AE[x])s] � F [AE[s]]
� E[s]

As shown, the evaluation context F is discarded and the program resumes in
the context E, which is the context that we have stored during evaluation of
the corresponding catch. Hence, this simulation mimics the behavior of catch
and throw as we have described in Section 1.1.

It is interesting to remark that the control operator A is superfluous since
it can be simulated by C.

28 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

Lemma 3.1.4. The control operator A can be simulated by C as follows.

At := C(λk.t) provided that k /∈ FV(t)

Proof. E[At] ≡ E[C(λk.t)] � (λk.t) (λx.AE[x]) � t.

For a long time people thought that the Curry-Howard correspondence was
limited to minimal logic. But in 1990 Griffin [Gri90] discovered that the Curry-
Howard correspondence can be extended to classical logic by incorporation of
control operators. First we extend simple types with a basic type ⊥ and present
λC-terms in Church style.

Definition 3.1.5. Intuitionistic types are built from an infinite set of type
variables (α, β, . . .), a basic type (⊥) and an implication arrow (→).

ρ, δ ::= ⊥ | α | ρ→ δ

Definition 3.1.6. The terms of λC→ are inductively defined over an infinite
set of variables (x, y, . . .) as follows.

t, r, s ::= x | λx : ρ.t | ts | Cρt | Aρt

Here, ρ ranges over intuitionistic types.

Definition 3.1.7. A λC→-typing judgment Γ ` t : ρ denotes that a term t has
type ρ in an environment Γ. The derivation rules for such judgments are shown
in Figure 3.1.

x : ρ ∈ Γ
Γ ` x : ρ
(a) var

Γ, x : ρ ` t : δ
Γ ` λx : ρ.t : ρ→ δ

(b) lambda

Γ ` t : ρ→ δ Γ ` s : ρ
Γ ` ts : δ
(c) app

Γ ` t : ⊥
Γ ` Aρt : ρ

(d) abort

Γ ` t : ¬¬ρ
Γ ` Cρt : ρ
(e) control

Figure 3.1: The typing rules of λC→.

Definition 3.1.8. A λA→-typing judgment Γ ` t : ρ denotes that a term t has
type ρ in an environment Γ. The derivation rules for such judgments are shown
in Figure 3.1 (a-d).

Lemma 3.1.9. The simulation of the operator A by C is well-typed.

Proof. Let t : ⊥, now we have Cρ(λk : ¬ρ.t) : ρ as shown below.

t : ⊥
λk : ¬ρ.t : ¬¬ρ
Cρ(λk : ¬ρ.t) : ρ

29 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

Now we can extend the Curry-Howard correspondence to classical logic: the
abort rule corresponds to Ex Falso Quodlibet and the control rule corresponds
to double negation.

Theorem 3.1.10. We have Γ ` A in classical logic (respectively intuitionistic
logic) iff Γ ` t : A for some term t in λC→ (respectively λA→).

Unfortunately, the simulation of catch and throw, which we have described
previously, is not well-typed. If we consider throw k t : ρ with t : δ, then
throw k t should be a type cast from δ to ρ. However, δ has to be equal to ⊥
because k : ¬δ. Luckily, this problem can easily be repaired.

throw k t := A(kt)

By addition of the control operator A we have turned the throw into an actual
type cast from δ to ρ, so it remains to check that it still mimics the behavior of
throw. Let us consider the term F [throw k s] with λx.AE[x] substituted for k.
This term evaluates as follows.

F [A((λx.AE[x])s)] � (λx.AE[x])s
�AE[s]
� E[s]

Now that we have shown that this system is capable of simulating catch and
throw we will take a look at some meta theoretical properties. First we will
consider subject reduction, so let us see what happens if we try to prove that
the �A-rule preserves typing.

t : ⊥
Aρt : ρ

E[Aρt] : δ
�A t : ⊥

Here, E[Aρt] is supposed to have type ⊥. However, closed terms of type ⊥ do
not exist by Theorem 3.1.10 and consistency of classical logic [SU06]. In order to
repair this issue, Griffin altered the evaluation rules [Gri90]. In his system each
term is surrounded by C(λk.k) and evaluation is only allowed within C(λk.).
The evaluation rules are as follows.

Definition 3.1.11. Evaluation à la Griffin t � t′ on terms t and t′ is defined
as the union of the following rules.

C(λk.E[(λx.t)v]) �tβv C(λk.E[t[x := v]])
C(λk.E[At]) �tA C(λk.t)
C(λk.E[Ct]) �tC C(λk.tλx.AE[x])
C(λk.kv) �Ce v provided k /∈ FV(v)

Lemma 3.1.12. λC→ à la Griffin satisfies subject reduction.

Proof. First we have to prove a similar substitution lemma as we have proven
for λ→ (Lemma 2.3.7). Then we have to prove that all evaluation rules preserve
typing. We treat some interesting evaluation rules.

30 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

1. The �tC-rule:

t : ¬¬ρ
Ct : ρ

E[Ct] : ⊥
λk.E[Ct] : ¬¬δ
C(λk.E[Ct]) : δ

�tC t : ¬¬ρ

x : ρ

E[x] : ⊥
AE[x] : ⊥

λx.AE[x] : ¬ρ
tλx.AE[x] : ⊥

λk.tλx.AE[x] : ¬¬δ
C(λk.tλx.AE[x]) : δ

2. The �Ce-rule:
k : ¬ρ v : ρ

kv : ⊥
λk.kv : ¬¬ρ
C(λk.kv) : ρ

�Ce v : ρ

Lemma 3.1.13. λC→ à la Griffin is strongly normalizing.

Proof. Proven in [Gri90].

The λC-calculus, as presented here, is not a well-suited framework for rea-
soning about programs, because if we have r1 �∗ r2 we do not necessarily
have E[r1] �∗ E[r2]. For example, let E 6= 2, now we have (AI) � I and
E[AI] �AI6�∗ E[I]. So, if we prove some property of a program r, that property
does not necessarily hold if we “plug” r into another program.

Various people tried to solve this problem problem by specifying a reduction
theory instead of an evaluation strategy. Unfortunately, none of the known
reduction theories is able to express the semantics in way that is adequate with
respect to the �C-rule [AH08]. The original reduction rules by Felleisen et al.
[FFKD87] are as follows.

(λx.t)r →βv
t[x := r]

(Ct)s →CL C(λk.tλx.A(k(xt)))
v(Ct) →CR C(λk.tλx.A(k(vx)))
Ct �CT t(λx.Ax)

The reduction rules→CL and→CR basically lift an occurrence of the C-operator
step by step to the top-level. Once it has reached the top-level, the �CT -rule
aborts the current continuation [AH08]. However, these rules are not satisfac-
tory, because the �CT -rule may only be applied at the top-level and moreover
does not preserve typing. Felleisen and Hieb introduced the revised theory of
control so as to repair these problems [FH92]. They tried to mimic the behavior
of �CT by the reduction rules →Ct and →Ci.

(λx.t)r →βv t[x := r]
(Ct)s →CL C(λk.tλx.A(k(xt)))
v(Ct) →CR C(λk.tλx.A(k(vx)))
Ct →Ct C(λk.tλx.A(kx))

C(λk.Ct) →Ci C(λk.tλx.Ax)

31 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

Unfortunately, their theory gives rise to other problems. Firstly, we can never
reduce a term of the shape Ct to a value, simply because there is no rule that
allows to get rid of a C-operator at the top-level. Secondly, the →Ct-rule can be
applied infinitely many times, so this theory is (even in a simply-typed system)
not strongly normalizing. For an extensive discussion of the problems related
to this system we refer to [AH08].

3.2 The λ∆-calculus

In this section we will discuss the λ∆-calculus by Rehof and Sørensen [RS94].
The λ∆-calculus extends ordinary λ-terms with a binder ∆, which is typed by
Reduction Ad Absurdum (RAA). Contrary to the λC-calculus, which we have
discussed in the preceding chapter, this system is call-by-name and satisfies the
main meta theoretical properties.

Definition 3.2.1. The terms of λ∆ are inductively defined over an infinite set
of variables (x, y, . . .) as follows.

t, r, s ::= x | λx : ρ.t | ts | ∆x : ρ.t

Here, ρ ranges over intuitionistic types (Definition 3.1.5).

Definition 3.2.2. A λ∆-typing judgment Γ ` t : ρ denotes that a term t has
type ρ in an environment Γ. The derivation rules for such judgments are shown
in Figure 3.2.

x : ρ ∈ Γ
Γ ` x : ρ
(a) var

Γ, x : ρ ` t : δ
Γ ` λx : ρ.t : ρ→ δ

(b) lambda

Γ ` t : ρ→ δ Γ ` s : ρ
Γ ` ts : δ
(c) app

Γ, x : ρ→ ⊥ ` t : ⊥
Γ ` ∆x : ρ→ ⊥.t : ρ

(d) delta

Figure 3.2: The typing rules of λ∆.

Theorem 3.2.3. Γ ` A in classical logic iff Γ ` t : A for some term t in λ∆.

Proof. Reduction Ad Absurdum is provable in classical logic.

Γ,¬A ` ⊥
Γ ` ¬¬A

Γ ` A
For the reverse implication, we prove that double negation is inhabited in λ∆.
That is, for each term t of type ¬¬ρ we can construct a term of type ρ.

Γ, x : ¬ρ ` t : ¬¬ρ Γ, x : ¬ρ ` x : ¬ρ
Γ, x : ¬ρ ` t : ⊥
Γ ` ∆x.tx : ρ

32 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

Definition 3.2.4. Reduction t → t′ on λ∆-terms t and t′ is defined as the
compatible closure of the following rules.

(λx.t)r →β t[x := r]
(∆x.t)s →∆R ∆x.t[x := λk.x(ks)]

∆x.xt →∆η t provided x /∈ FV(t)
∆x.x∆y.t →∆i ∆x.t[y := x]

As usual, � denotes the reflexive/transitive closure and = denotes the reflex-
ive/symmetric/transitive closure.

Before we discuss the computation contents of λ∆, we introduce the following
notation.

Notation 3.2.5. ∇t := ∆y.t provided that y /∈ FV(t).

One should think of ∆x.yt as a combined catch and throw clause: it catches
“exceptions” named x in t and finally throws the result of t to y. Hence, we can
mimic catch and throw as follows.

Definition 3.2.6. The terms catch k t and throw k t are defined as follows.

catch k t := ∆k.kt
throw k t := ∇(kt)

Lemma 3.2.7. We have the following reductions for catch and throw.

1. (throw k t) ~r � throw k t

2. catch k (throw k t) � catch k t

3. catch k t � t provided that k /∈ FV(t)

Proof. These reductions follow directly from the reduction rules of λ∆, except
for the first one, where an induction on the length of ~r is needed.

Note that we do not always have the reduction catch k (throw k t) � t,
because t might also contain another throw to k.

Keeping the preceding simulation of catch and throw in mind, it should be
clear that λ∆ is call-by-name. If we consider the term f (throw k t), the throw
has to propagate all the way through f . Also, if f does not use its argument,
the throw will simply be ignored.

Just like the λ→-calculus, the λ∆-calculus satisfies the main meta theoretical
properties. We state the most important properties now.

Lemma 3.2.8. λ∆ is confluent.

Proof. This is proven in [RS94].

Lemma 3.2.9. λ∆ satisfies subject reduction.

Proof. First we have to prove a similar substitution lemma as we have proven
for λ→ (Lemma 2.3.7). Then we have to prove that all reduction rules preserve
typing. We treat some interesting reduction rules.

33 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

1. The →∆R-rule:

t : ⊥
∆x.t : ρ→ δ s : ρ

(∆x.t)s : δ
→∆R

t[x := λk.x(ks)] : ⊥
∆x.t[x := λk.x(ks)] : δ

Here we have t[x := λk.x(ks)] : ⊥ by the substitution lemma and the
following derivation.

x : ¬δ
k : ρ→ δ s : ρ

ks : δ
x(ks) : ⊥

λk.x(ks) : ¬(ρ→ δ)

2. The →∆η-rule:

x : ¬ρ t : ρ
xt : ⊥

∆x.xt : ρ
→∆η t : ρ

3. The →∆i-rule:

x : ¬ρ
t : ⊥

∆y.t : ρ
x∆y.t : ⊥

∆x.x∆y.t : ρ

→∆i
t[y := x] : ⊥

∆x.t[y := x] : ρ

Here we have t[y := x] : ⊥ by the substitution lemma.

Lemma 3.2.10. λ∆ is strongly normalizing.

Proof. This is proven in [RS94].

In this section we have described the λ∆-calculus. This system is presented
by a reduction theory and satisfies the main meta theoretical properties. Also,
it seems like it is able to simulate the operators catch and throw. However,
Hugo Herbelin (private communication) observed some problems.

Firstly, the system is unable to get rid of consecutive ∆-abstractions, e.g.
in ∆x.∆y.t. This is particularly troublesome if we add other data types to the
system. For example, let us consider λ∆ extended with a type N for natural
numbers. In this system it would be satisfactory if closed normal forms of type
N are of the shape n, where n is the numeral representing some n ∈ N (à la
Corollary 2.3.14 for λ→). However, this property fails for the term ∆x.∆y.x 0.
Let us take a look at this term’s type derivation.

x : N→ ⊥ 0 : N
x 0 : ⊥

∆y : ⊥ → ⊥ . x 0 : ⊥
∆x : N→ ⊥.∆y : ⊥ → ⊥ . x 0 : N

34 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

From a logical point of view we observe that Reduction Ad Absurdum is applied
twice. Of course, that has little use since it introduces an assumption ⊥ → ⊥.
Hence it would be desirable to avoid such derivations.

Secondly, let us consider throw k (throw l s) ≡ ∆x.k∆y.ls. One would
expect that this term reduces to (throw l s). However, because λ∆ does
not distinguish ordinary variables from continuation variables, there is no way
to determine whether k is a continuation variable for which the reduction
∆x.k∆y.t→ ∆x.t[y := k] should be allowed or k is an ordinary variable for
which reduction should be disallowed.

3.3 The λµ-calculus

In this section we present the λµ-calculus by Parigot [Par92]. This system is
quite similar to λ∆, however, it distinguishes ordinary variables from continua-
tion variables and the terms are of a more restricted shape.

Definition 3.3.1. The terms and commands of λµ are mutually inductively
defined over an infinite set of λ-variables (x, y, . . .) and µ-variables (α, β, . . .) as
follows.

t, r, s ::= x | λx : ρ.r | ts | µα : ρ.c
c, d ::= [α]t

Here, ρ ranges over simple types (Definition 2.3.1).

Remark 3.3.2. The binding power of [α]t is weaker than sr, so instead of
[α](sr), we just write [α]sr.

As usual, we let FV(t) and FCV(t) denote the set of free λ-variables and
µ-variables of a term t, respectively. Moreover, t[x := r] denotes substitution of
r for x in t, which is capture avoiding for both λ- and µ-variables.

Definition 3.3.3. A λµ-typing judgment Γ; ∆ ` t : ρ denotes that a term t has
type ρ in an environment of λ-variables Γ and an environment of µ-variables
∆. A typing judgment Γ; ∆ ` c : |= denotes that a command c is typable in
an environment of λ-variables Γ and an environment of µ-variables ∆. The
derivation rules for such judgments are mutually recursively defined and shown
in Figure 3.3.

x : ρ ∈ Γ
Γ; ∆ ` x : ρ

(a) axiom

Γ, x : ρ; ∆ ` t : δ
Γ; ∆ ` λx : ρ.t : ρ→ δ

(b) lambda

Γ; ∆ ` t : ρ→ δ Γ; ∆ ` s : ρ
Γ; ∆ ` ts : δ

(c) app

Γ; ∆, α : ρ ` c : |=

Γ; ∆ ` µα : ρ.c : ρ
(d) activate

Γ; ∆ ` t : ρ α : ρ ∈ ∆
Γ; ∆ ` [α]t : |=

(e) passivate

Figure 3.3: The typing rules of λµ.

35 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

Since passivate and activate always have to be applied consecutively, it is
sometimes convenient to combine these rules into one rule.

Γ; ∆, α : ρ ` t : δ β : δ ∈ (∆, α : ρ)
Γ; ∆ ` µα : ρ.[β]t : ρ

We will use this rule for proofs of certain theorems in which we do not explicitly
consider commands.

The typing rules of the previously discussed type systems always had a
natural correspondence with some logic. That is, each typing rule corresponds
exactly to one logical derivation rule. Here, we have such correspondence with
a quite different logic, namely free deduction [Par92]. However, we will not
present that logic here. Instead, we discuss the relation between λµ and minimal
classical logic. One direction is easy.

Lemma 3.3.4. If we have Γ ` A in minimal classical logic, then Γ; ∅ ` t : A
for some term t in λµ.

Proof. Peirce’s law is typable in λµ. That is, for each t of type (ρ→ δ)→ ρ we
can construct a term of type ρ.

Γ, x : ρ; ∆, α : ρ, β : δ ` t : (ρ→ δ)→ ρ

Γ, x : ρ; ∆, α : ρ, β : δ ` x : ρ
Γ, x : ρ; ∆, α : ρ, β : δ ` [α]x : |=

Γ, x : ρ; ∆, α : ρ ` µβ.[α]x : δ
Γ; ∆, α : ρ ` λx.µβ.[α]x : ρ→ δ

Γ; ∆, α : ρ ` t(λx.µβ.[α]x) : ρ
Γ; ∆, α : ρ ` [α]t(λx.µβ.[α]x) : |=

Γ; ∆ ` µα.[α]t(λx.µβ.[α]x) : ρ

One should think of the proof term µα : ρ.[α]t(λx : ρ.µβ : δ.[α]x) as follows.
Our goal is ρ, which we label α. Since we have (ρ → δ) → ρ by assumption,
it suffices to prove ρ → δ. Therefore, let us assume ρ, which we label x. Now
our goal is δ, which we label β. However, instead of proving goal β we prove an
earlier goal, namely α, which simply follows from the assumption x.

The converse is a bit harder, because λµ has two environments and minimal
classical logic just one. Hence both environments should be mapped onto a
single environment. If we have Γ; ∆ ` t : ρ in λµ, then we certainly have
Γ,¬∆ ` ρ in classical logic, because activate corresponds with Reduction Ad
Absurdum and passivate with negation elimination. However, this does not
work for minimal classical logic, because negation cannot be expressed there.
So we should transform the environment ∆ in a more involved way.

Definition 3.3.5. Given a term t and a µ-variable β, then a set of simple types

36 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

tβ is defined as follows.

xβ := ∅
(λx.t)β := tβ

(ts)β := tβ ∪ sβ
(µα : ρ.[γ]t)β := tβ provided that β 6= γ

(µα : ρ.[β]t)β := {ρ} ∪ tβ

Moreover, given a term t and an environment of µ-variables Σ, then a set of
simple types tΣ is defined as follows.

tΣ := {σ → τ | τ ∈ tβ | β : σ ∈ Σ}

Lemma 3.3.6. If Γ; ∆ ` t : ρ in λµ, then Γ, t∆ ` ρ in minimal classical logic.

Proof. By induction on the derivation Γ; ∆ ` t : ρ. The only interesting case
is activate/passivate, so let Γ; ∆ ` µα.[γ]t : ρ with Γ; ∆, α : ρ ` t : δ and
γ : δ ∈ (∆, α : ρ). Now we have Γ, t(∆,α:ρ) ` δ by the induction hypothesis.
Furthermore:

t(∆,α:ρ) = t∆ ∪ {ρ→ τ | τ ∈ tα}
= t∆ ∪ {ρ→ τ1, . . . , ρ→ τn}

for some simple types τ1, . . . , τn. Now, by using Peirce’s law and→-introduction
n times, we have:

Γ, (µα.[γ]t)∆, ρ→ τ1, . . . , ρ→ τn ` ρ

Γ, (µα.[γ]t)∆, ρ→ τ1, . . . , ρ→ τn−1 ` (ρ→ τn)→ ρ

. . . ` . . .
Γ, (µα.[γ]t)∆, ρ→ τ1 ` ρ

Γ, (µα.[γ]t)∆ ` (ρ→ τ1)→ ρ

Γ, (µα.[γ]t)∆ ` ρ

We distinguish the cases α = γ and α 6= γ. In the former case we also have
δ = ρ and (µα.[γ]t)∆ = t∆, so we are done. In the latter case we have
(µα.[γ]t)∆ = t∆ ∪ {δ → ρ}, so by thinning and →-elimination we have:

. . . ` δ → ρ

Γ, t∆, ρ→ τ1, . . . , ρ→ τn ` δ

Γ, (µα.[γ]t)∆, ρ→ τ1, . . . , ρ→ τn ` δ

Γ, (µα.[γ]t)∆, ρ→ τ1, . . . , ρ→ τn ` ρ

Corollary 3.3.7. If Γ; ∅ ` t : ρ in λµ, then Γ ` ρ in minimal classical logic.

Proof. By Lemma 3.3.6 using the fact that t∅ = ∅.

In order to present the reduction rules we need to define an extra notion
of substitution: structural substitution. Performing structural substitution of a
µ-variable β and a call-by-name context (Definition 2.2.7) E for a µ-variable α
will recursively replace each command [α]t by [β]E[t′].

37 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

Definition 3.3.8. Structural substitution t[α := βE] of a µ-variable β and a
call-by-name context E for a µ-variable α is defined as follows.

x[α := βE] := x

(λx.r)[α := βE] := λx.r[α := βE]
(ts)[α := βE] := t[α := βE]s[α := βE]

(µα.c)[α := βE] := µα.c

(µγ.c)[α := βE] := µγ.c[α := βE] provided that γ 6= α

([α]t)[α := βE] := [β]E[t[α := βE]]
([γ]t)[α := βE] := [γ]t[α := βE] provided that γ 6= α

Structural substitution is capture avoiding for both λ- and µ-variables.

Example 3.3.9. Consider the following examples.

1. ([α]xµβ.[α]y)[α := γ (2s)] ≡ [γ](xµβ.[γ]ys)s

2. ([α]xµβ.[α]y)[α := β 2] ≡ [β]xµγ.[β]y

3. ([α]λx.µβ.[α]x)[α := γ (2x)] ≡ [γ](λz.µβ.[γ]zx)x

The last two examples illustrate that structural substitution is capture avoiding
for both λ- and µ-variables.

In this thesis we use a notion of structural substitution that is more general
than Parigot’s original presentation [Par92]. In Parigot’s original presentation
we have t[β := α], which renames each µ-variable β into α, and t[α := s], which
replaces each command [α]t by [α]t′s. Of course, Parigot’s notions are just in-
stances of our definition, namely, the former corresponds to t[β := α 2] and the
latter to t[α := α (2s)]. Although Parigot’s presentation suffices for definition
of the reduction rules, our presentation turns out to be more convenient for ex-
tensions of λµ (Section 4.2) and for proving properties like confluence (Section
4.3) and strong normalization (Section 4.4).

Definition 3.3.10. Reduction t → t′ on λµ-terms t and t′ is defined as the
compatible closure of the following rules.

(λx.t)r →β t[x := r]
(µα.c)s →µR µα.c[α := α (2s)]
µα.[α]t →µη t provided that α /∈ FCV(t)
[α]µβ.c →µi c[β := α 2]

We introduce a similar notation as for λ∆.

Notation 3.3.11. Θc := µγ : ρ.c provided that γ /∈ FCV(c).

From a computational point of view one should think of µα.[β]t in the same
way as of ∆x.yt. It behaves like a combined catch and throw clause: it catches
exceptions labeled α in t and finally throws the results of t to µβ.c.

38 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

Definition 3.3.12. The terms catch α t and throw β s are defined as follows.

catch α t := µα.[α]t
throw β s := Θ[β]s

Lemma 3.3.13. We have the following reductions for catch and throw.

1. E[throw α t] � throw α t

2. catch α (throw α t) � catch α t

3. catch α t � t provided that α /∈ FCV(t)

4. throw β (throw α s)→ throw α s

Proof. These reductions follow directly from the reduction rules of λµ, except
for the first one, where an induction on the structure of E is needed.

Just like the ordinary λ-calculus, the λµ-calculus satisfies the main meta
theoretical properties. We treat these properties now.

Lemma 3.3.14. λµ is confluent.

Parigot’s original proof sketch [Par92], which is based on the notion of paral-
lel reduction by Tait and Martin-Löf, is wrong (this was first noticed by Fujita in
[Fuj97]). As observed in [Fuj97, BHF01], the usual notion of parallel reduction
does not extend well to λµ: it only allows to prove weak confluence. But since
λµ is strongly normalizing (Lemma 3.3.17) we have confluence for well-typed
terms by Newman’s lemma. But confluence is a property that also holds for
untyped terms, so this result is not quite satisfactory. Confluence for untyped
λµ-terms can be proven by analogy to the proof in Section 4.3. For now, we
postpone a discussion of the niceties of this proof.

Lemma 3.3.15. Typing is preserved under structural substitution. That is, if:

1. Γ; ∆, α : δ ` t : ρ, and,

2. Γ′; ∆′ ` E[r] : γ for all environments Γ′ ⊇ Γ, ∆′ ⊇ ∆ and terms r such
that Γ′; ∆′ ` r : δ,

then Γ; ∆, β : γ ` t[α := βE] : ρ.

Proof. By induction on the derivation Γ; ∆, α : δ ` t : ρ. The only interesting
case is passivate, so let Γ; ∆, α : δ ` [α]t : |= with Γ; ∆, α : δ ` t : δ. Now we have
Γ; ∆, β : γ ` t[α := βE] : δ by the induction hypothesis. Thus by assumption
Γ; ∆, β : γ ` E[t[α := βE]] : γ, so Γ; ∆, β : γ ` [β]E[t[α := βE]] : |= .

Lemma 3.3.16. λµ satisfies subject reduction.

