
Verified Lock-Free Session Channels with Linking

THOMAS SOMERS, Radboud University Nijmegen, The Netherlands

ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands

Type systems and program logics based on session types provide powerful high-level reasoning principles

for message-passing concurrency. Modern versions employ bidirectional session channels that (1) are asyn-

chronous so that send operations do not block, (2) have buffers in both directions so that both parties can

send messages in parallel, and (3) feature a link operation (also called forward) to concisely write programs

in process style. These features complicate a low-level lock-free implementation of channels and therefore

increase the gap between the meta theory of prior work—which is verified w.r.t. a high-level semantics of

channels (e.g., 𝜋-calculus)—and the code that runs on an actual computer.

We address this problem by verifying a low-level lock-free implementation of session channels w.r.t. a

high-level specification based on session types. We carry out our verification in a layered manner by employing

the Iris framework for concurrent separation logic. We start with an abstract specification of (unidirectional)

queues—of which we provide a linked-list and array-segment based implementation—and gradually build up

to session channels with all of the aforementioned features. To make a layered verification possible we develop

two logical abstractions—queues with ghost linking and pairing invariants—to reason about the atomicity and

changing endpoints due to linking, respectively. All our results are mechanized in the Coq proof assistant.

CCS Concepts: • Theory of computation→ Logic and verification; Separation logic.

Additional Key Words and Phrases: Message passing, session types, separation logic, Iris, Coq

ACM Reference Format:
Thomas Somers and Robbert Krebbers. 2024. Verified Lock-Free Session Channels with Linking. Proc. ACM
Program. Lang. 8, OOPSLA2, Article 292 (October 2024), 30 pages. https://doi.org/10.1145/3689732

1 Introduction
Message passing through channels is a pervasive method of communication in concurrent pro-

gramming. Languages such as Go and Erlang have native support for message-passing, while many

other languages provide libraries for it. To ensure the end-to-end correctness of message-passing

programs, we desire powerful high-level reasoning principles for message-passing programs, and

prove soundness of these reasoning principles w.r.t. low-level lock-free implementations of channels.

There have been two important lines of work to obtain this goal:

• Type systems and program logics based on session types [18, 25, 26] provide high-level

reasoning to establish safety and functional correctness of message-passing programs.

• Modern separation logics such as Iris [31–33, 35, 36] enable the verification of strong correct-

ness conditions (e.g., linearizability [20]) of implementations of concurrent data structures in

a proof assistant, including queues which are essential to channel implementations.

Unfortunately, these two lines of work cannot readily be combined to obtain end-to-end correctness.

Soundness of high-level reasoning principles is typically proved w.r.t. an abstract semantics of

Authors’ Contact Information: Thomas Somers, Radboud University Nijmegen, The Netherlands, thomas.somers@ru.nl;

Robbert Krebbers, Radboud University Nijmegen, The Netherlands, mail@robbertkrebbers.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/10-ART292

https://doi.org/10.1145/3689732

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

HTTPS://ORCID.ORG/0009-0001-8101-5647
HTTPS://ORCID.ORG/0000-0002-1185-5237
https://doi.org/10.1145/3689732
https://orcid.org/0009-0001-8101-5647
https://orcid.org/0000-0002-1185-5237
https://doi.org/10.1145/3689732

292:2 Thomas Somers and Robbert Krebbers

Implementation Layers Specification Layers

Bidirectional channels (§ 3.4)

Actris’s dependent separation protocols [21, 22] (§ 2.2)

Logically Atomic Triples (to hide data representation) (§ 5.2)

Unidirectional queues (§ 3.2)

Ghost linking (to linearize link_queue calls) (§ 5.1)

Logically Atomic Triples (to hide data representation) (§ 4.4)

Atomic heap operations (§ 3.1) Hoare triples (from Iris)

Fig. 1. Overview of layers used in the verification.

channels—often some form of process calculus such as the 𝜋-calculus [43]—which is far removed

from the low-level lock-free implementation of channels that has been verified. To illustrate the

differences, we consider the link operation (also called forward). This operation is present in

many theoretical papers on session types [17, 39, 57, 60], and is also used to enable an elegant

way of writing programs in process style as demonstrated by the session-typed languages Concur-

rent C0 [61], Rast [15] and CLASS [51]. This operator forwards messages between two channels,

combining them into a single channel. Let us consider a simple use:

prog
1
≜ let (𝑐 : !Z.?Z.end) = start (𝜆(𝑐 : ?Z.!Z.end). let 𝑛 = 𝑐.recv () in 𝑐.send (𝑛 + 1)) in
let (𝑑 : ?Z.end) = start (𝜆(𝑑 : !Z..end). 𝑐 .send 2;𝑑.link 𝑐) in
𝑑.recv ()

This program creates two bidirectional channels using start 𝑓 , which returns one channel endpoint
and forks off a new thread that runs the function 𝑓 on the other endpoint. Thread 1 (for 𝑐) receives

an integer and sends back its successor. Thread 2 (for 𝑑) sends 2 over 𝑐 , hence thread 1 receives 2

over 𝑐 . Thread 2 then links 𝑑 to 𝑐 , and hence the incremented value (3) is sent from the thread 1

(over 𝑐) to the main thread (over 𝑑). The red annotations are session types, which are protocols

consisting of sequences of send (!𝑇) and receive (?𝑇) actions. When creating a channel using

start : (𝑇 ⊸ ()) ⊸ 𝑇 , both endpoints have dual protocols 𝑇 and 𝑇 , in which sending ! and
receiving ? actions are swapped. The link : 𝑇 × 𝑇 ⊸ () operation is opposite and takes two

channels with dual protocols. (By the Curry-Howard correspondence for session types [10, 60]

link corresponds to the identity rule in linear logic.)

In 𝜋-calculus, where endpoints are represented by variables (bound by the name restriction

operator 𝜈), one can give a concise operational semantics of link as substitution (see e.g., [60]):
𝜈𝑐. (𝑐.link 𝑑 | | 𝑃) → 𝑃 [𝑑/𝑐]. In a single step in the semantics, all uses of 𝑐 in other threads (the

process 𝑃 can contain nested | | operators) are replaced by 𝑑 .

A low-level implementation of channels with a link operator is much more challenging. Channel

endpoints are not represented by variables, but by pointers into a buffer on the heap. Consequently

a lock-free linking operator cannot be implemented by global substitution, but needs to be imple-

mented using the atomic heap operations that the implementation language provides. Modern

versions of asynchronous session types furthermore use bidirectional channels with buffers in both

directions, so that parties can send messages simultaneously provided this is done in the order the

other party expects to receive them [44, 45]. As we explain momentarily, bidirectional channels

further complicate a low-level implementation and the verification thereof.

Key Idea 1: Suitable abstraction layers. Channels can be implemented in many different

ways, using linked lists, arrays, or combinations of those. We aim to make our work as independent

from these implementation choices as possible. This is important for two reasons:

• To ensure feasibility, we want to obtain a clear separation of concerns. We want to separate

low-level implementation aspects from other key aspects of the proof.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:3

• To ensure reusability, we want to be able to support different channel implementations while

reusing as much of our proofs as possible.

We achieve these goals by building up our development using multiple abstraction layers, as shown

in Figure 1. Rather than implementing bidirectional channels with link directly, we implement them

on top of two unidirectional channels with a link_queue operator.We provide two implementations

of queues: a simple linked-list based version where each node contains a single value, and an array-

segment based version that avoids allocations and improves cache locality.

Each implementation layer has two specifications, a basic specification that hides the internal

data representation by linking it to a mathematical representation, and a flexible specification that

provides further abstraction. Crucially, the verification of the each higher specification layer can be

reused for any implementation matching the lower specification layer.

The flexible specification layer for unidirectional queues is used to prove that the link operator

on bidirectional channels is linearizable (i.e., it behaves as if it were an atomic operation). This

is non-trivial, as link performs two calls to link_queue for the unidirectional queues in both

directions. Our flexible specification layer employs an idea we call ‘ghost linking’ (detailed in ‘Key

Idea 2’ below), allowing us to treat multiple link_queue calls as a single atomic operation.

The flexible specification layer for bidirectional channels abstracts over the exact state of the

buffers and the other endpoint, hiding that another thread may link the other endpoint. This layer

is based on dependent separation protocols from the Actris framework [21, 22] in Iris, which extend

session types with separation logic propositions to prove functional correctness. A key ingredient

to verify this layer is our notion of ‘pairing invariants’, which we detail in ‘Key Idea 3’ below.

Our Coq development shows that the use of abstraction layers pays off. Particularly, we can

indeed swap one queue implementation for another and reuse the abstraction layers above. The

implementation and proofs for linked-list based queues involves 350 LOC, the array-based version

involves 680 LOC, while the rest of the verification effort involves 2,330 LOC.

Specifications in separation logic. To describe our key ideas, we first provide some background

on (concurrent) separation logic [9, 47, 48, 50]. In separation logic one typically specifies programs

using Hoare triples {𝑃} 𝑝 {𝑄} , which say that if the precondition 𝑃 holds, then (1) the expression

𝑝 executes safely (without memory errors), and (2) if 𝑝 terminates, then the postcondition 𝑄

holds. In a concurrent setting Hoare triples are rather weak—they say nothing about atomicity of

𝑝 , i.e., whether 𝑝 is linearizable [20]. For example, one could prove {ℓ ↦→ 𝑛} 𝑝 {ℓ ↦→ (𝑛 + 1)} for
𝑝 ≜ ℓ ← (! ℓ + 1), where← is the assignment and ! the dereference. Clearly, running 𝑝 two times

in parallel is not guaranteed to increment ℓ by two. Hence a Hoare triple {𝑃} 𝑝 {𝑄} can only be

used if a thread has unique ownership of 𝑃 , not when 𝑃 is shared between threads.

One can give stronger specifications in separation logic using logically-atomic Hoare triples
(LATs) [13, 33]. A LAT ⟨𝑃⟩ 𝑝 ⟨𝑄⟩ implies the Hoare triple {𝑃} 𝑝 {𝑄} , but additionally makes sure

that 𝑝 is atomic. Therefore, a LAT can be used even if 𝑃 is shared between threads. The LAT for

link_queue on unidirectional queues is (simplified):

⟨Q𝑑1 𝑒1 ®𝑣1 ∗ Q𝑑2 𝑒2 ®𝑣2⟩ 𝑒1.link_queue 𝑑2 ⟨Q𝑑1 𝑒2 (®𝑣1 ++ ®𝑣2)⟩ (link-qeue-lat)

Here, Q𝑑 𝑒 ®𝑣 is the queue representation predicate, which provides unique ownership of the internal

data structures representing a queue with head pointer 𝑑 (i.e., dequeue handle), tail pointer 𝑒 (i.e.,
enqueue handle), and messages ®𝑣 .

Key Idea 2: Ghost Linking. The LAT for link_queue is a-priori unusable for the verification of

link on bidirectional asynchronous channels. It only says that linking of one pair of queues takes

place atomically, while we need to link two pairs of queues (both channel directions) in a single

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:4 Thomas Somers and Robbert Krebbers

atomic step. We provide a more flexible specification with a notion of ghost linking (simplified):

Q 𝑑1 𝑒1 ®𝑣1 ∗ Q 𝑑2 𝑒2 ®𝑣2 𝑒1 f 𝑑2 ∗ Q 𝑑1 𝑒2 (®𝑣1 ++ ®𝑣2) (make-ghost-link)

{𝑒1 f 𝑑2} 𝑒1 .link_queue 𝑑2 {True} (link-qeue-ghost)

Rule make-ghost-link allows us to logically link two queues, giving the permission 𝑒1 f 𝑑2 to call

link_queue later through the ordinary Hoare triple link-qeue-ghost. Crucially, make-ghost-

link is not tied to a physical program step, so we can perform it at any point during the verification.

(For now, one can think of Iris’s update as being implication.) In particular, this allows us to

logically link multiple queues at the same time, and postpone the actual calls to link_queue.
We show that given any queue implementation that satisfies link-qeue-lat we can derive a

specification with ghost linking. This is a non-trivial construction because the queue representation

predicate Q 𝑑 𝑒 ®𝑣 no longer provides ownership of a single queue. In between the time that queues

have been logically linked, and the actual call to link_queue takes place, elements can be dequeued

or enqueued via the handles not involved in the linking, and these handles themselves could be

linked as well. Hence, Q 𝑑 𝑒 ®𝑣 provides ownership of a chain of queues whose linking has been

postponed, and 𝑒1 f 𝑑2 provides the permission to perform the call to link_queue.
Using our notion of ghost linking, we are able to prove the following LAT for link on bidirectional

asynchronous channels (simplified):

⟨C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 ∗ C 𝑐3 𝑐4 ®𝑣3 ®𝑣4⟩ 𝑐2 .link 𝑐3 ⟨C 𝑐1 𝑐4 (®𝑣1 ++ ®𝑣3) (®𝑣4 ++ ®𝑣2)⟩ (link-spec-lat)

Here, C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 is the channel representation predicate, which provides unique ownership of a

channel with endpoints 𝑐1 and 𝑐2 that has messages ®𝑣1 and ®𝑣2 in its buffers.

Dependent separation protocols. The specification link-spec-lat says that linking is atomic—

without exposing that internally two linking operations on queues are performed—but it is still

low-level. The representation predicate C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 involves both channel endpoints 𝑐1 and 𝑐2 and

the messages ®𝑣1 and ®𝑣2 in both buffers. We want to verify a thread w.r.t. its own endpoint and

without explicit reasoning about the buffers. It is particularly important that the verification does

not concern the other endpoint, as another thread may link and thus change the other endpoint.

To enable thread-local verification akin to session types, we verify a high-level (and our final)

specification for channels using dependent separation protocols from the Actris framework [21, 22]

in Iris. For example, the dependent separation protocol for 𝑐 in prog
1
on Page 2 is:

𝑐 ↣ ! (𝑛 : Z) ⟨𝑛⟩. ? ⟨𝑛 + 1⟩. end

Here, 𝑐 ↣ prot provides ownership of endpoint 𝑐 and says that it behaves according to protocol

prot. The protocol describes receiving any integer 𝑛, followed by sending the successor 𝑛+1. Similar

to session types, after sending 2 in the second thread, we obtain 𝑐 ↣ ? ⟨3⟩. end. Since we also have
𝑑 ↣ ! ⟨3⟩. end, which is dual, we can use our novel high-level specification for link:{

𝑐 ↣ prot ∗ 𝑑 ↣ prot
}
𝑐.link 𝑑 {True} (link-spec)

Note that the Hoare triple for link is similar to the typing rule in session types (and the identity

rule in linear logic), so we have obtained our goal of obtaining high-level reasoning principles that

are verified all the way to a low-level lock-free implementation of asynchronous channels.

Key Idea 3: Pairing Invariants. The final challenge is to define 𝑐 ↣ prot in terms of C 𝑐1 𝑐2 ®𝑣1 ®𝑣2,
and to prove link-spec in terms of link-spec-lat. Naively, we would use an Iris invariant per

channel to connect C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 to the protocols of 𝑐1 and 𝑐2. However, these endpoints 𝑐1, 𝑐2 can

change over time due to calls to link, so a naive invariant per channel would not hold invariantly.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:5

We address this challenge through our second key idea: pairing invariants. A usual invariant

in separation logic (e.g., Iris) says that a proposition 𝐼 can be shared between threads provided all

threads ensure 𝐼 hold invariantly (i.e., at all time). A pairing invariant takes a binary Iris relation

𝑅 : 𝐴→ 𝐴→ iProp. To allocate a pairing invariant, one trades ownership of 𝑅 𝑎 𝑏 for tokens Tok 𝑎
and Tok 𝑏 that provide shared access to 𝑅 𝑎 𝑏. To verify session channels we use (simplified):

𝑅 (𝑐1, prot1) (𝑐2, prot2) ≜ ∃®𝑣1, ®𝑣2. C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 ∗ 𝑃 prot
1
prot

2
®𝑣1 ®𝑣2

𝑐 ↣ prot ≜ Tok (𝑐, prot)

Here, 𝑃 is a predicate (provided by Actris) that formalizes that the messages ®𝑣1 and ®𝑣2 in the channel

buffers comply with the dependent separation protocols prot
1
and prot

2
of the endpoints. Pairing

invariants provide a concise and abstract set of rules (which are independent of channels) that allow

one to access 𝑅 𝑎 𝑏 through Tok 𝑎 without knowledge of 𝑏. Particularly, when one owns 𝑐1 ↣ prot
1
,

these rules provide access to C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 without knowledge of 𝑐2.

