
100

Later Credits: Resourceful Reasoning for the Later Modality

SIMON SPIES,MPI-SWS, Saarland Informatics Campus, Germany

LENNARD GÄHER,MPI-SWS, Saarland Informatics Campus, Germany

JOSEPH TASSAROTTI, New York University, USA

RALF JUNG,MIT CSAIL, USA

ROBBERT KREBBERS, Radboud University Nijmegen, The Netherlands

LARS BIRKEDAL, Aarhus University, Denmark

DEREK DREYER,MPI-SWS, Saarland Informatics Campus, Germany

In the past two decades, step-indexed logical relations and separation logics have both come to play a major

role in semantics and verification research. More recently, they have been married together in the form of

step-indexed separation logics like VST, iCAP, and Iris, which provide powerful tools for (among other things)

building semantic models of richly typed languages like Rust. In these logics, propositions are given semantics

using a step-indexed model, and step-indexed reasoning is reflected into the logic through the so-called łlaterž

modality. On the one hand, this modality provides an elegant, high-level account of step-indexed reasoning;

on the other hand, when used in sufficiently sophisticated ways, it can become a nuisance, turning perfectly

natural proof strategies into dead ends.

In this work, we introduce later credits, a new technique for escaping later-modality quagmires. By leveraging

the second ancestor of these logicsÐseparation logicÐlater credits turn łthe right to eliminate a laterž into an

ownable resource, which is subject to all the traditional modular reasoning principles of separation logic. We

develop the theory of later credits in the context of Iris, and present several challenging examples of proofs

and proof patterns which were previously not possible in Iris but are now possible due to later credits.

CCS Concepts: • Theory of computation→ Separation logic; Logic and verification.

Additional Key Words and Phrases: Separation logic, Iris, step-indexing, later modality, transfinite

ACM Reference Format:

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer.

2022. Later Credits: Resourceful Reasoning for the Later Modality. Proc. ACM Program. Lang. 6, ICFP, Article 100

(August 2022), 29 pages. https://doi.org/10.1145/3547631

1 INTRODUCTION

In the past two decades, step-indexed logical relations and separation logics have both come to
play a major role in semantics and verification research. Step-indexed logical relations, developed
originally as part of the Foundational Proof-Carrying Code project [Appel and McAllester 2001;
Ahmed et al. 2010], have since become an indispensable tool for building semantic models of
modern type systemsÐsuch as those of Scala [Giarrusso et al. 2020], Rust [Jung et al. 2018a], and
session-typed languages [Hinrichsen et al. 2021]Ðwhich include łcyclic featuresž like recursive

Authors’ addresses: Simon Spies, MPI-SWS, Saarland Informatics Campus, Germany, spies@mpi-sws.org; Lennard Gäher,

MPI-SWS, Saarland Informatics Campus, Germany, gaeher@mpi-sws.org; Joseph Tassarotti, New York University, USA,

jt4767@nyu.edu; Ralf Jung, MIT CSAIL, USA, research@ralfj.de; Robbert Krebbers, Radboud University Nijmegen, The

Netherlands, mail@robbertkrebbers.nl; Lars Birkedal, Aarhus University, Denmark, birkedal@cs.au.dk; Derek Dreyer,

MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org.

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/8-ART100

https://doi.org/10.1145/3547631

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3547631
https://doi.org/10.1145/3547631
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3547631&domain=pdf&date_stamp=2022-08-31

100:2 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

subtyping and higher-order state [Ahmed 2004; Birkedal et al. 2011]. Separation logic [O’Hearn
et al. 2001; Reynolds 2002], though aimed originally at verifying sequential, pointer-manipulating
programs, has grown into an entire subfield of program verification, spawning numerous variantsÐ
separation logics (plural)Ðwhich have extended it to support a wide range of challenging features,
notably concurrency [O’Hearn 2007; Brookes 2007].

In recent years, these two independent developments have been married together in the form of
step-indexed separation logicsÐseparation logics, such as VST [Cao et al. 2018], iCAP [Svendsen and
Birkedal 2014], and Iris [Jung et al. 2015, 2016; Krebbers et al. 2017a; Jung et al. 2018b], in which
propositions are given semantics using a step-indexed model. Step-indexed separation logics enrich
traditional separation logic with new and powerful mechanisms like first-class storable locks [Buisse
et al. 2011], impredicative invariants [Svendsen and Birkedal 2014], and higher-order ghost state [Jung
et al. 2016], mechanisms which have no precedent in prior work because they fundamentally depend
on the integration of step-indexing and separation logic. These new mechanisms have proven
useful in verifying correctness of fine-grained concurrent data structures [Jung et al. 2015], building
semantic models of higher-order, imperative, and concurrent languages [Jung et al. 2018a; Dang
et al. 2020; Hinrichsen et al. 2021], and deriving custom program logics for a variety of application
domains [Hinrichsen et al. 2020; Krogh-Jespersen et al. 2020; Chajed et al. 2019; Zhang et al. 2021].
In this paper, we focus on an important and unsung feature of step-indexed separation logics:

the łlaterž (⊲) modality [Appel et al. 2007]. Though glossed over in much of the literature as an
esoteric technical detail best left to the grizzled experts, the later modality is in fact central to how
step-indexed separation logics work, as it makes it possible to do step-indexed reasoning at a higher
level of abstraction. Specifically, propositions 𝑃 in step-indexed logics are interpreted as predicates
over a step-index 𝑛 (intuitively: ł𝑃 holds true for 𝑛 steps of computationž), and ⊲ 𝑃 is defined to
be true at step-index 𝑛 if 𝑃 is true at step-index 𝑛 − 1 (i.e., ⊲ 𝑃 means that 𝑃 will hold laterÐafter
one step of computation). As such, the later modality provides a high-level way of formalizing
step-indexed arguments without being forced to reason about step-indices directly and engage in
tedious łstep-index arithmeticž as in earlier formulations of step-indexing [Dreyer et al. 2011].

However, in practice, the later modality is often viewed as a łnecessary evilž. Laters typically pop
up in hypotheses when one unfolds an implicitly recursive construction (such as the impredicative
invariants mentioned above), and for good reason: the laters serve as łguardsž preventing paradoxes
of circular reasoning [Jung et al. 2018b, ğ3.3, ğ8.2]. But once ⊲ 𝑃 appears in a hypothesis, the name of
the game is figuring out how to eliminate the guarding ł⊲ž in order to make use of the proposition 𝑃 .

This brings us to our main topic: the later elimination problem. Although there exist a number of
techniques for eliminating laters in step-indexed proofs, there are several known situations where
none of these techniques apply, thus ruling natural proof strategies out of consideration and in
some cases making it unclear how to carry out the proof at all. In this paper, we propose a new
technique for escaping these unfortunate situations by exploiting the fact that we are working in
a separation logic. Specifically, we treat łthe right to eliminate a laterž as an ownable resource and
then apply standard separation-logic reasoning to that resource. We realize this idea through a
new logical mechanism we call later credits, and we demonstrate its effectiveness on a range of
interesting use cases. But before we explain how later credits work and where they shine, let us
begin by illustrating the later elimination problem with a concrete example.

The later elimination problem. To illustrate the problem, we first have to understand both
the motivation for step-indexing and its limitations. We explain both with a concrete example:
impredicative invariants in the step-indexed separation logic Iris [Jung et al. 2018b]. In Iris, invariants

𝑅 are used to share state between program threads. For example, we can pick 𝑅 ≜ ∃𝑛 : N. ℓ ↦→𝑛

to share access to the location ℓ and, at the same time, constrain ℓ to only store natural numbers.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:3

Once the invariant 𝑅 is established, we can use it (called łopening itž) by applying Iris’s invariant
opening rule. This rule is central enough to Iris that it was presented on page 1 of the original łIris
1.0ž paper [Jung et al. 2015], albeit in the following, łsimplified for presentation purposesž form
(and we will return to what is simplified about it in a moment):

{𝑅 ∗ 𝑃} 𝑒 {𝑅 ∗𝑄} 𝑒 physically atomic

𝑅 ⊢ {𝑃} 𝑒 {𝑄}

The rule says that if we open the invariant 𝑅 , then we can assume 𝑅 in our precondition
and have to show 𝑅 holds again after evaluating 𝑒 . Importantly, the rule is restricted to atomic
expressions (i.e., expressions that only take a single step). Without this restriction, other threads
that are interleaved with 𝑒 could potentially observe inconsistent states in which 𝑅 does not hold.