Proof. First we have to prove a similar substitution lemma as we have proven
for λ→ (Lemma 2.3.7). Then we have to prove that all reduction rules preserve
typing. We treat some interesting reduction rules.

39 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

1. The →µR-rule:

c : |=

µα.c : ρ→ δ s : ρ
(µα.c)s : δ

→µR
c[α := α (2s)] : |=

µα.c[α := α (2s)] : δ

It remains to prove that Γ; ∆, α : δ ` c[α := α (2s)] : |= . We proceed by
applying Lemma 3.3.15, so given contexts Γ′ ⊇ Γ, ∆′ ⊇ ∆ and a derivation
Γ′; ∆′ ` r : ρ→ δ then we have to prove that Γ′; ∆′ ` rs : δ. The required
result is shown below.

Γ′; ∆′ ` r : ρ→ δ

Γ; ∆ ` s : ρ
Γ′; ∆′ ` s : ρ

Γ′; ∆′ ` rs : δ

2. The →µη-rule:
t : ρ

[α]t : |=

µα.[α]t : ρ
→µη t : ρ

3. The →µi-rule:

c : |=

µβ.c : ρ
[α]µβ.c : |=

→µi c[β := α 2] : |=

Here we have c[β := α 2] : |= by Lemma 3.3.15.

Lemma 3.3.17. λµ is strongly normalizing.

Proof. This is proven in [Par97].

In Section 2.3 we have shown that various data types can be encoded in
the λ→-calculus. Because λ→ is a subsystem of λµ we can of course reuse
that methodology. Unfortunately, as noticed in [Par92], unique representation
of data types in λµ fails. For λ→-calculus, we had a one-to-one correspondence
between closed normal forms of type Nγ and natural numbers (Corollary 2.3.14).
But this property is not preserved as the following example illustrates.

λf : γ → γ.λx : γ.µα : γ . [α]f(Θ[α]x)

Also, in λ→, closed normal forms of type ρ→ δ were of the shape t ≡ λx.r, but
this result is not preserved either. For example, consider:

s ≡ µα : γ → γ . [α]λx : γ .Θ[α]λy : γ . y

Here, s computes just the identity. We see this by reducing its η-expansion.

λz.sz ≡ λz.(µα.[α]λx.Θ[α]λy.y)z
→ λz.µα.[α](λx.Θ[α](λy.y)z)z
� λz.µα.[α]Θ[α]z
� λz.µα.[α]z
� λz.z

This example moreover indicates that adding the η-rule1 to the λµ-calculus
1 λz.tz → t provided that z /∈ FV(t)

40 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

results in failure of the confluence property.

3.4 The second-order λµ-calculus

In this section we present the second-order λµ-calculus (henceforth λ2
µ) by

Parigot [Par92, Par97]. The λ2
µ-calculus is basically a combination of λµ and

λ2. Moreover, it extends the Curry-Howard correspondence to second-order
classical propositional logic.

Definition 3.4.1. The terms and commands of λ2
µ are mutually inductively

defined over an infinite set of λ-variables (x, y, . . .) and µ-variables (α, β, . . .) as
follows.

t, r, s ::= x | λx : ρ.r | ts | λγ.t | tρ | µα : ρ.c
c, d ::= [α]t

Here, ρ ranges over second-order types (Definition 2.5.1).

Remark 3.4.2. Note that we may the names α and β for both type variables and
µ-variables. However, it will always be clear whether we mean a type variable
or µ-variable.

As usual, we let FV(t), FCV(t) and FTV(t) denote the set of free λ-variables,
free µ-variables and free type variables of a term t, respectively. Moreover, the
operation of capture avoiding substitution t[x := r] of r for x in t and capture
avoiding substitution t[α := ρ] of ρ for α in t generalize to λ2

µ-terms in the
obvious way.

Definition 3.4.3. A λ2
µ-typing judgment Γ; ∆ ` t : ρ denotes that a term t has

type ρ in an environment of λ-variables Γ and an environment of µ-variables
∆. A typing judgment Γ; ∆ ` c : |= denotes that a command c is typable in
an environment of λ-variables Γ and an environment of µ-variables ∆. The
derivation rules for such judgments are mutually recursively defined and shown
in Figure 3.4.

x : ρ ∈ Γ
Γ; ∆ ` x : ρ

(a) axiom

Γ, x : ρ; ∆ ` t : δ
Γ; ∆ ` λx : ρ.t : ρ→ δ

(b) lambda

Γ; ∆ ` t : ρ→ δ Γ; ∆ ` s : ρ
Γ; ∆ ` ts : δ

(c) app

Γ; ∆ ` t : ρ
γ /∈ FTV(Γ)

Γ; ∆ ` λγ.t : ∀γ.ρ
(d) ∀i

Γ; ∆ ` t : ∀γ.ρ
Γ; ∆ ` tδ : ρ[γ := δ]

(e) ∀e

Γ; ∆, α : ρ ` c : |=

Γ; ∆ ` µα : ρ.c : ρ
(f) activate

Γ; ∆ ` t : ρ α : ρ ∈ ∆
Γ; ∆ ` [α]t : |=

(g) passivate

Figure 3.4: The typing rules of λ2
µ.

41 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

In order to extend the Curry-Howard correspondence to second-order classi-
cal logic we have to show that λ2

µ-judgments correspond to judgments in second-
order classical logic. As we have seen in the Section 3.3, a similar result for the
simply-typed λµ-calculus took quite some work. In a second-order system it be-
comes easier because we can define a connective false. So, if we have Γ; ∆ ` t : ρ
in λ2

µ, then we have Γ,¬∆ ` ρ in second-order classical logic, because activate
corresponds with Reduction Ad Absurdum and passivate with negation elimi-
nation. For the converse we have to show that Peirce’s law is inhibited in λ2

µ,
this result is similar to Lemma 3.3.4.

Theorem 3.4.4. We have Γ,¬∆ ` A in second-order classical propositional
logic iff Γ; ∆ ` t : A for some term t in λ2

µ.

For this extension we already see that our definition of structural substitution
pays off: we just have to extend call-by-name contexts with a new constructor.

Definition 3.4.5. A λ2
µ-context is defined as follows.

E ::= 2 | Et | Eρ

Now we generalize the notion of substitution E[s] of s for the hole 2 in
E and the notion of structural substitution t[α := βE] of βE for α in t in a
straightforward way.

Definition 3.4.6. Reduction t → t′ on λ2
µ-terms t and t′ is defined as the

compatible closure of the rules displayed in Figure 3.5. As usual, �+ denotes
the transitive closure, � denotes the reflexive/transitive closure and = denotes
the reflexive/symmetric/transitive closure.

(λx.t)r →β t[x := r]
(λγ.t)ρ →β∀ t[γ := ρ]
(µα.c)s →µR µα.c[α := α (2s)]
(µα.c)ρ →µ∀ µα.c[α := α (2ρ)]
µα.[α]t →µη t provided that α /∈ FCV(t)
[α]µβ.c →µi c[β := α 2]

Figure 3.5: The reduction rules of λ2
µ.

Just like the λµ- and λ2-calculus, the λ2
µ-calculus is confluent, satisfies satis-

fies subject reduction and is strongly normalizing [Par92, Par97]. However, we
will not go into further details here.

Just as in λµ, we do not have unique representation of data types. This
property fails because of the same reasons as we have shown in Section 3.3.
However, in [Par93], this defect is solved by means of the output operator Φ,
which extracts the actual numeral from a λ2

µ-term.

Definition 3.4.7. The output operator Φ is defined as follows.

Φ := λn.n ((N→ N)→ N) Ŝ 0̂ I

Here, 0̂ := λk.kc0 and Ŝ := λkh.k (λl.h (Sl)).

42 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

Fact 3.4.8. The output operator Φ is well-typed. That is 0̂ : (N → N) → N,
Ŝ : ((N→ N)→ N)→ (N→ N)→ N and Φ : N→ N.

Lemma 3.4.9. Given a closed term t : N, then Φ t � cm for some m ∈ N.

Proof. Proven in [Par93].

To illustrate the behavior of the output operator Φ, we will apply it to the
term t ≡ λγ.λfx . µα.[α]f(Θ[α]fx).

Φ t � (λfx . µα.[α]f(Θ[α]fx)) Ŝ 0̂ I

� (µα.[α]Ŝ (Θ[α]Ŝ 0̂)) I

� µα.[α]Ŝ (Θ[α]Ŝ 0̂ I) I

� µα.[α](Θ[α]Ŝ 0̂ I) (λl.I (Sl))

� µα.[α]Θ[α]Ŝ 0̂ I

� Ŝ 0̂ I

� I (Sc0)
� Sc0

� c1

If we write t as t ≡ λγ.λfx . catch α f(throw α (fx)), then this result is exactly
what one would expect, because the throw α (fx) should jump to the catch.
The idea of such a output operator is closely related to continuation passing
style, a notion which will be explained in the next section.

3.5 Continuation passing style

Continuation passing style (CPS) is a style of programming that is suitable to
make control and evaluation explicit. Therefore, it is particular useful to simu-
late control operators in a system without. Before we present such a simulation
of λ2

µ in λ2 we explain the basic idea of CPS.
In direct style, the most commonly used style of programming, a function

just returns its result. For example, let us consider the following program, which
takes a number n and computes the Fibonacci number F (n), in direct style.

let rec fib n = match n with
| 0 -> 0
| 1 -> 1
| SSm -> fib (Sm) + fib m

In order to compute the Fibonacci number F (SSm), it has to make recursive
calls to both fib (Sm) and fibm, hence this program is not primitive recursive.

In continuation passing style each function is parametrized by a function, the
so called continuation, which is invoked with the function’s result. Now we will
use CPS to write a primitive recursive program that computes the Fibonacci
numbers2.

2Alternatively, one could let fib2 n yield a pair of F (n) and F (n+ 1).

43 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

let fib n = fib2 n (λk l . k)

let rec fib2 n f = match n with
| 0 -> f 0 1
| Sm -> fib2 m (λk l . f l (k + l))

Now, instead of returning its result, evaluation of fib2n f invokes the function
f with the Fibonacci numbers F (n) and F (n + 1). To use the function fib2
in direct style, we have to apply the so called top-level continuation (λk l . k),
which picks the Fibonacci number F (n). Let us illustrate the behavior of this
program by computing the second Fibonacci number.

fib 2 ≡ fib2 2 (λk1 l1 . k1)
→ fib2 1 (λk2 l2 . (λk1 l1 . k1) l2 (k2 + l2))
→ fib2 0 (λk3 l3 . (λk2 l2 . (λk1 l1 . k1) l2 (k2 + l2)) l3 (k3 + l3))
→ (λk3 l3 . (λk2 l2 . (λk1 l1 . k1) l2 (k2 + l2)) l3 (k3 + l3)) 0 1
→ (λk2 l2 . (λk1 l1 . k1) l2 (k2 + l2)) 1 (0 + 1)
→ (λk1 l1 . k1) (0 + 1) (1 + (0 + 1))
→ 0 + 1
→ 1

Notice that the continuation is behaving as a stack that contains the remainder
of the required computation.

More interestingly, CPS can be used to simulate control and evaluation order.
This idea originates from Plotkin who used CPS to simulate the λv-calculus in
the ordinary λ-calculus [Plo75]. Plotkin’s CPS-translation parametrizes each
subterm t with a function that, when invoked with the result of t, returns the
overall result.

First we list some desired theoretical properties of CPS-translations. There-
fore, let t◦ denote some CPS-translation of an arbitrary term t in some source
system S (e.g. λ2

µ) into some target system T (e.g. λ2) and let ρ◦ denote a
corresponding translation for types.

Soundness. If t1 = t2 in S, then t1
◦ = t2

◦ in T.

Completeness. If t1◦ = t2
◦ in T, then t1 = t2 in S.

Preservation of reduction. If t1 → t2 in S, then t1
◦ �+ t2

◦ in T.

Preservation of typing. If Γ ` t : ρ in S, then Γ◦ ` t◦ : ρ◦ in T.

Now we will relate the previously described theoretical properties to actual
applications of CPS-translations.

1. Type preserving CPS-translations can be used to give an interpretation
of classical logic in intuitionistic logic. We will give an interpretation of
second-order classical propositional logic in minimal second-order propo-
sitional logic in this section.

44 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

2. In order to show that S has certain expressive power, it is sufficient to
embed S into T, where T is a system whose expressive power is already
known. This can be achieved by means of a sound CPS-translation which
is also adequate with respect to encoding of data types. An example of
such embedding will be given in Section 4.5.

3. Instead of proving a certain property of terms in system S, one could
prove that property, using a CPS-translation, in system T. Here it is
essential that the CPS-translation is both sound and complete.

4. Strong normalization proofs are usually quite a lot of work. However, a
reduction preserving CPS-translation of S into T can be used in case T is
known to be strongly normalizing. Here we reason by contradiction. We
assume that an infinite reduction sequence in S exists and translate it into
an infinite reduction sequence in T. However, T is strongly normalization,
so we obtain a contradiction. Furthermore, the system T is usually only
strongly normalizing for well-typed terms, so we need a CPS-translation
that is type preserving as well.

In the remainder of this section we will present a sound and type preserving
CPS-translation of λ2

µ into λ2. First we present the translation of types, which
is also known as the Kolmogorov double negation translation.

Definition 3.5.1. Given a type τ , then let ¬ρ denote ρ→ τ . Now given a type
ρ, then the negative translation ρ◦ of ρ is mutually inductively defined with ρ•

as follows.

ρ◦ := ¬¬ρ•

α• := α

(ρ→ δ)• := ρ◦ → δ◦

(∀α.ρ)• := ∀α.ρ◦

Lemma 3.5.2. Given types ρ and δ, then ρ•[α := δ•] = (ρ[α := δ])•.

Proof. Straightforward by induction on the structure of ρ.

In order to make sure that this translation makes sense, we prove that σ is
logically equivalent to σ◦ in second-order classical propositional logic.

Lemma 3.5.3. For the negative translation set τ = ⊥. Now we have Γ ` σ → σ◦

and Γ ` σ◦ → σ in second-order classical propositional logic.

Proof. Simultaneously by induction on the structure of σ.

1. Suppose that σ = α. The first property is immediate. The second property
follows from double negation elimination.

2. Suppose that σ = ρ → δ. Now, by the induction hypothesis, we have
Γ ` ρ→ ρ◦, Γ ` ρ◦ → ρ, Γ ` δ → δ◦ and Γ ` δ◦ → δ for each environment
Γ. Hence Γ ` (ρ→ δ)→ (ρ→ δ)◦ as shown below.

45 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

[¬(ρ→ δ)•]

δ → δ◦
[ρ→ δ]

ρ◦ → ρ [ρ◦]
ρ

δ
δ◦

ρ◦ → δ◦

⊥
(ρ→ δ)◦

(ρ→ δ)→ (ρ→ δ)◦

Moreover, we have Γ ` (ρ→ δ)◦ → ρ→ δ as shown below.

δ◦ → δ

[(ρ→ δ)◦]

[ρ◦ → δ◦]
ρ→ ρ◦ [ρ]

ρ◦

δ◦ [¬δ•]
⊥

¬(ρ◦ → δ◦)
⊥
δ◦

δ

(ρ→ δ)◦ → ρ→ δ

3. Suppose that σ = ∀α.ρ. This case is similar to the preceding case.

Now we define the actual CPS-translation of λ2
µ into λ2. This translation is

pretty much straightforward keeping in mind that the CPS-translation of each
subterm t takes a continuation that has to be invoked with the value of t.

Definition 3.5.4. Given a λ2
µ-term t, then the CPS-translation t◦ of t into λ2

is inductively defined as follows.

x◦ := λk.xk

(λx.t)◦ := λk.k(λx.t◦)
(tr)◦ := λk.t◦(λl.lr◦k)

(λγ.t)◦ := λk.k(λγ.t◦)
(tρ)◦ := λk.t◦(λl.lρ•k)

(µα.c)◦ := λkα.c
◦

([α]t)◦ := t◦kα

Here, kα is a fresh λ-variable for each µ-variable α.

Let us take a look at the application case. Here we take a continuation k,
which has to be invoked with the value of tr. In order to obtain such a value,
the term t has to be reduced to a value. To do so, we have to supply it with a
continuation that will be invoked with the value of t. We can construct such a
continuation by taking the value l of t. The variable l, which gets bound with
the value of t, again needs a continuation. The natural choice is r◦, but now lr◦

expects a continuation that should be invoked with the value of tr. Of course,
that should be k.

If we would consider a call-by-value system instead, then the translation of
the application becomes (tr)◦ := λk.r◦(λm.t◦(λl.lmk). This translation ensures
that r is reduced to a value before further reduction may happen.

46 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

Lemma 3.5.5. The translation from λ2
µ into λ2 preserves typing. That is:

Γ; ∆ ` t : ρ in λ2
µ =⇒ Γ◦,∆◦ ` t◦ : ρ◦ in λ2

where Γ◦ = {x : ρ◦ | x : ρ ∈ Γ} and ∆◦ = {kα : ¬ρ• | α : ρ ∈ ∆}.

Proof. We prove that we have Γ; ∆ ` t : ρ and Γ; ∆ ` c : |= by mutual induction
on the derivations Γ◦,∆◦ ` t◦ : ρ◦ and Γ◦,∆◦ ` t◦ : ⊥, respectively.

(var) Let Γ; ∆ ` x : ρ such that x : ρ ∈ Γ. Now we have x : ρ◦ ∈ Γ◦ and so
Γ◦,∆◦ ` x◦ : ρ◦ as shown below.

x : ρ◦ k : ¬ρ•
xk : ⊥

λk.xk : ρ◦

(λ) Let Γ; ∆ ` λx.t : ρ→ δ with Γ, x : ρ; ∆ ` t : δ. Now Γ◦, x : ρ◦,∆◦ ` t◦ : δ◦

by the induction hypothesis. So Γ◦,∆◦ ` (λx.t)◦ : (ρ→ δ)◦ as shown
below.

k : ¬(ρ→ δ)•
t◦ : δ◦

λx.t◦ : ρ◦ → δ◦

k(λx.t◦) : ⊥
λk.k(λx.t◦) : (ρ→ δ)◦

(app) Let Γ; ∆ ` tr : δ with Γ; ∆ ` t : ρ→ δ and Γ; ∆ ` s : ρ. Now we have
Γ◦,∆◦ ` t◦ : (ρ→ δ)◦ and Γ◦,∆◦ ` r◦ : ρ◦ by the induction hypothesis.
So Γ◦,∆◦ ` tr◦ : δ◦ as shown below.

t◦ : (ρ→ δ)◦

l : ρ◦ → δ◦ r◦ : ρ◦

lr◦ : δ◦ k : ¬δ•
lr◦k : ⊥

λl.lr◦k : ¬(ρ◦ → δ◦)
t◦(λl.lr◦k) : ⊥

λk.t◦(λl.lr◦k) : δ◦

(∀i) Let Γ; ∆ ` λγ.t : ∀γ.ρ with Γ; ∆ ` t : ρ. Now Γ◦,∆◦ ` t◦ : ρ◦ by the
induction hypothesis. So Γ◦,∆◦ ` (λγ.t)◦ : (∀γ.ρ)◦ as shown below.

k : ¬(∀γ.ρ)•
t◦ : ρ◦

λγ.t◦ : ∀γ.ρ◦

k(λγ.t◦) : ⊥
λk.k(λγ.t◦) : (∀γ.ρ)◦

(∀e) Let Γ; ∆ ` tδ : ρ[γ := δ] with Γ; ∆ ` t : ∀γ.ρ. Now Γ◦,∆◦ ` t◦ : (∀γ.ρ)◦ by
the induction hypothesis. So Γ◦,∆◦ ` tδ◦ : (ρ[γ := δ])◦ as shown below.

47 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

t◦ : (∀γ.ρ)◦

l : ∀γ.ρ◦

lδ• : ρ◦[γ := δ•] k : (¬ρ•)[γ := δ•]
lδ•k : ⊥

λl.lδ•k : ¬(∀γ.ρ◦)
t◦(λl.lδ•k) : ⊥

λk.t◦(λl.lδ•k) : (ρ[γ := δ])◦

Here we have (¬ρ•)[γ := δ•] = ¬(ρ[γ := δ])• by Lemma 3.5.2.

(act) Let Γ; ∆ ` µα.c : ρ with Γ; ∆, α : ρ ` c : |= . By the induction hypoth-
esis we have Γ◦,∆◦, kα : ¬ρ• ` c◦ : ⊥. So Γ◦,∆◦ ` (µα.c)◦ : ρ◦ as shown
below.

c◦ : ⊥
λkα.c

◦ : ρ◦

(pas) Let Γ; ∆ ` [α].t : |= with α : δ ∈ ∆. Now we have Γ◦,∆◦ ` t◦ : ρ◦ by
the induction hypothesis. Furthermore we have kα : ¬ρ• ∈ ∆◦ and so
Γ◦,∆◦ ` ([α].t)◦ : ⊥ as shown below.

t◦ : ρ◦ kα : ¬ρ•
t◦kα : ⊥

To prove that our CPS-translation is sound we are required to prove some
auxiliary substitution lemmas first.

Lemma 3.5.6. Given a λT
µ -term t, then λk.t◦k → t◦.

Proof. This follows immediately from the Definition 3.5.4, because the CPS-
translation t◦ of t is of the shape λl.t′, so λk.(λl.t′)k � λk.t′[l := k] ≡ t◦.

Lemma 3.5.7. Given λT
µ -terms t and r, then t◦[x := r◦] � (t[x := r])◦.

Proof. By induction on the structure of t. The only interesting case is t ≡ x.

x◦[x := r◦] ≡ (λk.xk)[x := r◦]
≡ λk.r◦k
� r◦ (a)
≡ (x[x := r])◦

Here, step (a) holds by Lemma 3.5.6.

Lemma 3.5.8. Given a λT
µ -term t, then:

1. (t[α := β 2])◦ ≡ t◦[kα := kβ]

2. (t[α := β (2s)])◦ � t◦[kα := λl.ls◦kβ]

3. (t[α := β (2ρ)])◦ � t◦[kα := λl.lρ•kβ]

48 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

Proof. All properties are proven by induction on the structure of t. The only
interesting case is c ≡ [α]t.

1. Property 1: here we have (t[α := β 2])◦ ≡ t◦[kα := kβ] by the induction
hypothesis, so:

(([α]t)[α := β 2])◦ ≡ t[α := β 2]◦kβ
≡ t◦[kα := kβ]kβ
≡ ([α]t)◦[kα := kβ]

2. Property 2: here we have (t[α := β (2s)])◦ � t◦[kα := λl.ls◦kβ] by the
induction hypothesis, so:

(([α]t)[α := β (2s)])◦ ≡ ([β]t[α := β (2s)]s)◦

≡ (λk.t[α := β (2s)]◦(λl.ls◦k))kβ
→ t[α := β (2s)]◦(λl.ls◦kβ)
� t[kα := λl.ls◦kβ]◦(λl.ls◦kβ)
≡ ([α]t)◦[kα := λl.ls◦kβ]

3. Property 3 is similar to property 2.

Lemma 3.5.9. The translation from λT
µ into λT preserves equality. That is,

given λT
µ -terms t1 and t2 such that t1 = t2, then t1

◦ = t2
◦.

Proof. By induction on t1 → t2.

1. Let (λx.t)r → t[x := r]. Now:

((λx.t)r)◦ ≡ λk.(λn.n(λx.t◦))λl.lr◦k
� λk.t◦[x := r◦]k (a)
= λk.t[x := r]◦k (b)
= t[x := r]◦

Here, step (a) holds by Lemma 3.5.7 and step (b) by Lemma 3.5.6.

2. The case (λγ.t)ρ→ t[γ := ρ] is similar to the preceding case.

3. Let (µα.c)s→ µαc[α := α (2s)]. Now:

((µα.c)s)◦ ≡ λk.(λkα.c◦)λl.ls◦k
� λk.c◦[kα := λl.ls◦k]
= λkα.c[α := α (2s)]◦ (a)
≡ (µα.c[α := α (2s)])◦

Here, step (a) holds by Lemma 3.5.8.

4. The case (µα.c)ρ→ µαc[α := α (2ρ)] is similar to the preceding case.

49 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

5. Let µα.[α]t→ t. Now:

(µα.[α]t)◦ ≡ λkα.t◦kα (a)
= t◦

Here, step (a) holds by Lemma 3.5.6.

6. Let [α]µβ.c→ c[β := α 2]. Now:

([α]µβ.c)◦ ≡ (λkβ .c◦)kα
→ c◦[kβ := kα] (a)
= c[β := α 2]◦

Here, step (a) holds by Lemma 3.5.8.

Unfortunately, our CPS-translation does not preserve reduction. For exam-
ple, we have (µα.[α]x)y → µα.[α]xy, but not:

λk.(λkα.(λh.xh) kα) (λl.l(λh.yh)k) � λkα.(λk.(λh.xh) (λl.l(λh.yh)k)) kα

This is caused by the so called administrative reductions, which also appear in
Plotkin’s CPS-translation. To repair this issue Plotkin introduced the colon
translation t : K [Plo75]. Here, t? = λk.t : k is the result of contracting all
administrative redexes in t◦. We can adapt Plotkin’s colon translation for λµ
as follows.

Definition 3.5.10. Given a λ2
µ-term t, then the CPS-translation t? is mutually

inductively defined with the colon translation t : K as follows.

t? := t : (λk.t : k)
([α]t)? := t : kα
x : K := xK

(λx.t) : K := K(λx.t?)
(tr) : K := t : (λl.lr?K)

(λγ.t) : K := K(λγ.t?)
(tρ) : K := t : (λl.lρ•K)

(µα.c) : K := c?[kα := K]

Here, kα is a fresh λ-variable for each µ-variable α.