Contributions and Outline. We provide the first low-level implementation of session channels

that is lock-free, asynchronous with buffers in both directions, and supports programming in

process style using link. We verify this implementation in layers (see Figure 1), where the top

layer enables functional verification using a high-level session-type-based specification in the style

of Actris [21, 22] (§ 2). This encompasses the following contributions:

• We parametrize our development by the implementation of a unidirectional queue, for which

we provide a linked-list and array-segment instance (§ 3).

• On top of any unidirectional queue that enjoys a logically-atomic specification (§ 4), we

provide a specification with ghost linking (§ 5), which makes it possible to linearize multiple

link operations in one step. This allows us to verify a logically-atomic channel specification.

• We develop pairing invariants (§ 6), which provide a generic logical abstraction to reason

locally without knowledge of the other component.

• We show that our results scale to the higher-order setting where channel endpoints and

functions are used as messages (§ 7).

• We mechanize all our results in the Coq proof assistant (§ 8).

We conclude the paper with a discussion of related and future work (§ 9).

Limitations/non-goals. Similar to most papers on concurrent separation logic and Iris, we

consider a sequentially consistent rather than relaxed memory model, and consider safety and

functional correctness instead of deadlock-freedom or liveness. Similar to most papers on session

types, we prohibit channel endpoints to be shared between threads, allowing us to use single-

reader/single-writer queues. We restrict to binary instead of multiparty session types.

2 High-level Verification of Message-Passing Programs with Link
In this section we show the API of session channels and their high-level specification using Actris’s

dependent separation protocols. We introduce these concepts using simple examples (§ 2.1) before

showing the proof rules (§ 2.2). Using an insertion sort example inspired by Concurrent C0 [61],

we show that our proof rules can be used to not only prove safety (as in Concurrent C0), but also

functional correctness of programs in process style that use link (§ 2.3). We conclude with a variant

of insertion sort that uses the channel buffers in both directions (§ 2.4). Our high-level specification

has all the existing proof rules of Actris—including a novel rule for link—and has been verified

on top a low-level implementation of channels that we will define in § 3 (Actris uses a lock-based

implementation and does not support link).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:6 Thomas Somers and Robbert Krebbers

2.1 Basic Examples
Bidirectional asynchronous session channels provide the following operations:

new_chan () Create a new channel returning the two endpoints.

𝑐.send 𝑣 Send the message 𝑣 over channel endpoint 𝑐 .

𝑐.recv () Wait for and receive the next message from channel endpoint 𝑐 .

𝑐.link 𝑐′ Link the endpoints 𝑐 and 𝑐′, forwarding all messages between them.

Using new_chan and fork {𝑝}, which runs 𝑝 in a new thread, we define the start operation, which
runs a function on one endpoint of a channel in a new thread, and returns the other endpoint:

start 𝑓 ≜ let (𝑐, 𝑐) = new_chan () in fork {𝑓 𝑐} ; 𝑐
The example program prog

2
below uses start to spawn a process service that receives positive

integers and sends back the sum once a non-positive value has been received:

service 𝑑 sum ≜ let 𝑛 = 𝑑.recv () in
if 𝑛 > 0 then service 𝑑 (sum + 𝑛)
else 𝑑.send sum

prog
2
≜ let 𝑐 = start (𝜆𝑐. service 𝑐 0) in
𝑐.send 20; 𝑐.send 22; 𝑐.send 0;
assert (𝑐.recv () == 42)

The assert𝑝 operation succeeds when 𝑝 evaluates to true and gets stuck otherwise. Verification

in Iris ensures that no assert operation gets stuck.

Dependent Separation Protocols. To prove functional correctness of these programs—in this

case that prog
2
does not get stuck—we need to reason about the messages sent over the channel. For

this we use the channel ownership assertion 𝑐 ↣ prot, which describes that a channel endpoint 𝑐

sends and receives messages according to Actris’s dependent separation protocol prot. For prog
2
the

channel endpoints 𝑐 and 𝑐 can be described as channel ownership assertions with dual protocols:

𝑐 ↣ ! ⟨20⟩. ! ⟨22⟩. ! ⟨0⟩. ? ⟨42⟩. end 𝑐 ↣ ? ⟨20⟩. ? ⟨22⟩. ? ⟨0⟩. ! ⟨42⟩. end
Here, !⟨𝑛⟩ and ?⟨𝑛⟩ correspond to sending and receiving the value 𝑛, respectively. Protocols are

dual iff all occurrences of ! and ? are swapped. The dual of a protocol prot is denoted prot.

Channel Linking. The link operation combines two channels with dual protocols such that

all messages between them are forwarded. It can be used to verify programs such as the following:

prog
3
≜ let 𝑐 = start (𝜆𝑐. service 𝑐 0) in
let 𝑑 = start

(
𝜆𝑑. 𝑐.send 20; 𝑑.link 𝑐

)
in

𝑑.send 22; 𝑑.send 0; assert (𝑑.recv () == 42)
In this program, a new process 𝑑 first sends 20 over 𝑐 , followed by linking with 𝑐 . At the time of

linking we have to verify that the protocols for 𝑑 and 𝑐 are duals:

𝑑 ↣ ? ⟨22⟩. ? ⟨0⟩. ! ⟨42⟩. end 𝑐 ↣ ! ⟨22⟩. ! ⟨0⟩. ? ⟨42⟩. end

Quantified and Recursive Protocols. More general protocols for 𝑐 and 𝑐 abstract over the

exact integers that are transferred (and thus the number of recursive calls):

𝑐 ↣ prot 0 where prot 𝑠 ≜ ! (𝑛 : Z) ⟨𝑛⟩. if 𝑛 > 0 then prot (𝑠 + 𝑛) else ? ⟨𝑠⟩. end
𝑐 ↣ prot 0 where prot 𝑠 ≜ ? (𝑛 : Z) ⟨𝑛⟩. if 𝑛 > 0 then prot (𝑠 + 𝑛) else ! ⟨𝑠⟩. end

In quantified dependent separation protocols, both sent values and the remainder of the protocol

can be arbitrary mathematical/Coq functions of the quantified variables. In this case, the protocol

branches depending on the sent value by using an if expression in the remainder of the protocol.

Note that the if in protocols is fundamentally different from the if in programs: the first lives at

the level of higher-order logic/Coq, whereas the latter is part of the programming language.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:7

Separation Logic Resources. In addition to sent values, protocols can also describe resources

sent over the channel such as location ownership 𝑙 ↦→ 𝑣 or channel ownership assertions 𝑐 ↣ prot
(generalizing delegation in session types). This is used to verify programs such as the following, in

which a location is received, the value at that location is incremented, and true is sent back:

prog
4
𝑐 ≜ let 𝑙 = 𝑐.recv () in 𝑙 ← (! 𝑙 + 1); 𝑐.send true

In the protocol for 𝑐 we receive not only the location ℓ , but also the location ownership ℓ ↦→ 𝑛:

𝑐 ↣ ? (ℓ : Loc) (𝑛 : Z) ⟨ℓ⟩{ℓ ↦→ 𝑛}. ! (𝑏 : B) ⟨𝑏⟩{ℓ ↦→ (𝑛 + 1)}. end
The {𝑃} notation states that resources matching the separation logic proposition (𝑃 : iProp) are
sent along with the message. When {𝑃} is omitted, it means {True}, i.e., no resources are sent

along. In the example, the location ownership ℓ ↦→ 𝑛 is sent along with the location ℓ . The location

ownership ℓ ↦→ (𝑛 + 1) is sent back along with the Boolean value 𝑏, meaning that after receiving,

the other side can read the incremented value from the same location it sent earlier.

Neither the quantified variable 𝑛, nor the resources are physically sent over the channel, as they

only exist during verification. As the resources are described by a separation logic proposition, they

can also contain pure propositions such as (∃𝑚 : Z. 𝑛 = 2𝑚), or combination of pure propositions

and resources (𝑏 ⇔ ∃𝑚 : Z. 𝑛 = 2𝑚) ∗ ℓ ↦→ (𝑛 + 1). The resources can also contain Hoare triples,

which is useful to reason about programs in which functions/closures are sent over channels.

2.2 High-Level Specifications
In Iris, specifications are written as Hoare triples {𝑃} 𝑝 {𝛷} , where (𝑃 : iProp) is a precondition,
(𝑝 : Expr) an expression, and (𝛷 :Val→ iProp) the postcondition. The triple ensures that for all
heaps in which 𝑃 holds, executing 𝑝 is safe (i.e., does not get stuck), and if 𝑝 evaluates to a value 𝑣 ,

then𝛷 𝑣 holds for the heap after executing 𝑝 . The Hoare triples of the channel operations are:

{True} new_chan ()
{
(𝑐, 𝑐). 𝑐 ↣ prot ∗ 𝑐 ↣ prot

}
{𝑐 ↣ ! ®𝑥 ⟨𝑣⟩{𝑃}. prot ∗ 𝑃 [®𝑦/®𝑥]} 𝑐.send (𝑣 [®𝑦/®𝑥]) {𝑐 ↣ prot [®𝑦/®𝑥]}

{𝑐 ↣ ? ®𝑥 ⟨𝑣⟩{𝑃}. prot} 𝑐.recv () {𝑤. ∃®𝑦. 𝑤 = 𝑣 [®𝑦/®𝑥] ∗ 𝑃 [®𝑦/®𝑥] ∗ 𝑐 ↣ prot [®𝑦/®𝑥]}{
𝑐 ↣ prot ∗ 𝑐′ ↣ prot

}
𝑐.link 𝑐′ {True}

The new_chan specification says we can always create a channel with two endpoints that adhere

to a protocol prot and its dual prot. This protocol is chosen during the verification, and not part of

the program, meaning that the implementation of channels is not dependent on the protocol.

The send specification states that to send a value𝑤 over 𝑐 , we need to give up a sending channel

ownership assertion 𝑐 ↣ ! ®𝑥 ⟨𝑣⟩{𝑃}. prot and pick a suitable instantiation ®𝑦 of variables ®𝑥 such that

𝑤 = 𝑣 [®𝑦/®𝑥] and we can give up resources 𝑃 [®𝑦/®𝑥]. After sending we continue with the remaining

protocol 𝑐 ↣ prot [®𝑦/®𝑥], which can also depend on the chosen instantiation ®𝑦.
The recv specification is similar to send. To receive from 𝑐 we need a receiving channel ownership

assertion 𝑐 ↣ ? ®𝑥 ⟨𝑣⟩{𝑃}. prot. After receiving there is an instantiation ®𝑦 such that the received value
is 𝑣 [®𝑦/®𝑥] and we gain the resources 𝑃 [®𝑦/®𝑥] and the continuation of the protocol 𝑐 ↣ prot [®𝑦/®𝑥].

Finally, the link specification states linking is safe if we give up two channel ownership assertions
𝑐 ↣ prot and 𝑐′ ↣ prot with dual protocols.

The specifications of new_chan, send and recv are the same as those for lock-based channels in

Actris and can be used to verify the same programs, but against a lock-free implementation. The

link rule is fully novel. The rule for start can be derived from those of new_chan and Iris’s fork:

∀𝑐.
{
𝑃1 ∗ 𝑐 ↣ prot

}
𝑓 𝑐 {True}

{𝑃1 ∗ 𝑃2} start 𝑓 {𝑐. 𝑃2 ∗ 𝑐 ↣ prot}
{𝑃1} 𝑝 {True}

{𝑃1 ∗ 𝑃2} fork {𝑝} {𝑃2}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:8 Thomas Somers and Robbert Krebbers

2.3 Insertion Sort
As a more challenging example that uses link, we consider insertion sort written in process style. In
process languages such as Concurrent C0 [61], Rast [15] and CLASS [51], algorithms are modeled

by concurrent processes, which provide a channel to the caller for communication. Such algorithms

are written in our language as functions that use start to spawn a new thread and return the other

endpoint to the client.

The insertion sort client can insert elements by sending a some value, and receives the elements

of the list in sorted order after sending a none value. This is described by the following protocol:

protrecv , protsort : List Z→ iProto

protrecv ®𝑥 ≜ match ®𝑥 with [] ⇒ ? ⟨none⟩. end | 𝑥 :: ®𝑥 ⇒ ? ⟨some𝑥⟩. protrecv ®𝑥 end

protsort ®𝑥 ≜ ! 𝑣 ⟨𝑣⟩. match 𝑣 with none⇒ protrecv ®𝑥 | some𝑦 ⇒ protsort (insert 𝑦 ®𝑥) end

The protocol protsort ®𝑥 is parameterized by a sorted list of integers ®𝑥 that are sent. If a some𝑦 value

is sent, we use the mathematical function insert 𝑦 ®𝑥 to insert 𝑦 into a sorted list ®𝑥 , and proceed

recursively. If a none value is sent, we continue with the protocol protrecv ®𝑥 , which says that the

list ®𝑥 is received in order, terminated by none. We implement insertion sort in process style, using

a process for each element (the send operation in red will be removed in § 2.4):

elem 𝑥 𝑡 ≜ start ©«
𝜆𝑐. match 𝑐.recv () with
| none ⇒ 𝑡 .send none; 𝑐.send (some𝑥); 𝑐.link 𝑡
| some𝑦 ⇒ if𝑦 ≤ 𝑥 then let 𝑡 ′ = elem 𝑥 𝑡 in 𝑐.link (elem 𝑦 𝑡 ′)

else 𝑡 .send (some𝑦); 𝑐.link (elem 𝑥 𝑡)
end

ª®®®®®¬
empty () ≜ start ©«

𝜆𝑐. match 𝑐.recv () with
| none ⇒ 𝑐.send none
| some𝑥 ⇒ let 𝑡 = empty () in 𝑐.link (elem 𝑥 𝑡)
end

ª®®®¬
The empty process does not contain any values, and the elem 𝑥 𝑡 process consists of a single value 𝑥

and a tail process 𝑡 . Both processes allow for inserting a new value by sending a some value, and
receiving all sorted values in order by sending a none value. Recursion is done using the link
operation. The link operation in the none case of elem (blue) allows the client to communicate

directly with the tail process, rather than having to manually forward all messages.

A client uses this version of insertion sort by creating and communicating with a new empty
process. It sends a list of some values terminated by none, and then receives a sorted list of some
values, terminated by none. This mode of use is formalized by the specification of empty:

{True} empty ()
{
𝑐. 𝑐 ↣ protsort []

}
Using this specification, we can verify that clients are safe and functionally correct, for example

(each line is annotated with the current protocol):

client () ≜ let 𝑐 = empty () in
{
𝑐 ↣ protsort []

}
𝑐.send (some 5); 𝑐.send (some 2); 𝑐.send (some 3);

{
𝑐 ↣ protsort [2, 3, 5]

}
𝑐.send none

{
𝑐 ↣ protrecv [2, 3, 5]

}
assert(𝑐.recv () == some 2);

{
𝑐 ↣ protrecv [3, 5]

}
assert(𝑐.recv () == some 3);

{
𝑐 ↣ protrecv [5]

}
assert(𝑐.recv () == some 5);

{
𝑐 ↣ protrecv []

}
assert(𝑐.recv () == none) {𝑐 ↣ end}

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:9

To verify empty we need a suitable protocol for elem. Rather than giving a brand new protocol,

we notice that prot𝑠𝑜𝑟𝑡 (𝑦 :: ®𝑥) is a protocol for elem 𝑦 𝑡 when prot𝑠𝑜𝑟𝑡 ®𝑥 is a protocol for 𝑡 :{
𝑡 ↣ protsort ®𝑥

}
elem 𝑦 𝑡

{
𝑐. 𝑐 ↣ protsort (𝑦 :: ®𝑥)

}
2.4 Modified Insertion Sort
Channels with buffers in both directions allow clients to send messages earlier than required by

the protocol. Inspired by asynchronous subtyping in session types [44, 45], dependent separation

protocols in Actris provide asynchronous subprotocols [22, §6] to move sends ahead of receives.