What makes these invariants impredicative is that the 𝑅 in 𝑅 can be an arbitrary Iris proposition:
it can for example include Hoare triples or other impredicative invariant assertions. Impredicativity
makes these invariants quite powerful: they enable reasoning about higher-order stateful programs
(i.e., programs storing functions in memory) and defining logical relations in step-indexed separation
logic [Frumin et al. 2018, 2021]. Unfortunately, the price of their power is that their model is cyclicÐ

cyclic to the extent that naive models of 𝑅 are not well-founded (i.e., inductive or co-inductive

definitions do not suffice). To obtain a well-founded model of 𝑅 , the only known approach is to
stratify the cyclic construction using step-indexing [Svendsen and Birkedal 2014; Jung et al. 2018b].

However, as explained above, a side effect of using step-indexing to resolve cycles in the model
of invariants is that, when invariants are used (i.e., opened), it is necessary to introduce a later
modality, which acts as a łguardž to protect against paradoxically circular reasoning. In particular,
the invariant opening rule presented above is an oversimplification; Iris’s real invariant opening
rule is the following:

{⊲𝑅 ∗ 𝑃} 𝑒 {v. ⊲𝑅 ∗𝑄}E\N N ⊆ E 𝑒 physically atomic

𝑅
N
⊢ {𝑃} 𝑒 {v. 𝑄}E

Most of these additional details are not relevant to our discussion. First of all, note that the
Hoare triples now bind a return value v in the postcondition 𝑄 : this is simply to allow 𝑄 to talk
about the result of evaluating 𝑒 . Second, note that invariant assertions are now annotated with
a namespace N , and Hoare triples with a mask E. These mechanisms are needed to keep track
of which invariants are currently open or closed, and to avoid reentrancy (i.e., opening the same
invariant twice while reasoning about a single step of computation). We will return to namespaces
and masks in ğ2, but they are not our main focus in the present discussion.
Third and most importantly, note the two occurrences of the later modality (⊲) in the pre and

post of the premise, which are an artifact of the step-indexed model of impredicative invariants.
After applying this rule, the user needs to eliminate the ł⊲ž guarding 𝑅 in the pre, so that they can
use 𝑅 in verifying 𝑒 . Toward this end, Iris presently offers three options:

(1) Timeless propositions. For the subclass of so-called timeless propositionsÐwhich include
propositions that are pure (e.g., even(𝑛)) or assert only first-order ownership (e.g., ℓ ↦→ 42)Ð
laters can be eliminated because the model of these propositions ignores the step-index.

(2) Commuting rules. The later modality commutes with most logical connectives (e.g., existential
quantification and separating conjunction). Thus, in many cases, we can use commuting
rules to move the later out of the way.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:4 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

(3) Program steps. With every program step, we can eliminate a guarding later. More precisely, if
𝑃 is guarded by a later before the step, then the later can be removed after the step. (This
corresponds to the intuition that ⊲ 𝑃 means ł𝑃 will hold after one step of computationž.)

The problem is that there are cases where none of these techniques apply. We illustrate such a
case with an example: nested invariants.1 Consider the invariant:

∃ℓ . ∃𝑛 : N. ℓ ↦→𝑛
N1 ∗ 𝛾 ↦→ghost ℓ

N2

Here, the location ℓ is existentially quantified and connected to a logical identifier𝛾 through a łghost
linkž 𝛾 ↦→ghost ℓ (a piece of łghost statež which is not present in the program, but useful for its veri-
fication). If we need the contents of the inner invariant (∃𝑛 : N. ℓ ↦→𝑛) to justify the next step, then

we are in a quandary. If we open the outer invariant, we get ⊲
(

∃ℓ . ∃𝑛 : N. ℓ ↦→𝑛
N1 ∗ 𝛾 ↦→ghost ℓ

)

.

After applying commuting and timelessness rules, and eliminating the existential, we are left with

⊲ ∃𝑛 : N. ℓ ↦→𝑛
N1

and 𝛾 ↦→ghost ℓ . At this point, we have a later guarding ∃𝑛 : N. ℓ ↦→𝑛
N1

and
are therefore stuck: invariants are not timeless (eliminating the first option), there is nothing to
commute (eliminating the second option), and we need ℓ ↦→𝑛 before (i.e., as a precondition for
verifying) the next step (eliminating the third option).

As we will see in this paper, the case of nested invariants is not an isolated one. There are a
number of realistic scenarios in step-indexed separation logicsÐnot common scenarios exactly,
but ones that do occur periodicallyÐwhere none of the łstandardž later elimination options apply.
At present, the only way of handling such scenarios is to attempt some non-trivial, non-local
refactoring of the proof structureÐor to admit defeat.

Later credits. In this paper, we present a fourth option for later eliminationÐlater credits. Later
credits support what we call amortized step-indexed reasoningÐeliminating laters based on previous
program steps. The basic idea of amortized reasoning is that we decouple the proof steps where
laters are eliminated from the proof steps where we execute the program. Instead of eliminating
one later after every program step (option 3 above), we obtain a credit £1 after every program
stepÐa later credit. This credit can subsequently be used anywhere in the rest of the proof that we
want to eliminate a later modality, not just the present step. For example, we can save a credit £1
from one step, keep it for two subsequent steps, and then use it before the next step to eliminate a
later guarding an invariant assertion. In particular, the credit £1 can also be used as part of purely
logical reasoning where there is no program in sight.
The reader may wonder whether later credits are really a backdoor for reintroducing into the

logic the kind of explicit step-index manipulation that the later modality was designed to avoid. The
answer is no: because unlike step-indices, later credits are implemented as resources in a separation
logic, and hence they inherit all the modular reasoning principles associated with resources in a
separation logic. To wit: if we łownž £1 (i.e., it is in our precondition), then we alone get to decide
how we want to spend it without any interference from other parts of the program/proof. If we
want to spend it to eliminate a later, then we can do so with a credit spending rule. If we want to
share it with other functions, then we can pass it to them as part of their precondition. If we want
to keep it to ourselves during a function call, then we can frame it around the function call. If we
want to share it with other threads, then we can put it into an invariant that is shared with those
threads. In short, we can reason about later credits using all the standard reasoning patterns that are
available for resources in separation logic. None of this is possible with step-index manipulation.

1We use nested invariants here, because they are one of the simpler examples to illustrate where the existing practices

are not enough. In practice, most proofs do not need to use nested invariants. However, plenty of proofs put other (more

complicated) step-indexed assertions into invariants, and then guarding laters cause trouble (e.g., see ğ3 and ğ4).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:5

The reasoning that later credits enable has two kinds of applications: First, it can simplify existing
proofs. Later credits can help where step-indexing previously got in the way and cluttered the
proofs. Second, the reasoning can enable proofs which were seemingly not possible with standard
later elimination techniques. We will see examples of both kinds of applications in the paper.

Contributions. Our main contributions are later credits and the amortized step-indexing tech-
nique that they enable. We develop both as an extension of the step-indexed separation logic Iris.
We explain later credits (in ğ2), discuss their soundness (in ğ5), and show how they complement
existing approaches to eliminate multiple laters per step (in ğ6). We demonstrate the use of later
credits with two flagship examples (one of each kind):

(1) New proofs. One interesting application of step-indexed logical relations in prior work has
been in proving that expressions in higher-order stateful languages can be reordered [Krogh-
Jespersen et al. 2017; Timany et al. 2018]. However, due to trouble with the later modality,
the step-indexed logical relations of prior work can only handle very restricted forms of
reordering operations with shared higher-order state (e.g., ones using shared, but immutable
state). In ğ3, we show how later credits make it possible to prove much more sophisticated
reorderings, in particular for JavaScript-inspired promises.