However, a straightforward adaption of the colon translation, like ours, does
not work for the λµ-calculus [IN06]. Our translation is merely weakly reduction
preserving, that is, one reduction step may be translated in zero reduction steps.
For example, we have (µα.[α]x)y → µα.[α]xy, but:

(µα.[α]x)y : K ≡ µα.[α]x : λl.l(λh.yh)K
≡ (x : kα)[kα := λl.l(λh.yh)K]
≡ x (λl.l(λh.yh)K)
≡ (x : λl.l(λh.yh)kα)[kα := K]
≡ (xy : kα)[kα := K]
≡ (µα.[α]xy) : K

50 CHAPTER 3. CLASSICAL LOGIC AND CONTROL OPERATORS

In order to repair this issue, Ikeda and Kakazawa described an alternative CPS-
translation [IN06], in which terms are not only parametrized by continuations
but also by so called garbage terms. However, we will not go into the details
here, and refer to [IN06] for the niceties of their translation.

On a completely different track, we refer to [dG94] and [Fuj03] for complete
CPS-translations of λµ. These translations are too involved to be discussed in
this thesis.

Chapter 4

The λµ-calculus with
arithmetic

In the previous chapters we have discussed various first-order typed λ-calculi
with control operators, but so far, none of these systems contained basic types
like the natural numbers or lists as primitives. Although the natural numbers
can be encoded by first-order Church numerals in λ→, we have already remarked
that this does not yield much expressive power. The simply typed λµ-calculus
does not extend this class of functions since each simply typed λµ-term can be
translated back into λ→ by CPS.

A well known extension of λ→ is Gödel’s T, this system contains the natural
numbers as a primitive type and primitive recursion as a primitive construct.
Instead of just the extended polynomials, all functions that are provably re-
cursive in first-order arithmetic are definable in it [SU06]. So, since arithmetic
makes λ→ much stronger, we might wonder whether we could add arithmetic to
λ-calculi with control as well. But to the author’s surprise and knowledge there
is little evidence of research in which a typed λ-calculus is extended with both
arithmetic and control operators. In the following paragraphs we will summarize
relevant research.

Murthy considered a system with control operators, arithmetic, products
and sums in his PhD thesis [Mur90]. But his system uses the control opera-
tors C and A and the semantics of these operators is specified by evaluation
contexts rather than local reduction rules. He furthermore mainly considered
CPS-translations and did not prove properties like confluence or strong nor-
malization of his extended system. Crolard and Polonowski have considered
a version of Gödel’s T with products and call/cc in [CP09]. Unfortunately
the semantics is presented by CPS-translations instead of a direct specification.
Therefore properties like confluence and strong normalization are trivial because
they hold for the target system already.

Barthe and Uustalu have worked on CPS-translations for inductive and coin-
ductive types [BU02]. Their work includes a system with a primitive for iteration
over the natural numbers and the control operator ∆. Unfortunately only some
properties of CPS-translations are proven.

Furthermore, in [RS94], Rehof and Sørensen have described an extension

52 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

of the λ∆-calculus with basic constants and functions. In their extension a
function δ : function constant× basic constant→ value is used for the re-
duction rules f b → δ(f, b) and f ∆x.t → ∆x.t[x := λy.x (f y)]. They have
proven that their system is confluent, but unfortunately it is very limited. For
example the primitive recursor nrec takes terms, rather than basic constants, as
its arguments, hence this extension cannot be used to define primitive recursion.

In this chapter we will present a Gödel’s T version of the λµ-calculus and
prove basic properties like subject reduction, confluence and strong normaliza-
tion. In the Section 4.1 we will describe Gödel’s T and some of its important
properties. Readers that are already well known with Gödel’s T can safely skip
the next section and continue reading in Section 4.2

4.1 Gödel’s T

Gödel’s T (henceforth λT) was invented by Kurt Gödel to prove the consistency
of Peano Arithmetic [SU06]. It arises from λ→ by addition of a base type for
natural numbers and a construct for primitive recursion.

Definition 4.1.1. The types of λT are built from a basic type (the natural
numbers) and an implication arrow (→) as follows.

ρ, δ ::= N | ρ→ δ

Definition 4.1.2. The terms of the λT are inductively defined over an infinite
set of λ-variables (x, y, . . .) as follows.

t, r, s ::= x | λx : ρ.r | ts
| 0 | St | nrecρ r s t

Here, ρ ranges over λT-types.

As one would image, the terms 0, S and nrec denote zero, the successor
function and primitive recursion over the natural numbers, respectively. Many
presentations of Gödel’s T [GTL89, for example] also include a basic type for
the booleans. However a boolean type is superfluous as the booleans ff and
tt can be represented by the natural numbers 0 and S0, respectively, and the
conditional bcase r s t can be represented by nrec r (λxh.s) t. Hence we will
omit a boolean type so as to keep our system as simple as possible.

As usual, we let FV(t) denote the set of free variables of a term t and we
generalize the operation of capture avoiding substitution t[x := r] of r for x in
t to λT-terms in the obvious way.

Definition 4.1.3. A λT-typing judgment Γ ` t : ρ denotes that a term t has
type ρ in an environment Γ. The derivation rules for such judgments are shown
in Figure 4.1.

Definition 4.1.4. Reduction t → t′ on λT-terms t and t′ is defined as the
compatible closure of the rules displayed in Figure 4.2. As usual, � denotes
the reflexive/transitive closure and = denotes the reflexive/symmetric/transitive
closure.

53 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

x : ρ ∈ Γ
Γ ` x : ρ
(a) var

Γ, x : ρ ` t : δ
Γ ` λx : ρ.t : ρ→ δ

(b) lambda

Γ ` t : ρ→ δ Γ ` s : ρ
Γ ` ts : δ
(c) app

Γ ` 0 : N
(d) zero

Γ ` t : N
Γ ` St : N

(e) suc

Γ ` r : ρ Γ ` s : N→ ρ→ ρ Γ ` t : N
Γ ` nrecρ r s t : ρ

(f) nrec

Figure 4.1: The typing rules of λT.

(λx.t)r →β t[x := r]
nrec r s 0 →0 r

nrec r s (St) →S s t (nrec r s t)

Figure 4.2: The reduction rules of λT.

Although we do not specify a specific reduction strategy it is obviously possi-
ble to create a call-by-name and call-by-value version of λT. Yet it is interesting
to remark that in a call-by-value version of λT calculating the predecessor takes
at least linear time while in a call-by-name version the predecessor can be cal-
culated in constant time [CF98].

Fortunately, despite the additional features of λT, the important properties
of λ→ are preserved.

Lemma 4.1.5. λT satisfies subject reduction.

Proof. First we have to prove a similar substitution lemma as we have proven
for λ→ (Lemma 2.3.7). Then we have to prove that all reduction rules preserve
typing. We treat some interesting reduction rules.

1. The →0-rule:

r : ρ s : N→ ρ→ ρ t : N

nrecρ r s t : ρ
→0 r : ρ

2. The →S-rule:

r : ρ s : N→ ρ→ ρ
t : N
St : N

nrecρ r s St : ρ
→S

s : N→ ρ→ ρ t : N

s t : ρ→ ρ

r : ρ s : N→ ρ→ ρ t : N

nrecρ r s t : ρ

s t (nrecρ r s t) : ρ

Lemma 4.1.6. λT is confluent.

Proof. This is proven in [GTL89].

Lemma 4.1.7. λT is strongly normalizing.

Proof. This is proven in [GTL89].

54 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Because it is convenient to be able to talk about a term representing an
actual natural number we introduce the following notation.

Notation 4.1.8. n := Sn0

Now we introduce the notion of values for λT and prove that each closed
term that is in normal form is a value.

Definition 4.1.9. Values are inductively defined as follows.

v, w ::= 0 | Sv | λx.r

Lemma 4.1.10. Given a term t that is in normal form and such that ` t : ρ,
then:

1. If ρ = N, then t ≡ n for some n ∈ N.

2. If ρ = γ → δ, then t ≡ λx.r for a variable x and term r.

Proof. By induction on the derivation ` t : ρ.

(var) Let ` x : ρ with x : ρ ∈ ∅. Now we obtain a contradiction since x : ρ /∈ ∅.

(λ) Let ` λx.r : γ → δ. Now we are immediately done.

(app) Let ` rs : ρ with ` r : δ → ρ and ` s : δ. Now we have r ≡ λx.r′ by
the induction hypothesis. But therefore we obtain a contradiction since
rs should be in normal form.

(zero) Let ` 0 : N. Now we are immediately done because 0 ≡ 0.

(suc) Let ` St : N with ` t : N. Now we have t ≡ n for some n ∈ N by the
induction hypothesis, so St ≡ Sn ≡ n+ 1.

(nrec) Let ` nrec r s t : ρ with ` t : N. Now we have t ≡ n for some n ∈ N by
the induction hypothesis. But therefore we obtain a contradiction since
nrec r s t should be in normal form.

Moreover, as the following theorem indicates, it turns out that λT has quite
some expressive power.

Definition 4.1.11. A function f : Nn → N is representable in λT if there is a
term t such that:

t m1 . . .mn = f(m1, . . . ,mn)

Theorem 4.1.12. The functions definable in λT are exactly the functions that
are provably recursive in first-order arithmetic1.

Proof. This is proven in [SU06].

1Here we are allowed to say either Peano Arithmetic (PA) or Heyting Arithmetic (HA),
because a function is provably recursive in PA iff it is probably recursive in HA [SU06].

55 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

4.2 The λT
µ -calculus

In this section we will present a Gödel’s T variant of Parigot’s λµ-calculus
(henceforth λT

µ).

Definition 4.2.1. The terms and commands of λT
µ are mutually inductively

defined over an infinite set of λ-variables (x, y, . . .) and µ-variables (α, β, . . .) as
follows.

t, r, s ::= x | λx : ρ.r | ts | µα : ρ.c
| 0 | St | nrecρ r s t

c, d ::= [α]t

Here, ρ ranges over λT-types (Definition 4.1.1).

As usual, we let FV(t) and FCV(t) denote the set of free λ-variables and
µ-variables of a term t, respectively. Moreover, the operation of capture avoiding
substitution t[x := r] of r for x in t generalizes to λT

µ -terms in the obvious way.

Definition 4.2.2. A λT
µ -typing judgment Γ; ∆ ` t : ρ denotes that a term t has

type ρ in an environment of λ-variables Γ and an environment of µ-variables
∆. A typing judgment Γ; ∆ ` c : |= denotes that a command c is typable in
an environment of λ-variables Γ and an environment of µ-variables ∆. The
derivation rules for such judgments are mutually recursively defined and shown
in Figure 4.3.

x : ρ ∈ Γ
Γ; ∆ ` x : ρ

(a) axiom

Γ, x : ρ; ∆ ` t : δ
Γ; ∆ ` λx : ρ.t : ρ→ δ

(b) lambda

Γ; ∆ ` t : ρ→ δ Γ; ∆ ` s : ρ
Γ; ∆ ` ts : δ

(c) app

Γ ` 0 : N
(d) zero

Γ ` t : N
Γ ` St : N

(e) suc

Γ ` r : ρ Γ ` s : N→ ρ→ ρ Γ ` t : N
Γ ` nrecρ r s t : ρ

(f) nrec

Γ; ∆, α : ρ ` c : |=

Γ; ∆ ` µα : ρ.c : ρ
(g) activate

Γ; ∆ ` t : ρ α : ρ ∈ ∆
Γ; ∆ ` [α]t : |=

(h) passivate

Figure 4.3: The typing rules of λT
µ .

In order to extend the notion of structural substitution we have to extend
the notion of contexts to the language of λT

µ -terms.

Definition 4.2.3. A λT
µ -context is defined as follows.

E ::= 2 | Et | SE | nrec r s E

Now we generalize the notion of substitution E[s] of s for the hole 2 in
E and the notion of structural substitution t[α := βE] of βE for α in t in a
straightforward way.

56 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Definition 4.2.4. Reduction t → t′ on λT
µ -terms t and t′ is defined as the

compatible closure of the rules displayed in Figure 4.4. As usual, �+ denotes
the transitive closure, � denotes the reflexive/transitive closure and = denotes
the reflexive/symmetric/transitive closure.

(λx.t)r →β t[x := r]
S(µα.c) →µS µα.c[α := α (S2)]
(µα.c)s →µR µα.c[α := α (2s)]
µα.[α]t →µη t provided that α /∈ FCV(t)
[α]µβ.c →µi c[β := α 2]

nrec r s 0 →0 r

nrec r s (Sn) →S s n (nrec r s n)
nrec r s (µα.c) →µN µα.c[α := α (nrec r s 2)]

Figure 4.4: The reduction rules of λT
µ .

Lemma 4.2.5. The λT
µ -calculus satisfies subject reduction.

Proof. First we have to prove a similar substitution lemma as we have proven
for λ→ (Lemma 2.3.7) and structural substitution lemma as we have proven for
λµ (Lemma 3.3.15). Then we have to prove that all reduction rules preserve
typing. We treat some interesting reduction rules.

1. The →µS-rule:

c : |=

µα.c : N
S(µα.c) : N

→µS
c[α := α (S2)] : |=

µα.c[α := α (S2)] : N

Here we have c[α := α (S2)] : |= by the structural substitution lemma.

2. The →µN-rule:

r : ρ s : N→ ρ→ ρ
c : |=

µα.c : N
nrec r s (µα.c) : ρ

→µN
c[α := α (nrec r s 2)] : |=

µα.c[α := α (nrec r s 2)] : ρ

It remains to prove that Γ′; ∆′ ` c[α := α (nrec r s 2)] : |= . We proceed
by applying the structural substitution lemma, so given contexts Γ′ ⊇ Γ,
∆′ ⊇ ∆ and a derivation Γ′; ∆′ ` t : N, then we have to prove that
Γ′; ∆′ ` nrec r s t : δ. The required result is shown below.

Γ; ∆ ` r : ρ
Γ′; ∆′ ` r : ρ

Γ; ∆ ` s : N→ ρ→ ρ

Γ′; ∆′ ` s : N→ ρ→ ρ Γ′; ∆′ ` t : N
Γ′; ∆′ ` nrec r s t : ρ

57 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Notice that the→S-rule, contrary to the corresponding rule of λT (Definition
4.1.4), restricts the reduction order in way similar to call-by-value. In order to
apply this rule, the third argument of nrec should be reduced to an actual
numeral. This restriction ensures that primitive recursion is not performed on
terms that might reduce to a term of the shape µα.c. If we omit this restriction
we lose confluence. We illustrate this by considering a variant of our system
with the following rule instead.

nrec r s (St)→S′ s t (nrec r s t)

Now we can reduce the term t ≡ µα.[α]nrec 0 (λxh.2) (SΘ[α]4) to two distinct
normal forms:

t ≡ µα.[α]nrec 0 (λxh.2) (SΘ[α]4)
→ µα.[α]nrec 0 (λxh.2) Θ[α]4
→ µα.[α]Θ[α]4
→ µα.[α]4→ 4

And:

t ≡ µα.[α]nrec 0 (λxh.2) (SΘ[α]4)
→ µα.[α](λxh.2) (Θ[α]4) (nrec 0 (λxh.2) Θ[α]4)
� µα.[α]2→ 2

Alternatively, in order to obtain a confluent system, it is possible to remove
the →S-rule while retaining the unrestricted →µS′ -rule. However, then we can
construct closed terms t : N that are in normal form but such that t 6≡ n. An
example of such a term is µα.[α]Sµβ.[α]0.

Lemma 4.2.6. Given a term t that is in normal and such that ; ∆ ` t : ρ, then:

1. If ρ = N, then t ≡ n or t ≡ µα.[β]n for some n ∈ N.

2. If ρ = γ → δ, then t ≡ λx.r or t ≡ µα.[β]λx.r for some variable x and
term r.

Proof. By induction on the derivation ; ∆ ` t : ρ.

(var) Let ; ∆ ` x : ρ with x : ρ ∈ ∅. Now we obtain a contradiction since
x : ρ /∈ ∅.

(λ) Let ; ∆ ` λx.r : γ → δ. Now we are immediately done.

(app) Let ; ∆ ` rs : ρ with ; ∆ ` r : δ → ρ and ; ∆ ` s : δ. Now by the induction
hypothesis we have r ≡ λx.r′ or r ≡ µα.[β]λx.r′. But since rs should be
in normal form we obtain a contradiction.

(zero) Let ; ∆ ` 0 : N. Now we are immediately done because 0 ≡ 0.

(suc) Let ; ∆ ` St : N with ; ∆ ` t : N. Now we have t ≡ n or t ≡ µα.[β]n
for some n ∈ N by the induction hypothesis. In the former case we are
immediately done, in the latter case we obtain a contradiction because the
→µS-rule can be applied.

58 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

(nrec) Let ; ∆ ` nrec r s t : ρ with ; ∆ ` t : N. Now we have t ≡ n or t ≡ µα.[β]n
for some n ∈ N by the induction hypothesis. But in both cases we obtain
a contradiction because the reduction rules →µ0, →µS and →µN can be
applied, respectively.

(act/pas) Let ; ∆ ` µα.[β]t : ρ with ; ∆, α : ρ ` t : σ and β : σ ∈ (∆, α : ρ). We
distinguish the following cases.

(a) Suppose that σ = N. Now we have t ≡ n or t ≡ µα.[β]n for some
n ∈ N by the induction hypothesis. In the former case we are im-
mediately done. In the latter case we obtain a contradiction because
the →µi-rule can be applied.

(b) Suppose that σ = γ → δ. Now we have t ≡ λx.r′ or t ≡ µα.[β]λx.r′

by the induction hypothesis. Again in the former case we are done.
In the latter case we obtain a contradiction because the→µi-rule can
be applied.

Lemma 4.2.7. Given a term t that is in normal form and such that ; ` t : N,
then t ≡ n for some n ∈ N.

Proof. By Lemma 4.2.6 we obtain that t ≡ n or t ≡ µα.[β]n for some n ∈ N. In
the former case we are immediately done and in the latter case we know that
β = α since t is closed for µ-variables, hence we can apply the →µη-rule and
obtain a contradiction.

In the remainder of this section we define some additional notions and prove
some meta theoretical properties. These notions are essential for our proof of
confluence (Section 4.3) and strong normalization (Section 4.4).

Definition 4.2.8. A singular λT
µ -context is a context of the following shape.

Es ::= 2t | S2 | nrec r s 2

Using the notion of a singular context it is possible to replace the reduction
rules →µS, →µR and →µN by one single rule (adapted from [FH92]).

Es[µα.c]→ µα.c[α := αEs]

As a direct consequence we have the following lemma.

Lemma 4.2.9. Given a command c and context E, then we have:

E[µα.c] � µα.c[α := αE]

Proof. By induction on the structure of E.

Definition 4.2.10. Given contexts E and F , then a context EF is defined as:

2F := F

(Et)F := (EF)t
(SE)F := S(EF)

(nrec r s E)F := nrec r s (EF)

59 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Lemma 4.2.11. Given contexts E and F and a term t, then we have:

E[F [t]] ≡ EF [t]

Proof. By induction on the structure of E.

The notion of of free λ-variables, free µ-variables, substitution and structural
substitution are generalized to contexts in the obvious way. The following lemma
states some essential properties of substitution.

Lemma 4.2.12. (Structural) substitution satisfies the following properties.

1. µα.c ≡ µβ.c[α := β 2] provided that β /∈ FCV(c).

2. t[x := r][y := s] ≡ t[y := s][x := r[y := s]] provided that x 6= y, x /∈ FV(s).

3. t[x := r][β := βF] ≡ t[β := βF][x := r[β := βF]] provided that x /∈ FV(F).

4. t[α := α′E][y := s] ≡ t[y := s][α := α′E[y := s]] provided that α /∈ FCV(s).

5. t[α := α′E][β := β′F] ≡ t[β := β′F][α := α′E[β := β′F]] provided that
α 6= β, α′ 6= β, α 6= β′ and α /∈ FCV(F).

6. t[α := βE][β := β′F] ≡ t[β := β′F][α := β′F (E[β := β′F])] provided that
α 6= β, α 6= β′ and α /∈ FCV(F).

7. t[α := βEF] ≡ t[α := αF][α := βE] provided that α /∈ FCV(F).

8. t[α := βEF] ≡ t[α := βF][β := βE] provided that β /∈ FCV(F) ∪ FCV(t).

Proof. All properties are proven by induction on the structure of t.

4.3 Confluence of λT
µ

To prove confluence one typically uses the notion of parallel reduction by Tait
and Martin-Löf. A parallel reduction relation ⇒ intuitively allows to contract
multiple redexes in a term simultaneously. Because⇒ can be defined inductively
and is preserved under substitution it is straightforward (by considering all
critical pairs) to prove that it is confluent. Also, since⇒ is defined in such a way
that t⇒∗ t′ iff t � t′, we obtain confluence of � as well. To streamline proving
confluence of ⇒ one could define the complete development t� of each term t,
which is obtained by contracting all redexes in t. Now it suffices to prove that
t⇒ t′ implies t′ ⇒ t�. Unfortunately, as observed in [Fuj97, BHF01], adopting
the notion of parallel reduction in a straightforward way does not work for λµ.
The resulting parallel reduction relation will only be weakly confluent and not
confluent.

In this section we will focus on resolving this problem for λT
µ . For an exten-

sive discussion of parallel reduction and its application to various systems we
refer to [Tak95]. Firstly, we will present the straightforward parallel reduction
relation, which is obtained by extending Parigot’s parallel reduction reduction
[Par92] to λT

µ .

60 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Temporary Definition 4.3.1. Parallel reduction t ⇒ t′ on terms t and t′ is
mutually inductively defined with parallel reduction c⇒ c′ on commands c and
c′ as follows.

(t1) x⇒ x

(t2) 0⇒ 0

(t3) If t⇒ t′, then λx.t⇒ λx.t′.

(t4.1) If t⇒ t′ and r ⇒ r′, then tr ⇒ t′r′.

(t4.2) If t⇒ t′, then St⇒ St′.

(t4.3) If r ⇒ r′, s⇒ s′ and t⇒ t′, then nrec s r t⇒ nrec s′ r′ t′.

(t5) If t⇒ t′ and r ⇒ r′, then (λx.t)r ⇒ t′[x := r′].

(t6.1) If c⇒ c′, then µα.c⇒ µα.c′.

(t6.2) If c⇒ c′ and s⇒ s′, then (µα.c)s⇒ µα.c′[α := α (2s′)].

(t6.3) If c⇒ c′, then S(µα.c)⇒ µα.c′[α := α (S2)].

(t6.4) If r ⇒ r′, s⇒ s′ and c⇒ c′, then nrec r s µα.c⇒ µα.c′[α := α (nrec r′ s′ 2)].

(t7) If t⇒ t′ and α /∈ FCV(t), then µα.[α]t⇒ t′.

(t8) If r ⇒ r′, then nrec r s 0⇒ r′.

(t9) If r ⇒ r′ and s⇒ s′, then nrec r s (Sn)⇒ s′ n (nrec r′ s′ n).

(c1) If t⇒ t′, then [α]t⇒ [α]t′.

(c2) If c⇒ c′, then [α]µβ.c⇒ c′[β := α2].

Just as Parigot’s original parallel reduction relation (as observed in [Fuj99]),
our relation ⇒ as in the preceding definition is not confluent. Let us (as in
[BHF01]) consider the term (µα.[α]µγ.[α]x)y, this term contains both a (t6.2)
and a (c2)-redex. However, after contracting the (t6.2)-redex, we obtain the
term µα.[α](µγ.[α]xy)y, in which the (c2)-redex is stalled.

(µα.[α]µγ.[α]x)y

qy kkkkkkkkkkkkk

kkkkkkkkkkkkk

$,QQQQQQQQQQQQ

QQQQQQQQQQQQ

µα.[α](µγ.[α]xy)y

��

(µα.[α]x)y

��
µα.[α]µγ.[α]xy +3 µα.[α]xy

Although it is possible to prove that this relation is weakly confluent, weak
confluence is not quite satisfactory. Of course, since λT

µ is strongly normalizing
(Theorem 4.4.34), it would give confluence by Newman’s lemma. However, an
untyped version of λT

µ is obviously not strongly normalizing (consider the term
Ω), hence we do not obtain confluence for it this way.

61 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Baba, Hirokawa and Fujita noticed that this problem could be repaired by
letting the (c2)-rule perform structural substitutions (t6.1-4) and renaming (c2)
in one step [BHF01]. Their (c2)-rule is as follows.

(c2) If c⇒ c′ and E ⇒ E′, then [α]E[µβ.c]⇒ c′[β := αE′].

Here E and E′ are contexts and parallel reduction on contexts is defined by
reducing all its components in parallel. Although they have shown that their
relation for λµ without the (t7) rule is confluent, it is not confluent if the (t7)
rule is included. Let us (as in [BHF01]) consider the term µα.[α](µβ.[γ]x)yz.

µα.[α](µβ.[γ]x)yz

z� }}
}}

}}
}}

}}
}}

}}
}}

}}
}

}}
}}

}}
}}

}}
}}

}}
}}

}}
}

$,QQQQQQQQQQQQ

QQQQQQQQQQQQ

(µβ.[γ]x)yz

��
µα.[γ]x (µβ.[γ]x)zks

In the conclusion of their work they suggested that this problem can be re-
paired by considering a series of structural substitutions (t6.1-4) as one step.
This approach has been carried out successfully by Nakazawa for a call-by-value
variant of λµ [Nak03]. However, Nakazawa did not use the notion of complete
developments. We will repeat the approach suggested by Baba et al. for λT

µ

and use the notion of complete developments.

Definition 4.3.2. Parallel reduction t ⇒ t′ on terms t and t′ is mutually
inductively defined with parallel reduction c ⇒ c′ on commands c and c′ and
parallel reduction E ⇒ E′ on contexts E and E′ as follows.

(t1) x⇒ x

(t2) 0⇒ 0

(t3) If t⇒ t′, then λx.t⇒ λx.t′.