Formally, 𝑐 ↣ ? ®𝑥 ⟨𝑣⟩{𝑃}. ! ®𝑦 ⟨𝑤⟩{𝑄}. prot can be converted into 𝑐 ↣ ! ®𝑦 ⟨𝑤⟩{𝑄}. ? ®𝑥 ⟨𝑣⟩{𝑃}. prot
as long as𝑤 and 𝑄 do not depend on ®𝑥 .
To demonstrate asynchronous subprotocols, we modify the insertion sort algorithm to only

retrieve and remove the least element when none is sent. This is similar to the original version in

Concurrent C0, but our client goes beyond Concurrent C0, which does not support asynchronous

subtyping. This change consists of removing the 𝑡 .send none operation from the elem process in

§ 2.3. We update the protocols accordingly:

prot′recv ®𝑥 ≜ match ®𝑥 with [] ⇒ ? ⟨none⟩. end | 𝑥 :: ®𝑥 ⇒ ? ⟨some𝑥⟩. prot′sort ®𝑥 end

prot′sort ®𝑥 ≜ ! 𝑣 ⟨𝑣⟩. match 𝑣 with none⇒ prot′recv ®𝑥 | some𝑦 ⇒ prot′sort (insert 𝑦 ®𝑥) end
The difference compared to protsort from § 2.3 is that whereas protrecv retrieves and removes all

elements by recursively using protrecv , the protocol prot
′
recv continues with prot′sort after retrieving

and removing the first element (marked in blue).

Unlike Concurrent C0—which does not use buffers in both directions, and channels must follow

their protocol exactly—we can verify programs that send messages earlier than required. The

following annotated client sends multiple none values before receiving the results:

client′ () ≜ let 𝑐 = empty () in
{
𝑐 ↣ prot′sort []

}
𝑐.send (some 5); 𝑐.send (some 2); 𝑐.send (some 3);

{
𝑐 ↣ prot′sort [2, 3, 5]

}
𝑐.send none;

{
𝑐 ↣ prot′recv [2, 3, 5]

}
(∗)

𝑐.send none;
{
𝑐 ↣ ? ⟨some 2⟩. prot′recv [3, 5]

}
assert(𝑐.recv () == some 2);

{
𝑐 ↣ prot′recv [3, 5]

}
assert(𝑐.recv () == some 3);

{
𝑐 ↣ prot′sort [5]

}
𝑐.send none; assert(𝑐.recv () == some 5);

{
𝑐 ↣ prot′sort []

}
𝑐.send none; assert(𝑐.recv () == none) {𝑐 ↣ end}

At (∗), we unfold the definition of prot′recv [2, 3, 5] as follows:

? ⟨some 2⟩. ! 𝑣 ⟨𝑣⟩. match 𝑣 with none⇒ prot′recv ®[3, 5] | some𝑦 ⇒ prot′sort (insert 𝑦 [3, 5]) end
At which point we can use asynchronous subprotocols to get a channel with the protocol:

! 𝑣 ⟨𝑣⟩. ? ⟨some 2⟩. match 𝑣 with none⇒ prot′recv [3, 5] | some𝑦 ⇒ prot′sort (insert 𝑦 [3, 5]) end
We can therefore send another none value before retrieving the value 2.

3 Implementation
In this section we provide a low-level lock-free implementation of asynchronous session channels.

We start by describing the implementation language (Iris’s HeapLang) and its low-level operations

(§ 3.1).We then implement lock-free queues with non-blocking enqueue and link_queue operations
using linked lists (§ 3.2) and array segments (§ 3.3), which we pair to implement session channels

(§ 3.4). Since Actris’s session-type discipline ensures that endpoints are owned by a unique party,

we consider single-reader/single-writer queues.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:10 Thomas Somers and Robbert Krebbers

3.1 Description of HeapLang
We implement our channels in HeapLang—a low-level untyped functional language with concur-

rency, mutable state and garbage collection. HeapLang is the main low-level language included in

the Coq version of Iris [28]. We use the following HeapLang operations:

alloc 𝑛 𝑣 Allocate 𝑛 adjacent locations ℓ to (ℓ + 𝑛 − 1) each containing value 𝑣 and return ℓ .

ref 𝑣 Allocate and return a single location containing 𝑣 . Short for alloc 1 𝑣 .

ℓ ← 𝑣 Write the value 𝑣 to location ℓ .

! ℓ Read and return the value at location ℓ .

3.2 Linked-List Implementation of UnidirectionalQueues
We start by building an implementation of unidirectional queues with linking, whose API is:

new_queue () Create a new queue and return a pair (𝑑, 𝑒) of dequeue and enqueue handles.

𝑑.dequeue() Dequeue the next value from the queue with dequeue handle 𝑑 .

𝑒.enqueue 𝑣 Enqueue 𝑣 to the queue with enqueue handle 𝑒 .

𝑒.link_queue 𝑑 ′ Combine the queues with enqueue handle 𝑒 and dequeue handle 𝑑 ′.

The dequeue operation is blocking, as it waits for the next value to dequeue when none are available.
The link_queue operation is non-blocking and combines the queues (𝑑, 𝑒) and (𝑑 ′, 𝑒′) into a single
queue (𝑑, 𝑒′). Intuitively, the result of link_queue is that all messages from 𝑑 ′ are forwarded to 𝑒

without explicitly forwarding each message. By splitting up the enqueue and dequeue handles for

queues, link_queue does not have to update the other ends of the queues 𝑑 and 𝑒′.
To see our queues in action, consider the following example:

prog
5
≜ let (𝑑, 𝑒) = new_queue () in
fork {let (𝑑 ′, 𝑒′) = new_queue () in 𝑒′ .enqueue 42; 𝑒.link_queue 𝑑 ′} ;
𝑑.dequeue()

A new queue with dequeue handle 𝑑 and enqueue handle 𝑒 is created. The new thread creates a

new queue (𝑑 ′, 𝑒′), enqueues 42 to the new queue and then links 𝑒 to 𝑑 ′. The main thread waits for

and dequeues the forwarded value 42 from 𝑑 . This dequeued value 42 is returned from the program.

The queue is implemented using a singly-linked list with 3 types of nodes identified by an integer

tag: NIL (0), CONS (1) and LINK (2). Each node consists of 3 adjacent locations containing the integer

tag, contained value and next node location, respectively. Though both CONS and LINK nodes have

a next node location, only the CONS nodes contain values. The enqueue and dequeue handles are

locations containing pointers to the head and tail nodes respectively. The following diagram depicts

the queues (𝑑, 𝑒) and (𝑑 ′, 𝑒′) in prog
5
before the link_queue operation:

01 42

cons node nill node

e
′

0

nill node

d
′

d e

The boxes represent locations on the heap, whereas arrows represent location values, pointing to a

location on the heap. When linking 𝑒 and 𝑑 ′, the NIL node at 𝑒 is replaced by a LINK node pointing

to the head of the other queue at 𝑑 ′, but containing no value. This results in the combined queue:

01 42

cons node nill node

e
′

link node

dd

2

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:11

As the LINK node does not contain a value, the dequeue operation skips the LINK node and continues
dequeueing from the next node. Hence, the next value dequeued from 𝑑 in prog

5
would be 42.

The queue operations are implemented as follows

new_queue () ≜ let 𝑛𝑖𝑙𝑙 = alloc 3 NIL in (ref 𝑛𝑖𝑙𝑙, ref 𝑛𝑖𝑙𝑙)
𝑑.dequeue() ≜ let 𝑛𝑜𝑑𝑒 = !𝑑 in

if !𝑛𝑜𝑑𝑒 == NIL then 𝑑.dequeue()
else if !𝑛𝑜𝑑𝑒 == CONS then 𝑑 ← ! (𝑛𝑜𝑑𝑒 + 2); ! (𝑛𝑜𝑑𝑒 + 1)
else 𝑑 ← ! (𝑛𝑜𝑑𝑒 + 2); 𝑑.dequeue()

𝑒.enqueue 𝑣 ≜ let 𝑛𝑜𝑑𝑒 = ! 𝑒 in let 𝑛𝑖𝑙𝑙 = alloc 3 NIL in
(𝑛𝑜𝑑𝑒 + 2) ← 𝑛𝑖𝑙𝑙 ; (𝑛𝑜𝑑𝑒 + 1) ← 𝑣 ; 𝑛𝑜𝑑𝑒 ← CONS; 𝑒 ← 𝑛𝑖𝑙𝑙

𝑒 .link_queue 𝑑 ′ ≜ let 𝑛𝑜𝑑𝑒 = ! 𝑒 in (𝑛𝑜𝑑𝑒 + 2) ← !𝑑 ′; 𝑛𝑜𝑑𝑒 ← LINK

Thread safety depends on there being a single reader (that uses the dequeue handle) and single

writer (that uses the enqueue handle), which will be enforced by the session-type discipline of

Actris. For thread safety it is crucial that enqueue and link_queue update the tag last.

3.3 Array-Segment Implementation of UnidirectionalQueues
In addition to the linked-list based queue, we also implement an array-segment based version with

the same API. The queue consists of multiple array segments with a fixed length (e.g., 1024). The first
3 fields are occupied by the start and end indices, and a pointer to the next segment. Dequeueing

is performed on the first segment, whereas enqueueing is performed on the last segment. When

enqueueing to a full array, a new array segment is allocated and the next field is set to the location

of the new array. Similarly when linking, the next field is set to the location of the first array

segment of the linked queue. As an example, the following diagram depicts a queue containing 4, 2

and 6 consisting of a segment containing 4 and 2, and a second segment containing 6:

d

e

1 3

0 1

4 2

6

start end

start end next

The implementation and verification details of this queue can be found in our Coq development [3].

3.4 Implementation of Session Channels
We implement lock-free bidirectional channels as a pair of two single-reader/single-writer queues:

new_chan () ≜ let (𝑑, 𝑒) = new_queue () in
let (𝑑 ′, 𝑒′) = new_queue () in
((𝑑, 𝑒′), (𝑑 ′, 𝑒))

(𝑑, 𝑒).recv () ≜ 𝑑.dequeue()
(𝑑, 𝑒).send 𝑣 ≜ 𝑒.enqueue 𝑣

(𝑑, 𝑒).link (𝑑 ′, 𝑒′) ≜ 𝑒.link_queue 𝑑 ′; 𝑒′ .link_queue 𝑑

Creating a channel consists of creating two queues, and creating endpoints containing one dequeue

handle for receiving, and the other enqueue handle for sending. The recv operation corresponds

to dequeueing, send corresponds to enqueueing, and link consists of linking both pairs of queues.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:12 Thomas Somers and Robbert Krebbers

3.5 End-to-End Correctness
End-to-end correctness is captured by Iris’s adequacy theorem [32, §6.4]: If {True} 𝑝 {True} , then
𝑝 does not get stuck w.r.t. the operational semantics of HeapLang. Programs get stuck if operators

are applied to wrong arguments, there are memory errors, or asserts fail. Hence adequacy ensures
safety and functional correctness of both the message-passing program subject to verification and

the low-level implementation of channels.

The Coq mechanization (§ 8) contains closed proofs (i.e., proofs without any axioms) of the

adequacy theorem and the Hoare rules for the operations on session channel. The adequacy theorem

is provided by Iris, and the Hoare rules for channels are a contribution of this paper. Using these

ingredients we can derive closed proofs of safety for concrete programs with channels. Hence the

trusted computing base consists of the statement of safety and the operational semantics of the

HeapLang language, which are both standard as they are provided by Iris.

4 Specification and Verification ofQueues
In this section we use logical atomic triples (LATs) in Iris to verify that the queues with linking from

§ 3 are linearizable—i.e., all operations behave as if they were atomic. We first give a sequential

specification (§ 4.1), and explain invariants and logical atomicity in Iris (§ 4.2 and § 4.3). We then

present the concurrent specification (§ 4.4), and show how it is verified (§ 4.5). In the next section

(§ 5), we extend the concurrent specification with our novel concept of ghost linking, allowing for

the logical linking of multiple queues at a single linearization point.

4.1 Sequential Specification of UnidirectionalQueues
A queue is commonly specified in separation logic as follows:

{True} new_queue () {(𝑑, 𝑒). Q𝑑 𝑒 []}
{Q𝑑 𝑒 ®𝑣} 𝑑.dequeue() {𝑤. ∃ ®𝑤. ®𝑣 = 𝑤 :: ®𝑤 ∗ Q𝑑 𝑒 ®𝑤}
{Q𝑑 𝑒 ®𝑣} 𝑒.enqueue 𝑣 {Q𝑑 𝑒 (®𝑣 ++ [𝑣])}

{Q𝑑 𝑒 ®𝑣 ∗ Q𝑑 ′ 𝑒′ ®𝑤} 𝑒.link_queue 𝑑 ′ {Q𝑑 𝑒′ (®𝑣 ++ ®𝑤)}
{Q𝑑 𝑒 ®𝑣} 𝑒.link_queue 𝑑 {True}

The queue representation predicate Q𝑑 𝑒 ®𝑣 provides unique ownership of a queuewith head pointer𝑑
(i.e., dequeue handle), tail pointer 𝑒 (i.e., enqueue handle), and values ®𝑣 represented by amathematical

list. The postcondition Q𝑑 𝑒 [] of new_queue says that an empty queue is created for the returned

dequeue and enqueue handles 𝑑 and 𝑒 . The specifications for dequeue and enqueue update the

mathematical specification of the queue Q by dequeueing the head of the list and appending to

the tail of the list respectively. The dequeue specification only requires that the queue state ®𝑣 is
non-empty in the postcondition. This relies on partial correctness, as in the empty case the dequeue

operation waits for the next value and hence does not terminate. The link_queue operation has

two distinct cases. In the first case, the operation takes two distinct queues and links these queues

into a single queue with the appended values from both queues. In the second case, the operation

is provided both handles to the same queue. As no handles to the queue remain after linking, the

postcondition is simply True. A definition of the Q representation predicate is given in § 4.5.

4.2 Invariants in Iris
Let us consider a small example to see why sequential specifications, such as those from § 4.1, are

insufficient to verify concurrent programs:

prog
6
≜ let (𝑑, 𝑒) = new_queue () in fork {𝑒.enqueue 42} ; 𝑑.dequeue()

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:13

The desired specification is {True} prog
6
{𝑛. 𝑛 = 42} . Verifying the fork requires splitting the

predicate Q𝑑 𝑒 [] into 𝑃1 ∗ 𝑃2, where 𝑃1 is used to prove {𝑃1} 𝑒.enqueue 42 {True} and 𝑃2 to prove

{𝑃2} 𝑑.dequeue() {42} . But we only have one Q, which may be used for 𝑃1 or 𝑃2, but not both.

To share resources such as the queue representation predicate Q between threads, Iris provides

invariants 𝑃 corresponding to a proposition 𝑃 that holds at all times (i.e., invariantly). The invariant
assertion 𝑃 is duplicable and can thus be shared between threads. Since an invariant needs to

hold at all times during execution, it can only be opened and used for physically-atomic operations.
Physically-atomic operations are primitive operations in the language, such as loading or storing

to a location, and therefore take effect at a single instant in time. For the duration of a physically-

atomic operation 𝑝 , the contents 𝑃 of an invariant 𝑃 can be used, as long as the invariant is closed

after executing 𝑝 by giving up 𝑃 . These intuitive ideas are captured by the following rules:

inv-alloc

{ 𝑃 N ∗ 𝑆} 𝑝 {𝛷}E
{⊲ 𝑃 ∗ 𝑆} 𝑝 {𝛷}E

inv-dup

𝑃
N ⊣⊢ 𝑃

N ∗ 𝑃
N

inv-open

N ⊆ E atomic𝑝 {⊲ 𝑃 ∗ 𝑆} 𝑝 {𝑣 . ⊲ 𝑃 ∗𝛷 𝑣}E\N
{ 𝑃 N ∗ 𝑆} 𝑝 {𝛷}E

Rule inv-alloc allows for proving a Hoare triple by making a part of the precondition (𝑃) invariant,

meaning that 𝑃 holds invariantly during the execution of 𝑝 . Rule inv-dup allows an invariant to be

duplicated and thus to be shared among threads. Finally, inv-open allows unopened invariants to

be opened for the duration of a physically atomic operation 𝑝 .