(2) Proof simplification. One of the original raisons d’être of Iris was proving logical atomicity
for concurrent data structures. Sadly, step-indexing has always caused trouble for logical
atomicity, sometimes ruling out natural and perfectly valid proof strategies and requiring
ługlyž workarounds [Jung 2019]. In ğ4, we show how to avoid such workarounds by instead
using later credits to implement simpler and more intuitive proofs of logical atomicity.

Besides these flagship examples, we develop several smaller case studies to demonstrate use-
fulness of later credits (in ğ6). We develop a form of prepaid invariants, which can be opened
around physically atomic instructions without a guarding later, and we show that later credits can
be used to prove the kind of łreverse refinementsž introduced by Svendsen et al. [2016] without
requiring the transfinite step-indexing model that Svendsen et al. needed. We have mechanized later
credits [Spies et al. 2022] and all of the above examples in Coq using the Iris Proof Mode [Krebbers
et al. 2017b, 2018]. Further technical details are included in the supplementary material.

2 LATER CREDITS IN A NUTSHELL

In this section, we explain the key ideas behind later credits in Iris (in ğ2.2). Before we do so, we
first review the principles of Iris upon which later credits are built (in ğ2.1). Readers well-versed in
Iris can skip subsection ğ2.1, and proceed directly to ğ2.2.

2.1 An Iris Primer

As Iris is a step-indexed separation logic, its reasoning principles (excerpt shown in Figure 1) rest
on two pillars: separation logic and step-indexing.

Separation logic. Iris offers the standard connectives of separation logic: separating conjunction
𝑃 ∗𝑄 , the points-to assertion ℓ ↦→v, and Hoare triples {𝑃} 𝑒 {v. 𝑄} . The Hoare triple {𝑃} 𝑒 {v. 𝑄}
expresses that under precondition 𝑃 , the expression 𝑒 is safe (i.e., cannot get stuck), and if it
terminates with valuev, then it satisfies the postcondition𝑄 . The distinguishing feature of separation
logic is that propositions not only assert facts about the state of the program, but also convey
ownership of said state. That is, if an expression 𝑒 has ℓ ↦→ 42 in its precondition, then it not only
knows that ℓ currently stores 42 in the heap, but also that no other program part can modify ℓ

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:6 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

Separation Logic:

Frame

{𝑃} 𝑒 {v. 𝑄}

{𝑃 ∗𝑅} 𝑒 {v. 𝑄 ∗𝑅}
UpdReturn

𝑃 ⊢ |⇛𝑃
UpdBind

(|⇛𝑃) ∗ (𝑃 −∗ |⇛𝑄) ⊢ |⇛𝑄

UpdExec

{𝑃} 𝑒 {v. 𝑄}

{|⇛𝑃} 𝑒 {v. 𝑄}

Step-Indexing:

LaterIntro

𝑃 ⊢ ⊲ 𝑃

LaterMono

𝑃 ⊢ 𝑄

⊲ 𝑃 ⊢ ⊲𝑄
Löb

(⊲ 𝑃 ⇒ 𝑃) ⊢ 𝑃

PureStep

{𝑃} 𝑒2 {v. 𝑄} 𝑒1 →pure 𝑒2

{⊲ 𝑃} 𝑒1 {v. 𝑄}

Timeless

{𝑃 ∗𝑄} 𝑒 {v. 𝑅} timeless(𝑄)

{𝑃 ∗ ⊲𝑄} 𝑒 {v. 𝑅}

LaterExists

𝑋 non-empty

⊲∃𝑥 : 𝑋 .𝛷 (𝑥) ⊢ ∃𝑥 : 𝑋 . ⊲𝛷 (𝑥)
LaterSep

⊲(𝑃 ∗𝑄) ⊢ ⊲ 𝑃 ∗ ⊲𝑄

InvAlloc

𝑅
N
⊢ {𝑃} 𝑒 {𝑤. 𝑄}

{𝑃 ∗ ⊲𝑅} 𝑒 {𝑤. 𝑄}

InvOpen

{⊲𝑅 ∗ 𝑃} 𝑒 {v. ⊲𝑅 ∗𝑄}E\N N ⊆ E 𝑒 phys. atomic

𝑅
N
⊢ {𝑃} 𝑒 {v. 𝑄}E

Fig. 1. A selection of Iris’s proof rules.

Implementation Specification

mk_counter () ≜ ref(0) {True}mk_counter () {𝑐. counter (𝑐, 0)}

get(𝑐) ≜ !𝑐 {counter (𝑐, 𝑛)} get(𝑐) {𝑚 ∈ N. counter (𝑐,𝑚) ∧𝑚 ≥ 𝑛}

inc(𝑐) ≜ FAA(𝑐, 1) {counter (𝑐, 𝑛)} inc(𝑐) {𝑚 ∈ N. counter (𝑐,𝑚 + 1) ∧𝑚 ≥ 𝑛}

Fig. 2. Implementation and specification of a concurrent monotone counter.

while it owns ℓ ↦→ 42. For example, in separation logic it is trivial to prove:

{True} 𝑓 () {v. True}

{𝑟 ↦→ 0} 𝑟 ← 42; 𝑓 (); !𝑟 {v.v = 42 ∗ 𝑟 ↦→ 42}

In our precondition, we have ownership of 𝑟 ↦→ 0. This enables us to store the value 42 in 𝑟 , leaving
us with ownership of 𝑟 ↦→ 42. The subsequent call to 𝑓 does not interfere with this ownership,
meaning we retain it over the duration of the call and can still use it afterwards. Then, since we
have ownership of 𝑟 ↦→ 42, we can prove the read !𝑟 results in 42. This form of ownership reasoning
is made possible with the characteristic rule of separation logic, the framing rule Frame, which we
can use to frame 𝑟 ↦→ 42 around the call of 𝑓 (), and get it back after the execution of 𝑓 ().
On top of the above ownership reasoning over heap fragments, Iris offers an additional form

of ownership reasoning: reasoning about resources. Resources are a form of ghost state, state that
is not physically present in the program but useful for its verification. Resources will be a vital
ingredient in the later credits mechanism. To understand how they work, we consider an example: a
fine-grained concurrent (i.e., that does not use locking), monotone counter (i.e., that only increases
in value). As depicted in Figure 2, our counter offers three methods: we can create a counter with
mk_counter (implemented as a reference internally), we can read its value with get (implemented by
reading the reference), and we can increment its value with inc (implemented with the concurrency
primitive FAA, which does an atomic fetch-and-add and returns the old value).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:7

In Iris, we can specify this counter with a predicate counter (𝑐, 𝑛), which expresses that the value
of counter 𝑐 is currently at least 𝑛. Importantly, counter (𝑐, 𝑛) only expresses that the counter value
is łat least 𝑛ž and not łexactly 𝑛ž, because we are considering a concurrent counter. That is, the
counter can be shared between threads, and, after we have observed the counter value (e.g., with a
get), other threads can increment it, invalidating any assumptions about its exact value (but not
about lower bounds). We define the counter predicate with an invariant and resources:

counter (𝑐, 𝑛) ≜ ∃𝛾 . ∃𝑚 : N. 𝑐 ↦→𝑚 ∗mono𝛾 (𝑚)
N
∗ lb𝛾 (𝑛)

We use the invariant ∃𝑚 : N. 𝑐 ↦→𝑚 ∗mono𝛾 (𝑚)
N
to share ownership of 𝑐 ↦→𝑚 between threads.