(t4) If t⇒ t′ and Es ⇒ E′, then Es[t]⇒ E′[t′].

(t5) If t⇒ t′ and r ⇒ r′, then (λx.t)r ⇒ t′[x := r′].

(t6) If c⇒ c′ and E ⇒ E′, then E[µα.c]⇒ µα.c′[α := αE′].

(t7) If t⇒ t′ and α /∈ FCV(t), then µα.[α]t⇒ t′.

(t8) If r ⇒ r′, then nrec r s 0⇒ r′.

(t9) If r ⇒ r′ and s⇒ s′, then nrec r s (Sn)⇒ s′ n (nrec r′ s′ n).

(c1) If t⇒ t′, then [α]t⇒ [α]t′.

(c2) If c⇒ c′ and E ⇒ E′, then [α]E[µβ.c]⇒ c′[β := αE′].

(E1) 2⇒ 2

62 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

(E2) If E ⇒ E′ and t⇒ t′, then Et⇒ E′t′.

(E3) If E ⇒ E′, then SE ⇒ SE′.

(E4) If E ⇒ E′, r ⇒ r′ and s⇒ s′, then nrec r s E ⇒ nrec r′ s′ E′.

Moreover, ⇒∗ denotes the transitive closure of ⇒.

For notational reasons we specify the most of the forthcoming lemmas just
for terms. Yet they are always mutually inductively proven for commands and
contexts, hence these lemmas also hold for commands and contexts.

Lemma 4.3.3. Parallel reduction is reflexive, that is t⇒ t for all terms t.

Proof. By induction on t and the rules (t1-4), (t7), (c1) and (E1-4)

Fact 4.3.4. Given contexts E and E′ such that E ⇒ E′ and terms t and t′

such that t⇒ t′, then E[t]⇒ E′[t′].

Fact 4.3.5. Given a singular context Es and a context E′ such that Es ⇒ E′,
then E′ is singular too.

Fact 4.3.6. Given terms t and t′ such that t ⇒ t′, then x ∈ FV(t′) implies
x ∈ FV(t) and α ∈ FCV(t′) implies α ∈ FCV(t).

Lemma 4.3.7. Parallel reduction is preserved under substitution, that is given
terms t and t′ such that t⇒ t′ and terms s and s′ such that s⇒ s′, then:

t[x := s]⇒ t′[x := s′]

Proof. By induction on t⇒ t′. We treat some interesting cases.

(t1) Let x⇒ x. Now x[x := s] ≡ s⇒ s′ ≡ x[x := s′] by assumption.

(t5) Let (λy.t)s ⇒ t′[y := r′] with t ⇒ t′ and r ⇒ r′. Now we have
t[x := s]⇒ t′[x := s′] and r[x := s] ⇒ r′[x := s′] by the induction hy-
pothesis, hence (λy.t[x := s])r[x := s] ⇒ t′[x := s′][y := r′[x := s′]]. By
the Barendregt convention we have y 6= x and y /∈ FV(s), so y /∈ FV(s′)
by Fact 4.3.6. Furthermore t′[x := s′][y := r′[x := s′]] ≡ t′[y := r′][x := s′]
by Lemma 4.2.12, so ((λy.t)r)[x := s]⇒ t′[y := r′][x := s′].

Lemma 4.3.8. Parallel reduction is preserved under structural substitution,
that is given terms t and t′ such that t ⇒ t′ and contexts E and E′ such that
E ⇒ E′, then:

t[α := βE]⇒ t′[α := βE′]

Proof. By induction on t⇒ t′. We treat some interesting cases.

(t6) Let F [µγ.c] ⇒ µγ.c′[γ := γE′] with c ⇒ c′ and F ⇒ E′. Moreover let
d ≡ c[α := βE], d′ ≡ c′[α := βE′], G = F [α := βE] andG′ = E′[x := βE′].
Now we have d ⇒ d′ and G ⇒ G′ by the induction hypothesis, hence
G[µγ.d]⇒ µγ.d′[γ := γG′]. By the Barendregt convention we have γ 6= α,
γ 6= β and γ /∈ F , so γ /∈ FV(E′) by Fact 4.3.6. Furthermore we have
c′[γ := γE′][α := βE′] ≡ c′[α := βE′][γ := γG′] by Lemma 4.2.12, so
(F [µγ.c])[α := βE]⇒ µγ.c′[γ := αE′][α := βE′].

63 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

(c2) Let [α]F [µγ.c] ⇒ c′[γ := αE′] with c ⇒ c′ and F ⇒ E′. Moreover let
d ≡ c[α := βE], d′ ≡ c′[α := βE′], G = F [α := βE] andG′ = E′[x := βE′].
Now we have d ⇒ d′ and G ⇒ G′ by the induction hypothesis, hence
[β]E[G[µγ.d]] ⇒ d′[γ := βE′G′]. By the Barendregt convention we have
γ 6= α and γ /∈ F , so γ /∈ FV(E′) by Fact 4.3.6. Furthermore we have
c′[γ := αE′][α := βE′] ≡ c′[α := βE′][γ := βE′G′] by Lemma 4.2.12, so
([α]F [µγ.c])[α := βE]⇒ c′[γ := αE′][α := βE′].

In order to define the complete development we are required to decide which
redexes to contract. However, this job is non-trivial because ⇒ is very strong.
That is, in one step it is able to move a subterm that is located very deep into
the term to the outside. For example, let us consider the command e.

e ≡ En[µαn.[αn] . . . E1[µα1.[α1]E0[µα0.c]] . . .]

For sake of simplicity, we suppose that αi /∈ FCV(Ej) for all i, j ∈ N such that
0 ≤ j < i ≤ n, and moreover α0 /∈ FCV(c). Intuitively one would be urged to
contract the (t7)-redexes immediately, however, that does not yield the complete
development. We have [αi+1]Ei[µαi.d] ⇒ d′ for each i such that 0 ≤ i <
n, hence the whole command e reduces to c′ (considering c ⇒ c′). As this
example indicates, it is impossible to determine whether a (t7)-redex should be
contracted without looking deeply into the term. In order to define the complete
development we introduce the following case distinction on terms.

Lemma 4.3.9. Given a term t, then t is of exactly one of the following shapes.

variables 1. x

values 2. n

3. λx.s

redexes 4. (λx.s)r

5. nrec r s n

6. En[µαn.[αn] . . . E1[µα1.[α1]r] . . .]
with n ≥ 1, αi /∈ FCV(r) for all 1 ≤ i ≤ n, αi /∈ FCV(Ej) for all i
and j such that 1 ≤ j < i ≤ n, and r 6≡ E[µβ.c]

7. En[µαn.[αn] . . . E1[µα1.[α1]E0[µβ.c]] . . .]
with αi /∈ FCV(c) for all 1 ≤ i ≤ n, αi /∈ FCV(Ej) for all i and j
such that 0 ≤ j < i ≤ n, and if c ≡ [β]t then β ∈ FCV(t)

other 8. sr
with s 6≡ E[µβ.c] and s 6≡ λx.t

9. nrec r s u

with u 6≡ E[µβ.c] and u 6≡ n
10. Su

with u 6≡ E[µβ.c] and u 6≡ n

Proof. We prove that t is always of one of the given shapes by induction on
the structure of t. Furthermore, because these shapes are non-overlapping it is
immediate that t is always of exactly one of these shapes.

64 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Lemma 4.3.10. Given continuation variables α1, . . .αn, contexts E1, . . . , En,
E′1, . . . , E′n and terms r and r′, such that:

1. αi /∈ FCV(r) and αi /∈ FCV(Ej) for all j < i,

2. for every context Fi such that Ei ⇒ Fi we have Fi ⇒ E′i,

3. for every term s such that r ⇒ s we have s⇒ r′, and,

4. r 6≡ E[µβ.d],

then:

1. En[µαn.[αn] . . . E1[µα1.[α1]r]]⇒ t implies t⇒ E′n . . . E
′
1[r′], and,

2. [α]En[µαn.[αn] . . . E1[µα1.[α1]r]]⇒ c implies c⇒ [α]E′n . . . E
′
1[r′].

Proof. To prove these properties we have to strengthen the second property:

2. [α]En[µαn.[αn] . . . E1[µα1.[α1]r]]⇒ c implies c ≡ [α]v and v ⇒ E′n . . . E
′
1[r′].

Also, α /∈ FCV(r) and α /∈ FCV(Ei) for all i implies α /∈ FCV(v).

We prove these properties simultaneously by induction on n.

1. Suppose that n = 0. Now the first property holds by assumption. For
the second property, the only possible reduction on [α]r is (c1) because
r 6≡ E[µβ.d]. Therefore we have c ≡ [α]s and r ⇒ s. Now we are done
because we have s ⇒ r′ by assumption. Furthermore, if we suppose that
α /∈ FCV(r), then α /∈ FCV(s) by Fact 4.3.6, as required.

2. Suppose that n > 0. Now let u ≡ En−1[µαn−1.[αn−1] . . . E1[µα1.[α1]r]]
and u′ ≡ E′n−1 . . . E

′
1[r′]. For the first property, the following reductions

are possible.

(t4,t7) En[µαn.[αn]u] ⇒ Fn[v] with En ⇒ Fn and u ⇒ v. Now we have
v ⇒ u′ by the induction hypothesis, hence Fn[v] ⇒ E′n[u′] by as-
sumption.

(t4,t6) En[µαn.[αn]u]⇒ F ln[µαn.c[αn := αnF
r
n]] with En = ElnE

r
n, Eln ⇒ F ln,

Ern ⇒ F rn and [αn]u⇒ c. Now we have c ≡ [αn]v and v ⇒ u′ by the
induction hypothesis. Also, we have αn /∈ FCV(u) by assumption
and therefore αn /∈ FCV(v) by the induction hypothesis. Hence we
have the following.

F ln[µαn.c[αn := αnF
r
n]] ≡ F ln[µαn.([αn]v)[αn := αnF

r
n]]

≡ F ln[µαn.[αn]F rn [v]]

⇒ E′lnE
′r
n [u′]

≡ E′n[u′]

For the second property we have to consider the same reductions as above,
but surrounded by a (c1)-reduction, and the following reduction.

65 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

(c2) [α]En[µαn.[αn]u] ⇒ c[αn := αFn] with En ⇒ Fn and [αn]u ⇒ c.
Now we have c ≡ [αn]v and v ⇒ u′ by the induction hypothesis. Also,
we have αn /∈ FCV(u) by assumption and therefore αn /∈ FCV(v) by
the induction hypothesis. Hence we have the following.

c[αn := αFn] ≡ ([αn]v)[αn := αFn] ≡ [α]Fn[v]⇒ [α]E′n[u′]

Furthermore, let us suppose that α /∈ FCV(En) ∪ FCV(u), then
α /∈ FCV(Fn) ∪ FCV(v) by Fact 4.3.6, so α /∈ FCV(Fn[v]).

Lemma 4.3.11. Given continuation variables α1, . . .αn, contexts E0, . . . , En,
E′0, . . . , E′n and commands d and d′, such that:

1. αi /∈ FCV(d) and αi /∈ FCV(Ej) for all j < i,

2. for every context Fi such that Ei ⇒ Fi we have Fi ⇒ E′i,

3. for every command e such that d⇒ e we have e⇒ d′, and,

4. d ≡ [α]t implies α ∈ FCV(t),

then:

1. En[µαn.[αn] . . . E1[µα1.[α1]E0[µβ.d]]]⇒ t implies t⇒ µα.d′[β := αE′n . . . E
′
0]

2. [α]En[µαn.[αn] . . . E1[µα1.[α1]E0[µβ.d]]]⇒ c implies c⇒ d′[β := αE′n . . . E
′
0]

Proof. To prove these properties we have to strengthen the first property:

1. En[µαn.[αn] . . . E1[µα1.[α1]E0[µβ.d]]] ⇒ t and moreover F ⇒ E′ implies
F [t]⇒ µα.d′[β := αE′E′n . . . E

′
0] and [α]F [t]⇒ d′[β := αE′E′n . . . E

′
0].

We prove these properties simultaneously by induction on n.

1. Suppose that n = 0. For the first property, merely the following reduction
is possible.

(t4,t6) E0[µβ.d] ⇒ F l0[µβ.e[β := βF r0]] such that E0 = El0E
r
0 , El0 ⇒ F l0,

Er0 ⇒ F r0 and d⇒ e. Now we have the following.

FF l0[µβ.e[β := βF r0]]⇒ µβ.d′[β := βE′r0][β := βE′E′l0]
≡ µα.d′[β := αE′E′0]

[α]FF l0[µβ.e[β := βF r0]]⇒ d′[β := βE′r0][β := αE′E′l0]
≡ d′[β := αE′E′0]

For the second property, the following reductions are possible.

(c1,t4,t6) [α]E0[µβ.d]⇒ [α]F l0[µβ.e[β := βF r0]] such that E0 = El0E
r
0 , El0 ⇒ F l0,

Er0 ⇒ F r0 and d ⇒ e. Now we have e[β := αF r0] ⇒ d′[β := αE′r0] by
Lemma 4.3.8 and therefore the following.

[α]F l0[µβ.e[β := βF r0]]⇒ d′[β := βE′r0][β := αE′l0] ≡ d′[β := αE′0]

66 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

(c2) [α]E0[µβ.d] ⇒ e[β := αF0] such that E0 ⇒ F0 and d ⇒ e. Now we
have e[β := αF0]⇒ d′[β := αE′0] by Lemma 4.3.8.

2. Suppose that n > 0. Let u ≡ En−1[µαn−1.[αn−1] . . . E1[µα1.[α1]E0[µβ.c]]].
For the first property, the following reductions are possible.

(t4,t7) En[µαn.[αn]u]⇒ Fn[v] such that En ⇒ Fn and u⇒ v. Now we have,
by the induction hypothesis, FFn[v]⇒ µα.d′[α := αE′E′n . . . E

′
0] and

[α]FFn[v]⇒ d′[α := αE′E′n . . . E
′
0].

(t4,t6) En[µαn.[αn]u] ⇒ F ln[µαn.e[αn := αnF
r
n]] such that En = ElnE

r
n,

Eln ⇒ F ln, Ern ⇒ F rn and [αn]u ⇒ e. Now we have e ⇒ f ′ where
f ′ ≡ d′[β := αnE

′
n−1 . . . E

′
0] by the induction hypothesis. Further-

more we have e[αn := αnF
r
n]⇒ f ′[αn := αnE

′r
n] by Lemma 4.3.8 and

therefore the following.

FF ln[µαn.e[αn := αnF
r
n]]⇒ µαn.f

′[αn := αnE
′r
n][αn := αnE

′E′ln]
≡ µα.d′[β := αE′E′n . . . E

′
0]

[α]FF ln[µαn.e[αn := αnF
r
n]]⇒ f ′[αn := αnE

′r
n][αn := αnE

′E′ln]
≡ d′[β := αE′E′n . . . E

′
0]

For the second property, the following reductions are possible.

(c1,t4,t7) [α]En[µαn.[αn]u] ⇒ [α]Fn[v] with En ⇒ Fn and u ⇒ v. Now we
have [α]Fn[v]⇒ d′[α := αE′n . . . E

′
0] by the induction hypothesis.

(c1,t4,t6) [α]En[µαn.[αn]u] ⇒ [α]F ln[µαn.c[αn := αnF
r
n]] with En = ElnE

r
n,

Eln ⇒ F ln, Ern ⇒ F rn and [αn]u ⇒ c. Now we have e ⇒ f ′ where
f ′ ≡ d′[β := αnE

′
n−1 . . . E

′
0] by the induction hypothesis. Further-

more we have e[αn := αnF
r
n]⇒ f ′[αn := αnE

′r
n] by Lemma 4.3.8 and

therefore the following.

[α]F ln[µαn.e[αn := αnF
r
n]]⇒ f ′[αn := αnE

′r
n][αn := αnE

′l
n]

≡ d′[β := αE′n . . . E
′
0]

(c2) [α]En[µαn.[αn]u] ⇒ e[αn := αFn] with En ⇒ Fn and [αn]u⇒ e.
Now we have e ⇒ f ′ where f ′ ≡ d′[β := αnE

′
n−1 . . . E

′
0] by the

induction hypothesis. Hence e[αn := αFn] ⇒ f ′[αn := αE′n] by
Lemma 4.3.8, so e[αn := αFn]⇒ d′[β := αnE

′
n . . . E

′
0].

Definition 4.3.12. The complete development t� of a term t is defined (using
the case distinction made in Lemma 4.3.9) as:

1. x� := x

2. 0� := 0

3. (λx.s)� := λx.s�

4. ((λx.s)r)� := s�[x := r�]

5. (nrec r s 0)� := r�

6. (nrec r s (Sn))� := s� n (nrec r� s� n)

67 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

7. (En[µαn.[αn] . . . E1[µα1.[α1]r]])� := E�n . . . E
�
1 [r�]

provided that n ≥ 1, αi /∈ FCV(r) for all 1 ≤ i ≤ n, αi /∈ FCV(Ej) for all
i and j such that 0 ≤ j < i ≤ n, and r 6≡ E[µβ.c]

8. (En[µαn.[αn] . . . E1[µα1.[α1]E0[µβ.c]]])� := µα.c�[β := αE�n . . . E
�
0]

provided that αi /∈ FCV(c) for all 1 ≤ i ≤ n, αi /∈ FCV(Ej) for all i and
j such that 0 ≤ j < i ≤ n, and if c ≡ [β]t then β ∈ FCV(t)

9. (sr)� := s�r�

provided that s 6≡ E[µβ.c] and s 6≡ λx.t

10. (nrec r s u)� := nrec r� s� u�

provided that u 6≡ E[µβ.c] and u 6≡ n

11. (Su)� := Su�

provided that u 6≡ E[µβ.c]

with the complete development c� of a command c defined as:

1. ([α]E[µβ.c])� := c�[β := αE�]

2. ([α]t)� := [α]t�

provided that t 6≡ E[µβ.c]

and the complete development E� of a context E defined as:

1. 2� := 2

2. (Et)� := E�t�

3. (SE)� := SE�

4. (nrec r s E)� := nrec r� s� E�

Theorem 4.3.13. Given terms t1 and t2 such that t1 ⇒ t2, then t2 ⇒ t�1.

Proof. We prove this result by mutual induction on the structure of terms,
commands and contexts. Firstly, we prove it for terms using the case distinction
made in Lemma 4.3.9.

1. Suppose that t1 ≡ x. Now merely the reduction (t1) is possible, so let
x⇒ x. Therefore x⇒ x� ≡ x.

2. Suppose that t1 ≡ 0. Now merely the reduction (t2) is possible, so let
0⇒ 0. Therefore 0⇒ 0� ≡ 0.

3. Suppose that t1 ≡ λx.s1. Now merely the reduction (t3) is possible, so
let λx.s1 ⇒ λx.s2 with s1 ⇒ s2. Therefore s2 ⇒ s�1 by the induction
hypothesis, so λx.s2 ⇒ (λx.s1)� ≡ λx.s�1.

4. Suppose that t1 ≡ (λx.s1)r1. The following reductions are possible.

68 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

(t4,t3) (λx.s1)r1 ⇒ (λx.s2)r2 with s1 ⇒ s2 and r1 ⇒ r2. Now we have
s2 ⇒ s�1 and r2 ⇒ r�1 by the induction hypothesis. Therefore we have
(λx.s2)r2 ⇒ ((λx.s1)r1)� ≡ s�1[x := r�1].

(t5) (λx.s1)r1 ⇒ s2[x := r2] with s1 ⇒ s2 and r1 ⇒ r2. Now we
have s2 ⇒ s�1 and r2 ⇒ r�1 by the induction hypothesis. Therefore
s2[x := r2]⇒ ((λx.s1)r1)� ≡ s�1[x := r�1] by Lemma 4.3.7.

5. Suppose that t1 ≡ nrec r1 s1 0. The following reductions are possible.

(t4,t2) nrec r1 s1 0 ⇒ nrec r2 s2 0 with r1 ⇒ r2 and s1 ⇒ s2. Now
we have r2 ⇒ r�1 and s2 ⇒ s�1 by the induction hypothesis, hence
nrec r2 s2 0⇒ (nrec r1 s2 0)� ≡ r�1 .

(t8) nrec r1 s1 0 ⇒ r2 with r1 ⇒ r2. Now we have r2 ⇒ r�1 by the
induction hypothesis, hence r2 ⇒ (nrec r1 s2 0)� ≡ r�1 .

6. Suppose that t1 ≡ nrec r1 s1 (Sn). The following reductions are possible.

(t4,t2) nrec r1 s1 (Sn)⇒ nrec r2 s2 (Sn), then r1 ⇒ r2 and s1 ⇒ s2. Now
we have r2 ⇒ r�1 and s2 ⇒ s�1 by the induction hypothesis, hence
nrec r2 s2 (Sn)⇒ (nrec r1 s2 (Sn))� ≡ s�1 n (nrec r�1 s

�
1 n).

(t9) nrec r1 s1 (Sn) ⇒ s2 n (nrec r2 s2 n), then r1 ⇒ r2 and s1 ⇒ s2.
Now we have r2 ⇒ r�1 and s2 ⇒ s�1 by the induction hypothesis, hence
s2 n (nrec r2 s2 n)⇒ (nrec r1 s2 (Sn))� ≡ s�1 n (nrec r�1 s

�
1 n).

7. Suppose that t1 ≡ En[µαn.[αn] . . . E1[µα1.[α1]r]] provided that n ≥ 1,
αi /∈ FCV(r) for all i ∈ N such that 1 ≤ i ≤ n, αi /∈ FCV(Ej) for all
i, j ∈ N such that 0 ≤ j < i ≤ n, and r 6≡ E[µβ.c]. Now we have Ei ⇒ Fi
implies Fi ⇒ F �i and r ⇒ s implies s ⇒ r� by the induction hypothesis.
Hence if t1 ⇒ t2, then t2 ⇒ t�1 ≡ E�n . . . E�1 [r�] by Lemma 4.3.10.

8. Suppose that t1 ≡ En[µαn.[αn] . . . E1[µα1.[α1]E0[µβ.c]]] provided that
αi /∈ FCV(c) for all i ∈ N such that 1 ≤ i ≤ n, αi /∈ FCV(Ej) for all
i, j ∈ N such that 0 ≤ j < i ≤ n, and if c ≡ [β]t then β ∈ FCV(t). Now we
have Ei ⇒ Fi implies Fi ⇒ F �i and c⇒ d implies d⇒ c� by the induction
hypothesis. Hence if t1 ⇒ t2, then t2 ⇒ t�1 ≡ µα.c�[β := αE�n . . . E

�
0] by

Lemma 4.3.11.

9. Suppose that t1 ≡ s1r1 provided that s1 6= E[µα.c] and s1 6= λx.s.
Now merely the reduction (t4) is possible, therefore let s1r1 ⇒ s2r2 with
s1 ⇒ s2 and r1 ⇒ r2. We have s1 ⇒ s�2 and r2 ⇒ r�1 by the induction
hypothesis, so s2r2 ⇒ (s1r1)� ≡ s�1r�1 .

10. Suppose that t1 ≡ nrec r1 s1 u1 provided that u1 6= E[µα.c] and u1 6= n.
Now we have nrec r1 s1 u1 ⇒ nrec r2 s2 u2 with r1 ⇒ r2, s1 ⇒ s2 and
u1 ⇒ u2 because merely the reduction (t4) is possible. Furthermore we
have r2 ⇒ r�1 , s2 ⇒ s�1 and u2 ⇒ u�1 by the induction hypothesis, so
nrec r2 s2 u2 ⇒ (nrec r1 s1 u1)� ≡ nrec r�1 s

�
1 u
�
1.

11. Suppose that t1 ≡ Su1 provided that u1 6= E[µα.c]. Now merely the
reduction (t4) is possible, therefore let Su1 ⇒ Su2 with u1 ⇒ u2. We have
u2 ⇒ u�1 by the induction hypothesis, so Su2 ⇒ (Su1)� ≡ Su�1.

69 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Secondly, we prove it for commands. Here we distinguish the following cases.

1. Suppose that c1 ≡ [α]En[µαn.[αn] . . . E1[µα1.[α1]r]] provided that
αi /∈ FCV(r) for all i ∈ N such that 1 ≤ i ≤ n, αi /∈ FCV(Ej) for all
i, j ∈ N such that 0 ≤ j < i ≤ n, and r 6≡ E[µβ.c]. Now we have Ei ⇒ Fi
implies Fi ⇒ F �i and r ⇒ s implies s ⇒ r� by the induction hypothesis.
Hence if c1 ⇒ c2, we have c2 ⇒ c�1 ≡ [α]E�n . . . E

�
1 [r�] by Lemma 4.3.10.

2. Suppose that c1 ≡ [α]En[µαn.[αn] . . . E1[µα1.[α1]E0[µβ.c]]] provided that
αi /∈ FCV(c) for all i ∈ N such that 1 ≤ i ≤ n, αi /∈ FCV(Ej) for all
i, j ∈ N such that 0 ≤ j < i ≤ n, and if c ≡ [β]t then β ∈ FCV(t). Now we
have Ei ⇒ Fi implies Fi ⇒ F �i and c⇒ d implies d⇒ c� by the induction
hypothesis. Hence if c1 ⇒ c2, then c2 ⇒ c�1 ≡ c�[β := αE�n . . . E

�
0] by

Lemma 4.3.11.

Thirdly, for contexts it follows immediately, so we are done.

Corollary 4.3.14. Parallel reduction is confluent, that is, if t1 ⇒ t2 and t1 ⇒
t3, then there exists a term t4 such that t2 ⇒ t4 and t3 ⇒ t4.

Proof. Let t4 = t�1. Now we have t2 ⇒ t�1 and t3 ⇒ t�1 by Theorem 4.3.13.