For logical consistency, invariants in Iris 𝑃
N
have a namespaceN , and Hoare triples {𝑃} 𝑝 {𝛷}E

have a mask E. When an invariant is opened, its namespace is removed from the mask, ensuring

that any invariant can only be opened once at any given time. Throughout this paper we generally

omit namespaces and masks considering they are mostly an administrative detail.

The later modality (⊲𝑅) corresponds to 𝑅 holding after the next program step, and is required

for logical consistency in the presence of higher-order reasoning [32, §5.5]. Until we consider

higher-order concepts in § 7, the reader may ignore the later modality and read ⊲𝑅 as 𝑅.

Before describing how to reason about linearizability of functions (such as those for queues) in

§ 4.3, let us consider a simpler example to see invariants in action:

incr 𝑙 ≜ let 𝑛 = ! 𝑙 in
if CAS 𝑙 𝑛 (𝑛 + 1) then ()
else incr 𝑙

prog
7
≜ let 𝑙 = ref 40 in
fork {incr 𝑙} ; fork {incr 𝑙} ;
! 𝑙

The function incr 𝑙 increments the value at location 𝑙 . It uses CAS 𝑙 𝑛𝑚, which is a physically atomic
operation that compares the value at 𝑙 with 𝑛, replacing it with𝑚 and returning true on success,

and returning false on failure. The program prog
7
calls incr 𝑙 twice in parallel and reads the value

at location 𝑙 . We prove that a value bigger than 40 is returned, i.e., {True} prog
7
{𝑛. 𝑛 ≥ 40} .

A sequential specification for incr would be {𝑙 ↦→ 𝑛} incr 𝑙 {𝑙 ↦→ (𝑛 + 1)} . Similar to the se-

quential queue specifications, this specification is insufficient to verify prog
7
—the heap ownership

𝑙 ↦→ 40 can only be used in one of the threads. We instead use inv-alloc to turn 𝑙 ↦→ 40 into the

invariant 𝐼 ≜ ∃𝑛 ≥ 40. 𝑙 ↦→ 𝑛 . Using inv-dup we share the invariant 𝐼 between the threads. We

use inv-open to prove {𝐼 } incr 𝑙 {True} and {𝐼 } ! 𝑙 {𝑛. 𝑛 ≥ 40} , concluding the proof of prog
7
.

4.3 Logically-Atomic Triples in Iris
We explain how logically-atomic triples (LATs) [13, 33] in Iris are used to give concise and abstract

specifications of linearizable functions [20], i.e., functions that appear to behave atomically. To moti-

vate the need for LATs, let us consider the incr function, for which we proved {𝐼 } ! 𝑙 {𝑛. 𝑛 ≥ 40} in
§ 4.2. A similar specification holds for other invariants, e.g., 𝐼 ≜ ∃𝑛 ≥ 40,𝑚 ≤ 𝑛. 𝑙 ↦→ 𝑛 ∗ 𝑘 ↦→𝑚 ,

which also contains information about a location 𝑘 . Note that the proof of incr for any invariant

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:14 Thomas Somers and Robbert Krebbers

has the same structure. There is a single physically atomic step, namely the succesful CAS, called
the linearization point, at which the current value 𝑙 ↦→ 𝑛 is retrieved from the invariant (using

inv-open), updated to 𝑙 ↦→ (𝑛 + 1) and then stored back into the invariant.

It would be undesirable to verify a function again and again for any invariant that shows up.

Instead, we want a generic specification from which we can derive a specific specification for any

invariant—this can be done using a LAT. In their simplest form, a LAT is of the following form:

⟨®𝑥 . 𝑃⟩ 𝑝 ⟨®𝑦. 𝑄⟩

The atomic precondition 𝑃 can refer to the variables ®𝑥 , and the atomic postcondition 𝑄 can refer

to ®𝑥 and ®𝑦. The LAT expresses that 𝑃 holds for some (possibly changing) ®𝑥 at all points until the

linearization point, at which the current 𝑃 is transformed into 𝑄 for the same ®𝑥 and some ®𝑦 in a

single atomic step. A LAT for incr is ⟨𝑛. 𝑙 ↦→ 𝑛⟩ incr 𝑙 ⟨𝑙 ↦→ (𝑛 + 1)⟩, as 𝑙 contains some value 𝑛

until the successful CAS operation, at which point 𝑙 is updated to 𝑛 + 1. To understand how to both

verify and use LATs, we unfold the definition (we omit the binder for the return value for now):

⟨®𝑥 . 𝑃⟩ 𝑝 ⟨®𝑦. 𝑄⟩E ≜ ∀𝑅. {⟨®𝑥 . 𝑃 | ®𝑦. 𝑄 ⇛ 𝑅⟩⊤\E} 𝑝 {𝑅}

A LAT is encoded as a Hoare triple, but with an atomic update ⟨𝑥 . 𝑃 | 𝑦. 𝑄 ⇛ 𝑅⟩E in the precondition.
The atomic update describes the update at the linearization point. When verifying a LAT, an atomic

update can either (1) be used as the precondition of another LAT, or (2) be opened around a

physically atomic step. The rule for the second mode of use is:

au-open

E′ ⊆ E atomic𝑝 ∀®𝑥 . {𝑃 ∗ 𝑆} 𝑝
{
𝑣 .
(∃®𝑦. 𝑄 ∗ (𝑅 −∗ 𝛷 𝑣))
∨(𝑃 ∗ (⟨®𝑥 . 𝑃 | ®𝑦. 𝑄 ⇛ 𝑅⟩E′ −∗ 𝛷 𝑣))

}
E\E′

{⟨®𝑥 . 𝑃 | ®𝑦. 𝑄 ⇛ 𝑅⟩E′ ∗ 𝑆} 𝑝 {𝛷}E
This rule is similar to inv-open. It ‘opens’ the atomic update by adding the atomic precondition 𝑃

to the precondition. The ‘closing’ is more complicated. One can either commit by establishing the

atomic postcondition 𝑄 in the postcondition, or defer by reestablishing the atomic precondition 𝑃 .

In the first case, one gets 𝑅 in return, while in the second case, one gets the atomic update back.

For incr we need to prove {AUincr } incr 𝑙 {𝑅} with AUincr ≜ ⟨𝑛. 𝑙 ↦→ 𝑛 | 𝑙 ↦→ (𝑛 + 1) ⇛ 𝑅⟩ for
any 𝑅. To access 𝑙 ↦→ 𝑛 for the ! 𝑙 operation, we apply au-open and defer by picking the second

disjunct in the postcondition. This means we keep ownership of AUincr to verify the remainder

of the function. For CAS, we again use au-open and depending on its success commit or defer.
Specifically, we use𝛷 𝑣 ≜ if 𝑣 = true then 𝑅 else AUincr . If the CAS succeeds (returns true), we
commit by using the first disjunct. This means we give up the updated location 𝑙 ↦→ (𝑛 + 1) and
prove 𝛷 true = 𝑅. If the CAS fails (returns false), we defer by using the second disjunct. This

means we give up the unchanged 𝑙 ↦→ 𝑛 and get back the atomic update AUincr , allowing us to prove
𝛷 false = AUincr . We then recursively apply the incr specification.

The simple version of LATs we have shown does not specify the return value, nor does it allow

to specify resources that are not shared and changed before the linearization point. To support

these, LATs can be extended with private pre- and postconditions:

⟨𝑃p | ®𝑥 . 𝑃a⟩ 𝑝 ⟨®𝑦. 𝑄a | 𝑣 . 𝑄p⟩E ≜ ∀𝛷. {𝑃p ∗ ⟨®𝑥 . 𝑃a | ®𝑦. 𝑄a ⇛ ∀𝑣 . 𝑄p −∗ 𝛷 𝑣⟩⊤\E} 𝑝 {𝛷}

The private precondition 𝑃p cannot refer to any of the variables ®𝑥 and ®𝑦. The private postcondition
𝑄p can refer to ®𝑥 and ®𝑦 and the return value 𝑣 . Proofs of these extended LATs proceed the same as

their simpler form, but 𝑃p can be used freely (subject to the same conditions as ordinary Hoare

triples) throughout the verification of the whole expression 𝑃 . Dually, the private postcondition 𝑄p
only needs to be established at the very end of 𝑃 .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:15

The key feature of LATs—compared to ordinary Hoare triples—is that they allow one to open

invariants without the physical-atomicity side-condition (atomic 𝑝):

la-inv-open

N ⊆ E ⟨𝑃p | ®𝑥 . ⊲ 𝑃 ∗ 𝑃a⟩ 𝑝 ⟨®𝑦. ⊲ 𝑃 ∗𝑄a | 𝑣 . 𝑄p⟩E\N
⟨®𝑥 . 𝑃 N ∗ 𝑃p | 𝑃a⟩ 𝑝 ⟨®𝑦. 𝑄a | 𝑣 . 𝑄p⟩E

la-elim

⟨𝑃p | ®𝑥 . 𝑃a⟩ 𝑝 ⟨®𝑦. 𝑄a | 𝑣 . 𝑄p⟩E{
𝑃p ∗ ∃®𝑥 . 𝑃a

}
𝑝
{
𝑣 . ∃®𝑥, ®𝑦. 𝑄a ∗𝑄p

}
E

The content 𝑃 of the invariant appears only in the atomic precondition, not the private one—meaning

that one gets access to 𝑃 only at the linearization point, not throughout the whole expression 𝑝 . The

la-elim rule allows ordinary Hoare triples to be proven using LATs by providing both the private

and atomic preconditions. The witness of ®𝑥 in the postcondition may differ from the precondition,

as it does not have to stay constant during the execution of 𝑝 . These rules can be derived from the

rules for atomic updates. In fact, in Coq one uses the rules for atomic updates directly rather than

the derived LAT rules. However, Iris’s rules for atomic updates are beyond the scope of this paper.

4.4 Logically-Atomic Specification of UnidirectionalQueues
Using LATs, we verify the following specification for queues with linking:

{True} new_queue () {(𝑑, 𝑒). Q𝑑 𝑒 [] ∗ Deq𝑑 ∗ Enq 𝑒}
⟨Deq𝑑 | 𝑒, ®𝑣 . Q𝑑 𝑒 ®𝑣⟩ 𝑑.dequeue() ⟨𝑣, ®𝑤. ®𝑣 = 𝑣 :: ®𝑤 ∗ Q𝑑 𝑒 ®𝑤 | 𝑤.𝑤 = 𝑣 ∗ Deq𝑑⟩
⟨Enq 𝑒 | 𝑑, ®𝑣 . Q𝑑 𝑒 ®𝑣⟩ 𝑒.enqueue 𝑣 ⟨Q𝑑 𝑒 (®𝑣 ++ [𝑣]) | Enq 𝑒⟩
⟨Enq 𝑒 ∗ Deq𝑑 ′ | 𝑏, 𝑑, ®𝑣, 𝑒′, ®𝑤. Q𝑑 𝑒 ®𝑣 ∗ (if 𝑏 then Q𝑑 ′ 𝑒′ ®𝑤 else 𝑑 = 𝑑 ′ ∗ 𝑒 = 𝑒′)⟩
𝑒.link_queue 𝑑 ′

⟨(if 𝑏 then Q𝑑 𝑒′ (®𝑣 ++ ®𝑤) else True) | True⟩

This specification encapsulates the data representation of the queue, and thus holds for both the

linked-list based queue from § 3.2 and the array-segment based queue from § 3.3.

Creating a new queue results not only in the queue representation predicate (Q), but also an en-

queue and a dequeue handle (Enq, Deq) representing the single writer and single reader, respectively.
As the queue Q occurs only in the atomic pre- and postconditions, it can be placed in an invariant

and shared between threads, whereas the handles Enq and Deq cannot. The mathematical state of

the queue (®𝑣) is quantified for the atomic preconditions, as it may change during the execution of

the operation. For instance, during the execution of a dequeue operation, the state of the queue
may be changed by an enqueue operation in a different thread.

To verify prog
6
from the start of § 4.2 we use the invariant 𝐼 ≜ ∃𝑛 ≥ 0. Q𝑑 𝑒 (replicate 𝑛 42) .

The queue starts empty (replicate 0 42 = []), the value 42 is enqueued (replicate 1 42 = [42])
and then the value 42 is dequeued (replicate 0 42 = []).

Unlike the sequential specification, the cases for linking two separate queues or both ends of the

same queue are combined in a single LAT and distinguished by the Boolean parameter 𝑏. This is

necessary as the applicable case can change depending on other threads, such as in the following:

prog
8
≜ let (𝑑, 𝑒) = new_queue () in let (𝑑 ′, 𝑒′) = new_queue () in
fork {𝑒.link_queue 𝑑 ′} ; 𝑒′ .link_queue 𝑑

Here, the first executed link_queue operates on two distinct queues, whereas the second executed

link_queue operates on both ends of the same queue. As the execution order of the two operations

is non-deterministic, the LAT of link_queue has to support both possibilities.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:16 Thomas Somers and Robbert Krebbers

4.5 Verification of the Logically-Atomic Specification of UnidirectionalQueues
So far we left the representation predicate Q𝑑 𝑒 ®𝑣 and handles Deq𝑑 and Enq 𝑒 abstract. This is

intentional—these predicates allow one to reason abstractly about the queue without knowledge of

its implementation. Indeed, the layers in § 5 and § 6 rely neither on the queue implementation nor

the definition of these predicates. We now give concrete definitions to verify the linked-list based

version from § 3.2. The definitions for the array-segment based version from § 3.3 follow a similar

but more complicated structure, which can be found in our Coq development [3].

The following auxiliary predicate describes that the queue is backed by a singly-linked list:

is_queue_list ℓℎ ℓ𝑡 ®𝑣? ≜
match ®𝑣? with
| [] ⇒ ℓℎ = ℓ𝑡
| some 𝑣 :: ®𝑣? ⇒ ∃ℓ . ℓℎ ↦→□ CONS ∗ (ℓℎ + 1) ↦→□ 𝑣 ∗ (ℓℎ + 2) ↦→□ ℓ ∗ is_queue_list ℓ ℓ𝑡 ®𝑣?
| none :: ®𝑣? ⇒ ∃ℓ . ℓℎ ↦→□ LINK ∗ (ℓℎ + 2) ↦→□ 𝑙 ∗ is_queue_list ℓ ℓ𝑡 ®𝑣?
end

The parameter ®𝑣? is a mathematical list of options where none accounts for LINK nodes. The

parameters ℓℎ and ℓ𝑡 correspond to the locations of the head and tail nodes and are equal for the

empty queue. For CONS or LINK nodes, ℓℎ contains the tag, the message 𝑣 (if applicable), and the

location ℓ of the next node. Permission of the NIL node is in the Q predicate below.

The points-to connective ℓ ↦→𝜋 𝑣 is equipped with a permission 𝜋 ∈ {□} ∪ (0, 1]Q, where 𝜋 = □
is the discarded permission [58] and 𝜋 ∈ (0, 1]Q a fractional permission [8]. Any permission 𝜋 may

be used to read from a location ℓ , but only the entire permission (fraction 1) can be used to write

to ℓ . A discarded permission conceptually corresponds to an unknown fractional permission, i.e.,
think of ℓ ↦→□ 𝑣 as ∃𝑞 ∈ (0, 1]Q . ℓ ↦→𝑞 𝑣 , meaning ℓ is immutable and its value cannot change. The

discarded permission is important in the verification of dequeue—where the tag, message, and

location of the next node are read during multiple heap accesses—to ensure that their values remain

unchanged throughout the dequeue operation.

The predicates Q, Deq and Enq are defined as:

Q𝑑 𝑒 ®𝑣 ≜∃ℓℎ, ℓ𝑡 , ®𝑣?, 𝛾 . ®𝑣 = filtero ®𝑣? ∗ 𝑑 ↦→3/4 ℓℎ ∗ meta 𝑒 𝛾 ∗ 𝛾 ↩→1/2 ℓ𝑡 ∗
is_queue_list ℓℎ ℓ𝑡 ®𝑣? ∗ ℓ𝑡 ↦→ NIL

Deq𝑑 ≜∃ℓℎ . 𝑑 ↦→1/4 ℓℎ

Enq 𝑒 ≜∃𝛾, ℓ𝑡 . meta 𝑒 𝛾 ∗ 𝛾 ↩→1/2 ℓ𝑡 ∗ 𝑒 ↦→ ℓ𝑡 ∗ (ℓ𝑡 + 1) ↦→ − ∗ (ℓ𝑡 + 2) ↦→ −

The is_queue_list predicate uses a list of options whereas the queue Q describes a list of values.