Each thread that knows about the invariant can open it for an atomic step to get ownership of 𝑐 ↦→𝑚

and mono𝛾 (𝑚), and has to return both after the step. Since the invariant assertion only represents
knowledge, not exclusive ownership, it can be duplicated and, hence, shared with other threads.
We already know the assertion 𝑐 ↦→𝑚 inside the invariant conveys ownership of the location 𝑐 , in
this case storing the counter value𝑚. The assertion mono𝛾 (𝑚) is an exclusively owned resource
with name 𝛾 . More precisely, it is a monotonically growing resource (i.e.,𝑚 can only be increased),
which ensures that the value stored at location 𝑐 is never decreased. The duplicable assertion lb𝛾 (𝑛),
part of the definition of counter (𝑐, 𝑛), is another resource. It is a lower bound on the monotonically
growing resource mono𝛾 (𝑚). Thus, if we own mono𝛾 (𝑚) and lb𝛾 (𝑛), then we can deduce𝑚 ≥ 𝑛
(i.e., mono𝛾 (𝑚) ∗ lb𝛾 (𝑛) ⊢𝑚 ≥ 𝑛). For our counter, this rule is the key to proving the specification
of get, because it allows us to deduce that the return value is at least 𝑛.
Above, we have seen how to use ghost state in the form of resources to augment the physical

state in our proofs. What we have not discussed yet is how we modify ghost state. For example,
in the verification of inc, we need to update mono𝛾 (𝑛) to mono𝛾 (𝑛 + 1) to match the value of the
counter. To modify resources, Iris has a designated modality: the update modality |⇛𝑃 . Intuitively,
|⇛𝑃 means 𝑃 holds after (possibly) performing some updates to the resources.
Understanding the basics of the update modality is essential for understanding later cred-

its, so we take a closer look. First, each resource type (like the monotone counter) comes with
resource-specific update rules. For example, the update rule for monotone counters is mono𝛾 (𝑛) ⊢
|⇛mono𝛾 (𝑛 + 1) ∗ lb𝛾 (𝑛 + 1)Ði.e., we can update the ownership of mono𝛾 (𝑛) to ownership of
mono𝛾 (𝑛 + 1) and lb𝛾 (𝑛 + 1).

Besides the resource-specific rules, there are three important update rules: UpdReturn, UpdBind,
and UpdExec. The first two rules essentially express that the update modality is a monad: we can
construct a no-op update with UpdReturn (the monadic return), and we can compose two updates
with UpdBind (the monadic bind). In the rule UpdBind, the so-called magic wand 𝑃 −∗ 𝑄 may be
understood as an implication which transfers ownership. In other words, if we own 𝑃 −∗ 𝑄 and
are willing to give up ownership of 𝑃 , then we get back ownership of 𝑄 . The third rule, UpdExec,
shows how we can execute the update modality (read bottom to top): if we have an update in our
precondition (e.g., from updating mono𝛾 (𝑛) to mono𝛾 (𝑛 + 1)), then we can execute the update
and proceed with reasoning about the precondition 𝑃 . Put differently, whenever we are verifying
programs with Hoare triples, we can update resources at will.

Step-indexing. The second pillar of Iris is step-indexing. Recall (from ğ1) that instead of
reasoning explicitly about predicates over natural numbers, Iris takes the łlogical approachž to
step-indexing with the later modality ⊲ 𝑃 [Appel et al. 2007]. Intuitively, the later modality ex-
presses that 𝑃 will hold after the next program step. To illustrate how that works in practice, we
consider an example: verifying partial correctness of an infinite loop in Iris. That is, we show
Φloop ≜ {True} loop () {v. False} , where loop ≜ rec loop 𝑥 = loop 𝑥 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:8 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

To prove the triple Φloop, we need recursive reasoning. Unfortunately, because loop does not
terminate, there is no inductive argument that we can use to prove Φloop. For such cases, step-
indexed separation logics offer Löb induction, which can be understood as a coinduction principle.
The Löb rule says that if we want to prove a property 𝑃 , then we can assume the property 𝑃 holds
later (i.e., ⊲ 𝑃). In this rule, the later modality (⊲) acts as a guardÐit prevents us from using 𝑃 directly
(which would make proving any proposition trivial). To eliminate the guarding later, we can execute
a program step. For example, we can apply the rule PureStep, which enables us to eliminate a later
from the precondition when we take a pure step (i.e., a step without non-determinism and state).
For our proof of the triple Φloop, Löb induction and the rule PureStep suffice. First, with Löb

induction, we assume the triple Φloop already holds later (i.e., we assume ⊲Φloop) and continue to
show Φloop. Next, we execute loop () for one pure step using PureStep (since loop () →pure loop ()).
Afterwards, we are again left with the goal Φloop, but we have eliminated the guarding later from
our assumption by taking a step. Thus, all that remains to prove is the trivial goal Φloop ⊢ Φloop.

However, there is more to step-indexing and the later modality than just coinduction. Other parts
of Iris can hook into Iris’s step-indexing mechanism to resolve their own cyclic dependencies. In the
introduction, we have already encountered one example: impredicative invariants [Svendsen and

Birkedal 2014]. Recall that when we open an impredicative invariant2 𝑅
N
, then its contents 𝑅 are

guarded by a later (see InvOpen). The reason that later modalities show up here is that impredicative
invariants are cyclic, and step-indexing is used to stratify these cycles in the model of Iris.
Once we have opened an invariant, we are confronted with a guarding later modality. Unfor-

tunately, while introducing and reasoning under a later modality is easy (see LaterIntro and
LaterMono), eliminating them can be challenging. Sometimes, we get lucky and the later elimina-
tions align with program steps (e.g., in the proof of Φloop). However, often, they do not. Then we
still have two options available: later commuting rules and timeless propositions. We explain both
with the counter from Figure 2. In the verification of get, we have to open the counter invariant
and obtain ⊲(∃𝑛 : N. ℓ ↦→𝑛 ∗mono𝛾 (𝑛)). Using the commuting rules LaterExists and LaterSep,
we can move the later inwards and obtain (∃𝑛 : N. ⊲ ℓ ↦→𝑛 ∗ ⊲mono𝛾 (𝑛)). Since ℓ ↦→𝑛 is timeless,
meaning it is independent of Iris’s step-indexing mechanism, we can use the rule Timeless and the
fact timeless(ℓ ↦→v) to eliminate the guarding later from ℓ ↦→𝑛. Without the guarding later, we can
then use ℓ ↦→𝑛 to justify the load from ℓ .

In some cases, however, none of these techniques (i.e., eliminating laters after steps, commuting
rules, and timelessness) apply. For such cases, we now introduce a fourth option: later credits.

2.2 Later Credits in Iris

The later credits mechanism (whose rules are shown in Figure 3) rests on two central pieces: a new
resource £𝑛, called the later credits, and a new update modality |⇛le𝑃 , called the later elimination
update. Intuitively, one can think of owning £𝑛 as the right to eliminate 𝑛 later modalities, and of
the later elimination update |⇛le𝑃 as an extension of Iris’s update modality that additionally allows
updating ⊲ 𝑃 to 𝑃 using later credits. The later credits mechanism factors into two parts:

(1) We receive later credits by taking program steps. For example, we receive one later credit
£1 by executing a pure step with PureStep. After the program step, the new credit becomes
available in the precondition of the Hoare triple of the successor expression 𝑒2. (The proof

2As mentioned in ğ1, invariants carry a namespace N and Hoare triples carry a mask E (as do updates ł |⇛ž, which we will

explain in ğ3). This allows us to prevent reentrancy, i.e., opening the same invariant twice at the same timeÐtaking out the

same resources from an invariant twice would lead to unsoundness. Namespaces and masks are orthogonal to later credits

and clutter the presentation, so we omit them here and state the full rules in the supplementary material [Spies et al. 2022].