Lemma 4.3.15. Given terms t and t′ such that t→ t′, then t⇒ t′.

Proof. By induction on t→ t′ using the fact that parallel reduction is reflexive
(Lemma 4.3.3).

Lemma 4.3.16. Given terms t, t′ and s such that t→ t′, then:

t[x := s]→ t′[x := s]

Proof. By induction on t→ t′ using Lemma 4.2.12.

Lemma 4.3.17. Given terms t, s and s′ such that s � s′, then:

t[x := s] � t[x := s′]

Proof. By induction on the structure of t using Lemma 4.2.12.

Corollary 4.3.18. Reduction is preserved under substitution, that is given
terms t and t′ such that t � t′ and terms s and s′ such that s � s′, then:

t[x := s] � t′[x := s′]

Proof. By induction on t � t′.

1. Let t ≡ t′. Now t[x := s] ≡ t′[x := s] � t′[x := s′] by Lemma 4.3.16.

2. Let t→ t′. Now t[x := s]→ t′[x := s] � t′[x := s′] by Lemma 4.3.17 and
4.3.16, respectively.

3. Let t � t′ and t′ � t′′. Now t[x := s] � t′[x := s] � t′′[x := s′] by the
induction hypothesis.

70 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Definition 4.3.19. Reduction E → E′ on contexts E and E′ is defined as
the compatible closure of → on contexts. Moreover, � on contexts denotes the
reflexive/transitive closure of → on contexts.

Lemma 4.3.20. Given terms t and t′ and a context E such that t→ t′, then:

t[α := βE] � t′[α := βE]

Proof. By induction on t → t′ using Lemma 4.2.12. The only interesting case
is [α]µγ.c→ c[γ := α2], where we have the following.

([α]µγ.c)[α := βE] ≡ [β]E[µγ.c[α := βE]]
� [β]µγ.c[α := βE][γ := γE] (a)
→ c[α := βE][γ := γE][γ := β2]
≡ c[γ := α2][α := βE] (b)

Here we use Lemma 4.2.9 for (a) and Lemma 4.2.12 for (b).

Lemma 4.3.21. Given a term t and contexts E and E′ such that E → E′,
then:

t[α := βE] � t[α := βE′]

Proof. By induction on the structure of t using Lemma 4.2.12.

Corollary 4.3.22. Reduction is preserved under structural substitution, that is
given terms t and t′ such that t � t′ and contexts E and E′ such that E � E′,
then:

t[α := βE] � t′[α := βE′]

Proof. Similar to the proof of Corollary 4.3.18.

Lemma 4.3.23. Given terms t and t′ such that t⇒ t′, then t � t′.

Proof. By induction on t⇒ t′. We treat some interesting cases.

(t5) Let (λx.t)r ⇒ t′[x := r′] with t ⇒ t′ and r ⇒ r′. We have t � t′ and
r � r′ by the induction hypothesis. Therefore, by Corollary 4.3.18, we
have (λx.t)r → t[x := r] � t′[x := r′].

(t6) Let E[µα.c]⇒ µα.c′[α := αE′] with c⇒ c′ and E ⇒ E′. We have c � c′

and E � E′ by the induction hypothesis. Therefore, by Lemma 4.2.9 and
Corollary 4.3.22: E[µα.c] � µα.c[α := αE] � µα.c′[α := αE′].

Theorem 4.3.24. Reduction on λT
µ is confluent, that is if t1 � t2 and t1 � t3,

then there exists a term t4 such that t2 � t4 and t3 � t4.

Proof. By Corollary 4.3.14, Lemma 4.3.15, Lemma 4.3.23 and the fact that if
⇒ is confluent then also ⇒∗ is confluent.

71 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

4.4 Strong normalization of λT
µ

In this section we prove that λT
µ is strongly normalizing. This is achieved by

defining two reductions →A and →B such that →=→A ∪ →B . In Section
4.4.1 we prove, using the reducibility method, that →A is strongly normaliz-
ing. In Section 4.4.2 we prove that →B is strongly normalizing and moreover
that each infinite →AB-reduction sequence can be transformed into an infinite
→A-reduction sequence. The first phase is inspired by Parigot’s proof of strong
normalization for λµ [Par97] and the second phase is inspired by Rehof and
Sørensen’s proof of strong normalization for λ∆ [RS94].

Definition 4.4.1. Let →A denote the compatible closure of the reduction rules
→β, →µS, →µR, →0, →S and →µN, moreover let →B denote the compatible
closure of the reduction rules →µη and →µi.

Definition 4.4.2. Given a notion of reduction →X (e.g. →A or →B), let SNX
and SN⊥X denote the sets of strongly normalizing terms and strongly normalizing
commands, respectively.

Definition 4.4.3. Given a notion of reduction →X (e.g. →A or →B) and a
term t ∈ SNX or command c ∈ SN⊥X , let νX(t) and νX(c) denote the maximal
length of any →X-reduction sequence starting at t and c, respectively.

4.4.1 Strong normalization of (A)

In this subsection we prove that →A-reduction is strongly normalization using
the reducibility method. Since we are merely concerned with →A-reduction we
will omit subscripts from all notations. Moreover, for the same reasons as in
the previous section we specify most of the forthcoming lemmas just for terms
and not for commands.

The reducibility method is originally due to Tait [Tai67], who proposed the
following interpretation for →-types.

[[α]] := SN

[[ρ→ δ]] := {t | ∀r ∈ [[ρ]] . tr ∈ [[δ]]}

This interpretation makes it possible to prove strong normalization of λ→ in a
very short and elegant way [Geu08, for example]. Instead of proving that a term
t of type ρ is strongly normalizing one proves a slight generalization, namely
t ∈ [[ρ]]. This method also extends easily to λT [GTL89, for example].

Unfortunately, for λµ it becomes more complicated. If a term of the shape
λx.r consumes an argument the λ-abstraction vanishes. However, if a term of
the shape µα.c consumes an argument the µ-abstraction remains, hence it is
not possible to predict how many arguments µα.c will consume. To repair this
issue Parigot has proposed a way to switch between a term that is a member of
a certain reducibility candidate and that is strongly normalizing when applied
to a certain set of sequences of arguments.

In λT
µ a term of the shape µα.c is not only able to consume arguments on

its right hand side, but is also able to consume an unknown number of S’s and
nrec’s. Therefore we generalize Parigot’s idea to contexts so that we are able

72 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

to switch between a term that is a member of a certain reducibility candidate
and that is strongly normalizing in a certain set of contexts.

Before going into the details of the proof we state a fact and two lemmas
about preservation of reduction under substitution.

Fact 4.4.4. If t ∈ SN and t→ t′, then ν(t) > ν(t′).

Lemma 4.4.5. (A)-reduction is preserved under substitution, that is given
terms t, t′ and s, s′ such that t � t′ and s � s′, then:

t[x := r] � t′[x := r]

Proof. Similar to the proof of Corollary 4.3.18.

Lemma 4.4.6. (A)-reduction is preserved under structural substitution, that is
given terms t and t′ such that t � t′ and contexts E and E′ such that E � E′,
then:

t[α := βE] � t′[α := βE′]

Proof. Similar to the proof of Corollary 4.3.22.

We now extend the notion of strongly normalizing terms to strongly normal-
izing contexts, informally this means that all terms contained in a context are
strongly normalizing.

Definition 4.4.7. Let SN2 denote the set of strongly normalizing contexts, this
set is inductively defined as follows.

1. 2 ∈ SN2

2. If E ∈ SN2 and t ∈ SN, then Et ∈ SN2.

3. If E ∈ SN2, then SE ∈ SN2.

4. If E ∈ SN2, r ∈ SN and s ∈ SN, then nrec r s E ∈ SN2.

Parigot’s approach has another advantage; for the expansion lemmas we do
not need to worry about the interpretation of types. We merely need the notion
of being strongly normalizing (with respect to some context).

Lemma 4.4.8. For each context E and redex w such that E[w]→ t we have:

1. t ≡ E[w′] and w → w′, or,

2. t ≡ E′[w] and E → E′

A redex is a term w such that w ≡ (λx.r)t, w ≡ nrec r s n or w ≡ Es[µα.c].

Proof. Simultaneous with E[w] 6≡ λy.s, E[w] 6≡ µβ.d and E[w] 6≡ m by induc-
tion on the structure of E.

Lemma 4.4.9. For each context E and terms t and r ∈ SN we have that
E[t[x := r]] ∈ SN implies E[(λx.t)r] ∈ SN.

73 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Proof. We prove this by well-founded induction on ν(r) + ν(E[t[x := r]]). Since
it is sufficient to show that E[(λx.t)r]→ w implies w ∈ SN we take a look at all
possible shapes of w.

1. Suppose that w ≡ E[t[x := r]]. Now we are immediately done because
E[t[x := r]] ∈ SN by assumption.

2. Suppose that w ≡ E[(λx.t′)r] and t→ t′. Now E[t[x := r]]→ E[t′[x := r]]
by Lemma 4.4.5, hence E[t′[x := r]] ∈ SN. Furthermore, by Fact 4.4.4,
we have ν(E[t[x := r]]) > ν(E[t′[x := r]]), so we are allowed to use the
induction hypothesis by which we have E[(λx.t′)r] ∈ SN.

3. Suppose that w ≡ E[(λx.t)r′] and r → r′. Now E[t[x := r]] � E[t[x := r′]]
by Lemma 4.4.5 and therefore E[t[x := r′]] ∈ SN. Furthermore, by Fact
4.4.4, we have ν(r) > ν(r′), so we are allowed to use the induction hy-
pothesis by which we have E[(λx.t)r′] ∈ SN.

4. Suppose that w ≡ E[(λx.t)r] and E → E′. Now E[t[x := r]]→ E′[t[x := r]]
and therefore E′[t[x := r]] ∈ SN. Furthermore, by Fact 4.4.4, we have
ν(E[(λx.t)r]) > ν(E′[(λx.t)r]), so we are allowed to use the induction hy-
pothesis by which we obtain E′[(λx.t)r] ∈ SN.

Lemma 4.4.8 guarantees that these are indeed all possible shapes of w.

Lemma 4.4.10. For each singular context F s ∈ SN2, context E and command
c we have that E[µα.c[α := αF s]] ∈ SN implies E[F s[µα.c]] ∈ SN.

Proof. By distinguishing the possible shapes on F s we obtain three goals similar
to the preceding lemma. Likewise, the proofs of these goals are similar to the
proofs of the preceding lemma, only for the sub-cases corresponding to (1), (2)
and (3) we use Lemma 4.4.6.

Corollary 4.4.11. For each context F ∈ SN2, context E and command c we
have that E[µα.c[α := αF]] ∈ SN implies E[F [µα.c]] ∈ SN.

Proof. By induction on the structure of F .

1. Suppose that F = 2. Now we have E[µα.c] ≡ E[µα.c[α := α2]] for each
context E and command c, so by assumption we are done.

2. Suppose that F = GsH. Now, by Lemma 4.2.12 and assumption, we have
E[µα.c[α := αH][α := αGs]] ≡ E[µα.c[α := αF]] ∈ SN. Therefore we have
E[Gs[µα.c[α := αH]]] ∈ SN by Lemma 4.4.10, so E[Gs[H[µα.c]]] ∈ SN by
the induction hypothesis.

Lemma 4.4.12. For each context E we have the following.

1. If E[r] ∈ SN and s ∈ SN, then E[nrec r s 0] ∈ SN.

2. If E[s n (nrec r s n)] ∈ SN, then E[nrec r s (Sn)] ∈ SN.

Proof. By well-founded induction on ν(E[nrec r s 0]) and ν(E[nrec r s (Sn)]),
respectively, we prove that if E[nrec r s 0]→ w or E[nrec r s (Sn)]→ w, then
w ∈ SN by analyzing the possible shapes of w.

74 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Parigot’s method extends the well-known functional construction of two sets
S and T of terms S → T := {t | ∀u ∈ S . tu ∈ T} to a set S of sequences of
terms and a set T of terms as S → T := {t | ∀~u ∈ S . t~u ∈ T}. Moreover he has
defined his notion of reducibility candidates in such way that each reducibility
candidate R can be expressed as S → SN for a certain set of sequences of terms S.
Therefore he is able to switch between the proposition t ∈ R and the proposition
t~u ∈ SN for all ~v ∈ S. Since we consider contexts we extend Parigot’s notion of
functional construction to contexts, this happens in the obvious way.

Definition 4.4.13. Given a set of contexts E and a set of terms T , then the
functional construction X → T is defined as follows.

E → T := {t | ∀E ∈ E . E[t] ∈ T}

Given two sets of terms S and T , then S → T is defined as follows.

S → T := {2u | u ∈ S} → T

Remark that our definition of the functional construction S → T for sets of
terms S and T is equivalent to the ordinary definition.

S → T = {2u | u ∈ S} → T = {t | ∀u ∈ S . tu ∈ T}

Keeping in mind that we wish to express each reducibility candidate R as
E → SN for some E , one could try to define the collection of reducibility candi-
dates as the smallest set that contains SN and is closed under functional con-
struction and arbitrary intersection. But then {nrec Ω Ω 2} → SN = ∅ is a
valid candidate too. To avoid this we should be a bit more careful.

Definition 4.4.14. Let R denote the collection of , this is the smallest collection
of sets of terms satisfying the following conditions.

(sn) SN ∈ R

(
⋂

) If R ⊆ R, then
⋂

R ∈ R.

(app) If S, T ∈ R, then S → T ∈ R.

(suc) If T ∈ R, then {S2} → T ∈ R.

(nrec) If S, T ∈ R, then {nrec r s 2 | r ∈ T, s ∈ S → T → T} → T ∈ R.

Lemma 4.4.15. For each context E and variable x such that E[x]→ t we have
t ≡ E′[x] and E → E′.

Proof. Simultaneous with E[x] 6≡ λy.s, E[x] 6≡ µβ.d and E[x] 6≡ m by induction
on the structure of E.

Lemma 4.4.16. For each R ∈ R we have the following.

1. R ⊆ SN

2. E[x] ∈ R for each x and E ∈ SN2

Proof. Simultaneously by induction on the generation of R.

75 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

(sn) Suppose that R = SN. Now we certainly have R ⊆ SN and moreover
E[x] ∈ SN by Lemma 4.4.15.

(
⋂

) Suppose that R =
⋂

R. Now we have T ⊆ SN for each T ∈ R by the
induction hypothesis, hence

⋂
R ⊆ SN.

(app) Suppose that R = S → T . For the first property, moreover suppose that
t ∈ R, which means tu ∈ T for each u ∈ S. The induction hypothesis
guarantees that x ∈ S and thus tx ∈ T . Therefore we have tx ∈ SN by the
induction hypothesis, so certainly t ∈ SN.

For the second property we have to show that E[x] ∈ R. So suppose that
we are given a u ∈ S, now by the induction hypothesis we obtain that
u ∈ SN, hence the induction hypothesis of the second property guarantees
that E(2u)[x] ≡ E[x]u ∈ T and thus E[x] ∈ R.

(suc) Suppose that R = {S2} → T . For the first property, moreover suppose
that t ∈ R, which means that St ∈ T . Therefore St ∈ SN by the induction
hypothesis, so certainly t ∈ SN.

For the second property we have to show that E[x] ∈ R. By the induction
hypothesis we have SE[x] ∈ T and thus E[x] ∈ R.

(nrec) Suppose thatR = {nrec r s 2 | r ∈ T, s ∈ S → T → T} → T . For the first
property, moreover suppose that t ∈ R, which means that nrec r s t ∈ T
for each r ∈ T and s ∈ S → T → T . By the induction hypothesis we
have x ∈ T and y ∈ S → T → T (by a similar argument as (2)), hence
nrec x y t ∈ T ⊆ SN and therefore certainly t ∈ SN.

For the second property we have to show that E[x] ∈ R. Now we have
nrec r s E[x] ∈ T for every r ∈ T ⊆ SN and s ∈ S → T → T ⊆ SN by the
induction hypothesis, hence E[x] ∈ R.

As we have remarked before, we wish to express each reducibility candidate
R as E → SN for some set of contexts E . Now we will make that idea precise.

Definition 4.4.17. Given an R ∈ R, a set of contexts R⊥ is inductively defined
on the generation of R as follows.

SN⊥ := {2}

(
⋂

R)⊥ :=
⋃
{T⊥ | T ∈ R}

(S → T)⊥ := {2} ∪ {E(2u) | u ∈ S,E ∈ T⊥}
({S2} → T)⊥ := {2} ∪ {E(S2) | E ∈ T⊥}

({nrec r s 2} → T)⊥ := {2} ∪ {E(nrec r s 2) | r ∈ T, s ∈ S → T → T,E ∈ T⊥}

Fact 4.4.18. For each R ∈ R we have 2 ∈ R⊥.

Lemma 4.4.19. For each R ∈ R we have R = R⊥ → SN

Proof. By induction on the generation of R.

(sn) Suppose that R = SN. We have R = {2} → SN, so we are done.

76 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

(
⋂

) Suppose that R =
⋂

R. Now we have T = T⊥ → SN for each T ∈ R by
the induction hypothesis and therefore the following.

R =
⋂
{T⊥ → SN | T ∈ R}

=
⋂
{t | ∀T ∈ R, E ∈ T⊥ . E[t] ∈ SN}

=
⋃
{T⊥ | T ∈ R} → SN

(app) Suppose that R = S → T . Now we have T = T⊥ → SN by the induction
hypothesis and therefore the following.

R = {2u | u ∈ S} → T⊥ → SN

= {t | ∀u ∈ S . tu ∈ T⊥ → SN}
= {t | ∀u ∈ S,E ∈ T⊥ . E[tu] ∈ SN}
= {t | ∀F ∈ {E(2u) | u ∈ S,E ∈ T⊥} . F [t] ∈ SN} (?)

= {t | t ∈ SN ∧ ∀F ∈ {E(2u) | u ∈ S,E ∈ T⊥} . F [t] ∈ SN}
= {t | ∀F ∈ {2} ∪ {E(2u) | u ∈ S,E ∈ T⊥} . F [t] ∈ SN}
= {2} ∪ {E(2u) | u ∈ S,E ∈ T⊥} → SN

(suc) Suppose that R = {S2} → T . Now we have T = T⊥ → SN by the
induction hypothesis and therefore the following.

R = {S2} → T⊥ → SN

= {t | ∀E ∈ T⊥ . E[St] ∈ SN} (?)

= {t | t ∈ SN ∧ ∀E ∈ T⊥ . E[St] ∈ SN}
= {2} ∪ {E(S2) | E ∈ T⊥} → SN

(nrec) Suppose that R = {nrec r s 2 | r ∈ T, s ∈ S → T → T} → T . Now
we have T = T⊥ → SN by the induction hypothesis and therefore the
following.

R = {nrec r s 2 | r ∈ T, s ∈ S → T → T} → T⊥ → SN

= {t | ∀E ∈ T⊥, r ∈ T, s ∈ S → T → T . E[nrec r s t] ∈ SN} (?)

= {t | t ∈ SN ∧ ∀E ∈ T⊥, r ∈ T, s ∈ S → T → T . E[nrec r s t] ∈ SN}
= {2} ∪ {E(nrec r s 2) | r ∈ T, s ∈ S → T → T,E ∈ T⊥} → SN

The steps (?) are allowed because for each T ∈ R we have T 6= ∅ by Lemma
4.4.16, T⊥ 6= ∅ by Fact 4.4.18 and because F [t] ∈ SN implies t ∈ SN.

Lemma 4.4.20. For each R ∈ R and term t we have t ∈ R iff E[t] ∈ SN for
all contexts E ∈ R⊥.

Proof. Assume that t ∈ R and E ∈ R⊥. Now R = R⊥ → SN by Lemma 4.4.19
and therefore E[t] ∈ SN by Definition 4.4.13.

For the reverse implication assume that E[t] ∈ SN for each E ∈ R⊥. Now
t ∈ R⊥ → SN by Definition 4.4.13 and therefore t ∈ R by Lemma 4.4.19.

77 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Now, before we can prove strong normalization of→A, it remains to give an
interpretation [[ρ]] ∈ R for each type ρ. Intuitively one would try to adapt the
introduction for λ→, which we have given in the introduction of this section.

[[N]] := SN

[[ρ→ δ]] := [[δ]]→ [[σ]]

Unfortunately, the interpretation of N does not contain enough structure to
prove the following properties.

1. If t ∈ SN, then St ∈ SN.

2. If t ∈ SN, r ∈ S and s ∈ SN → S → S, then nrec r s t ∈ S.

Here, the term t could reduce to a term of the shape µα.c and is thereby able
to consume the surrounding S or nrec. To define an interpretation of N that
contains more structure we introduce the following definition first.

Definition 4.4.21. Let N denote the smallest collection of terms satisfying the
following conditions.

(sn) SN ∈ N

(suc) If S ∈ N , then {S2} → S ∈ N .

(nrec) If S ∈ N and T ∈ R, then {nrec r s 2 | r ∈ T, s ∈ S → T → T} → T ∈ N .

Definition 4.4.22. The interpretation [[ρ]] of a type ρ is defined as follows.

[[N]] :=
⋂
N

[[δ → σ]] := [[δ]]→ [[σ]]

Fact 4.4.23. For each type ρ we have [[ρ]] ∈ R.

Lemma 4.4.24. For each n ∈ N we have n ∈ [[N]].

Proof. In order to prove this result we have to show that n ∈ R for all R ∈ N
and n ∈ N. We proceed by induction on the generation of R.

(var) Suppose that R = SN. Now we have to show that n ∈ SN for all n ∈ N.
However, n is in normal form, so we have certainly n ∈ SN.

(suc) Suppose that R = {S2} → S. Now we have n ∈ S for all n ∈ N by
the induction hypothesis and have to show that Sn ∈ S for all n ∈ N.
However, Sn ≡ n+ 1, so the required result follows immediately from the
induction hypothesis.

(nrec) Suppose that R = {nrec r s 2 | r ∈ T, s ∈ S → T → T} → T . Now we
have n ∈ S for all n ∈ N by the induction hypothesis and have to show
that nrec r s n ∈ T for all S ∈ N , T ∈ R, r ∈ T , s ∈ S → T → T and
n ∈ N. We proceed by induction on n.

(a) Suppose that n = 0. We have E[r] ∈ SN for all E ∈ T⊥ by Lemma
4.4.20 and s ∈ SN by Lemma 4.4.16. Hence E[nrec r s 0] ∈ SN by
Lemma 4.4.12 and therefore nrec r s 0 ∈ T by Lemma 4.4.20.

78 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

(b) Suppose that n > 0. Now we have nrec r s n− 1 ∈ T by the in-
duction hypothesis. Furthermore, because s ∈ S → T → T and
n− 1 ∈ S, we have s n− 1 (nrec r s n− 1) ∈ T and therefore
E[s n− 1 (nrec r s n− 1)] ∈ SN for all E ∈ T⊥ by Lemma 4.4.20.
Hence E[nrec r s (Sn− 1)] ∈ SN by Lemma 4.4.12, so nrec r s n ∈ T
by Lemma 4.4.20.

Lemma 4.4.25. If t ∈ [[N]], then St ∈ [[N]].

Proof. Assume that t ∈ [[N]], that means, t ∈ R for all R ∈ N . Now we have to
prove that St ∈ R for all R ∈ N . But for all R ∈ N we have {S2} → R ∈ N ,
hence t ∈ {S2} → R by assumption and therefore St ∈ R.

Lemma 4.4.26. If r ∈ [[ρ]], s ∈ [[N→ ρ→ ρ]] and t ∈ [[N]], then nrec r s t ∈ [[ρ]].

Proof. We have [[N]] ∈ N by Definition 4.4.22, so if t ∈ [[N]], then nrec r s t ∈ T
for all T ∈ R, r ∈ T and s ∈ [[N]] → T → T by Definition 4.4.21. Also [[ρ]] ∈ R
by Fact 4.4.23 and [[N→ ρ→ ρ]] = [[N]]→ [[ρ]]→ [[ρ]] , hence nrec r s t ∈ [[ρ]].

Lemma 4.4.27. Let x1 : ρ1, . . . , xn : ρn;α1 : δ1, . . . , αm : δm ` t : σ such that
ri ∈ [[ρi]] for all 1 ≤ i ≤ n and Ej ∈ [[δj]]

⊥ for all 1 ≤ j ≤ m, then:

t[x1 := r1, . . . , x1 := r1, α1 := α1 E1, . . . , αm := αm Em] ∈ [[σ]]

Proof. Abbreviate Γ = x1 : ρ1, . . . , xn : ρn, ∆ = α1 : δ1, . . . , αm : δm and
t′ ≡ t[x1 := r1, . . . , x1 := r1, α1 := α1 E1, . . . , αm := αm Em]. Now by mutual
induction we prove that Γ; ∆ ` t : σ implies t ∈ [[σ]] and that Γ; ∆ ` c : |=

implies c′ ∈ SN⊥.

(var) Let Γ; ∆ ` x : σ such that x : σ ∈ Γ. Now we have x′ ∈ [[σ]] by assumption.

(λ) Let Γ; ∆ ` λx : ρ.t : ρ→ δ with Γ, x : ρ; ∆ ` t : δ. Moreover let u ∈ [[ρ]]
and E ∈ [[δ]]⊥. Now we have t′[x := u] ∈ [[δ]] by the induction hypothesis
and so E[t′[x := u]] ∈ SN by Lemma 4.4.20. Therefore E[(λx.t′)u] ∈ SN by
Lemma 4.4.9 and hence (λx.t′)u ∈ [[δ]] by Lemma 4.4.20, so λx.t′ ∈ [[ρ→ δ]]
by Definition 4.4.13.

(app) Let Γ; ∆ ` ts : δ with Γ; ∆ ` t : ρ→ δ and Γ; ∆ ` s : ρ. Now we have
t′ ∈ [[ρ→ δ]] = [[ρ]] → [[δ]] and s′ ∈ [[ρ]] by the induction hypothesis, hence
t′s′ ∈ [[δ]] by Definition 4.4.13.