Hence, the queue contents ®𝑣 correspond to filtero ®𝑣?, which filters out only the some values.

The Q predicate contains the permissions for each non-NIL node using is_queue_list, as well
as the full permission ℓ𝑡 ↦→ NIL of the tag of the tail node. The permissions of the other locations

are distributed between Q, Deq and Enq so that one can dequeue and enqueue exactly when one

has private ownership of Deq and Enq, respectively.
Ownership of the head pointer 𝑑 is distributed between Q and Deq. Only if both Q and Deq are

owned do the permissions
3/4 and 1/4 sum up to the entire permission 1 allowing the value of 𝑑 to be

updated. (We use different fractions
3/4 and 1/4 instead of equal halves

1/2 to obtain the uniqueness

property Q𝑑 𝑒1 ®𝑣1 ∗ Q𝑑 𝑒2 ®𝑣2 ⊢ False, which is relevant for the pairing invariant in § 6.2).

The distribution of permissions between Q and Enq is more complicated. The enqueue function

performs a number of heap operations, but Q𝑑 𝑒 ®𝑣 must be updated to Q𝑑 𝑒 (®𝑣 ++ [𝑣]) at exacty
the linearization point (i.e., when applying the atomic update). This occurs at the store operation

(𝑛𝑜𝑑𝑒 ← CONS) where the tag is set to CONS. There are also stores before the linearization point (to

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:17

update the next pointer and value) and after (to update the tail pointer). To verify these stores, we

put the entire permissions of (ℓ𝑡 + 1) and (ℓ𝑡 + 2) and 𝑒 in the enqueue handle Enq.
To ensure that the tail node locations 𝑙𝑡 in Q and Enq are the same, we use two halves of a ghost

variable 𝛾 ↩→ ℓ𝑡 . A ghost variable is similar to the points-to connective, but is not associated with a

physical heap locations, and as such can be updated at any point. We update the ghost variable 𝛾

at the linearization point, but only perform the physical update to 𝑒 in the next step, allowing us

to restore Enq 𝑒 at the end of enqueue. To ensure that the existentially quantified ghost variables

𝛾 in Q and Enq are the same, we use Iris’s meta-tokens [28, iris/base_logic/lib/gen_heap.v].
When allocating a new location ℓ , Iris allows one to allocate a (duplicable) meta-token meta ℓ 𝑥 ,

which associates additional information 𝑥 to the location ℓ . The rule meta ℓ 𝑥1 ∗meta ℓ 𝑥2 ⊢ 𝑥1 = 𝑥2
allows us to conclude that the 𝛾s are the same.

5 Ghost Linking ofQueues
The logically-atomic specification of queues in § 4.4 is a-priori unusable to prove the logically-atomic

specification of channels implemented as pairs of queues as done in § 3.4. The link operation

consists of two sequential link_queue operations and therefore does not have a single linearization
point. To solve this, we introduce a ghost linking mechanism, which separates the logical linking

of queues from the physical linking of queues. This approach allows multiple queues to be linked

logically in a single atomic step even though the physical linking of queues is done in multiple

steps. We describe the altered specification of queues using ghost linking (§ 5.1), show how this

updated specification is used to derive a logically-atomic specification for channels (§ 5.2), and

finally verify the specification of queues with ghost linking itself (§ 5.3). Ghost linking and higher

layers depend only on the logically atomic specification, rather than implementation of queues.

Hence the queue implementation can be swapped, for instance from the linked-list version (§ 3.2)

to array-segment version (§ 3.3), whilst reusing ghost linking and the higher layers.

5.1 Specification ofQueues with Ghost Linking
Our specification with ghost linking uses two new predicates: the ghost queue representation
predicate Q 𝑑 𝑒 ®𝑣 and the link permission 𝑒 f 𝑑 . The ghost queue representation predicate Q 𝑑 𝑒 ®𝑣
is similar to Q𝑑 𝑒 ®𝑣 , but represents a chain of queues that remain to be linked, where 𝑑 is the dequeue

handle of the first queue, 𝑒 is the enqueue handle of the last queue, and ®𝑣 is the concatenation of

the messages in the queues. The link permission 𝑒 f 𝑑 allows one to physically link a queue with

enqueue handle 𝑒 to a queue with dequeue handle 𝑑 . The rules are as follows (some details are

elided and will be discussed in § 5.3):

{True} new_queue ()
{
(𝑑, 𝑒). Q 𝑑 𝑒 [] ∗ Deq𝑑 ∗ Enq 𝑒

}
⟨Deq𝑑 | 𝑒, ®𝑣 . Q 𝑑 𝑒 ®𝑣⟩ 𝑑.dequeue() ⟨𝑣, ®𝑤. ®𝑣 = 𝑣 :: ®𝑤 ∗ Q 𝑑 𝑒 ®𝑤 | 𝑤.𝑤 = 𝑣 ∗ Deq𝑑⟩
⟨Enq 𝑒 | 𝑑, ®𝑣 . Q 𝑑 𝑒 ®𝑣⟩ 𝑒.enqueue 𝑣 ⟨Q 𝑑 𝑒 (®𝑣 ++ [𝑣]) | Enq 𝑒⟩

Q 𝑑1 𝑒1 ®𝑣1 ∗ Q 𝑑2 𝑒2 ®𝑣2 𝑒1 f 𝑑2 ∗ Q 𝑑1 𝑒2 (®𝑣1 ++ ®𝑣2) (make-ghost-link)

Q 𝑑 𝑒 ®𝑣 𝑒 f 𝑑 (make-ghost-link-self)

{Enq 𝑒 ∗ Deq𝑑 ∗ 𝑒 f 𝑑} 𝑒.link_queue 𝑑 {True}

The specifications of new_queue, dequeue and enqueue are the same as those in § 4.4 but use the

ghost queue representation predicate Q 𝑑 𝑒 ®𝑣 instead of Q𝑑 𝑒 ®𝑣 . Unlike § 4.4, linking is performed in

two steps. First, two ghost queues are combined into a single ghost queue, providing the permission

𝑒 f 𝑑 . Second, 𝑒 f 𝑑 is used to verify the physical link_queue operation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:18 Thomas Somers and Robbert Krebbers

The rule make-ghost-link allows two different ghost queues to be combined into a single ghost

queue, producing a link permission 𝑒1 f 𝑑2. Similarly, make-ghost-link-self allows both ends of

the same ghost queue to be linked, also producing a link permission 𝑒 f 𝑑 , but no new ghost queue.

These rules are similar to the 𝑏 = true and 𝑏 = false cases in the specification of link_queue
without ghost linking in § 4.4. Unlike LATs, the rules make-ghost-link and make-ghost-link-self

are not tied to program steps—they use Iris’s update . During the same program step (e.g., a
linearization point) multiple such updates can be performed, and hence multiple ghost queues can

be logically linked. The obtained link permissions can then be used in program steps after the

linearization point to physically link the queues using the Hoare triple for link_queue.
In the verification of queues (§ 4.5) we already used ghost state (specifically, ghost variables).

Unlike location ownership, which represents values in the heap, ghost state is only used during

verification and not updated by physical operations. Ghost state is updated using Iris’s update

𝑃 𝑄 , defined as 𝑃 −∗ |⇛𝑄 , where the update modality |⇛𝑄 means that after (possibly) some

ghost state updates we have the resources 𝑄 . Relevant rules are:

upd-intro

𝑃 ⊢ |⇛𝑃

upd-idemp

|⇛ |⇛𝑃 ⊢ |⇛𝑃

upd-sep

(|⇛𝑃) ∗ (|⇛𝑄) ⊢ |⇛ (𝑃 ∗𝑄)

upd-exec

{𝑃 ∗ 𝑆} 𝑝 {𝛷}
{(|⇛𝑃) ∗ 𝑆} 𝑝 {𝛷}

The first 3 rules state that performing no updates is a valid update, and that updates can be combined.

By applying upd-exec multiple times, multiple ghost updates such as make-ghost-link or make-

ghost-link-self can be performed during a single program step, such as a linearization point.

Such updates can similarly be eliminated in atomic updates and hence LATs using the following

rule (omitting binders), which derives one atomic update from another:

aupd-aupd

𝑃1 𝑃2 ∗ ((𝑃2 𝑃1) ∧ (𝑄2 𝑄1 ∗ (𝑅1 𝑅2))) ⊢ ⟨𝑃1 | 𝑄1 ⇛ 𝑅1⟩ −∗ ⟨𝑃2 | 𝑄2 ⇛ 𝑅2⟩
This rule states that an atomic update can be converted into another atomic update if the precondi-

tion, postconditions for both defer and commit, and the result can be updated. As LATs are defined

using atomic updates, the aupd-aupd rule can also be applied to prove a LAT using another LAT.

5.2 Logically-Atomic Specification of Channels
We utilize the ghost queue specification to prove a logically-atomic specification for the implemen-

tation of channels as pairs of queues from § 3.4. We first define the representation predicates:

C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 ≜ ∃𝑑1, 𝑒1, 𝑑2, 𝑒2. 𝑐1 = (𝑑1, 𝑒2) ∗ 𝑐2 = (𝑑2, 𝑒1) ∗ Q 𝑑1 𝑒1 ®𝑣1 ∗ Q 𝑑2 𝑒2 ®𝑣2
Ch 𝑐 ≜ ∃𝑑, 𝑒. 𝑐 = (𝑑, 𝑒) ∗ Deq𝑑 ∗ Enq 𝑒

We derive the logically-atomic specifications for new_chan, send and recv directly from the ghost

queue specifications:

{True} new_chan () {(𝑐2, 𝑐2). C 𝑐1 𝑐2 [] [] ∗ Ch 𝑐1 ∗ Ch 𝑐2}
⟨Ch 𝑐1 | 𝑐2, ®𝑣1, ®𝑣2. C 𝑐1 𝑐2 ®𝑣1 ®𝑣2⟩ 𝑐1.send 𝑣 ⟨C 𝑐1 𝑐2 ®𝑣1 (®𝑣2 ++ [𝑣]) | Ch 𝑐1⟩
⟨Ch 𝑐1 | 𝑐2, ®𝑣1, ®𝑣2. C 𝑐1 𝑐2 ®𝑣1 ®𝑣2⟩ 𝑐1.recv () ⟨𝑣, ®𝑣 ′1. ®𝑣1 = 𝑣 :: ®𝑣 ′

1
∗ C 𝑐1 𝑐2 ®𝑣 ′1 ®𝑣2 | 𝑤.𝑤 = 𝑣 ∗ Ch 𝑐1⟩

C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 ⊣⊢ C 𝑐2 𝑐1 ®𝑣2 ®𝑣1 (chan-symmetric)

Most rules are written from the point of view of the left endpoint, chan-symmetric makes it

possible to send/receive using the right endpoint. To verify new_chan we use the specification of

new_queue twice, resulting in two ghost queue representation predicates, and two dequeue and

two enqueue handles. These are converted into the channel representation predicate C and a pair of
channel handles Ch. The specifications of send and recv are derived from the specifications with

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:19

ghost linking for enqueue and dequeue by retrieving the relevant queue handle from the channel

handle from Ch, and the relevant ghost queue from the channel representation predicate C.
Finally, we derive a logically-atomic specification for link, which links two channels in a single

logically-atomic step:

⟨Ch 𝑐2 ∗ Ch 𝑐3 | 𝑏, 𝑐1, 𝑐4, ®𝑣1, ®𝑣2, ®𝑣3, ®𝑣4 . C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 ∗ (if 𝑏 then C 𝑐3 𝑐4 ®𝑣3 ®𝑣4 else 𝑐1 = 𝑐3)⟩
𝑐2 .link 𝑐3

⟨if 𝑏 then C 𝑐1 𝑐4 (®𝑣1 ++ ®𝑣3) (®𝑣4 ++ ®𝑣2) else True | True⟩
The variable 𝑏 in this specification is similar to that for link_queue, as the possibility of linking

two channels or a single channel can change depending on other threads.

The proof of the LAT for link is more complex than the other LATs, as the ghost and physical

linking are performed in different steps. The ghost linking of channels (using either make-ghost-

link if 𝑏 = true or make-ghost-link-self if 𝑏 = false) can be done during any program step

before or including the first use of link_queue. This results in link permissions that are then used

to verify the physical calls to the link_queue operations.

5.3 Verification ofQueues with Ghost Linking
To verify the specification of queues with ghost linking we define the ghost queue representation

predicate Q 𝑑 𝑒 ®𝑣 and the link permission 𝑒 f 𝑑 . We then derive the rules presented in § 5.1 from

those in § 4.4. The definitions are carried out in two layers. The first layer is the representation of

queue resources. As these resources are shared between ghost queues and link permissions, they

are placed in an invariant. To support linking of different ghost queues, we use a single invariant

for all ghost queues, rather than a separate invariant for each ghost queue. The second layer defines

the representation of ghost queues and link permissions to access and update specific queues in

the invariant. These permissions are modeled by Iris ghost state.

Layer #1: Representation of Queue Resources. Fundamentally, ghost linking represents a

ghost queue not as single queue, but as a chain of queues, where each adjacent pair of queues

is to be linked. This allows different ghost queues to be linked logically by merging two chains

(make-ghost-link). When linking a ghost queue to itself (make-ghost-link-self), the first and

last queue are logically linked, resulting in a cycle of queues. As the actual queues are physically

linked in later steps, the cycle cannot be discarded at the point of logical linking. These chains and

cycles are represented by the following predicates:

lchain ®𝐿 𝑑 𝑒 ®𝑣 ≜ match ®𝐿 with
| [] ⇒ Q𝑑 𝑒 ®𝑣
| (𝑒′, 𝑑 ′) :: ®𝐿′ ⇒ ∃ ®𝑣1, ®𝑣2 . ®𝑣 = ®𝑣1 ++ ®𝑣2 ∗ Q𝑑 𝑒′ ®𝑣1 ∗ lchain ®𝐿′ 𝑑 ′ 𝑒 ®𝑣2
end

lcycle ®𝐿 ≜ match ®𝐿 with
| [] ⇒ True
| (𝑒, 𝑑) :: ®𝐿 ⇒ ∃ ®𝑣 . lchain ®𝐿 𝑑 𝑒 ®𝑣
end

In lchain ®𝐿 𝑑 𝑒 ®𝑣 , the parameters 𝑑 and 𝑒 are the dequeue and enqueue handles of the first and last

queue, and ®𝑣 the concatenation of messages in queues. In both lchain ®𝐿 𝑑 𝑒 ®𝑣 and lcycle ®𝐿, the
list ®𝐿 contains all links between the queues. Note that two separate resources lchain ®𝐿1 𝑑1 𝑒1 ®𝑣1
and lchain ®𝐿2 𝑑2 𝑒2 ®𝑣2 can be combined into lchain (®𝐿1 ++ (𝑒1, 𝑑2) :: ®𝐿2) 𝑑1 𝑒2 (®𝑣1 ++ ®𝑣2), meaning

that two different chains can be linked logically without a program step. Similarly, when linking

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:20 Thomas Somers and Robbert Krebbers

a ghost queue to itself (make-ghost-link-self), the resource lchain ®𝐿 𝑑 𝑒 ®𝑣 can be turned into a

cycle resource lcycle ((𝑒, 𝑑) :: ®𝐿) without a program step.