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:9

CreditSplit

£ (𝑛 +𝑚) ⇔ £𝑛 ∗ £𝑚
CreditTimeless

timeless(£𝑛)

PureStep

{𝑃 ∗ £1} 𝑒2 {v. 𝑄} 𝑒1 →pure 𝑒2

{𝑃} 𝑒1 {v. 𝑄}

LEUpdLater

£1 ∗ ⊲ 𝑃 ⊢ |⇛le𝑃

LEUpdReturn

𝑃 ⊢ |⇛le𝑃

LEUpdBind

(|⇛le𝑃) ∗ (𝑃 −∗ |⇛le𝑄) ⊢ |⇛le𝑄

LEUpdExec

{𝑃} 𝑒 {v. 𝑄}
{

|⇛le𝑃
}

𝑒 {v. 𝑄}

Fig. 3. A selection of proof rules for later credits.

rules for load, store, allocation, etc. similarly generate one credit after the step.) Once we
have received credits, we can combine and split them freely with CreditSplit.

(2) We spend later credits through later elimination updates |⇛le. That is, with LEUpdLater we
can give up a credit £1, and, in exchange, eliminate a later modality by updating ⊲ 𝑃 to 𝑃 . In
particular, we can use this rule to eliminate a guarding later from one of our assumptions.
Once we own |⇛le𝑃 , these updates can be executed as usual. For example, just like standard
updates |⇛𝑃 , we can execute them in the precondition of Hoare triples with LEUpdExec.

Have we just managed to replace one modality (⊲) with another one (|⇛le)? No, far from it. There
are two key distinctions between the two modalities. The first one is that |⇛le𝑃 can be executed
virtually everywhere in the logic, whereas the elimination of laters is quite restricted (as we have
explained above). To integrate |⇛le𝑃 into Iris, we replace the update |⇛𝑃 with |⇛le𝑃 in most of Iris.
This modification allows us to execute |⇛le𝑃 everywhere that we could execute |⇛𝑃 before.

The second key distinction is that (|⇛le) is more compositional. Analogous to (|⇛), (|⇛le) is a
monad with LEUpdReturn and LEUpdBind, whereas (⊲) is not (it is only an applicative functor).
Since it is a monad, we can use LEUpdBind to accumulate and compose updates. For example, it is
trivial to prove transitivity (i.e., |⇛le |⇛le𝑃 ⊢ |⇛le𝑃), or to use one later elimination update to spend
two credits and eliminate two laters. In contrast, (⊲) does not satisfy the analogous rule ⊲ ⊲ 𝑃 ⊢ ⊲ 𝑃 ,
so we cannot fold two laters into one.

Later credits in action. As a first illustration of later credits, we show how to save a credit for
a few steps to enable a later elimination afterwards. We do not need later credits here, because we
could use timelessness and later commuting for this example (see ğ2.1), but it will nevertheless be
instructive as a toy example:

∀𝑛. {𝑛 ∈ N} 𝑓 𝑛 {𝑚.𝑚 ∈ N}

∃𝑛 : N. ℓ ↦→𝑛
N
⊢ {True} 𝑙 ← 𝑓 (41 + 1) {v. True}

We execute 41 + 1 with PureStep and thereby obtain a new later credit £1. We are left with proving

∃𝑛 : N. ℓ ↦→𝑛
N
⊢ {£1} 𝑙 ← 𝑓 (42) {v. True} . We frame £1 around the call of 𝑓 with Frame,

leaving us to prove ∃𝑛 : N. ℓ ↦→𝑛
N
⊢ {£1} 𝑙 ← 𝑚 {v. True} for some𝑚 ∈ N. After opening the

invariant with InvOpen, we have to show {£1 ∗ ⊲(∃𝑛 : N. ℓ ↦→𝑛)} 𝑙 ← 𝑚 {v. ⊲(∃𝑛 : N. ℓ ↦→𝑛)} .
We spend the later credit to eliminate the later modality with LEUpdLater, leaving us to prove
{

|⇛le (∃𝑛 : N. ℓ ↦→𝑛)
}

𝑙 ←𝑚 {v. ⊲(∃𝑛 : N. ℓ ↦→𝑛)} . Subsequently, we execute the later elimination
update with LEUpdExec, leaving us to prove {∃𝑛 : N. ℓ ↦→𝑛} 𝑙 ←𝑚 {v. ⊲(∃𝑛 : N. ℓ ↦→𝑛)} . The rest
of the proof is routine, using LaterIntro in the postcondition.

Although it is simple, this example shows how later credits enable reasoning about later elimina-
tions as an ownable resource, which can be passed around using the rules of separation logic. This

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:10 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

promise : 1→ pr(𝜏)

promise() ≜ (mklock(), ref(none), ref([]))

resolve : pr(𝜏) × 𝜏 → 1

resolve((𝑙, 𝑟 , 𝑐), 𝑎) ≜ lock(𝑙); case !𝑟 of some(𝑏) ⇒ unlock(𝑙); abort()

| none⇒ 𝑟 ← some(𝑎); let 𝑓𝑠 = !𝑐; 𝑐 ← [];

unlock(𝑙); app (𝜆𝑓 . 𝑓 (𝑎)) 𝑓𝑠

then : pr(𝜏) × (𝜏 → 1) → 1

then((𝑙, 𝑟 , 𝑐), 𝑓) ≜ lock(𝑙); case !𝑟 of some(𝑎) ⇒ unlock(𝑙); 𝑓 (𝑎)

| none⇒ 𝑐 ← 𝑓 :: !𝑐; unlock(𝑙)

Fig. 4. Promise implementation in HeapLang.

kind of reasoning is essential in the examples that follow, in which we frame credits for several
steps (in ğ3) and even exchange them through invariants (in ğ4 and ğ6.1).

3 LATER CREDITS FOR REORDERING REFINEMENTS

For our first application of later credits, we show how they address a limitation of step-indexed
logical relations that arises when proving reordering refinements. In a reordering refinement, we
want to prove that two expressions 𝑒1 and 𝑒2 are independent in the sense that their execution
order is not observable. Concretely, this means we want to show:

𝑒2; 𝑒1 ≤ctx 𝑒1; 𝑒2 and, more generally, 𝑒1 ∥ 𝑒2 ≤ctx (𝑒1, 𝑒2)

where 𝑒1 ∥ 𝑒2 denotes the parallel composition of 𝑒1 and 𝑒2 (returning the pair of their result values).
One way to prove such a contextual refinement is with a step-indexed logical relation. That is, for
𝑒1, 𝑒2 : 𝜏 we show 𝑒1 ∥ 𝑒2 ≤log (𝑒1, 𝑒2) : 𝜏 × 𝜏 where ≤log is a step-indexed relation implying ≤ctx.

However, with step-indexed logical relations, it is difficult to prove reordering refinements
involving shared higher-order state. This is unfortunate, since such state is one of the main reasons
for using step-indexing in the first place. The difficulty arises because laters are eliminated in these
relations asymetrically: when proving a logical refinement of the form 𝑒 ≤log 𝑒

′ : 𝜏 , elimination of
laters is only allowed during steps on the left (steps of 𝑒). However, for a reordering refinement like
𝑒2; 𝑒1 ≤log 𝑒1; 𝑒2 : 1, the laters eliminated when stepping 𝑒2 on the left could be too łearlyž to help
with eliminating laters needed for reasoning about 𝑒2 on the right. Later credits resolve this issue
by letting us save credits from the execution of 𝑒2 on the left and use them when reasoning about
𝑒2 on the right. This enables us to reorder operations that use shared, mutable, higher-order state,
which is beyond the scope of previous work [Krogh-Jespersen et al. 2017; Timany et al. 2018].

A motivating example. We will develop a general proof technique for reordering refinements,
but to stay concrete, let us focus here on a specific example where later credits will be essential for
the proof: promises. A promise, in languages such as JavaScript, represents the result of a delayed
computationÐthe value is not available right away, but it is łpromisedž to be there eventually.