(zero) Let Γ; ∆ ` 0 : N. Now we have 0 ∈ [[N]] by Lemma 4.4.24.

(suc) Let Γ; ∆ ` St : N with Γ; ∆ ` t : N. Now we have t′ ∈ [[N]] by the induction
hypothesis and therefore St′ ∈ [[N]] by Lemma 4.4.25.

(nrec) Let Γ; ∆ ` nrec r s t : ρ with Γ; ∆ ` r : ρ, Γ; ∆ ` s : N→ ρ→ ρ and
Γ; ∆ ` t : N. Now we have r′ ∈ [[ρ]], s′ ∈ [[N→ ρ→ ρ]] and t′ ∈ [[N]] by the
induction hypothesis. Therefore nrec r′ s′ t′ ∈ [[ρ]] by Lemma 4.4.26.

(act) Let Γ; ∆ ` µα : ρ.c : ρ with Γ; ∆.α : ρ ` c : |= . Moreover let E ∈ [[ρ]]⊥.
Now we have c′[α := αE] ∈ SN⊥ by the induction hypothesis. Hence
µα.c′[α := αE] ∈ SN and therefore E[µα.c′] ∈ SN by Corollary 4.4.11, so
µα.c′ ∈ [[ρ]] by Lemma 4.4.20.

79 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

(pas) Let Γ; ∆ ` [α]t : |= with α : δ ∈ ∆ and Γ; ∆ ` t : δ. Now we have t′ ∈
[[δ]] by the induction hypothesis and a context E ∈ [[δ]]⊥ by assumption.
Therefore E[t′] ∈ SN by Lemma 4.4.20 and so [α]E[t′] ∈ SN⊥ because
([α]t)′ = [α]E[t′].

Corollary 4.4.28. If Γ; ∆ ` t : ρ, then t ∈ SNA.

Proof. Suppose that Γ; ∆ ` t : ρ. Now we have x ∈ [[ρ]] for each x : ρ ∈ Γ by
Lemma 4.4.16 and 2 ∈ [[δ]]⊥ for each α : δ ∈ ∆ by Fact 4.4.18. Therefore t ∈ [[ρ]]
by Lemma 4.4.27 and hence t ∈ SNA by Fact 4.4.23 and Lemma 4.4.16.

4.4.2 Strong normalization of (A) and (B)

Lemma 4.4.29. For each term t it holds that t ∈ SNB.

Proof. By performing a →µη or →µi-reduction step on t, the term t reduces
strictly in its size and therefore →B-reduction is strongly normalising.

Lemma 4.4.30. A single →A-reduction step can be advanced. That means, if
t1 →B t2 →A t3, then there is a t4 such that the following diagram commutes.

t1

A

��

B // t2

A

��
t4

AB
// // t3

Proof. We prove this lemma by distinguishing cases on t1 →B t2 and t2 →A t3,
we treat some interesting cases.

1. Let (λx.t)r →B (λx.t)r′ →A λx.t[x := r′] with r →B r′. Now by Lemma
4.3.17 we have t[x := r] �AB t[x := r′], hence the following diagram
commutes.

(λx.t)r

A

��

B // (λx.t)r′

A

��
t[x := r]

AB
// // t[x := r′]

2. Let Es[µα.c] →B F s[µα.c] →A µα.c[α := αF s] with Es →B F s. Now by
Lemma 4.3.21 we have c[α := αEs] �AB c[α := αF s], hence the following
diagram commutes.

Es[µα.c]

A

��

B // F s[µα.c]

A

��
µα.c[α := αEs]

AB
// // µα.c[α := αF s]

80 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

3. Let (µα.[α]λx.t)r →B (λx.t)r →A t[x := r]. Now the following diagram
commutes.

(µα.[α]λx.t)r

A

��

B // (λx.t)r

A

��
µα.[α](λx.t)r

A
// µα.[α]t[x := r]

B
// t[x := r]

4. Let nrec r s (µα.[α]Sn) →B nrec r s Sn →A s n (nrec r s n). Now the
following diagram commutes.

nrec r s (µα.[α]Sn)

A

��

B // nrec r s Sn

A

��
µα.[α]nrec r s Sn

A
// µα.[α](s n (nrec r s n))

B
// s n (nrec r s n)

5. Let Es[µα.[α]µβ.c]→B Es[µα.c[β := α 2]]→A µα.c[β := α 2][α := αEs].
Now the following diagram commutes by Lemma 4.2.12.

Es[µα.[α]µβ.c]

A

��

B // Es[µα.c[β := α 2]]

A

��
µα.[α]Es[µβ.c[α := αEs]]

A
))SSSSSSSSSSSSSS

µα.c[β := α 2][α := αEs]

µα.[α]µβ.c[α := αEs][β := βEs]
B

55kkkkkkkkkkkkkk

6. Let Es[µα.[γ]µβ.c] →B Es[µα.c[β := γ 2]] →A µα.c[β := γ 2][α := αEs]
such that α 6= γ. Now the following diagram commutes by Lemma 4.2.12.

Es[µα.[γ]µβ.c]

A

��

B // Es[µα.c[β := γ 2]]

A

��
µα.[γ]µβ.c[α := αEs]

B
// µα.c[β := γ 2][α := αEs]

Corollary 4.4.31. An →A-reduction step after multiple →B-reduction steps
can be advanced. That means, if t1 �B t2 →A t3, then there is a t4 such that
the following diagram commutes.

t1

A

��

B // // t2

A

��
t4

AB
// // t3

81 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Proof. By iteration of Lemma 4.4.30 we have the following.

t1

A

��

B // t2

A

��

B // // tn−1

A

��

B // tn

A

��
t′1 AB

// // t′2 AB
// // t′n−1 AB

// // t′n

Lemma 4.4.32. For each infinite reduction sequence t1 �A tm → . . . that
begins with m consecutive →A-reduction steps there exists an infinite reduction
sequence t1 �A tm →A t′m+1 � . . . that begins with least m + 1 consecutive
→A-reduction steps.

Proof. Assume that we have an infinite reduction sequence t1 �A tm → . . .
If tm →A tm+1 we are immediately done, so let us assume that tm →B tm+1.
Lemma 4.4.29 guarantees that an infinite sequence of →B-reduction steps does
not exist, so there should be an n > m such that tm �B tn →A tn+1 � . . .
By Corollary 4.4.31 we obtain a term t′m+1 such that the following diagram
commutes.

t1
A // // tm

B // //

A

��

tn

A

��
t′m+1 AB

// // tn+1
AB

// // . . .

This reduction sequence is also infinite and starts with at least m+1 consecutive
→A-reduction steps, so we are done.

Corollary 4.4.33. For each infinite →AB-reduction sequence starting at t1
there exists an infinite →A-reduction sequence starting at t1.

Proof. By iteration of Lemma 4.4.32.

Theorem 4.4.34. If Γ; ∆ ` t : ρ, then t ∈ SN.

Proof. Assume the contrary, then there should be an infinite →AB-reduction
sequence. But then by Corollary 4.4.33 we can obtain an infinite →A reduction
sequence and therefore t /∈ SNA, which contradicts Corollary 4.4.28.

4.5 CPS-translation of λT
µ into λT

In this section we will present a CPS-translation from λT
µ into λT. We will

use this CPS-translation to prove the main result of this section: the functions
that are definable in λT

µ are exactly the functions that are provably recursive in
first-order arithmetic.

82 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Definition 4.5.1. Given a type τ , then let ¬ρ denote ρ→ τ . Now given a type
ρ, then the negative translation ρ◦ of ρ is mutually inductively defined with ρ•

as follows.

ρ◦ := ¬¬ρ•

N• := N

(ρ→ δ)• := ρ◦ → δ◦

Definition 4.5.2. Given λT-terms t and r, then the CPS-application t • r of t
and r is defined as follows.

t • r := λk.t(λl.lrk)

Definition 4.5.3. Given a λT-term t, then the negative of t is defined as
follows.

t := λk.kt

Lemma 4.5.4. Given λT-terms t and r such that Γ ` t : (ρ→ δ)◦ and Γ ` r : ρ◦,
then Γ ` t • r : δ◦.

Proof. Suppose that Γ ` t : (ρ→ δ)◦ and Γ ` r : ρ◦. Now we have Γ ` t • r : δ◦

as shown below.

t : (ρ→ δ)◦

l : ρ◦ → δ◦ r : ρ◦

lr : δ◦ k : ¬δ•
lrk : ⊥

λl.lrk : ¬(ρ◦ → δ◦)
t(λl.lrk) : ⊥

λk.t(λl.lrk) : δ◦

Definition 4.5.5. Given a λT
µ -term t, then the CPS-translation t◦ of t into λT

is inductively defined as follows.

x◦ := λk.xk

(λx.t)◦ := λk.k(λx.t◦)
(tr)◦ := t◦ • r◦

0◦ := 0
(St)◦ := λk.t◦(λl.k(Sl))

(nrecρ r s t)
◦ := λk.t◦(λl.nrec r◦ s′ l k)
where s′ := λxp.s◦ • x • p

(µα.c)◦ := λkα.c
◦

([α]t)◦ := t◦kα

Here kα is a fresh λ-variable for each µ-variable α.

In the translation of nrecρ r s t we see that we are required to evaluate t
first, simply because it is the only way to obtain a numeral from t.

Lemma 4.5.6. Given a λT-term t such that Γ ` t : N, then Γ ` t : N◦.

83 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Proof. Suppose that Γ ` t : N. Now we have Γ ` t : N◦ as shown below.

k : ¬N t : N
kt : ⊥

λk.kt : N◦

Theorem 4.5.7. The translation from λT
µ into λT preserves typing. That is:

Γ; ∆ ` t : ρ in λT
µ =⇒ Γ◦,∆◦ ` t◦ : ρ◦ in λT

where Γ◦ = {x : ρ◦ | x : ρ ∈ Γ} and ∆◦ = {kα : ¬ρ• | α : ρ ∈ ∆}.

Proof. We prove that we have Γ; ∆ ` t : ρ and Γ; ∆ ` c : |= by mutual induction
on the derivations Γ◦,∆◦ ` t◦ : ρ◦ and Γ◦,∆◦ ` t◦ : ⊥, respectively. We treat
some interesting cases.

(zero) Let Γ; ∆ ` 0 : N. Now we have Γ◦,∆◦ ` 0◦ : N◦ by Lemma 4.5.6.

(suc) Let Γ; ∆ ` St : N with Γ; ∆ ` t : N. Now we have Γ◦,∆◦ ` t◦ : N by the
induction hypothesis. So Γ◦,∆◦ ` (St)◦ : N◦ as shown below.

t◦ : N◦

k : ¬N
l : N
Sl : N

k(Sl) : ⊥
λl.k(Sl) : ¬N

t◦(λl.k(Sl)) : ⊥
λk.t◦(λl.k(Sl)) : N◦

(nrec) Let Γ; ∆ ` nrecρ r s t : ρ with Γ; ∆ ` r : ρ, Γ; ∆ ` s : N→ ρ→ ρ and
Γ; ∆ ` t : N. Now we have Γ◦,∆◦ ` r◦ : ρ◦, Γ◦,∆◦ ` s◦ : (N→ ρ→ ρ)◦

and Γ◦,∆◦ ` t◦ : N◦ by the induction hypothesis. Furthermore we have
s′ : N→ ρ◦ → ρ◦ as shown below.

s◦ : (N→ ρ→ ρ)◦
x : N (c)
x : N◦

(b)
s◦ • x : (ρ→ ρ)◦ p : ρ◦

(a)
s◦ • x • p : ρ◦

λxp.s◦ • x • p : N→ ρ◦ → ρ◦

Here, step (a) follows from Lemma 4.5.6 and step (b) and (c) follows from
Lemma 4.5.4. So Γ◦,∆◦ ` (nrecρ r s t)

◦ : ρ◦ as shown below.

t◦ : N◦

r◦ : ρ◦ s′ : N→ ρ◦ → ρ◦ l : N
nrec r◦ s′ l : ρ◦ k : ¬ρ•

nrec r◦ s′ l k : ⊥
λl.nrec r◦ s′ l k : ¬N

t◦(λl.nrec r◦ s′ l k) : ⊥
λk.t◦(λl.nrec r◦ s′ l k) : ρ◦

84 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Lemma 4.5.8. Given a natural number n, then n◦ � n.

Proof. By induction on n.

1. Suppose that n = 0. Now we have 0◦ ≡ 0 by definition.

2. Suppose that n > 0. Now we have n◦ � n by the induction hypothesis
and therefore:

n+ 1◦ ≡ λk.n◦(λl.k(Sl))
� λk.(λq.qn)(λl.k(Sl))
� λk.k(Sn)
≡ n+ 1

Lemma 4.5.9. Given a λT
µ -term t, then λk.t◦k → t◦.

Proof. This result is proven similarly to Lemma 3.5.6.

Lemma 4.5.10. Given λT
µ -terms r and s, and moreover let s′ = λxp.s◦ • x • p,

then λk.nrec r◦ s′ n k = nrec r◦ s′ n.

Proof. We distinguish the following cases.

1. Suppose that n = 0. Now we have:

λk.nrec r◦ s′ 0 k � λk.r◦k

� r◦

= nrec r◦ s′ (a)

Here, step (a) holds by Lemma 4.5.9.

2. Suppose that n > 0. Now we have:

λk.nrec r◦ s′ n k � λk.s′ n− 1 (nrec r◦ s′ n− 1) k
� λk.(s◦ • n− 1 • nrec r◦ s′ n− 1) k

≡ λk.(λk2.(s◦ • n− 1) (λl.l (nrec r◦ s′ n− 1) k2)) k

� λk.(s◦ • n− 1) (λl.l (nrec r◦ s′ n− 1) k)

≡ s◦ • n− 1 • nrec r◦ s′ n− 1

= s′ n− 1 (nrec r◦ s′ n− 1)
= nrec r◦ s′ n

Lemma 4.5.11. Given λT
µ -terms t and r, then t◦[x := r◦] � (t[x := r])◦.

Proof. This result is proven similarly to Lemma 3.5.7.

Lemma 4.5.12. Given a λT
µ -term t, then:

1. (t[α := β 2])◦ ≡ t◦[kα := kβ]

2. (t[α := β (S2)])◦ � t◦[kα := λl.kβ(Sl)]

85 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

3. (t[α := β (2s)])◦ � t◦[kα := λl.ls◦kβ]

4. (t[α := β (nrec r s 2)])◦ � t◦[kα := λl.nrec r◦ s′ l kβ]

Proof. This result is proven similarly to Lemma 3.5.8.

Lemma 4.5.13. The translation from λT
µ into λT preserves equality. That is,

given λT
µ -terms t1 and t2 such that t1 = t2, then t1

◦ = t2
◦.

Proof. By induction on t1 → t2. We treat some interesting cases.

1. Let S(µα.c)→ µαc[α := α (S2)]. Now:

(S(µα.c))◦ ≡ λk.(λkα.c◦)λl.k(Sl)
� λk.c◦[kα := λl.k(Sl)]
= λkα.c[α := α (S2)]◦ (a)
≡ (µα.c[α := α (S2)])◦

Here, step (a) holds by Lemma 4.5.12.

2. Let nrec r s 0→ r. Now:

(nrec r s 0)◦ ≡ λk.0(λn.nrec r◦ s′ n k)
� λk.nrec r◦ s′ 0 k
→ λk.r◦k (a)
= r◦

Here, step (a) holds by Lemma 4.5.9.

3. Let nrec r s (Sn)→ s n (nrec r s n). Now:

(nrec r s (Sn))◦ ≡ λk.(Sn)◦(λl.nrec r◦ s′ l k)
� λk.Sn(λl.nrec r◦ s′ l k) (a)

� λk.nrec r◦ s′ (Sn) k
→ λk.s′ n (nrec r◦ s′ n) k
� λk.(s◦ • n • nrec r◦ s′ n) k

= λk.(λk2.(s◦ • n) (λl.l (nrec r◦ s′ n) k2)) k

= λk.(s◦ • n) (λl.l (nrec r◦ ′s n) k)

= s◦ • n • nrec r◦ s′ n
= s◦ • n • λk2.nrec r

◦ s′ n k2 (b)

= s◦ • n • λk2.n(λl.nrec r◦ s′ l k2)

= s◦ • n • λk2.n
◦(λl.nrec r◦ s′ l k2) (c)

≡ (s n (nrec r s n))◦

Here, step (a) holds by Lemma 4.5.8, step (b) holds by Lemma 4.5.10 and
step (c) holds by Lemma 4.5.8.

86 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

4. Let nrec r s µα.c→ µαc[α := α (nrec r s 2)]. Now:

(nrec r s µα.c)◦ ≡ λk.(λkα.c◦)(λl.nrec r◦ s′ l k)
� λk.c◦[kα := λl.nrec r◦ s′ l k]
= λkα.c[α := α (nrec r s 2)]◦ (a)
≡ (µα.c[α := α (nrec r s 2)])◦

Here, step (a) holds by Lemma 4.5.12.

Theorem 4.5.14. Each function f : Nn → N that is representable in λT
µ is

representable in λT. That is, let a term t : Nn → N represent the function f in
λT
µ , then there exists a term t′ : Nn → N that represents the function f in λT.

Proof. Suppose that t : Nn → N represents f : Nn → N in λT
µ . That means that

f(m1, . . . ,mn) = t m1 . . .mn. Now define a term t′ as follows.

t′ := λx1 : N . . . λxn : N . (t◦ • x1 • . . . • xn) (λx : N . x)

Now we have t◦ : (Nn → N)◦ by Theorem 4.5.7, xi : N◦ by Lemma 4.5.6 and
therefore t◦ • x1 • . . .•xn : N◦ by Lemma 4.5.4. Hence by letting ⊥ = N we have
t′ : N. Now it remains to prove that f(m1, . . . ,mn) = t′ m1 . . .mn.

t′ m1 . . .mn = (t◦ •m1 • . . . •mn) λx.x

= (t◦ •m1
◦ • . . . •mn

◦) λx.x (a)
= (t m1 . . .mn)◦ λx.x
= (f(m1, . . . ,mn))◦ λx.x (b)

= f(m1, . . . ,mn) λx.x (c)

= f(m1, . . . ,mn)

Here, step (a) holds by Lemma 4.5.8, step (b) holds by Lemma 4.5.13 and step
(c) holds by Lemma 4.5.8.

Corollary 4.5.15. The functions definable in λ2
µ are exactly those that are

provably recursive in first-order arithmetic.

Proof. This result follows immediately from Theorem 4.1.12 and 4.5.14.

4.6 Embedding λT
µ into λ2

µ

It is well known that the equational theory of λT can be embedded into λ2

[SU06]. So, using the translation in the preceding section, λT
µ can be embedded

into λT and thereby also in λ2
µ. However, simulation of the control operator µ

by CPS is not quite satisfactory since λ2
µ contains that operator too.

In this section we present a direct translation of λT
µ into λ2

µ. This transla-
tion has two goals. Firstly, it preserves occurences of the control operator µ.
Secondly, it show how the output operator Φ (Definition 3.4.7) can be adapted,
which nicely contrasts the differences between λT

µ and λ2
µ.

87 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Definition 4.6.1. Given a λT-type δ, then a λ2-type δ� is inductively defined
as follows.

N� := N

(ρ→ δ)� := ρ� → δ�

Definition 4.6.2. Given a λT
µ -term t, then a λ2

µ-term t� is inductively defined
as follows.

x� := x

0� := c0

(St)� := t� ((N→ N)→ N) Ŝ 0̂ (λl.Sl)

where 0̂ := λk.kc0 and Ŝ := λkh.k (λl.h (Sl))
(λx.t)� := λx.t�

(tr)� := t�r�

(nrecρ r s t)
� := nrecρ r

� s� t�

(µα.c)� := µα.c�

([α]t)� := [α]t�

The key idea of this embedding is the translation of the successor. This
translation ensures that we do not create closed terms of type N whose normal
form is of another shape than cn. If we would translate St into St� instead,
this property fails. For example, the normal form of µα.[α]SΘ[α]0 is 0, but the
normal of (µα.[α]SΘ[α]0)� is not a numeral.

(µα.[α]SΘ[α]0)� ≡ µα.[α](λn.λρ.λfx.f(nρfx)) Θ[α]c0
� µα.[α]λρ.λfx.f((Θ[α]c0)ρfx)
� µα.[α]λρ.λfx.f(Θ[α]c0)

In Section 3.4, we have seen how Parigot [Par93] uses the output operator Φ
to extract a numeral from such a term. Here we adapt the output operator for
the translation of the successor. However, instead of using the identity function
as the top continuation, we use λl.Sl. The following lemma states that the
translation of numerals is correct.

Lemma 4.6.3. Given a natural number n, then n� � cn.

Proof. By induction on n.

1. Suppose that n = 0. Now we have 0� ≡ c0 by definition.

2. Suppose that n > 0. Now we have n� � cn by the induction hypothesis
and therefore:

n+ 1� ≡ (Sn)�

≡ n� ((N→ N)→ N) Ŝ 0̂ (λl.Sl)

� cn ((N→ N)→ N) Ŝ 0̂ (λl.Sl)
� (λk.kcn) (λl.Sl) (a)
� cn+1

Here, step (a) is proven by induction on n.

88 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Lemma 4.6.4. The translation from λT
µ into λ2

µ preserves typing. That is:

Γ; ∆ ` t : ρ in λT
µ =⇒ Γ�; ∆� ` t� : ρ� in λ2

µ

where Γ� = {x : ρ� | x : ρ ∈ Γ} and ∆� = {α : ρ� | α : ρ ∈ ∆}.

Proof. Straightforward by induction on the derivation Γ; ∆ ` t : ρ.

Lemma 4.6.5. The translation from λT
µ into λ2

µ preserves →µβ, →µS, →µR,
→µη, →µi and →µN-reduction. That is, if t→µS t

′, t→µR t
′, t→µη t

′, t→µi t
′

or t→µN t
′, then t� �+ t′

�.

Proof. We treat some non-trivial cases.

1. Let Sµα.c→ µα.t[α := α (S2)]. Now:

t� ≡ (µα.c�) ((N→ N)→ N) Ŝ 0̂ (λl.Sl)

� µα.c�[α := α (2 ((N→ N)→ N) Ŝ 0̂ (λl.Sl))]
≡ (µα.t[α := α (S2)])�

2. Let nrecρ r s µα.c→ µα.t[α := α (nrecρ r s 2)]. Now:

t� ≡ π1(µα.c� (ρ× N) (λh.〈s� (π1h) (π2h), S(π2h)〉) 〈r�, c0〉)
� π1(µα.c�[α := α (2 (ρ× N) (λh.〈s� (π1h) (π2h), S(π2h)〉) 〈r�, c0〉)])
� µα.c�[α := α π1(2 (ρ× N) (λh.〈s� (π1h) (π2h), S(π2h)〉) 〈r�, c0〉))]
≡ (µα.t[α := α (nrecρ r s 2)])�

Lemma 4.6.6. The translation from λT
µ into λ2

µ preserves primitive recursion
That is:

nrec r� s� 0 �+ r�

nrec r� s� (Sn�) �+ s� cn (s� cn−1 . . . (s� c0 r�))

Proof. It is straightforward to show that nrec r� s� 0 �+ r�. Furthermore, by
induction on n we have nrec r� s� (Scn) �+ s� cn (s� cn−1 . . . (s� c0 r�)), so
our goal holds by Lemma 4.6.3.

Corollary 4.6.7. The translation from λT
µ into λ2

µ preserves equality. That is,
given λT

µ -terms t1 and t2 such that t1 = t2, then t1
� = t2

�.

Proof. This result follows immediately from Lemma 4.6.5 and 4.6.6.

Theorem 4.6.8. Each function f : Nn → N that is representable in λT
µ is

representable in λ2
µ. That is, let a term t : Nn → N represent the function f in

λT
µ , then there exists a term t′ : Nn → N that represents the function f in λ2

µ.

89 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Proof. Suppose that t : Nn → N represents f : Nn → N in λT
µ . That means

that f(m1, . . . ,mn) = t m1 . . .mn. Now let t′ := t�. We have t� : Nn → N by
Lemma 4.6.4, so it remains to prove that cf(m1,...,mn) = t� cm1 . . . cmn

.

t� cm1 . . . cmn = (t�m1
� . . .mn

�) (a)
= (t m1 . . .mn)◦

= (f(m1, . . . ,mn))◦ (b)

= cf(m1,...,mn)

Here, step (a) and (b) hold by Lemma 4.6.3.

4.7 Correctness of programs

In this section we will consider a simple λT
µ -program and prove its correctness

by equational reasoning. This program is similar to the list product program
given in the introduction of Chapter 3. However, since λT

µ does not have a list
data type we consider a program that computes the product of a term f : N→ N
applied to each numeral in the sequence (0, . . . , n) for some n ∈ N. Again, our
program will stop multiplying once a zero is encountered. Because we need
multiplication, for which we need addition, we define these notions first.

Definition 4.7.1. The term plus is defined as follows.

plus := nrec (λy.y) (λxhy.S(hy))

Notation 4.7.2. As usual we use the infix notation x+ y for plus x y.

Since plus is the well-known addition function we will not prove its correct-
ness, that is x + y = x+ y. It is more interesting to look at its behavior when
it is applied to a term of the shape Θc. In this case it is required that the term
Θc propagates through the function.

Lemma 4.7.3. Given a command c and term t, then:

(Θc) + t = Θc

Proof. This follows directly from the rules →µN and →µR.

(Θc) + t ≡ nrec (λy.y) (λxhy.S(hy)) (Θc) t
→ (Θc)t
→ Θc

Lemma 4.7.4. Given a command c and a natural number n, then:

n+ (Θc) = Θc

Proof. By induction on n.