Layer #2: Ghost Queues and Link Permissions. A ghost queue Q 𝑑 𝑒 ®𝑣 corresponds to a

chain lchain ®𝐿 𝑑 𝑒 ®𝑣 in the invariant, and each link permission 𝑒′ f 𝑑 ′ corresponds to a link

(𝑒′, 𝑑 ′) ∈ ®𝐿 in either a chain lchain ®𝐿 𝑑 𝑒 ®𝑣 or cycle lcycle ®𝐿 in the invariant. This is formalized as:

Qctx 𝛾 ≜ ∃L,𝑚. map_auth𝛾chains {𝑑 ↦→ (𝑒, ®𝑣) | 𝑑 ↦→ (𝑒, ®𝑣, ®𝐿) ∈𝑚} ∗
set_auth𝛾links

(⊎ {®𝐿 | ®𝐿 ∈ L ∨ 𝑑 ↦→ (𝑒, ®𝑣, ®𝐿) ∈𝑚}) ∗(∗𝑑 ↦→(𝑒,®𝑣,®𝐿) ∈𝑚 . lchain𝑑 𝑒 ®𝑣 ®𝐿
)
∗
(∗®𝐿∈L . lcycle ®𝐿)

Q 𝛾 𝑑 𝑒 ®𝑣 ≜ map_own𝛾chains (𝑑 ↦→ (𝑒, ®𝑣))
𝑒 f𝛾 𝑑 ≜ set_own𝛾links (𝑒, 𝑑)

Let us describe all components of these definitions. The quantified variable L describes the list of

links for each cycle, and𝑚 maps each dequeue handle 𝑑 to a tuple (𝑒, ®𝑣, ®𝐿) of enqueue handle 𝑒 ,
messages ®𝑣 and list of links ®𝐿. The parameter 𝛾 is a pair of ghost names 𝛾chains and 𝛾links , which are

used to link the ghost state in the invariant and other predicates.

The connection between each ghost queue Q 𝑑 𝑒 ®𝑣 and the chain lchain ®𝐿 𝑑 𝑒 ®𝑣 in the invariant

is represented by a ghost map, consisting of a single authoritative tokens map_auth𝛾 𝑚 and multiple

fragment tokens map_own𝛾 (𝑘 ↦→ 𝑥). The fragment token map_own𝛾 (𝑘 ↦→ 𝑥) states that the key 𝑘 is

mapped to 𝑥 in the map𝑚 governed by the authoritative token map_auth𝛾 𝑚. Only a single fragment

token exists for each key 𝑘 in the map𝑚, so map_own𝛾 (𝑘 ↦→ 𝑥) gives the unique permission to

update and delete 𝑘 in𝑚. Each ghost queue Q 𝛾 𝑑 𝑒 ®𝑣 thus corresponds to a unique entry in𝑚.

The link permission 𝑒 f 𝑑 corresponds to a link in either a chain or a cycle. Links are represented

by a ghost set, consisting of a single authoritative token set_auth𝛾 𝑋 and multiple fragment tokens

set_own𝛾 𝑥 . This ghost state indicates that 𝑋 is the disjoint union of the sets {𝑥} for all fragment

tokens set_own𝛾 𝑥 . Each link permission 𝑒 f𝛾 𝑑 thus corresponds to a unique link in L or𝑚.

Verification of Ghost Linking Rules. With these definitions at hand, the exact queue specifi-

cation from § 5.1 needs to be adjusted slightly. First of all, we need to include the ghost name 𝛾 that

connects the invariant and the predicates. This also means that the channel representation predicate

C from § 5.2 actually has a ghost name. Second, not only the ghost queues and link permissions

are needed in the precondition, but also the invariant Qctx 𝛾 is necessary to retrieve and use the

relevant queue predicates. For instance, the enqueue specification is adjusted as follows:

⟨Qctx 𝛾 ∗ Enq 𝑒 | 𝑑, ®𝑣 . Q 𝛾 𝑑 𝑒 ®𝑣⟩ 𝑒.enqueue 𝑣 ⟨Q 𝛾 𝑑 𝑒 (®𝑣 ++ [𝑣]) | Enq 𝑒⟩
The proof of this specification uses la-inv-open to add the ghost linking invariant to the atomic pre-

and postcondition, retrieves the relevant queue and then applies the non-ghost linking enqueue
specification from § 4.4.

The make-ghost-link and make-ghost-link-self rules are adjusted in a similar way, by adding

Qctx 𝛾 as an additional assumption:

Qctx 𝛾 ∗ Q 𝛾 𝑑1 𝑒1 ®𝑣1 ∗ Q 𝛾 𝑑2 𝑒2 ®𝑣2 𝑒1 f𝛾 𝑑2 ∗ Q 𝛾 𝑑1 𝑒2 (®𝑣1 ++ ®𝑣2)
Qctx 𝛾 ∗ Q 𝛾 𝑑 𝑒 ®𝑣 𝑒 f𝛾 𝑑

The proofs of make-ghost-link and make-ghost-link-self rely on the fact that Iris allows

invariants to be opened around updates .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:21

A new ghost invariant Qctx 𝛾 can be allocated with no channels and no cycles by allocating an

empty set and empty map ghost state, using the following rule:

True ∃𝛾 . Qctx 𝛾 (ghost-ctx-alloc)

6 Dependent Separation Protocol Channels
In § 5.2 we defined a representation predicate C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 for channels and corresponding logically-

atomic specifications for the channel operations. This channel predicate has two drawbacks: (1) it

describes the exact buffered values ®𝑣1 and ®𝑣2, rather than a high-level protocol, and (2) it involves the
other endpoint 𝑐2, which might change over time due to linking. We address these two drawbacks

by deriving the high-level specification based on Actris’s dependent separation protocols that we

described in § 2.2. We address the first drawback by extending Actris’s ghost theory to support

protocol linking (§ 6.1). The key to addressing the second drawback is our notion of pairing invariant
to reason abstractly about shared channels with changing endpoints (§ 6.2). Using these, we then

derive the desired high-level specifications (§ 6.3).

6.1 Protocol Linking
We use the Actris ghost theory [22, §9.4] to relate dependent separation protocols to the current

values in the channel buffers. To support linking of channels, we extend the Actris ghost theory

with a rule to combine two protocol contexts into a single context.

The Actris ghost theory provides an authoritative token prot_auth𝛾1,𝛾2 ®𝑣1 ®𝑣2 governing the state
of the channel buffers, and two tokens prot_own𝛾1 prot1 and prot_own𝛾2 prot2 describing the local

state of the protocol at each endpoint. It has the following rules:

True ∃𝛾1, 𝛾2. prot_auth𝛾1,𝛾2 [] [] ∗ prot_own𝛾1 prot ∗ prot_own𝛾2 prot (proto-alloc)

prot_own𝛾1 (! ®𝑥 ⟨𝑣⟩{𝑃}. prot) ∗ prot_auth𝛾1,𝛾2 ®𝑣2 ®𝑣1 ∗ 𝑃 [®𝑦/®𝑥]
prot_own𝛾1 (prot [®𝑦/®𝑥]) ∗ prot_auth𝛾1,𝛾2 (®𝑣2 ++ [𝑣 [®𝑦/®𝑥]]) ®𝑣1 (proto-send)

prot_own𝛾1 (? ®𝑥 ⟨𝑣⟩{𝑃}. prot) ∗ prot_auth𝛾1,𝛾2 ®𝑣2 (𝑣 :: ®𝑣1)
∃®𝑦. 𝑣 ′ = 𝑣 [®𝑦/®𝑥] ∗ 𝑃 [®𝑦/®𝑥] ∗ prot_own𝛾1 (prot [®𝑦/®𝑥]) ∗ prot_auth𝛾1,𝛾2 ®𝑣2 ®𝑣1 (proto-recv)

prot_auth𝛾1,𝛾2 ®𝑣1 ®𝑣2 ⊣⊢ prot_auth𝛾2,𝛾1 ®𝑣2 ®𝑣1 (proto-symmetric)

The rule proto-alloc allows for creating new authoritative and protocol tokens corresponding

to a chosen protocol prot. The rules proto-send and proto-recv ensure for the left endpoint

that when sending and receiving values, those values adhere to the protocol, and that resources 𝑃

defined in the protocol are transmitted. Finally, proto-symmetric allows the endpoint arguments

in the authoritative token to be swapped to apply the proto-send and proto-recv rules to the

right endpoint. The actual rules of the Actris ghost theory contain later modalities (⊲) to support

higher-order protocols, which are omitted here for brevity and will be discussed in § 7.

To support linking of endpoints, we extend these rules with a new rule to combine two authori-

tative tokens into a single one. This rule is key to verify the high-level specification of link:

prot_own𝛾2 prot ∗ prot_auth𝛾1,𝛾2 ®𝑣2 ®𝑣1 ∗ prot_own𝛾3 prot ∗ prot_auth𝛾3,𝛾4 ®𝑣4 ®𝑣3
prot_auth𝛾1,𝛾4 (®𝑣4 ++ ®𝑣2) (®𝑣1 ++ ®𝑣3) (proto-join)

Let us first show how the Actris ghost theory is used to verify channels without linking and why

this attempt does not scale to support linking. We would define the channel ownership assertion as:

𝑐 ↣ prot ≜ ∃𝛾, 𝑐′, 𝛾 ′ . Ch 𝑐 ∗ prot_own𝛾 prot ∗ ∃®𝑣1, ®𝑣2. C 𝑐 𝑐′ ®𝑣1 ®𝑣2 ∗ prot_auth𝛾,𝛾 ′ ®𝑣2 ®𝑣1
This definition relies on the fact that channel predicates C and protocol contexts proto_ctx are
symmetric (chan-symmetric and proto-symmetric).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:22 Thomas Somers and Robbert Krebbers

This definition of 𝑐 ↣ prot fixes the other endpoint 𝑐′ in the invariant. It would therefore not

extend to linking, in which the other endpoint of a channel ownership assertion can be changed

without updating the given assertion. Our approach to this problem is to introduce a single pairing

invariant for all channels, which maintains not only the shared resources for channels, but also a

changeable—rather than fixed—pairing of endpoints.

6.2 Pairing Invariants
We introduce a new form of invariant—called a pairing invariant—which supports sharing resources

between two paired parties, even when the pairing of the parties themselves can be changed. In

the case of channels, the pairing invariant allows us to share resources between two endpoints of a

channel, even when endpoints of different channels can be linked.

Pairing invariants are described by separation logic predicates 𝑅 : 𝐴→ 𝐴→ iProp, specifying
the resources 𝑅 𝑎 𝑏 : iProp for each pair 𝑎, 𝑏 ∈ 𝐴. We require the following properties for 𝑅:

𝑅 𝑎 𝑎′ ⊢ 𝑎 ≠ 𝑎′ (irreflexive)

𝑅 𝑎 𝑏 ⊣⊢ 𝑅 𝑏 𝑎 (symmetric)

𝑅 𝑎 𝑏 ∗ 𝑅 𝑎 𝑏′ ⊢ False (uniqe)

The irreflexive property states that we cannot have a paired resource between the same party.

This ensures that when adding a resource 𝑅 𝑎 𝑏 to an invariant, we can always create two distinct

parties 𝑎 and 𝑏 to access the resource. The symmetric property states that we can convert between

𝑅 𝑎 𝑏 and 𝑅 𝑏 𝑎, i.e., the resources described by 𝑅 are independent of the order of arguments. This

allows us to always consider a party 𝑎 to correspond to a resource with 𝑎 as first argument. The

uniqe property ensures that we cannot have multiple pairings with the same party. In combination

with the first and second properties, this ensures that there is always a single unique resource for

each party 𝑎, meaning that we can always add a new resource 𝑅 𝑎 𝑏 to the pairing invariant.

Placing 𝑅 𝑎 𝑏 directly in an Iris invariant of the form 𝑅 𝑎 𝑏 would fix the pairing between 𝑎

and 𝑏. Instead, we add a form of indirection using Iris ghost state, using which we provide for each

party 𝑎 a witness that there is a 𝑏 such that 𝑅 𝑎 𝑏, but not for which specific 𝑏 this holds.

The ghost state consists of two parts: the first is a pairing invariant⇆𝛾 𝑅 which maintains the

pairing of parties associated with the ghost name 𝛾 , and the second is the token Tok𝛾 𝑎, which
states that 𝑎 has an associated resource 𝑅 𝑎 𝑏 in the pairing invariant ⇆𝛾 𝑅 for some 𝑏, but not

which specific 𝑏. This indirection allows us to change the exact pairing of parties in ⇆𝛾 𝑅, as long

as we maintain a unique pairing for each token Tok𝛾 𝑎. The ghost state has the following rules:

True ∃𝛾 .⇆𝛾 𝑅 (pair-alloc)

⇆𝛾 𝑅 ∗ 𝑅 𝑎 𝑏 Tok𝛾 𝑎 ∗ Tok𝛾 𝑏 ∗⇆𝛾 𝑅 (pair-add)

⇆𝛾 𝑅 ∗ Tok𝛾 𝑎 ∃𝑏. 𝑅 𝑎 𝑏 ∗ (𝑅 𝑎 𝑏 Tok𝛾 𝑎 ∗⇆𝛾 𝑅) (pair-update)

⇆𝛾 𝑅 ∗ Tok𝛾 𝑏 ∗ Tok𝛾 𝑐 (pair-update-2)

(𝑅 𝑏 𝑐 ∗ (𝑅 𝑏 𝑐 Tok𝛾 𝑏 ∗ Tok𝛾 𝑐 ∗⇆𝛾 𝑅) ∧ (True ⇆𝛾 𝑅))
∨(∃𝑎, 𝑑. 𝑅 𝑎 𝑏 ∗ 𝑅 𝑐 𝑑 ∗ (𝑅 𝑎 𝑏 ∗ 𝑅 𝑐 𝑑 Tok𝛾 𝑏 ∗ Tok𝛾 𝑐 ∗⇆𝛾 𝑅) ∧ (𝑅 𝑎 𝑑 ⇆𝛾 𝑅))

The rule pair-alloc can be used to create a new pairing invariant ⇆𝛾 𝑅 with a new ghost name 𝛾 .

Using pair-add, a new paired resource 𝑅 𝑎 𝑏 can be added to a pairing invariant⇆𝛾 𝑅, resulting in

tokens Tok𝛾 𝑎 and Tok𝛾 𝑏 associated with the pairing invariant⇆𝛾 𝑅.

Using pair-update, the pairing invariant⇆𝛾 𝑅 and a token Tok𝛾 𝑎 can be given up to temporarily

access the resource 𝑅 𝑎 𝑏, after which the resource 𝑅 𝑎 𝑏 can be given up to get back the token

Tok𝛾 𝑎 and the pairing invariant⇆𝛾 𝑅.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:23

Finally, pair-update-2 is an extension of pair-update to retrieve resources associated with two

tokens Tok𝛾 𝑏 and Tok𝛾 𝑐 from a pairing invariant ⇆𝛾 𝑅. This results in either a single resource

𝑅 𝑏 𝑐 or two different resources 𝑅 𝑎 𝑏 and 𝑅 𝑐 𝑑 . Later, we can either give up the same resources to

get the tokens and pairing invariant ⇆𝛾 𝑅 back, or give up the joined resources True and 𝑅 𝑎 𝑑

respectively to get back the pairing invariant ⇆𝛾 𝑅.

As we will see in § 6.3 these four rules are sufficient to reason about the shared channel state

in the context of linkable channels. When⇆𝛾 𝑅 is placed in an invariant ⇆𝛾 𝑅 , pair-add, pair-

update and pair-update-2 describe how to retrieve resources from the opened invariant and

which resources to give up in order to close the invariant after updating the resources.

Definition of the Pairing Invariant. The pairing invariant⇆𝛾 𝑅 and tokens Tok𝛾 𝑎 are defined
using Iris ghost state mechanisms. At the base of this definition lies a partial pairing map from

each party to its paired party. However, as only a single resource is shared between each pair of

resources, the pairing map also assigns one of the paired parties to be the primary party. Hence
a pairing map is a partial map from parties 𝑎 ∈ 𝐴 to both a party 𝑏 ∈ 𝐴 and a Boolean 𝑠 ∈ B
indicating whether 𝑎 is the primary party, satisfying the following pairing map condition:

is_pairing (𝑚 : 𝐴
fin−⇀ (𝐴 × B)) ≜ ∀𝑎, 𝑏, 𝑠 .𝑚 𝑎 = (𝑏, 𝑠) →𝑚𝑏 = (𝑎,¬𝑠)

This condition ensures that each paired 𝑎 is paired to a unique 𝑏, and that only one of 𝑎 and 𝑏 is the

primary party. Note that we implicitly have 𝑎 ≠ 𝑏 as the same party 𝑎 cannot be both the primary

(𝑚𝑎 = (𝑎, true)) and the non-primary (𝑚𝑎 = (𝑎, false)) party. Using this, the pairing invariant
consists of the resources for each pairing in the map, and each token Tok𝛾 𝑎 corresponds to a key

in the pairing map. This is formalized as:

paired_res 𝑅 𝐸 ≜ ∃𝑚. is_pairing𝑚 ∗ 𝐸 = dom𝑚 ∗
∗𝑎 ↦→(𝑏,𝑠) ∈𝑚 . if 𝑠 then 𝑅 𝑎 𝑏 else True

⇆𝛾 𝑅 ≜ ∃𝐸. set_auth𝛾 𝐸 ∗ paired_res 𝑅 𝐸

Tok𝛾 𝑎 ≜ set_own𝛾 𝑎

These definitions use a ghost set (similar to § 5.3) consisting of set_auth𝛾 𝐸 and set_own𝛾 𝑎 to

ensure that each party 𝑎 for a token Tok𝛾 𝑎 is in the domain 𝐸 of the pairing map𝑚.