We can implement a simplified version of the mechanism (depicted in Figure 4) in Iris’sHeapLang.
We promise a value of type 𝜏 with promise, select the value for the promise with resolve, and
attach continuations 𝑓 : 𝜏 → 1 to a promise with then, which will be executed once the promise has
been resolved. Internally, a promise consists of a reference for the result 𝑟 , a list of continuations 𝑐 ,
and a lock 𝑙 to protect the two. When a promise is resolved, the value is stored in 𝑟 and all

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:11

continuations in 𝑐 are executed with the function app. (We explain the abort case shortly.) The
operation then adds the continuation to the list if the promise is unresolved, or executes it with
the value of the promise.
What is interesting about promises is that (under suitable conditions) their operations can be

reordered. For example, if two continuations 𝑓 and 𝑔 are reorderable with respect to each other,
then the order in which we attach them to a promise using then does not really matter. Similarly,
if a promise is only ever resolved once, the order in which we call then and resolve does not
matter either, since the attached callback will eventually be executed with the resolved value of the
promise. Thus, for reorderable 𝑓 and 𝑔, we should be able to prove, for example:

then(𝑝, 𝑓); then(𝑝,𝑔); resolve(𝑝, 𝑎) ≤ctx then(𝑝,𝑔); resolve(𝑝, 𝑎); then(𝑝, 𝑓) : 1

To state this refinement precisely, we need to formalize the conditions on the use of then and
resolve. To model when two functions 𝑓 and 𝑔 are reorderable, we will use a type system (in ğ3.2).
And as far as resolve is concerned, resolving a promise twice is typically considered an error.
For example, in JavaScript a repeated resolve attempt has no effect. Thus, we simply rule out
multiple resolve attempts in the promise implementation: we implement a second call to resolve

as łsafe-failurež (via abort, which just diverges).
But even once we have formalized these constraints, proving such a refinement remains chal-

lenging because the continuations stored in memory are a form of shared, higher-order state. That
is where later credits come into the picture. They will enable us to construct a logical relation
that can nevertheless prove this refinement. To do so, we start with Iris’s standard binary logical
relation, ReLoC [Frumin et al. 2018, 2021] (in ğ3.1). We extend ReLoC with support for proving
reorderings by adapting ideas from Timany et al. [2018] (in ğ3.2). Finally, we show that later credits
allow us to prove promise reorderings (in ğ3.3).

3.1 ReLoC: Logical Relations in Iris

ReLoC uses Iris’s program logic to define a logical relation. This requires a way to do relational
reasoning about pairs of programs in Iris, instead of the unary reasoning about a single program
that we have seen so far. To do relational reasoning, ReLoC uses a technique from CaReSL [Turon
et al. 2013], in which the łspecificationž program (on the right-hand side of the refinement) is
represented by ghost stateÐas a ghost program so to speak (this technique has also been used in
other binary logical relations in Iris [Krogh-Jespersen et al. 2017; Krebbers et al. 2017b; Tassarotti
et al. 2017; Timany et al. 2018; Spies et al. 2021]). The ghost program has ghost state assertions
of the form 𝑗 �⇒ 𝑒 , which mean that thread 𝑗 in the ghost program is executing expression 𝑒 , and
assertions of the form ℓ ↦→sv, which mean that location ℓ points tov in the ghost program’s memory
(the subscript s here stands for łspecificationž). The ghost program is executed by updating the
ghost assertions with the update modality. For example, to perform a store of𝑤 to location ℓ in the

ghost program, we have the rule 𝑗 �⇒ (ℓ ← 𝑤) ∗ ℓ ↦→sv ⊢ |⇛
Nreloc 𝑗 �⇒ () ∗ ℓ ↦→s𝑤 , which reflects

that the store returns () and the location stores the value𝑤 afterwards.
One thing we have not seen so far is a mask (here Nreloc) on an update ł|⇛ž.3 In Iris, updates

with masks enable invariants to be opened as part of ghost state reasoning (e.g., in proving the
update to the contents of ghost location ℓ above) rather than just around steps of computation:

InvOpenUpd

𝑃 ∗ ⊲𝑅 ⊢ |⇛E\N𝑄 ∗ ⊲𝑅 N ⊆ E

𝑃 ∗ 𝑅
N
⊢ |⇛E𝑄

UpdMaskWeaken

E1 ⊆ E2 𝑃 ⊢ |⇛E1 𝑃

𝑃 ⊢ |⇛E2 𝑃

3In other Iris presentations, the mask for a non-mask-changing update is in subscript (i.e., ł |⇛E ž). Since this position

conflicts with the łlež of our later elimination updates, we change it to superscript.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:12 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

⟦int⟧ ≜ 𝜆(v1,v2). ∃𝑧 ∈ Z.v1 = v2 = 𝑧

⟦𝜏 → 𝜏 ′⟧ ≜ 𝜆(v1,v2) . ∀𝑢1, 𝑢2 . □(⟦𝜏⟧(𝑢1, 𝑢2) −∗ (v1 𝑢1) ≤ (v2 𝑢2) : ⟦𝜏
′⟧)

⟦ref 𝜏⟧ ≜ 𝜆(v1,v2). ∃ℓ1, ℓ2.v1 = ℓ1 ∗v2 = ℓ2 ∗ ∃𝑢1, 𝑢2 . ℓ1 ↦→ 𝑢1 ∗ ℓ2 ↦→s 𝑢2 ∗⟦𝜏⟧(𝑢1, 𝑢2)
N.ℓ1 .ℓ2

Open Expressions

Let Γ = 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 .
(Γ ⊨ 𝑒 ≤log 𝑒

′ : 𝜏) ≜ ∀v1,v
′
1, . . . ,v𝑛,v

′
𝑛 .

(

∗𝑖=1,...,𝑛 ⟦𝜏𝑖⟧(v𝑖 ,v ′𝑖)
)

⊢ 𝑒 [v1/𝑥1] · · · [v𝑛/𝑥𝑛] ≤log 𝑒
′[v ′1/𝑥1] · · · [v

′
𝑛/𝑥𝑛] : ⟦𝜏⟧

Fig. 5. Excerpt of ReLoC.

In the ghost program rule, the namespace Nreloc is only an implementation detail of ReLoC. Never-
theless, we emphasize the ability to open invariants around updates here, because it will be crucial
in our example refinements (in ğ3.3).
In ReLoC, to prove a relational property about programs 𝑒1 and 𝑒2, it suffices to prove a Hoare

triple for 𝑒1 in which the precondition has a ghost thread running 𝑒2 in an arbitrary evaluation
context 𝐾 . ReLoC defines a binary relation in Iris that expresses this pattern for an arbitrary
postcondition 𝑃 : (Val ×Val) → iProp, where iProp is the type of Iris assertions:

(𝑒1 ≤ 𝑒2 : 𝑃) ≜ ∀𝑗, 𝐾 . { 𝑗 �⇒ 𝐾 [𝑒2]} 𝑒1 {v1. ∃v2 . 𝑗 �⇒ 𝐾 [v2] ∗ 𝑃 (v1,v2)}

The adequacy theorem of Iris then ensures that, if True ⊢ 𝑒1 ≤ 𝑒2 : 𝑃 and 𝑒1 terminates with valuev1,
there exists an execution of 𝑒2 in which it terminates with a value v2 such that 𝑃 (v1,v2) holds.