1. Suppose that n = 0. Now we have the following.

0 + (Θc) ≡ nrec (λy.y) (λxhy.S(hy)) 0 Θc
→ (λy.y)Θc
→ Θc

90 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

2. Suppose that n > 0. Now we have n + (Θc) = Θc by the induction
hypothesis and hence:

n+ 1 + (Θc) ≡ nrec (λy.y) (λxhy.S(hy)) Sn (Θc)
→ (λxhy.S(hy)) n (nrec (λy.y) (λxhy.S(hy)) n) (Θc)
� S(nrec (λy.y) (λxhy.S(hy)) n (Θc))
≡ S(n+ (Θc))
= S(Θc)
→ Θc

Now we use addition to define multiplication. Again we use the well-known
multiplication function, so we certainly have x ∗ y = x ∗ y.

Definition 4.7.5. The term mult is defined as follows.

mult := nrec (λy.0) (λxhy.y + (hy))

Notation 4.7.6. As usual we use the infix notation x ∗ y for mult x y.

Lemma 4.7.7. Given a command c and term t, then:

(Θc) ∗ t = Θc

Proof. This follows directly from the rules →µN and →µR.

(Θc) ∗ t ≡ nrec (λy.0) (λxhy.y + (hy)) (Θc) t
→ (Θc)t
→ Θc

The preceding lemma indicates that if the first argument of the multiplica-
tion function is of the shape Θc, it will propagate through the function. However,
if the first argument is 0 and the second argument is of the shape Θc, then the
function returns 0 and ignores the argument Θc.

0 ∗ (Θc) ≡ nrec (λy.0) (λxhy.y + (hy)) (Θc)
→ (λy.0) (Θc)
→ 0

This behavior is obviously what we would expect in a call-by-name system: if
an argument is not used, it will be ignored.

Lemma 4.7.8. Given a command c and a natural number n > 0, then:

n ∗ (Θc) = Θc

Proof. This follows directly from Lemma 4.7.7.

n+ 1 ∗ (Θc) ≡ nrec (λy.0) (λxhy.y + (hy)) n+ 1 (Θc)
� (Θc) + (n ∗ (Θc))
� Θc

91 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

Now that we have defined multiplication we are finally able to define our
program and its specification.

Definition 4.7.9. The term Π is defined as Π := λfλx.µα.[α]Πα
f x, where:

Πα
f = lrec 1 (λx m . ncase (Θ[α]0) (λy . Sy ∗m) (f x))

Definition 4.7.10. Given a term f : N → N, then the relation binary relation
Mf over numerals is inductively defined as follows.

Mf (0, 1)
∀xm . Mf (x,m)→Mf (Sx, f x ∗m)

We say that Π is correct if Mf (x,Π f x) for each f : N→ N and x ∈ N.

Keeping the distinction between returning normally and returning excep-
tionally in mind we introduce the following definition. However, soon we will
see that this definition is too restricted.

Temporary Definition 4.7.11. Given a term f : N → N, a µ-variable α and
a natural number x, then we say that:

1. Πα
f x returns normally if Πα

f x = m with Mf (x,m).

2. Πα
f x returns exceptionally if Πα

f x = Θ[α]m with Mf (x,m).

Temporary Lemma 4.7.12. Given a term f : N → N, a µ-variable α and a
natural number x, and let Πα

f x return normally or exceptionally, then we have
Mf (x,Π f x).

Proof. Suppose that Πα
f x returns normally. That is, Πα

f x = m with Mf (x,m).
Now we have:

Π f x ≡ (λfλx.µα.[α]Πα
f x) f x

→ µα.[α]Πα
f x

= µα.[α]mn
→ m

Alternatively, suppose that Πα
f x returns exceptionally. That is, Πα

f x = Θ[α]m
with Mf (x,m). Now we have:

Π f x ≡ (λfλx.µα.[α]Πα
f x) f x

→ µα.[α]Πα
f x

= µα.[α]Θ[α]m
→ µα.[α]m
→ m

Now it remains to prove that given a natural number x we have that Πα
f x

returns normally or exceptionally. We proceed by induction on x. It follows
immediately for x = 0, because then Πα

f 0 = 1 and Mf (0, 1). If we have x > 0,
then we distinguish the following cases.

92 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

1. Let f x = 0. Now we have Πα
f x = Θ[α]0. Hence we are done because we

certainly have Mf (x, 0).

2. Let f x 6= 0. Now we have Πα
f x = f x ∗ (Πα

f x− 1). Moreover, by the
induction hypothesis we have either:

(a) Πα
f x− 1 returns normally. That is Πα

f x− 1 = m with Mf (x− 1,m).
Now Πα

f x = f x ∗m, so we are done because Mf (x, f x ∗m).

(b) Πα
f x− 1 returns exceptionally. That is Πα

f x− 1 = Θ[α]m with
Mf (x,m). Now Πα

f x = f x ∗ Θ[α]m = Θ[α]m by Lemma 4.7.8.
However, if m is the product of the sequence (0, . . . , x), it is not
necessarily the product of a longer sequence, so we are stuck.

Here we are stuck because the induction hypothesis is not strong enough. Be-
cause if we know that Πα

f x− 1 returns exceptionally, we cannot conclude that
Πα
f x returns exceptionally.

But first, let us assume that we encounter a subcase Πα
f x for certain x during

evaluation of Π f n. Now, what does it mean, in terms of program correctness,
to return exceptionally with m? It means that m is a product of f applied to
the sequence (0, . . . , n) and not just (0, . . . , x). More generally, it means that m
is a product of f applied to every sequence (0, . . . , y) such that y > x.

Definition 4.7.13. Given a term f : N → N, a µ-variable α and a natural
number x, then we say that:

1. Πα
f x returns normally if Πα

f x = m with Mf (x,m).

2. Πα
f x returns exceptionally if Πα

f x = Θ[α]m with Mf (y,m) for each y ≥ x.

So if Πα
f x returns exceptionally, we do not just prove that m is the product

of f applied to the sequence (0, . . . , x), but also that m is the product of f
applied to every sequence (0, . . . , y) such that y ≥ x.

Lemma 4.7.14. Given a term f : N→ N, a µ-variable α and a natural number
x. Also, let Πα

f x return normally or exceptionally, then we have Mf (x,Π f x).

Proof. In the same way as we have proven Temporary Lemma 4.7.12, but take
y = x in case of an exceptional return.

Lemma 4.7.15. Given a term f : N→ N, a µ-variable α and a natural number
x, then Πα

f x returns normally or exceptionally.

Proof. By induction on x. It follows immediately for x = 0, because then
Πα
f 0 = 1 and Mf (0, 1). If x > 0, then we distinguish the following cases.

1. Let f x = 0. Now we have Πα
f x = Θ[α]0. Hence we are done because we

have Mf (y, 0) for each y ≥ x.

2. Let f x 6= 0. Now we have Πα
f x = f x ∗ (Πα

f x− 1). Moreover, by the
induction hypothesis we have either:

(a) Πα
f x− 1 returns normally. That is Πα

f x− 1 = m with Mf (x− 1,m).
Now Πα

f x = f x ∗m, so we are done because Mf (x, f x ∗m).

93 CHAPTER 4. THE λµ-CALCULUS WITH ARITHMETIC

(b) Πα
f x− 1 returns exceptionally. That is Πα

f x− 1 = Θ[α]m with
Mf (y,m) for each y ≥ x. Now Πα

f x = f x ∗ Θ[α]m = Θ[α]m by
Lemma 4.7.8. Hence Πα

f x returns exceptionally as well.

Theorem 4.7.16. The program Π is correct. That is, Mf (x,Π f x) for each
f : N→ N and x ∈ N.

Proof. By Lemma 4.7.14 and 4.7.15.

It is not too hard to extend this approach to more interesting programs. It
always consists of two parts: prove that throws propagate through various terms
and then define what it means to return normally respectively exceptionally.

Chapter 5

Further research

In this chapter we take a look at some extensions of our work. First we discuss
extensions of λT

µ with other data types. Specifically, we consider an extension
with lists and indicate how the main meta theoretical properties can be proven.
Unfortunately, our proof of strong normalization for λT

µ does not extend to
lists, this is possibly related to a known problem with respect to proving strong
normalization for the symmetric λµ-calculus.

Secondly, we discuss how our system could be used for extraction of programs
with control from classical proofs. In order to do this, we explain the concept
of program extraction by considering program extraction from the Calculus of
Constructions to System Fω.

5.1 Other data types

In this section we extend λT
µ with lists and indicate some problem of this ex-

tension. First we extend Definition 4.1.1 with a type [ρ] for lists over a type ρ,
Definition 4.2.1 with the list constructors nil and cons and with a primitive
recursor lrec for lists as follows.

ρ, δ ::= . . . | [δ]
t, r, s ::= . . . | nil | cons r t | lrecρ r s t

As usual we denote cons r t as r :: t. Moreover, because it is convenient to be
able to talk about a term representing an actual list we introduce the following
notation.

Notation 5.1.1. [r1, . . . , rn] := r1 :: . . . :: rn :: nil

The additional typing rules are shown in Figure 5.1. Now, to define the
reduction rules, we have to be more careful. For λT

µ we had to make sure that
the reduction rule nrec r s St→ s t (nrec r s t) is only allowed if t is unable
to reduce to a term of the shape µα.c. Therefore we required t to be equal
to n for some n ∈ N. However, because this condition becomes slightly more
complicated for lists, we extend the notion of values.

Definition 5.1.2. The values of λT
µ with list are inductively defined as follows.

v, w ::= 0 | Sv | nil | v :: w | λx.r

95 CHAPTER 5. FURTHER RESEARCH

Γ ` nil : [δ]
(a) nil

Γ ` r : δ Γ ` t : [δ]
Γ ` r :: t : [δ]

(b) cons

Γ ` r : ρ Γ ` s : δ → [δ]→ ρ→ ρ Γ ` t : [δ]
Γ ` lrecρ r s t : ρ

(c) lrec

Figure 5.1: The typing rules of λT
µ extended with lists.

In order to extend the notion of structural substitution we have to extend
contexts with some additional constructors first.

E ::= . . . | E :: t | v :: E | lrec r s E

Now the notion of substitution, structural substitution, free λ-variables, free
µ-variables are extended in the obvious way and we can extend the reduction
rules as follows.

lrec r s nil →nil r

lrec r s (v :: w) →:: s v w (lrec r s w)
lrec r s (µα.t) →µ[] µα.t[α := α (lrec r s 2)]

(µα.t) :: r →µ::L µα.t[α := α (2 :: r)]
v :: (µα.t) →µ::R µα.t[α := α (v :: 2)]

It is not too hard to verify that this system satisfies subject reduction and
that we have a normal form theorem similar to Lemma 4.2.6. However we do
not have a similar result for lists as we stated for numerals in Lemma 4.2.7.
For example, µα.[α][λx.Θ[α][λy.y]] is a well-typed term of type [γ → γ] and
is moreover in normal form. But unfortunately this term is not of the shape
[r1, . . . , rn]. However, we have such a result for normal forms of ground types.

Definition 5.1.3. A ground type is a type of the following shape.

ρ, δ ::= N | [δ]

Lemma 5.1.4. Given a term t that is in normal form and such that ; ∆ ` t : ρ,
then:

1. If ρ = N, then t ≡ n or t ≡ µα.[β]n for some n ∈ N.

2. If ρ = [δ], then t ≡ [rn, . . . , r1] or t ≡ µα.[β][rn, . . . , r1] for some n ∈ N
and terms ri.

Furthermore, if δ is a ground type, then FCV(ri) = ∅ for 1 ≤ i ≤ n.

3. If ρ = γ → δ, then t ≡ λx.r or t ≡ µα.[β]λx.r for some x and r.

Proof. By induction on the derivation ; ∆ ` t : ρ. We treat some cases.

96 CHAPTER 5. FURTHER RESEARCH

(nil) Let ; ∆ ` nil : [δ]. Now we are immediately done because nil ≡ [].

Furthermore, we have FCV(nil) = ∅.

(cons) Let ; ∆ ` rn+1 :: t : [δ] with ; ∆ ` r : δ and ; ∆ ` t : [δ]. Now we have
t ≡ [rn, . . . , r1] or t ≡ µα.[β][rn, . . . , r1] by the induction hypothesis. In
the former case we have r :: t ≡ [rn+1, . . . , r1]. In the latter case we obtain
a contradiction because the →µ::L or →µ::R-rule can be applied.

Furthermore, if [δ] is a ground type, then we have FCV(rn+1) = ∅ and
FCV(ri) = ∅ for 1 ≤ i ≤ n by the induction hypothesis. Hence we have
FCV(ri) for 1 ≤ i ≤ n+ 1.

Lemma 5.1.5. Given a term t that is in normal form and such that ; ` t : ρ
for a ground type ρ, then:

1. If ρ = N, then t ≡ n for some n ∈ N.

2. If ρ = [δ], then t ≡ [r1, . . . , rn] for some n ∈ N and terms ri

Proof. This result follows immediately from Lemma 5.1.4.

5.1.1 Confluence

In order to prove confluence we extend the parallel reduction relation (Definition
4.3.2). For terms we add the clauses that are listed below, nothing changes for
commands and for contexts we add the obvious clauses.

(t10) nil⇒ nil

(t11) If r ⇒ r′, then lrec r s nil⇒ r′.

(t12) If r ⇒ r′, s ⇒ s′, v ⇒ v′ and w ⇒ w′, then lrec r s (v :: w) ⇒
s′ v′ w′ (lrec r′ s′ w′).

The following lemma is required to prove a substitution lemma (similar to
Lemma 4.3.7) and structural substitution lemma (similar to Lemma 4.3.8).

Lemma 5.1.6. For each value v we have:

1. v[x := t] is a value for all variables x and terms t

2. v[α := βE] is a value for all µ-variables α and β and all contexts E.

Proof. By induction on v. The only interesting cases are variables and com-
mands. However, variables and commands are not values, so the required result
follows immediately.

Because various rules require that certain subterms are values, we need that
values are preserved under reduction.

Lemma 5.1.7. Given a value v such that v ⇒ t, then t is a value too.

Proof. By induction on v ⇒ t.

97 CHAPTER 5. FURTHER RESEARCH

Now we can extend the classification of terms (Lemma 4.3.9) and the com-
plete development (Definition 4.3.12) in a straightforward way.

1. (lrec r s nil)� := r�

2. (lrec r s (v :: w))� := s� v� w� (lrec r� s� w�)

3. (lrec r s u)� := lrec r� s� u�

provided that u 6≡ E[µβ.c] and u 6≡ v :: w

4. (u :: t)� := u� :: v�

provided that u 6≡ E[µβ.c] and t 6≡ F [µγ.d]

We expect that all our results described in Section 4.3 can easily be repeated
for the extension with lists.

5.1.2 Strong normalization

Unfortunately our proof of strong normalization does not extend to lists. Let
us extend the definition of the set of reducibility candidates (Definition 4.4.14)
in a straightforward way.

1. If T ∈ R, then {2 :: t | t ∈ T} → T ∈ R.

2. If T, S ∈ R, then {v :: 2 | v ∈ S} → T ∈ R.

3. If R,S, T ∈ R, then {lrec r s 2 | r ∈ T, s ∈ R→ S → T → T} → T ∈ R.

Definition 5.1.8. Given a set of terms R, let LR denote the smallest collection
of terms satisfying the following conditions.

1. SN ∈ LR

2. If S ∈ LR, then {v :: 2 | v ∈ R} → S ∈ LR.

3. If S ∈ LR and T ∈ R, then:

{lrec r s 2 | r ∈ T, s ∈ S → T → T} → T ∈ LR

Definition 5.1.9. The interpretation [[ρ]] of a type ρ is defined as follows.

[[N]] :=
⋂
N

[[[δ]]] :=
⋂
L[[δ]]

[[δ → σ]] := [[δ]]→ [[σ]]

However, now we are stuck, because if we have t ∈ [[[δ]]] and s ∈ [[δ]], then we
only have s :: t ∈ [[[δ]]] in case s is a value. A first intuition tells us to consider
contexts of the shape t :: E instead of v :: E. Despite this results in a loss of
confluence, strong normalization of this system implies strong normalization of
our extension with lists. Clause (2) of Definition 5.1.8 becomes:

2. If S ∈ LR, then {t :: 2 | t ∈ R} → S ∈ LR.

98 CHAPTER 5. FURTHER RESEARCH

Unfortunately, this modification introduces many other problems. For example,
our proof of Lemma 4.4.16 fails. Here we have to prove that E[x] ∈ T for all
T ∈ R and E ∈ SN2. If we proceed by induction on the generation of T , the
first case requires us to prove that E[x] ∈ SN. However, this is non-trivial. For
example, let E = µα.c :: 2, then µα.c :: x → µα.c[α := α (2 :: x)]. Although
certainly c ∈ SN, it does not directly imply that c[α := α (2 :: x)] ∈ SN.

We expect that this problem is closely related to the problems described
in [DN05]. In their work they explain a similar problem for the symmetric
λµ-calculus and claim that the usual technique of reducibility candidates does
not work. We moreover expect that we will encounter similar problems for an
extension with other data types, for example, products.

5.2 Program extraction

Now that we have developed a system with both a control mechanism and data
types one might wonder whether we could extend it with dependent types and
then use it to extract programs with control from classical proofs. Before we go
into detail we explain program extraction from the Calculus of Constructions
so as to indicate what we precisely wish to achieve.

5.2.1 From the Calculus of Constructions

In this section we will briefly introduce program extraction from the Calculus
of Constructions, which is a higher-order λ-calculus with dependent types, to
System Fω. Just as in [PM89], we consider three universes:

1. Data (data): this universe contains the types of System Fω, which is the
part of the of the Calculus on Constructions without dependent types. The
types in this universe can be seen as the types of “ordinary” programs.

2. Specifications (spec): this universe contains propositions that have com-
putationally relevant parts. These propositions are used to state specifi-
cations of programs in the data universe.

3. Propositions (prop): this universe contains propositions that have only
logical content and hence no computationally relevant content. These
propositions are used to state properties of programs in the data universe.

If we use the system merely for correctness proofs, then we use the first universe
to write our program. Let us say that we have written the predecessor function
pred : N → N, then we have N → N ∈ data. Now, the following formula states
that pred is a correct predecessor function.

pred correct := ∀n.(n = 0→ predn = 0) ∧ (n > 0→ predn+ 1 = n)

Because pred correct is just a proposition without any computationally rele-
vant content we have pred correct ∈ prop. Conversely, if we use the system
for program extraction we would have written the following specification of the
predecessor function.

pred spec := ∀n.∃m.(n = 0→ m = 0) ∧ (n > 0→ m+ 1 = n)

99 CHAPTER 5. FURTHER RESEARCH

Here we have pred spec ∈ spec, because we are going to use a proof of this
proposition to extract a program that computes the predecessor.

More generally, let us consider a specification A ∈ spec and a proof t of A.
Now, program extraction, as defined by Paulin [PM89], consists of an extraction
map [[−]] and realizability map R such that:

` t : A
with A ∈ spec

[[−]]

xxppppppppppp
R

''PPPPPPPPPPPP

` [[t]] : [[A]]
with [[A]] ∈ data

` p : R(A, [[t]])
with R(A, [[t]]) ∈ prop

Here, [[A]] is the type of the extracted program [[t]] and R(A, [[t]]) ∈ prop is
a proposition which states that [[t]] is correct with respect to its specifica-
tion A. So if we consider a proof t of pred spec, then [[A]] = N → N and
R(A, [[t]]) = ∀n.(n = 0→ [[t]]n = 0) ∧ (n > 0→ [[t]]n+ 1 = n).

Unfortunately, System Fω is not quite suitable as a general purpose pro-
gramming language because of its poor efficiency. For example, in System Fω
one cannot define a predecessor function (on Church numerals) that reduces in
constant time. Thus, having a System Fω program that is guaranteed to be
correct is practically next to useless.

However, Letouzey [Let04] has extended Paulin’s work to the Calculus of
Inductive Constructions. This system supports inductive types and is therefore
much closer to actual programming languages. Moreover, because of Letouzey’s
work, Coq is currently able to extract OCaml and Haskell programs that are
guaranteed correct with respect to their specification. Also, Coq and Letouzey’s
work do not distinguish the universes data and spec, both universes are contained
in the universe set.

5.2.2 From classical proofs

Repeating the methodology described in the previous section for extraction of
programs with control from classical proofs presents the following challenges.

1. Development of a system with dependent types that is powerful enough
to describe specifications of a desired class of programs.

2. Definition of an extraction map from this dependently typed system to a
suitable control calculus without dependent types.

3. Definition of a classical realizability interpretation for this extraction map.

One should be very careful with respect to the first point, because this system
should support just a limited amount of classical reasoning. It should surely not
be able to prove an informative version of excluded middle ∀A : spec . A ∨ ¬A.
If excluded middle were provable and moreover extracts to the type 1 + 1,
then the extracted program can decide provability in predicate logic, which is
undecidable. Hence a logic that proves excluded middle is too strong.

Let us consider a variant of λµ for classical program extraction. Here we
let occurrences of µ in the dependently typed system extract to occurrences of

100 CHAPTER 5. FURTHER RESEARCH

µ in the target system. Now one could limit the amount of classical reasoning
by ensuring that within a computationally irrelevant goal it is impossible to
resume proving a computationally relevant goal. We would then restrict the
activate/passivate rule as follows.

Γ; ∆, α : A `M : B β : B ∈ (∆, α : A) A ∈ spec ⇐⇒ B ∈ spec

Γ; ∆ ` µα : A.[β]M : A

This rule disqualifies the following proof of excluded middle, which by removing
computationally irrelevant parts extracts to µα.[α]inr().

x : A;α : A ∨ ¬A ` x : A
x : A;α : A ∨ ¬A ` inlx : A ∨ ¬A
x : A;α : A ∨ ¬A ` Θ[α]inlx : ⊥
;α : A ∨ ¬A ` λx.Θ[α]inlx : ¬A

; ` µα.[α]inr(λx.Θ[α]inlx) : A ∨ ¬A

Here we have ⊥ ∈ prop, so, it is not allowed to resume proving A ∨ ¬A ∈ spec.
Let us also consider a proof of the formula ∃x.S0 = x so as to illustrate that
such a condition on the activate/passivate rule is necessary.

R : S0 = S0
〈S0, R〉 : ∃x.S0 = x

Θ[α]〈S0, R〉 : S0 = 0
µα.[α]〈0,Θ[α]〈S0, R〉〉 : ∃x.S0 = x

By removing computationally irrelevant parts we obtain the program µα.[α]0,
which reduces to 0 and is therefore obviously not correct. In this proof, we have
given an incorrect witness and while proving S0 = 0 ∈ prop, we have resumed
proving the goal ∃x.S0 = x ∈ spec so as to specify a correct witness. However,
the proof of S0 = 0 ∈ prop, which contains our revised witness, is removed
because it is computationally irrelevant.

Secondly, one should be careful that extracted programs of ground types
actually reduce to a ground type. Hence it is important that the target sys-
tem satisfies a suitable normal form theorem. For example, let us consider the
following fictional proof of the formula ∃x.S0 = x.

R : S0 = S0
〈S0, R〉 : ∃x.S0 = x

Θ[α].〈S0, R〉 : ∃x.0 = x

P : S0 = Sy

〈Sy, P 〉 : ∃x.S0 = x

λyλk.〈Sy, P 〉 : ∀y.0 = y → ∃x.S0 = x

destΘ[α].〈S0, R〉 inλyλk.〈Sy, P 〉 : ∃x.S0 = x

destµα.[α]Θ[α].〈S0, R〉 inλyλk.〈Sy, P 〉 : ∃x.S0 = x

By removing computationally irrelevant parts from this proof we obtain the
program t ≡ µα.[α](λy.Sy)Θ[α]S0. As we have seen, in the λ2

µ-calculus, this
program does not reduce to a Church numeral. Hence it can never be correct
with respect to its specification.

We expect that it is straightforward to develop a dependently typed version
of the λT

µ -calculus and an extraction map to λT
µ -calculus. However, in order to

use it for specification of programs further work is required. Also, defining a
realizability interpretation seems non-trivial.

Chapter 6

Conclusions

In this thesis we have investigated various control calculi and developed the
λT
µ -calculus, a Gödel’s T version of the λµ-calculus. We have proven that λT

µ

satisfies the main theoretical properties: confluence, subject reduction, a normal
form theorem and strong normalization. Also, we have presented an embedding
of λT

µ into λT and λ2. The first indicates that adding control to Gödel’s T does
not extend the class of definable functions. The second contrasts the differences
between data types in λT

µ and λ2
µ.

6.1 Comparison of the systems

The λC-calculus is originally described by an evaluation strategy. However,
a system based on an evaluation strategy is not a well-suited framework for
reasoning about programs, because if we prove a certain property of a program
t, then that property is not necesarrily preserved if we “plug” the program t
into another program. Hence various people tried to develop reduction theories
for λC , but unfortunatelly, none of these theories is able to minic the behavior
of the given evaluation strategy.

On the other hand we have investigated the λ∆-calculus, which is presented
by a reduction theory and satisfies the main theoretical properties. However,
it has a defect with respect to producing proper normal forms and is moreover
not able to simulate catch and throw well.

Furthermore, we have investigated the λµ-calculus, a system which is quite
similar to λ∆. Since λµ distinguishes ordinary variables from continuation vari-
ables and moreover distinguishes commands from terms it does not suffer from
the defects of λ∆. Also, we have studied the λ2

µ-calculus, a second-order variant
of λµ. Similarly as λ2, this system is able to encode most data types. However,
while it has a defect with respect to producing proper normal-forms, a proper
normal form can be obtained by use of output operators.

Because the λµ-calculus turned out to be most suitable system of those we
have studied, we have used it for the development of the λT

µ -calculus in the
second part of this thesis.