These definitions allow us to prove the four rules of pairing invariants. For pair-add, we extend

the map𝑚 with a pairing 𝑎, 𝑏, extending the domain of𝑚. When extending 𝐸 accordingly, we create

new ghost tokens set_own𝛾 𝑎 and set_own𝛾 𝑏 for the new parties. For pair-update, we use the

ghost state to determine that 𝑎 ∈ 𝐸, and hence retrieve the relevant resource 𝑅 𝑎 𝑏 from the pairing

invariant. Finally, for pair-update-2, we use the ghost state twice to determine that 𝑏, 𝑐 ∈ 𝐸, and
hence retrieve either 𝑅 𝑏 𝑐 from the pairing invariant when 𝑏 and 𝑐 are paired to each other, or

𝑅 𝑎 𝑏 and 𝑅 𝑐 𝑑 when 𝑏 and 𝑐 are paired to different parties. When giving up the joined resources

𝑅 𝑎 𝑑 , the pairings (𝑎, 𝑏) and (𝑐, 𝑑) in𝑚 are replaced by the pairing (𝑎, 𝑑) and parties 𝑏 and 𝑐 are

removed from 𝐸 by deallocating the tokens for 𝑏 and 𝑐 .

6.3 Specification of Protocol-Based Channels
In § 6.1 we defined 𝑐 ↣ prot for channels without linking, using a single invariant per channel,

and remarked that this approach would not extend to linking because it fixes both endpoints of the

channel. In section § 6.2 we introduced pairing invariants to obtain a form of indirection to allow

for changing endpoints with shared resources. Combining these, we define the assertion 𝑐 ↣ prot
for channels with linking, using a single pairing invariant for all channels.

The key step in this approach is to select the correct endpoint values 𝐴 and pairing predicate

𝑅 : 𝐴→ 𝐴→ iProp to describe channels with protocols, without fixing the endpoints. Note that

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:24 Thomas Somers and Robbert Krebbers

the invariant in § 6.1 fixes the channel value 𝑐 and protocol ghost name 𝛾 for each endpoint of the

channel. Hence, we choose 𝐴 ≜Val × GName as the endpoint value.
Next we choose the instance R𝛾chan : 𝐴→ 𝐴→ iProp of the pairing predicate to be:

R𝛾chan (𝑐1, 𝛾1) (𝑐2, 𝛾2) ≜ ∃®𝑣1, ®𝑣2. C𝛾chan 𝑐1 𝑐2 ®𝑣1 ®𝑣2 ∗ prot_auth𝛾1,𝛾2 ®𝑣2 ®𝑣1
This relation describes the same shared state as in § 6.1, but using parameters for each of the two

channel endpoints. In order to use this R in a pairing invariant, we need to establish the irreflexive,
symmetric, and uniqe properties for R. Both C and prot_ctx are symmetric, meaning that

symmetric holds for R. Furthermore, the endpoints of a ghost queue Q are unique, meaning

that atomic channels and hence R are both irreflexive and unique, thereby satisfying all three

requirements for using R in a pairing invariant.

The resources for channels and ghost queues are shared between the endpoints. This shared

state is captured by the channel invariant:

chan_ctx𝛾 ≜ Qctx 𝛾chan ∗ ⇆𝛾pair 𝑅𝛾chan

As both parts of the channel invariant are Iris invariants, the channel invariant can be duplicated.

A channel invariant can be created using ghost-ctx-alloc and pair-alloc:

True ∃𝛾 . chan_ctx𝛾
The shared channel resources are captured by the pairing invariant using an endpoint token,

resulting in the following definition of the channel ownership assertion:

𝑐 ↣𝛾 prot ≜ chan_ctx𝛾 ∗ ∃𝛾𝑐 . Ch 𝑐 ∗ Tok𝛾pair (𝑐,𝛾𝑐) ∗ prot_own𝛾𝑐 prot

Each channel endpoint 𝑐 ↣𝛾 prot contains the channel handle Ch 𝑐 for that endpoint, which can

be used to send and receive values. They also contain an endpoint token Tok𝛾pair (𝑐,𝛾𝑐), which can

be used to retrieve the shared channel R𝛾chan (𝑐,𝛾𝑐) (𝑐′, 𝛾𝑐′) resources from the pairing invariant

⇆𝛾pair R𝛾 . And finally, the protocol token prot_own𝛾 prot fixes the protocol for that endpoint, and
is used to update the shared protocol invariant when sending and receiving values. The ownership

assertion also contains the channel invariant. Using these channel ownership assertions, we derive

the high-level specifications of channels with protocols:{
chan_ctx𝛾

}
new_chan ()

{
(𝑐, 𝑐). 𝑐 ↣𝛾 prot ∗ 𝑐 ↣𝛾 prot

}{
𝑐 ↣𝛾 ! ®𝑥 ⟨𝑣⟩{𝑃}. prot ∗ 𝑃 [®𝑦/®𝑥]

}
𝑐.send (𝑣 [®𝑦/®𝑥])

{
𝑐 ↣𝛾 prot [®𝑦/®𝑥]

}{
𝑐 ↣𝛾 ? ®𝑥 ⟨𝑣⟩{𝑃}. prot

}
𝑐.recv ()

{
𝑤. ∃®𝑦. 𝑤 = 𝑣 [®𝑦/®𝑥] ∗ 𝑃 [®𝑦/®𝑥] ∗ 𝑐 ↣𝛾 prot [®𝑦/®𝑥]

}{
𝑐 ↣𝛾 prot ∗ 𝑐′ ↣𝛾 prot

}
𝑐.link 𝑐′ {True}

The new_chan specification is derived from the one for atomic channels. Using proto-alloc we

additionally create a protocol invariant, before adding the shared channel state to the pairing

invariant using pair-add and creating the channel ownership assertions. The send and recv
specifications are derived from the corresponding rules for atomic channels, using pair-update to

retrieve the shared channel state and update the protocol context. Finally, the link specification
follows from the atomic channel specification using pair-update-2 to retrieve the relevant shared

channel states and the new proto-join rule to combine the protocol contexts for the linked

channel state. As the channel ownership assertions contain the channel context, only the new_chan
specification differs from the specification in § 2.2. Additionally, ownership assertions for channels

have an associated name 𝛾 corresponding to the context, as only channels for the same channel

context can be linked. We hide the tracking of ghost names using type classes in Coq [52].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:25

7 Higher-Order Protocols
Iris and Actris allow for the verification of higher-order programs, i.e., programs in which channel

endpoints and functions are treated as first-class data, and can be put into data structures, stored in

references and sent over channels. In this section we give an example of a higher-order program

and its specification using a higher-order protocol. We then show the changes that are necessary

to support higher-order protocols in our work.

Example. Channel endpoints are first class and can thus be sent over channels, for example:

prog
9
𝑐 ≜ let 𝑥 = 𝑐.recv () in let 𝑑 = 𝑐.recv () in 𝑑.send 𝑥 ; 𝑐.link 𝑑

This program receives an arbitrary value 𝑥 followed by a channel 𝑑 over 𝑐 . It then sends the value

over 𝑑 and finally links the two channels. We can prove the Hoare triple {𝑐 ↣ prot} prog
9
𝑐 {True}

with the following general protocol:

𝑐 ↣ ? (𝑣 :Val) ⟨𝑣⟩. ? (𝑑 :Val) (prot′ : iProto) ⟨𝑑⟩{𝑑 ↣ ! ⟨𝑣⟩. prot′}. prot′

This protocol uses higher-order impredicative quantification over the protocol prot′ : iProto and
transfers a channel ownership assertion 𝑑 ↣ ! ⟨𝑣⟩. prot′ over the channel.

Changes. The key change is the definition of dependent separation protocols. These can no

longer be simple first-order structures, but need to be defined in such a way that impredicative

quantifiers are allowed and arbitrary Iris propositions (including channel ownership and Hoare

triples) can be put into the resource {𝑃} part of protocols.
Actris [22, §9.1] defines protocols as the solution of a recursive domain equation in the category

of metric spaces [2, 6], which is solved using the technique of step-indexing [1, 4]. As a consequence

of employing step-indexing, judicious later modalities (⊲) [5, 46] show up in our definitions and

rules that need to eliminated accordingly. In particular, the rules of the Actris ghost theory (§ 6.1)

contain later modalities. Most interesting is our new rule proto-join:

prot_own𝛾2 prot ∗ prot_auth𝛾1,𝛾2 ®𝑣2 ®𝑣1 ∗ prot_own𝛾3 prot ∗ prot_auth𝛾3,𝛾4 ®𝑣4 ®𝑣3
⊲ | ®𝑣2 |+| ®𝑣3 | prot_auth𝛾1,𝛾4 (®𝑣4 ++ ®𝑣2) (®𝑣1 ++ ®𝑣3)

This rule says that to merge two protocols, we need to eliminate a number of later modalities

proportional to the number of messages in the buffers. The later modalities arise because the proof

needs to unfold the recursive definition of protocols |®𝑣2 | + |®𝑣3 | times.

In vanilla Iris, a single later modality can be eliminated by taking a program step, so |®𝑣2 | + |®𝑣3 |
program steps are needed to eliminate the necessary laters. However, as prot_ctx is in an invariant,

all laters have to be eliminated at a single step during the linearization point. To enable more flexible

reasoning using laters, we employ (non-persistent)1 time receipts [42] and later credits [53]. The
time receipt Û𝑛 keeps track of the number of steps the program has performed, and the later credit

£𝑛 gives permission to eliminate 𝑛 laters. After each program step we obtain a new time receipt

and £ (𝑛 + 1) later credits, as for example shown in the strengthened LAT for link:

⟨Ch 𝑐2 ∗ Ch 𝑐3 | 𝑛,𝑏, 𝑐1, 𝑐4, ®𝑣1, ®𝑣2, ®𝑣3, ®𝑣4. Û𝑛 ∗ C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 ∗ (if 𝑏 then C 𝑐3 𝑐4 ®𝑣3 ®𝑣4 else 𝑐1 = 𝑐3)⟩
𝑐2.link 𝑐3

⟨Û (𝑛 + 1) ∗ £ (𝑛 + 1) ∗ if 𝑏 then C 𝑐1 𝑐4 (®𝑣1 ++ ®𝑣3) (®𝑣4 ++ ®𝑣2) else True | True⟩
We update the channel pairing invariant R from § 6.3 with time receipts as follows:

R (𝑐1, 𝛾1) (𝑐2, 𝛾2) ≜ ∃®𝑣1, ®𝑣2 . Û |®𝑣1 | ∗ Û |®𝑣2 | ∗ C 𝑐1 𝑐2 ®𝑣1 ®𝑣2 ∗ prot_auth𝛾1,𝛾2 ®𝑣2 ®𝑣1
1
We use non-persistent time receipts Û𝑛, rather than persistent time receipts Û𝑛 as they are additive and hence can be

added when merging channel predicates during linking.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:26 Thomas Somers and Robbert Krebbers

To verify the Actris-style specification for link, we choose 𝑛 = |®𝑣1 | + |®𝑣3 | in the LAT for link. This
gives us 𝑛 + 1 later credits to eliminate the laters resulting from the proto-join. Note that as the

time receipts are stored in the channel pairing invariant, the Actris-style specification for channels

remain unchanged. They do not leak that we internally use laters, time receipts, and later credits.

8 Mechanization in Coq
All our results are mechanized using the Iris Proof Mode [34, 36] in the Coq proof assistant. Our

Coq development consists of ca. 4,250 LOC, with ca. 3,360 LOC for the layered verification and

ca. 890 LOC for all examples throughout the paper. The line counts are measured without comments

and consecutive blank lines.

The Coq development follows the same layered structure as the paper: the LATs for unidirectional

queues based on linked lists and array-segments (§ 4.5, 350 and 680 LOC, respectively), ghost linking

(§ 5.3, 550 LOC), the LATs for bidirectional channels (§ 5.2, 210 LOC), pairing invariants (§ 6.2, 350

LOC), and finally the high-level specification using dependent separation protocols (§ 6.3, 410 LOC).

Our Coq development imports the model of dependent separation protocols and the ghost theory

from Actris. It includes the extension of the Actris ghost theory with linking (§ 6.1, 170 LOC) and

extensions of the Actris tactics for symbolic execution (500 LOC).

Since our system supports all rules and tactics of the existing Actris logic, one could redo the

proofs of the examples in the Actris papers such as parallel merge sort, a load-balancing mapper

and map-reduce. One could also redo the verification of the session type system by Hinrichsen

et al. [24], who used the logical approach to type soundness [56] to give a semantic interpretation

of session types in terms of Actris’s dependent separation protocols. The benefit is that we get

end-to-end correctness guarantees against a low-level implementation of channels. We have not

explicitly done this since it involves copy/pasting the existing proofs in Coq.

9 Related and Future Work
Session types. Various approaches to the semantics of link have been studied in research on

session types. Caires and Pfenning [10]’s seminal paper on the Curry-Howard correspondence

for session types defines a process id𝐴 (𝑥,𝑦) that corresponds to the identity rule of linear logic.

The process acts as a mediator between channels 𝑥 and 𝑦: forwarding the messages received on

one channel to the other. Toninho et al. [57] add linking as a primitive and define its semantics

through substitution. This approach is also used in subsequent theoretical work by Wadler [60],

Lindley and Morris [39] and Fowler et al. [17], and in the session-typed languages Rast [15] and

CLASS [51]. The session-typed language Concurrent C0 [61] provides an efficient implementation

of link using a special kind of forwarding message.

The mediator and substitution approach are well-suited for the study of the meta theory of

session types, but not for efficient implementation. The mediator requires a thread to be spawned

for each use of link, and a direct implementation of the substitution approach would require a

global lock. Moreover, the mediator id𝐴 (𝑥,𝑦) is defined on the structure of the session type 𝐴 in

order to decide from which channel to send and which to receive. As such, the mediator only

works for well-typed programs. Similarly, the channel used to transfer the forwarding message

in Concurrent C0 depends on the direction of the session type. Our implementation of link is

independent of types, and thus works for programs that are beyond the reach of vanilla session

types, e.g., with data dependencies such as the recursive example in § 2.1. Concurrent C0 has an

asynchronous semantics, but uses buffers in a single direction, and therefore does not support

asynchronous subtyping [44, 45]. The other results use a synchronous semantics.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

Verified Lock-Free Session Channels with Linking 292:27

Network verification. Gondelman et al. [19] verify a distributed implementation of asynchro-

nous channels over UDP using the Iris-based Aneris framework in Coq [37]. Similar to us, they

use Actris’s dependent separation protocols to obtain high-level specifications. They consider a

distributed implementation instead of a shared-memory implementation, do not consider link,
and do not layer their verification using LATs. Supporting link in a distributed setting would be

fundamentally different than linking queues, and an interesting challenge for future work.

Verification of concurrent queues. Queues are an important object of study in the verification

of linearizability of concurrent data structures—they were the main data structure in Herlihy and

Wing [20]’s seminal paper on linearizability. Today, there are many ways to specify linearizability:

the classical definition based on traces [20], refinement [16, 38], and logical atomicity [13, 29]. We

use logical atomicity because it provides good support for layering specifications.