This definition of (≤) treats the programs 𝑒1 and 𝑒2 asymmetrically. In particular, since the Hoare
triple is about 𝑒1, steps of 𝑒1 get to eliminate laters. In contrast, 𝑒2 is just a ghost program, so as it
is executed, no laters are eliminated. Typically, this asymmetry is not a problem, because we are
reasoning about the two programs łin syncž: by taking steps of 𝑒1 at the same time as we perform
steps of 𝑒2, we can use the physical steps of 𝑒1 to eliminate laters needed for reasoning about 𝑒2.
Given the binary relation 𝑒1 ≤ 𝑒2 : 𝑃 , defining the logical relation Γ ⊨ 𝑒1 ≤log 𝑒2 : 𝜏 is

relatively straightforward (depicted in Figure 5). First, we define a type interpretation ⟦−⟧ : Type→
(Val ×Val) → iProp, which maps every type 𝜏 to an Iris relation on values ⟦𝜏⟧. Then, we define
(≤log) by lifting (≤) to open expressions. To simplify the explanation here, we leave out the details
of how this approach scales to polymorphic and recursive types.
In the definition of ⟦−⟧, the interesting cases are 𝜏 → 𝜏 ′ and ref 𝜏 . The former says that two

values are related at type 𝜏 → 𝜏 ′ if, whenever they are applied to values related at type 𝜏 , the
resulting application expressions are related at the interpretation of 𝜏 ′. In this case, we use Iris’s
persistence modality ł□ž to ensure values of type 𝜏 → 𝜏 ′ can be used multiple times. In general, □ 𝑃
makes sure that 𝑃 holds and that its proof does not depend on any exclusive resources.
For ref 𝜏 , the relation says that the two values must be locations, and we use an Iris invariant

assertion that requires the two locations to always point to values that are related at type 𝜏 . The
invariant here is implicitly making use of Iris’s step-indexing, which is what allows us to avoid
the usual circularity issues that arise in defining logical relations for systems with higher-order
mutable state [Ahmed 2004; Birkedal et al. 2011].
The logical relation has the following two key properties:

Theorem 3.1 (Soundness). If Γ ⊨ 𝑒1 ≤log 𝑒2 : 𝜏 , then Γ ⊢ 𝑒1 ≤ctx 𝑒2 : 𝜏 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:13

Theorem 3.2 (Fundamental Property). If Γ ⊢ 𝑒 : 𝜏 , then Γ ⊨ 𝑒 ≤log 𝑒 : 𝜏 .

The soundness theorem is what ensures that the logical relation is useful for proving contextual
equivalences, and it follows from the adequacy of Iris. Meanwhile, the fundamental property lets
us automatically deduce that a syntactically well-typed term is logically related to itself.4 This
theorem is proven by showing that the logical relation is a congruence w.r.t. all typing rules.

3.2 Reorderability Extension

Next, we add reorderability. The type system of ReLoC is not rich enough to state that a function is
reorderable. To reason about reorderings, we extend the type system with a new type 𝜏1 →re 𝜏2 of
reorderable functions. The typing rule for this type uses a new relation, Γ ⊢re 𝑒 : 𝜏 , which implies
that 𝑒 is a reorderable expression of type 𝜏 . This judgment is a restriction of the standard typing
judgment ⊢ that removes the rules for operations that have side effects. We then extend the standard
typing judgment ⊢ with two new rules for introducing and eliminating terms of type→re:

Γ, 𝑥 : 𝜏1, 𝑓 : 𝜏1 →re 𝜏2 ⊢
re 𝑒 : 𝜏2

Γ ⊢ (rec 𝑓 𝑥 = 𝑒) : 𝜏1 →re 𝜏2

Γ ⊢ 𝑓 : 𝜏1 →re 𝜏2 Γ ⊢ 𝑒 : 𝜏1

Γ ⊢ 𝑓 𝑒 : 𝜏2

The fragment ⊢re is fairly limited, since expressions may not contain instructions with side effects.
However, it is possible to bend this limitation. In the following, we will develop a logical relation
for ⊢re which admits additional terms that cannot be typed syntactically in the side-effect free
fragment ⊢re, but are semantically reorderable. For example, 𝜆 . let 𝑟 = ref(41); !𝑟 + 1 and then

are semantically reorderable even though they have side effects. To extend the logical relation
to support the reorderability type judgment (⊢re) and reorderable function type (→re), we take
inspiration from Timany et al. [2018] to define a reorderable form of 𝑒1 ≤ 𝑒2 : 𝑃 as follows:

(𝑒1 ≤
re 𝑒2 : 𝑃) ≜ {True} 𝑒1

{

v1. ∃v2 . 𝑃 (v1,v2) ∗ 𝑒2{ghostv2
}

where 𝑒1{ghost 𝑒2 ≜ ∀𝑗, 𝐾 . 𝑗 �⇒ 𝐾 [𝑒1] −∗ |⇛
⊤
le 𝑗 �⇒ 𝐾 [𝑒2]

The key difference between ≤ and ≤re is that in the latter, the execution of the ghost program
is moved entirely to the postcondition, as captured by the {ghost assertion. That is, instead of
executing the ghost program and the implementation łin syncž (as with the usual ≤ in ReLoC),
we wait to run 𝑒2 until after 𝑒1 finishes running. This means 𝑒1 executes łindependentlyž of 𝑒2,
and subsequently 𝑒2 executes independently of 𝑒1. Disentangling 𝑒1 and 𝑒2 makes their executions
reorderable, as we will see below. However, it also means physical steps of 𝑒1 no longer directly
eliminate laters that come up when reasoning about 𝑒2. This could pose a problem if 𝑒2 needs to take
non-timeless resources out of an invariant. Fortunately, because ({ghost) uses a later elimination

update ł |⇛⊤lež instead of a standard update ł |⇛⊤ ž, we can spend later credits generated by 𝑒1 as we
execute ghost steps of 𝑒2.
We integrate reorderability into ReLoC by defining

⟦𝜏 →re 𝜏
′⟧ ≜ 𝜆v1,v2 . ∀𝑢1, 𝑢2. □(⟦𝜏⟧(𝑢1, 𝑢2) −∗ (v1 𝑢1) ≤

re (v2 𝑢2) : ⟦𝜏
′⟧)

and lifting 𝑒1 ≤
re 𝑒2 : 𝑃 to a version on open expressions Γ ⊨ 𝑒1 ≤

re
log
𝑒2 : 𝜏 analogous to (≤log). The

new relation Γ ⊨ 𝑒1 ≤
re
log
𝑒2 : 𝜏 ties neatly in with the standard ReLoC setup (from ğ3.1):

Lemma 3.3.

(1) If Γ ⊢re 𝑒 : 𝜏 , then Γ ⊨ 𝑒 ≤re
log
𝑒 : 𝜏 .

(2) If Γ ⊨ 𝑒1 ≤
re
log
𝑒2 : 𝜏 , then Γ ⊨ 𝑒1 ≤log 𝑒2 : 𝜏 .

4As is common for binary logical relations, a term 𝑒 being self-related means that it is łwell-behavedž. In this case, it means

that 𝑒 behaves like a syntactically well-typed term of type 𝜏 .

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:14 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

Moreover, reorderability (≤re
log
) is strong enough to show the reorderings that we are after:

Lemma 3.4 (Reorderings).

(1) If Γ ⊨ 𝑒1 ≤log 𝑒
′
1
: 𝜏1 and Γ ⊨ 𝑒2 ≤

re
log
𝑒 ′
2
: 𝜏2, then Γ ⊨ 𝑒2 ∥ 𝑒1 ≤log (𝑒

′
2
, 𝑒 ′

1
) : 𝜏2 × 𝜏1.

(2) If Γ ⊨ 𝑒1 ≤log 𝑒
′
1
: 1 and Γ ⊨ 𝑒2 ≤

re
log
𝑒 ′
2
: 1, then Γ ⊨ 𝑒2; 𝑒1 ≤log 𝑒

′
1
; 𝑒 ′

2
: 1.

The proofs of both statements use the fact that 𝑒2 can run unconditionally on the left (since the
precondition of (≤re

log
) is True) and that we can then delay execution of 𝑒 ′

2
on the right arbitrarily. For

example, consider the first statement. In the proof, we must verify a Hoare triple for the left term,
𝑒2 ∥ 𝑒1, which assumes ghost ownership of the right term in its precondition (i.e., 𝑗 �⇒ 𝐾 [(𝑒 ′

2
, 𝑒 ′

1
)]).