102 CHAPTER 6. CONCLUSIONS

6.2 Call-by-name or call-by-value

In order to maintain confluence and a normal form theorem we had to develop
the reduction rules of the λT

µ -calculus with care. Some of its reduction rules
are closer to a call-by-value system than to the ones one would expect of a
call-by-name system (which λµ originally is). Firstly, it contains the reduction
rule Sµα.c → µα.c[α := α (S2)], which is required to maintain a normal form
theorem for numerals. Secondly, in order to unfold nrec r s (St) we have to
reduce t to an actual numeral. This is required because it would otherwise
result in a loss of confluence.

Our embedding of λT
µ into λT justifies our particular choice of reduction

rules. If we have a term t◦ : ρ◦, then the only way to obtain a numeral from
t◦ is by reducing it to a value first. So, for the case (nrec r s t)◦, we have to
reduce t◦ first in order to unfold the recursion. This is of course kind of obvious,
because if we consider a numeral as a finite list of units, the only way to know
whether an exception will be thrown, is to evaluate it to a value.

An important aspect of a call-by-name system is lazy evaluation of data
types. However, because of these call-by-value like reduction rules we can con-
clude that a call-by-name system is not well suited for an extension with both
data types and control mechanisms. Therefore it would be interesting to re-
peat the developments in Chapter 4.2 for a call-by-value system. We expect
that all properties, except strong normalization, can be proven in a similar way.
For a strong normalization proof by reducibility candidates we except similar
problems as described in [DN05].

6.3 Primitive catch and throw

Instead of the λµ-calculus it would be interesting to consider a system with the
control operators catch and throw as primitive. Such a system is described by
Herbelin [Her10] where he uses it for an intuitionistic logic that proves a variant
of Markov’s principle.

Γ; ∆, α : ρ ` t : ρ
Γ; ∆ ` catch α t : ρ

(a) catch

Γ; ∆ ` t : ρ α : ρ ∈ ∆
Γ; ∆ ` throw α t : δ

(b) throw

Having these operators as primitive has as advantage that the types in the
context ∆ can be restricted to a certain class. For example, in [Her10], the
types in ∆ should be ∀- and →-free. As a result, one obtains a normal form
theorem for function types too. In λµ one cannot enforce such a restriction on
the activate rule because that leads to a loss of subject reduction. For example,
for an arbitrary ρ, we have that nrec r s µα.c with α : N and s : ρ reduces to
µα.c[α := α (nrec r s 2)] with α : ρ.

103 CHAPTER 6. CONCLUSIONS

6.4 Implementation

One might wonder whether the λT
µ -calculus simulates any real implementations

of control mechanisms. For example, the control mechanisms present in the
function programming languages Scheme, Lisp or OCaml. First of all, most
actual programming languages that support control are call-by-value while λT

µ

is call-by-name. Hence, as already noticed in Section 6.2, it would be a good
idea to repeat our developments for a call-by-value system.

Moreover, the λT
µ -calculus supports statically bound exceptions instead of

dynamically bound exceptions. Statically bound exceptions appear in the func-
tional programming language Scheme while most other functional programming
languages support dynamically bound exceptions. To illustrate the difference
we consider the following Scheme program.

(call/cc (lambda (c)
(+ 1 (

(lambda (f) (call/cc (lambda (c) (f 0))))
(lambda (x) (c x))

))
))

Here, both λ-binders bind different occurrences of the variable c, so instead
of call/cc (lambda (c) (f 0)) one could rename c into d and have written
call/cc (lambda (d) (f 0)). Therefore, evaluation of c x results in a jump
to the context captured by the outermost call/cc and so evaluation of the
complete program yields 0.

However, if we consider a similar program in Lisp, which supports dynami-
cally bound exceptions, we get another result.

(catch ’A
(+ 1 (

(lambda (f) (catch ’A (funcall f 0)))
(lambda (x) (throw ’A x))

))
)

Here, evaluation of throw ’A x results in a jump to the innermost catch, so
evaluation of the complete program yields 1. We can most likely modify our
system to dynamically bound exceptions by considering substitution that is not
capture avoiding for µ-variables. However, it is unclear whether our results are
preserved for this modification.

Appendix A

Classical program
extraction in Coq

In this appendix we illustrate, by considering the list product function, program
extraction from a classical proof. Our approach is similar to that of Caldwell,
Gent and Underwood, who considered program extraction from classical proofs
in the proof assistant NuPrl [CGU00]. In their work they extended NuPrl with
a proof rule for Peirce’s law and associated call/cc for its extraction. Here we
use the proof assistant Coq [CDT] in which we associate the control operator C
for extraction of double negation1.

Of course, this approach does not guarantee correctness of the extracted
program. In fact, we will show that it is quite easy to construct proofs whose
extraction is not correct with respect to its specification. However, it shows
that certain classical proofs do contain computational content.

First we assume the following classical axioms.

Parameter |= : set.
Parameter dn : ∀S : set . ((S → |=)→ |=)→ S.
Definition efq : ∀S : set . |= → S := λSM . dn(λ .M).

Note that instead of Coq’s computationally irrelevant type False we use our own
type |= which has type set and is therefore computationally relevant. Next, we
let the axioms dn and efq extract to the control operators C and A, respectively.

Extract Inlined Constant dn => C.
Extract Inlined Constant efq => A.

In order to prove that each list has a product, we shall give a specification of
the product of a list of natural numbers.

Definition A.1. The binary relation M over lists of natural numbers and nat-
ural numbers is inductively defined as follows.

mnil : M(nil, 1) mcons : ∀l p x .M(l, p)→M(x :: l, x ∗ p)
1In Coq it is impossible to define new binders or introduce a special kind of variables, hence

we are unable to extend it to the λµ-calculus.

105 APPENDIX A. CLASSICAL PROGRAM EXTRACTION IN COQ

Now, we say that a natural number n is the product of a list l if M(l, n).

One should still convince oneself that we have indeed given a correct speci-
fication of the product of a list of natural numbers. To get more confidence in
this specification we prove that it specifies the product uniquely.

Lemma A.2. The relation M specifies the product of a list uniquely. That is:

∀l n1 n2 .M(l, n1) ∧M(l, n2)→ n1 = n2

Since the specification corresponds to the graph of the obvious list product
function, it is easy to give a constructive proof of ∀l∃n .M(l, n).

M(nil, 1)

∃n.M(nil, n)

M(x :: l, x ∗m)

∃n.M(x :: l, n)

∀m.M(l,m)→ ∃n.M(x :: l, n)

∃n.M(x :: l, n)

∀l∃n .M(l, n)

Now, Coq extracts the following program from this proof.

let rec listmult l = match l with
| nil -> 1
| x :: k -> x * (listmult k)

In order to obtain a program that uses the control operators C and A we will
construct a classical proof. Intuitively one would be urged to use double negation
directly so as to passivate the goal ∃n.M(l, n) and resume proving it in the 0 :: l
case. Such a proof would look as follows.

M(nil, 1)

∃n.M(nil, n)

...

|= efq
∃n.M(0 :: l, n)

...

x 6= 0→ ∃n.M(x :: l, n)

∃n.M(x :: l, n)

∃n.M(l, n)

|=

((∃n.M(l, n))→ |=)→ |=

dn
∃n.M(l, n)

∀l∃n.M(l, n)

Here, after we have used double negation, we proceed by induction on l and
distinguish the cases x = 0 and x 6= 0. If x = 0, we use Ex Falso and apply
∃n.M(l, n)→ |= so as to resume our passivated goal.

Unfortunately, program extraction of this proof does not yield the expected
program, because induction on l also affects the list l in the context. The
program that Coq extracts looks as follows.

106 APPENDIX A. CLASSICAL PROGRAM EXTRACTION IN COQ

let listmult2 ltp = C(λhtp.htp

(let rec listmult2_core l h = match l with
| nil -> 1
| x :: k -> if (x = 0)

then A(h 0)
else x ∗ (listmult2_core k (λg.h(x ∗ g)))

in listmult2_core ltp htp))

Now, whenever a zero is encountered the continuation h is invoked. However,
since this continuation is modified each iteration, this is not desirable. Instead,
we would like it to invoke the continuation htp and break out of the recursion.
To illustrate what happens, we apply this program to the list [4, 3, 0, 1]. We
abbreviate listmult2 as lm and listmult2 core as lmc.

E[lm [4, 3, 0, 1]] = E[C(λh.h (lmc [4, 3, 0, 1] h))]
� (λh.h (lmc [4, 3, 0, 1] h))λx.AE[x]
� (λx.AE[x])(lmc [4, 3, 0, 1] λx.AE[x])
�AE[lmc [4, 3, 0, 1] λx.AE[x]]
� E[lmc [4, 3, 0, 1] λx.AE[x]]
� E[4 ∗ (lmc [3, 0, 1] λg.(λx.AE[x]) (4 ∗ g))]
� E[4 ∗ 3 ∗ (lmc [0, 1] λj.(λg.(λx.AE[x]) (4 ∗ g)) (3 ∗ j))]
� E[4 ∗ 3 ∗ A((λj.(λg.(λx.AE[x]) (4 ∗ g)) (3 ∗ j)) 0)]
� E[(λj.(λg.(λx.AE[x]) (4 ∗ g)) (3 ∗ j)) 0]
� E[(λg.(λx.AE[x]) (4 ∗ g)) (3 ∗ 0)]
� E[(λg.(λx.AE[x]) (4 ∗ g)) 0]
� E[(λx.AE[x]) (4 ∗ 0)]
� E[(λx.AE[x]) 0]
� E[AE[0]]
� E[0]

As this evaluation sequence shows, not only is an element multiplied by all its
previous values when the function returns normally, but also when the contin-
uation is invoked. Notice that this program is basically a more obscure version
of the following program.

let rec listmult l = match l with
| nil -> 1
| 0 :: k -> 0
| x :: k -> x * (listmult k)

Before we continue, let us think why it is actually allowed to jump out when a
zero is encountered? Maybe we should rephrase our proof such that the following
lemma is used.

Lemma A.3. m0 : ∀l . 0 ∈ l→M(l, 0)

Furthermore, we do not want that l in the assumption ((∃n.M(l, n)) → |=

is affected by induction. In order to keep that list separately, we prove the

107 APPENDIX A. CLASSICAL PROGRAM EXTRACTION IN COQ

following auxiliary theorem first.

. . . , (∃n .M(k, n))→ |= ` ∀l . E(k, l)→ ∃n .M(l, n)

Here, the relation E is defined as follows.

Definition A.4. The binary relation E over lists is inductively defined as fol-
lows.

ebase : ∀l . E(l, l) econs : ∀l1 l2 x .E(l1, l2)→ E(x :: l1, l2)

Now, we say that l ends with k if E(l, k).

This generalization is very similar to the methodology we have used to prove
the correctness of the program consider in Section 4.7. In this auxiliary theorem,
one should think of the assumption (∃n .M(k, n))→ |= as as a passivated goal
in the λµ-calculus.

. . . ; ∃n .M(k, n) ` ∀l . E(k, l)→ ∃n .M(l, n)

To prove the required theorem we state some obvious lemmas first.

Lemma A.5. einv : ∀l1 l2 x .E(l1, x :: l2)→ E(l1, l2)

Lemma A.6. ein : ∀l1 l2 x .E(l1, x :: l2)→ x ∈ l1

Using these lemmas, we are finally able to prove the required auxiliary the-
orem. The proof is shown below.

M(nil, 1)

∃n.M(nil, n)

E(k, nil)→ ∃n.M(nil, n)

E(k, 0 :: l)
A.6

0 ∈ k
A.3

M(k, 0)

∃n.M(k, n)

|=

∃n.M(0 :: l, n)

E(k, x :: l)
A.5

E(k, l)

E(k, l)

M(l,m)

M(x :: l, x ∗m)

∃n.M(x :: l, n)

∀m.M(l,m)→ ∃n.M(x :: l, n)

∃n.M(x :: l, n)

x 6= 0→ ∃n.M(x :: l, n)

∃n.M(x :: l, n)

E(k, x :: l)→ ∃n.M(x :: l, n)

∀l . E(k, l)→ ∃n .M(l, n)

Now, by letting l = k, it is trivial to prove the actual theorem.

E(l, l)

∃n.M(l, n)

|=

((∃n.M(l, n))→ |=)→ |=

dn
∃n.M(l, n)

∀l∃n.M(l, n)

Program extraction of this proof results in the expected program.

108 APPENDIX A. CLASSICAL PROGRAM EXTRACTION IN COQ

let listmult3 l = C(λh.h
(let rec listmult3_core l = match l with
| nil -> 1
| x :: k -> if (x = 0)

then A(h0)
else x ∗ (listmult3_core k)

in listmult3_core l))

Applying this program to the list [4, 3, 0, 1] results in the following evaluation
sequence. We abbreviate listmult3 as lm and listmult3 core as lmc.

E[lm [4, 3, 0, 1]] = E[C(λh.h (lmc [4, 3, 0, 1]))]
� (λh.h (lmc [4, 3, 0, 1])) λx.AE[x]
� (λx.AE[x]) (lmc [4, 3, 0, 1])
�AE[lmc [4, 3, 0, 1]]
� E[lmc [4, 3, 0, 1]]
� E[4 ∗ (lmc [3, 0, 1])]
� E[4 ∗ 3 ∗ (lmc [0, 1])]
� E[4 ∗ 3 ∗ A((λx.AE[x]) 0)]
� (λx.AE[x]) 0
�AE[0]
� E[0]

As we have noticed before, this example merely indicates that some classical
proofs contain computational content. It does not guarantee that the extracted
program is correct with respect to its specification. Such incorrect programs
can be obtained by abusing the pitfalls described in Section 5.2.2. For example,
we can resume a computationally relevant goal while proving a computationally
irrelevant goal.

0 = 0
∃x.x = 0

|=

2 = 0
∃x.x = 0

|=

∃x.x = 0

Here, while we are proving the goal 2 = 0 ∈ prop, we resume proving the
goal ∃x.x = 0 ∈ set so as to revise our previously given witness. Now by
removing computationally irrelevant parts program extraction results in the
program C(λk.k 2). This program evaluates to 2, so it is obviously not correct.

Bibliography

[AH03] Zena M. Ariola and Hugo Herbelin. Minimal Classical Logic and
Control Operators. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim
Parrow, and Gerhard J. Woeginger, editors, ICALP, volume 2719 of
LNCS, pages 871–885. Springer, 2003.

[AH08] Zena M. Ariola and Hugo Herbelin. Control Reduction Theories:
the Benefit of Structural Substitution. Journal of Functional Pro-
gramming, 18(3):373–419, 2008.

[Bar92] Henk Barendregt. Lambda Calculi with Types. In Handbook of Logic
in Computer Science, pages 117–309. Oxford University Press, 1992.

[BB85] Corrado Böhm and Alessandro Berarducci. Automatic synthesis of
typed Λ-programs on term algebras. Theoretical Computer Science,
39:135 – 154, 1985.

[BBS00] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Re-
fined Program Extraction from Classical Proofs. In Annals of Pure
and Applied Logic, pages 77–97. Springer Verlag, 2000.

[BHF01] Kensuke Baba, Sachio Hirokawa, and Ken-etsu Fujita. Parallel Re-
duction in Type Free λµ-calculus. Electronic Notes in Theoretical
Computer Science, 42, 2001.

[BU02] Gilles Barthe and Tarmo Uustalu. CPS Translating Inductive and
Coinductive Types. In Peter Thiemann, editor, PEPM, pages 131–
142. ACM, 2002.

[CDT] The Coq Development Team. The Coq Proof Assistant. Web page,
obtained from http://coq.inria.fr on December 5, 2009.

[CF98] Löıc Colson and Daniel Fredholm. System T, call-by-value and the
minimum problem. Theoretical Computer Science, 206(1-2):301 –
315, 1998.

[CGU00] James L. Caldwell, Ian P. Gent, and Judith Underwood. Search
Algorithms in Type Theory. Theoretical Computer Science, 232(1-
2):55–90, 2000.

[CP09] Tristan Crolard and Emmanuel Polonowski. A program
logic for higher-order procedural variables and non-local jumps,
2009. Obtained from http://lacl.univ-paris12.fr/crolard/
publications/Jumps.pdf on May 7, 2010.

http://coq.inria.fr
http://lacl.univ-paris12.fr/crolard/publications/Jumps.pdf
http://lacl.univ-paris12.fr/crolard/publications/Jumps.pdf

110 BIBLIOGRAPHY

[dG94] Philippe de Groote. A CPS-translation of the λµ-calculus. In Sophie
Tison, editor, CAAP, volume 787 of LNCS, pages 85–99. Springer,
1994.

[DN05] René David and Karim Nour. Why the usual candidates of reducibil-
ity do not work for the symmetric λµ-calculus. Electronic Notes in
Theoretical Computer Science, 140:101–111, 2005.

[FF86] Matthias Felleisen and Daniel P. Friedman. Control operators, the
SECD-machine, and the λ-calculus. In Martin Wirsing, editor, 3rd
Working Conference on the Formal Description of Programming
Concepts, pages 193–219. North-Holland Publishing, 1986.

[FFKD87] Matthias Felleisen, Daniel P. Friedman, Eugene E. Kohlbecker, and
Bruce F. Duba. A syntactic theory of sequential control. Theoretical
Computer Science, 52:205–237, 1987.

[FH92] Matthias Felleisen and Robert Hieb. The Revised Report on the Syn-
tactic Theories of Sequential Control and State. Theoretical Com-
puter Science, 103(2):235–271, 1992.

[Fri78] Harvey Friedman. Classically and intuitionistically provably recur-
sive functions. In Gert Mller and Dana Scott, editors, Higher Set
Theory, volume 669 of Lecture Notes in Mathematics, pages 21–28.
Springer Verslag, 1978.

[Fuj97] Ken-etsu Fujita. Calculus of Classical Proofs I. In R. K. Shyama-
sundar and Kazunori Ueda, editors, ASIAN, volume 1345 of LNCS,
pages 321–335. Springer, 1997.

[Fuj99] Ken-etsu Fujita. Explicitly Typed λµ-calculus for Polymorphism and
Call-by-Value. In Jean-Yves Girard, editor, TLCA, volume 1581 of
LNCS, pages 162–176. Springer, 1999.

[Fuj03] Ken-etsu Fujita. A Sound and Complete CPS-Translation for
lambda-mu-Calculus. In Martin Hofmann, editor, TLCA, volume
2701 of LNCS, pages 120–134. Springer, 2003.

[Geu08] Herman Geuvers. Introduction to type theory. In Ana Bove,
Lúıs Soares Barbosa, Alberto Pardo, and Jorge Sousa Pinto, edi-
tors, LerNet ALFA Summer School, volume 5520 of LNCS, pages
1–56. Springer, 2008.

[Goo75] John B. Goodenough. Structured exception handling. In POPL,
pages 204–224. ACM, 1975.

[Gri90] Timothy G. Griffin. A Formulae-as-Types Notion of Control. In
POPL, pages 47–58. ACM, 1990.

[GTL89] Jean Y. Girard, Paul Taylor, and Yves Lafont. Proofs and Types.
Cambridge University Press, 1989.

[Her10] Hugo Herbelin. An intuitionistic logic that proves markov’s principle.
In LICS, pages 50–56. IEEE Computer Society, 2010.

111 BIBLIOGRAPHY

[IN06] Satoshi Ikeda and Koji Nakazawa. Strong normalization proofs by
CPS-translations. Information Processing Letters, 99(4):163–170,
2006.

[Kre58] Georg Kreisel. Mathematical Significance of Consistency Proofs.
Journal of Symbolic Logic, 23(2):155–182, 1958.

[Lau93] John Launchbury. A Natural Semantics for Lazy Evaluation. In
POPL, pages 144–154. ACM, 1993.

[Let04] Pierre Letouzey. Programmation fonctionnelle certifiée –
L’extraction de programmes dans l’assistant Coq. PhD thesis, Uni-
versité Paris-Sud, 2004.

[Mur90] Chetan Murthy. Extracting Constructive Content from Classical
Proofs. PhD thesis, Cornell University, 1990.

[Nak03] Koji Nakazawa. Confluency and Strong Normalizability of Call-by-
Value λµ-calculus. Theoretical Computer Science, 290(1):429–463,
2003.

[Par92] Michel Parigot. λµ-calculus: An Algorithmic Interpretation of Clas-
sical Natural Deduction. In Andrei Voronkov, editor, LPAR, volume
624 of LNCS, pages 190–201. Springer, 1992.

[Par93] Michel Parigot. Classical Proofs as Programs. In Georg Gottlob,
Alexander Leitsch, and Daniele Mundici, editors, Kurt Gödel Collo-
quium, volume 713 of LNCS, pages 263–276. Springer, 1993.

[Par97] Michel Parigot. Proofs of Strong Normalisation for Second Order
Classical Natural Deduction. Journal of Symbolic Logic, 62(4):1461–
1479, 1997.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus.
Theoretical Computer Science, 1(2):125–159, 1975.

[PM89] Christine Paulin-Mohring. Extracting Fω’s programs from proofs in
the Calculus of Constructions. In POPL. ACM, 1989.

[RS94] Jakob Rehof and Morten Heine Sørensen. The λ∆-calculus. In
Masami Hagiya and John C. Mitchell, editors, TACS, volume 789
of LNCS, pages 516–542. Springer, 1994.

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-
Howard Isomorphism, volume 149 of Studies in Logic and The Foun-
dations of Mathematics. Elsevier Science, 2006.

[Tai67] William W. Tait. Intensional Interpretations of Functionals of Finite
Type I. Journal of Symbolic Logic, 32(2):198–212, 1967.

[Tak95] Masako Takahashi. Parallel Reductions in λ-Calculus. Information
and Computation, 118(1):120–127, 1995.

Index

Administrative reductions, 49
α-equivalence, 15

Barendregt convention, 15
β-reduction, 16
Bound variables, 15

Calculus of constructions, 98
Calculus of inductive constructions, 99
catch, 9
Church numerals

first-order, 20
second-order, 23

Church-Rosser, see Confluence
Church-style, 18
Closed term, 15
Colon translation, 49
Command, 34
Compatible closure, 15
Complete development, 59, 66
Confluence, 16

for λ→, 19
for λT, 53
for λT

µ , 59, 69
for λ∆, 32
for λµ, 38

Context
call-by-name, 16
call-by-name for λT

µ , 55
call-by-name for λ2

µ, 41
call-by-value, 17

Continuation passing style, 42
Control operators, 26
CPS, see Continuation passing style
CPS-translation

of λT
µ into λT, 81

of λ2
µ into λ2, 45

Curry-Howard correspondence, 18
for first-order classical logic, 29
for minimal first-order logic, 19
for minimal second-order logic, 23

Curry-style, 18

Derivability, 13
Direct style, 42
Double negation, 14

Environment, 13, 18
Evaluation, 16

call-by-name, 16
call-by-value, 17
call-by-value for λC , 27
lazy, 18

Evaluation context, see Context
Ex Falso Quodlibet, 14
Exceptional return, 9

First-order classical propositional logic,
14

First-order minimal classical proposi-
tional logic, 14

First-order propositional formulas, 14
First-order propositional logic, 13
Free variables, 15
Functional construction, 74

Gödel’s T, see λT-calculus
Ground type, 95

Intuitionistic types, 28

Judgment, 13, 18

λ-calculus, 15
λ2-calculus, 22
λ→-calculus, 18
λC -calculus, 26

à la Griffin, 29
λ∆-calculus, 31
λµ-calculus, 34
λ2
µ-calculus, 40
λT-calculus, 52
λT
µ -calculus, 55

113 INDEX

λv-calculus, 17

Minimal first-order propositional for-
mulas, 13

Negative translation, 44, 82
Normal form, 16
Normal return, 9
Numerals in λT, 54

Open term, 15
Output operator, 41

Parallel reduction, 59
Peirce’s law, 14
Primitive recursion, 24
Products, 24
Program extraction, 98

Reducibility candidates, 74
Reducibility method, 71
Reduction, 16
Reduction Ad Absurdum, 31
Representable function, 54

Second-order classical logic, 21
Second-order proposition formulas, 21
Second-order propositional logic, 21
Second-order types, 22
Simple types, 18
Singular context, 58
Strong normalization

for λ→, 19
for λT, 53
for λT

µ , 71, 81
for λ∆, 33
for λµ, 39
for λC , 30

Strongly normalizing contexts, 72
Structural substitution, 37
Subject reduction

for λ→, 19
for λT, 53
for λT

µ , 56
for λ∆, 32
for λµ, 38
for λC , 29

Substitution, 15
System F, see λ2-calculus

Thinning, 19

throw, 9
Typing judgment, 18

Values, 17
of λT, 54
of λT

µ with lists, 95

	Introduction
	Control mechanisms
	Our approach
	Related work
	Outline

	Background
	First-order propositional logic
	The untyped lambda-calculus
	The simply typed lambda-calculus
	Second-order propositional logic
	The second-order typed lambda-calculus

	Classical logic and control operators
	The lambda-C-calculus
	The lambda-Delta-calculus
	The lambda-mu-calculus
	The second-order lambda-mu-calculus
	Continuation passing style

	The lambda-mu-calculus with arithmetic
	Goedel's T
	The lambda-mu-T-calculus
	Confluence of lambda-mu-T
	Strong normalization of lambda-mu-T
	Strong normalization of (A)
	Strong normalization of (A) and (B)

	CPS-translation of lambda-mu-T into lambda-T
	Embedding lambda-mu-T into lambda-mu-2
	Correctness of programs

	Further research
	Other data types
	Confluence
	Strong normalization

	Program extraction
	From the Calculus of Constructions
	From classical proofs

	Conclusions
	Comparison of the systems
	Call-by-name or call-by-value
	Primitive catch and throw
	Implementation

	Classical program extraction in Coq