Logical atomicity has been verified for many queues, but up to our knowledge, none of these

verifications include a link operation. Most closely related is the single-reader/writer queue verified

by Bizjak et al. [7]. They use a HOCAP [54] style specification instead of LATs, but we borrowed

the idea of using enqueue and dequeue handles. They only consider a linked-list based version,

not a version with array segments. Many of the queues that have been verified using Iris are

more sophisticated in the sense that they support multiple readers/writers, e.g., [12, 58, 59]. It
is not obvious how to implement a queue that supports both link and multiple readers/writers.

However, if one were to have such a queue with corresponding LATs, we expect that our abstraction

layers above it (ghost linking and onwards) can be ported. Such a queue would make it possible to

obtain LATs for the top layer (dependent separation protocol specifications), and thereby make

it possible to put 𝑐 ↣ prot connectives in Iris invariants and share channel endpoints between

threads. Tassarotti et al. [55] verify a refinement of an implementation of session channel w.r.t. a

high-level semantics using Iris. They consider a simply-typed session language without link, but
go beyond our work by considering preservation of termination under fair scheduling.

Future work. Our implementation of channels is much closer to the code that runs on an actual

computer than the state-of-the-art on session types, but further improvements could be made. One

could consider a real programming language such as C or Rust (instead of HeapLang). The closest

work is that of Mansky et al. [40], who verified a message system written in C using the VST

separation logic in Coq [11]. Their system is tailored to the communication between sensors and

control systems and is therefore very different from session channels (particularly, it does not have

unbounded buffers nor link). Another improvement would be to verify an implementation that

uses relaxed memory accesses, but logical atomicity for relaxed memory concurrency is currently

an active study on its own [14, 41, 49]. Finally, unlike some work on session types, the majority of

work on Iris/Actris does not consider deadlock freedom. To remedy this, Jacobs et al. [30] presented

a linear version of Iris/Actris that guarantees deadlock freedom for channels without link. In the

work of Jacobs et al. [30], channels are primitive operations in the operational semantics, and not a

low-level implementation. It remains an open challenge to verify deadlock freedom of low-level

implementations of channel operations. Finally, it would be interesting to explore the verification of

a low-level implementation of multiparty session types [27]. We expect that ideas from our bottom

abstraction layers (queues, queues with linking, bidirectional channels) could be generalized to

the multiparty case. However, the highest level (protocols) remains unknown since Actris-style

specifications have only been considered for the multiparty case in a synchronous setting [23].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

292:28 Thomas Somers and Robbert Krebbers

Acknowledgments
We thank Freek Wiedijk, Jules Jacobs, Jonas Kastberg Hinrichsen, and the POPL 2024 Student

Research Competition reviewers for their feedback on an early version of this work. We also thank

the anonymous reviewers and our shepherd Matthew Parkinson for their suggestions.

Data-Availability Statement
The layered channel implementation and verification described in this paper have been mechanized

in Coq using the Iris and Actris frameworks. Our Coq mechanization, which also includes the

verification of all example programs in this paper, is available on Zenodo [3].

References
[1] Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph.D. Dissertation. Princeton University.

[2] Pierre America and Jan J. M. M. Rutten. 1989. Solving Reflexive Domain Equations in a Category of Complete Metric

Spaces. JCSS 39, 3 (1989), 343–375. https://doi.org/10.1016/0022-0000(89)90027-5

[3] Anonymous Authors. 2024. Coq mechanization: Verified Lock-Free Session Channels with Linking. See anonymous

supplementary material in HotCRP, available on Zenodo for the final version.

[4] AndrewW. Appel and David A. McAllester. 2001. An indexed model of recursive types for foundational proof-carrying

code. TOPLAS 23, 5 (2001), 657–683. https://doi.org/10.1145/504709.504712

[5] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. 2007. A very modal model

of a modern, major, general type system. In POPL, Martin Hofmann and Matthias Felleisen (Eds.). 109–122. https:

//doi.org/10.1145/1190216.1190235

[6] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg. 2010. The category-theoretic solution of recursive metric-space

equations. TCS 411, 47 (2010), 4102–4122. https://doi.org/10.1016/J.TCS.2010.07.010

[7] Ales Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: managing obligations in higher-order

concurrent separation logic. PACMPL 3, POPL (2019), 65:1–65:30. https://doi.org/10.1145/3290378

[8] John Boyland. 2003. Checking Interference with Fractional Permissions. In SAS (LNCS), Vol. 2694. 55–72. https:

//doi.org/10.1007/3-540-44898-5_4

[9] Stephen Brookes. 2007. A semantics for concurrent separation logic. TCS 375, 1-3 (2007), 227–270. https://doi.org/10.

1016/J.TCS.2006.12.034

[10] Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In CONCUR (LNCS), Vol. 6269.
222–236. https://doi.org/10.1007/978-3-642-15375-4_16

[11] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. 2018. VST-Floyd: A Separation

Logic Tool to Verify Correctness of C Programs. JAR 61, 1-4 (2018), 367–422. https://doi.org/10.1007/S10817-018-9457-5

[12] Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli. 2022.

Applying formal verification to microkernel IPC at Meta. In CPP. 116–129. https://doi.org/10.1145/3497775.3503681

[13] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data

Abstraction. In ECOOP (LNCS), Vol. 8586. 207–231. https://doi.org/10.1007/978-3-662-44202-9_9

[14] Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon Kang, and Derek Dreyer.

2022. Compass: strong and compositional library specifications in relaxed memory separation logic. In PLDI. 792–808.
https://doi.org/10.1145/3519939.3523451

[15] Ankush Das and Frank Pfenning. 2022. Rast: A Language for Resource-Aware Session Types. LMCS 18, 1 (2022).

https://doi.org/10.46298/LMCS-18(1:9)2022

[16] Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok Yang. 2009. Abstraction for Concurrent Objects. In

ESOP (LNCS), Vol. 5502. 252–266. https://doi.org/10.1007/978-3-642-00590-9_19

[17] Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. 2023. Separating Sessions Smoothly.

LMCS 19, 3 (2023). https://doi.org/10.46298/LMCS-19(3:3)2023

[18] Simon J. Gay and Vasco Thudichum Vasconcelos. 2010. Linear type theory for asynchronous session types. JFP 20, 1

(2010), 19–50. https://doi.org/10.1017/S0956796809990268

[19] Léon Gondelman, Jonas Kastberg Hinrichsen, Mário Pereira, Amin Timany, and Lars Birkedal. 2023. Verifying Reliable

Network Components in a Distributed Separation Logic with Dependent Separation Protocols. PACMPL 7, ICFP (2023),

847–877. https://doi.org/10.1145/3607859

[20] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects.

TOPLAS 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972

[21] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris: session-type based reasoning in

separation logic. PACMPL 4, POPL (2020), 6:1–6:30. https://doi.org/10.1145/3371074

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

https://doi.org/10.1016/0022-0000(89)90027-5
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1016/J.TCS.2010.07.010
https://doi.org/10.1145/3290378
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1016/J.TCS.2006.12.034
https://doi.org/10.1016/J.TCS.2006.12.034
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1145/3497775.3503681
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.46298/LMCS-18(1:9)2022
https://doi.org/10.1007/978-3-642-00590-9_19
https://doi.org/10.46298/LMCS-19(3:3)2023
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1145/3607859
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3371074

Verified Lock-Free Session Channels with Linking 292:29

[22] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2022. Actris 2.0: Asynchronous Session-Type

Based Reasoning in Separation Logic. LMCS 18, 2 (2022). https://doi.org/10.46298/LMCS-18(2:16)2022

[23] Jonas Kastberg Hinrichsen, Jules Jacobs, and Robbert Krebbers. 2024. Multris: Functional Verification of Multiparty

Message Passing in Separation Logic. PACMPL 8, OOPSLA (2024), 322:1–322:29. https://doi.org/10.1145/3689762

[24] Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson. 2021. Machine-checked semantic

session typing. In CPP. 178–198. https://doi.org/10.1145/3437992.3439914

[25] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR (LNCS), Vol. 715. 509–523. https://doi.org/10.1007/3-

540-57208-2_35

[26] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline

for Structured Communication-Based Programming. In ESOP (LNCS), Vol. 1381. 122–138. https://doi.org/10.1007/

BFB0053567

[27] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In POPL. 273–284.
https://doi.org/10.1145/1328438.1328472

[28] Iris Development Team. 2024. The Coq mechanization of Iris. https://gitlab.mpi-sws.org/iris/iris/

[29] Bart Jacobs and Frank Piessens. 2011. Expressive modular fine-grained concurrency specification. In POPL. 271–282.
https://doi.org/10.1145/1926385.1926417

[30] Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2024. Deadlock-Free Separation Logic: Linearity Yields

Progress for Dependent Higher-Order Message Passing. PACMPL 8, POPL (2024), 1385–1417. https://doi.org/10.1145/

3632889

[31] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In ICFP. 256–269.
https://doi.org/10.1145/2951913.2951943

[32] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from

the ground up: A modular foundation for higher-order concurrent separation logic. JFP 28 (2018), e20. https:

//doi.org/10.1017/S0956796818000151

[33] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015.

Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. 637–650. https://doi.org/10.

1145/2676726.2676980

[34] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur

Charguéraud, and Derek Dreyer. 2018. MoSeL: a general, extensible modal framework for interactive proofs in

separation logic. PACMPL 2, ICFP (2018), 77:1–77:30. https://doi.org/10.1145/3236772

[35] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017. The Essence

of Higher-Order Concurrent Separation Logic. In ESOP (LNCS), Vol. 10201. 696–723. https://doi.org/10.1007/978-3-

662-54434-1_26

[36] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation

logic. In POPL. 205–217. https://doi.org/10.1145/3009837.3009855

[37] Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal.

2020. Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In ESOP (LNCS), Vol. 12075.
336–365. https://doi.org/10.1007/978-3-030-44914-8_13

[38] Hongjin Liang and Xinyu Feng. 2013. Modular verification of linearizability with non-fixed linearization points. In

PLDI. 459–470. https://doi.org/10.1145/2491956.2462189

[39] Sam Lindley and J. Garrett Morris. 2015. A Semantics for Propositions as Sessions. In ESOP (LNCS), Vol. 9032. 560–584.
https://doi.org/10.1007/978-3-662-46669-8_23

[40] William Mansky, Andrew W. Appel, and Aleksey Nogin. 2017. A verified messaging system. PACMPL 1, OOPSLA

(2017), 87:1–87:28. https://doi.org/10.1145/3133911

[41] Glen Mével and Jacques-Henri Jourdan. 2021. Formal verification of a concurrent bounded queue in a weak memory

model. PACMPL 5, ICFP (2021), 1–29. https://doi.org/10.1145/3473571

[42] Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time Credits and Time Receipts in Iris. In ESOP (LNCS),
Vol. 11423. 3–29. https://doi.org/10.1007/978-3-030-17184-1_1

[43] Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus of Mobile Processes, I. I&C 100, 1 (1992), 1–40.

https://doi.org/10.1016/0890-5401(92)90008-4

[44] Dimitris Mostrous and Nobuko Yoshida. 2015. Session typing and asynchronous subtyping for the higher-order

𝜋-calculus. I&C 241 (2015), 227–263. https://doi.org/10.1016/J.IC.2015.02.002

[45] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global Principal Typing in Partially Commutative

Asynchronous Sessions. In ESOP (LNCS), Vol. 5502. 316–332. https://doi.org/10.1007/978-3-642-00590-9_23

[46] Hiroshi Nakano. 2000. A Modality for Recursion. In LICS. 255–266. https://doi.org/10.1109/LICS.2000.855774

[47] Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. TCS 375, 1-3 (2007), 271–307. https://doi.org/10.

1016/J.TCS.2006.12.035

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

https://doi.org/10.46298/LMCS-18(2:16)2022
https://doi.org/10.1145/3689762
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1145/1328438.1328472
https://gitlab.mpi-sws.org/iris/iris/
https://doi.org/10.1145/1926385.1926417
https://doi.org/10.1145/3632889
https://doi.org/10.1145/3632889
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/3133911
https://doi.org/10.1145/3473571
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/J.IC.2015.02.002
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1016/J.TCS.2006.12.035
https://doi.org/10.1016/J.TCS.2006.12.035

292:30 Thomas Somers and Robbert Krebbers

[48] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data

Structures. In CSL (LNCS), Vol. 2142. 1–19. https://doi.org/10.1007/3-540-44802-0_1

[49] Sunho Park, Jaewoo Kim, Ike Mulder, Jaehwang Jung, Janggun Lee, Robbert Krebbers, and Jeehoon Kang. 2024. A Proof

Recipe for Linearizability in RelaxedMemory Separation Logic. PACMPL 8, PLDI (2024). https://doi.org/10.1145/3656384
[50] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. 55–74. https:

//doi.org/10.1109/LICS.2002.1029817

[51] Pedro Rocha and Luís Caires. 2023. Safe Session-Based Concurrency with Shared Linear State. In ESOP (LNCS),
Vol. 13990. 421–450. https://doi.org/10.1007/978-3-031-30044-8_16

[52] Matthieu Sozeau and Nicolas Oury. 2008. First-Class Type Classes. In TPHOLs (LNCS), Vol. 5170. 278–293. https:

//doi.org/10.1007/978-3-540-71067-7_23

[53] Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2022. Later

credits: resourceful reasoning for the later modality. PACMPL 6, ICFP (2022), 283–311. https://doi.org/10.1145/3547631

[54] Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. 2013. Modular Reasoning about Separation of Concurrent

Data Structures. In ESOP (LNCS), Vol. 7792. 169–188. https://doi.org/10.1007/978-3-642-37036-6_11

[55] Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A Higher-Order Logic for Concurrent Termination-Preserving

Refinement. In ESOP (LNCS), Vol. 10201. 909–936. https://doi.org/10.1007/978-3-662-54434-1_34

[56] Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2024. A Logical Approach to Type Soundness. To

appear in Journal of the ACM (JACM).

[57] Bernardo Toninho, Luís Caires, and Frank Pfenning. 2011. Dependent session types via intuitionistic linear type theory.

In PPDP. 161–172. https://doi.org/10.1145/2003476.2003499

[58] Simon Friis Vindum and Lars Birkedal. 2021. Contextual refinement of the Michael–Scott queue (proof pearl). In CPP.
76–90. https://doi.org/10.1145/3437992.3439930

[59] Simon Friis Vindum, Dan Frumin, and Lars Birkedal. 2022. Mechanized verification of a fine-grained concurrent queue

from Meta’s Folly library. In CPP. 100–115. https://doi.org/10.1145/3497775.3503689

[60] Philip Wadler. 2014. Propositions as sessions. JFP 24, 2-3 (2014), 384–418. https://doi.org/10.1017/S095679681400001X

[61] Max Willsey, Rokhini Prabhu, and Frank Pfenning. 2016. Design and Implementation of Concurrent C0. In LINEARITY
(EPTCS), Vol. 238. 73–82. https://doi.org/10.4204/EPTCS.238.8

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 292. Publication date: October 2024.

https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/3656384
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-031-30044-8_16
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1007/978-3-540-71067-7_23
https://doi.org/10.1145/3547631
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/3437992.3439930
https://doi.org/10.1145/3497775.3503689
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.4204/EPTCS.238.8

	Abstract
	1 Introduction
	2 High-level Verification of Message-Passing Programs with Link
	2.1 Basic Examples
	2.2 High-Level Specifications
	2.3 Insertion Sort
	2.4 Modified Insertion Sort

	3 Implementation
	3.1 Description of HeapLang
	3.2 Linked-List Implementation of Unidirectional Queues
	3.3 Array-Segment Implementation of Unidirectional Queues
	3.4 Implementation of Session Channels
	3.5 End-to-End Correctness

	4 Specification and Verification of Queues
	4.1 Sequential Specification of Unidirectional Queues
	4.2 Invariants in Iris
	4.3 Logically-Atomic Triples in Iris
	4.4 Logically-Atomic Specification of Unidirectional Queues
	4.5 Verification of the Logically-Atomic Specification of Unidirectional Queues

	5 Ghost Linking of Queues
	5.1 Specification of Queues with Ghost Linking
	5.2 Logically-Atomic Specification of Channels
	5.3 Verification of Queues with Ghost Linking

	6 Dependent Separation Protocol Channels
	6.1 Protocol Linking
	6.2 Pairing Invariants
	6.3 Specification of Protocol-Based Channels

	7 Higher-Order Protocols
	8 Mechanization in Coq
	9 Related and Future Work
	Acknowledgments
	References