To verify 𝑒2 ∥ 𝑒1, we use the parallel composition rule of concurrent separation logic, which allows
us to verify 𝑒1 and 𝑒2 separately, so long as we can split the precondition between them (e.g., so long
as we only give ownership of 𝑗 �⇒ 𝐾 [(𝑒 ′

2
, 𝑒 ′

1
)] to one of them). In the case of 𝑒1, the assumption

Γ ⊨ 𝑒1 ≤log 𝑒
′
1
: 𝜏1 requires ghost ownership of 𝑗 �⇒ 𝐾 ′[𝑒 ′

1
] (for some 𝐾 ′), so that 𝑒1 can execute łin

syncž with 𝑒 ′
1
. Fortunately, we own 𝑗 �⇒ 𝐾 [(𝑒 ′

2
, 𝑒 ′

1
)], so we can simply instantiate 𝐾 ′ := 𝐾 [(𝑒 ′

2
, •)]

and hand ownership of this assertion to the verification of 𝑒1, which will produce 𝑗 �⇒ 𝐾 [(𝑒 ′
2
,v ′

1
)]

(for some value v ′
1
) in its postcondition.5 Meanwhile, since 𝑒2 is reorderable, its verification does

not require any ghost code resource in its precondition, but rather produces the delayed ghost
execution 𝑒 ′

2
{ghostv

′
2
(for some value v ′

2
) in its postcondition. Finally, combining 𝑒 ′

2
{ghostv

′
2
and

𝑗 �⇒ 𝐾 [(𝑒 ′
2
,v ′

1
)], we can execute the delayed ghost execution and obtain 𝑗 �⇒ 𝐾 [(v ′

2
,v ′

1
)] as desired.

3.3 Promises with Later Credits

Equipped with the notion of reorderability, we return to our motivating example: reordering promise
operations. Our main result for promises will be that their operations are in the logical relation:

Lemma 3.5 (Promise Typing).

(1) ⊨ promise ≤log promise : 1→ pr(𝜏)
(2) ⊨ resolve ≤re

log
resolve : pr(𝜏) × 𝜏 →re 1

(3) ⊨ then ≤re
log

then : pr(𝜏) × (𝜏 →re 1) →re 1

The proof of this lemma is challenging in terms of reasoning about different interleavings of the
promise operations, but simple in terms of the later credits reasoning. Since we are mainly interested
in later credits, we will give a detailed description of the use of later credits (in ğ3.3.3), and only a
high-level description of the rest of the proof with examples (in ğ3.3.1 and ğ3.3.2). Let us start with
an example of the kind of reorderings we can prove with this lemma and Lemma 3.4:

Corollary 3.6.

Γ ⊨ 𝑒 ≤log 𝑒 : 1 𝑝 : pr(𝜏) ∈ Γ 𝑓 : 𝜏 →re 1 ∈ Γ

Γ ⊨ then(𝑝, 𝑓); 𝑒 ≤log 𝑒; then(𝑝, 𝑓) : 1

There are two things to note about this corollary. First, when we prove that an expression like
then is reorderable, we can move its execution earlier. This includes moving it across an arbitrary
expression 𝑒 , which could include additional calls to then or to resolve. Second, the corollary
demonstrates the higher-order nature of the promise operations: then takes an arbitrary reorderable
function 𝑓 as its argument. In particular, 𝑓 could resolve another promise 𝑞 or (reentrantly) attach
an additional continuation to 𝑝 , since the operations then and resolve are reorderable.

5Note that we are using right-to-left evaluation order here, so 𝑒′
1
executes before 𝑒′

2
.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:15

3.3.1 Promise Extension. Before we can prove Lemma 3.5, we have to extend the type interpretation
⟦−⟧ to include promises pr(𝜏). The exact definition of ⟦pr(𝜏)⟧ is quite a mouthful and can be
found in the supplementary material [Spies et al. 2022]. It consists of a lock and an invariant, which
together encode a transition system for each promise. Here, we focus on the transition system:

A

�

�

�

�

�

�

�

𝑟 ↦→ none ∗𝑐 ↦→𝑇

𝑟 ↦→s none ∗𝑐 ↦→s 𝑆

ΦA

B

�

�

�

�

�

�

�

𝑟 ↦→ some(𝑎) ∗𝑐 ↦→[]

𝑟 ↦→s none ∗𝑐 ↦→s 𝑆

ΦB

C

�

�

�

�

�

�

�

𝑟 ↦→ some(𝑎) ∗𝑐 ↦→[]

𝑟 ↦→s some(𝑎) ∗𝑐 ↦→s []

ΦC

then(𝑝, 𝑓) then(𝑝, 𝑓) then(𝑝, 𝑓)

resolve(𝑝, 𝑎)

program

resolve(𝑝, 𝑎)

ghost program

Initially, in stateA, the promise is unresolved in the program and the ghost programÐthe reference 𝑟
is none, and the reference 𝑐 is amassing continuations. The proposition Φ in each state stores some
additional data that we need for the verification (e.g., ΦA stores ⟦𝜏 →re 1⟧(𝑓 , 𝑓) for each 𝑓 ∈ 𝑇).
We will return to Φ when we discuss a concrete example (in ğ3.3.2). From state A, we transition
to state Bwhen resolve(𝑝, 𝑎) is executed in the program. We store 𝑎 in the promise in the program
but not yet in the ghost program, and we execute the continuations in𝑇 . From state B, we transition
to state C when resolve(𝑝, 𝑎) is executed in the ghost program. We store 𝑎 in the reference and
execute the continuations in 𝑆 . If then(𝑝, 𝑓) is executed in either the program or the ghost program,
we do not change the state in the transition system. Depending on whether the promise has been
resolved yet or not, 𝑓 is either stored in the continuation list or directly executed.

3.3.2 The Continuation Exchange. Let us return to Lemma 3.5. We focus on the łcontinuation
exchangež, the key step in the proof where later credits will become necessary (in ğ3.3.3). To explain
the continuation exchange, we use an instance of Corollary 3.6 as an example:

𝑝 : pr(𝜏), 𝑓 : 𝜏 →re 1, 𝑎 : 𝜏 ⊨ then(𝑝, 𝑓); resolve(𝑝, 𝑎) ≤log resolve(𝑝, 𝑎); then(𝑝, 𝑓) : 1

In this reordering, 𝑓 is executed in different operations on both sides: on the left, 𝑓 (𝑎) is executed
in resolve(𝑝, 𝑎) and on the right, in then(𝑝, 𝑓). Proving this one specific reordering directly is
not difficult. But Lemma 3.5 is challenging because to establish the semantic typing judgments,
we must prove local Hoare triples about each individual operation without knowing the global
set of operations on a given promise. To support this local reasoning, we introduce a scheme to
łtransferž the ghost execution of 𝑓 (𝑎) from resolve to then. This exchange is facilitated through
the transition system. To describe the exchange, we sketch the cases of Lemma 3.5, but to simplify
the explanation, we omit everything that is not relevant for the example. Remember that in each
case, we first prove a Hoare triple about the program, and then subsequently show that the ghost
program can be executed at any later point.

The resolve case. When resolve(𝑝, 𝑎) is executed in the program (after then(𝑝, 𝑓)), we are
in state A and we find the continuation 𝑓 ∈ 𝑇 . In this state, ΦA ensures ⟦𝜏 →re 1⟧(𝑓 , 𝑓). We store 𝑎
in 𝑟 , transition to state B, and proceed to execute 𝑓 (𝑎) in the program using ⟦𝜏 →re 1⟧(𝑓 , 𝑓).
Once we reach the end of resolve(𝑝, 𝑎), we have executed 𝑓 (𝑎) using ⟦𝜏 →re 1⟧(𝑓 , 𝑓), and hence
we own the ghost execution 𝑓 (𝑎){ghost (). We use it to reason about resolve(𝑝, 𝑎) in the ghost
program. In this example (assuming 𝑆 was initially empty), the ghost program observes that the
continuation list 𝑆 is empty (in state B), so there is nothing to execute. It stores 𝑎 in 𝑟 , thus advancing
to state C. In this step, it stores the ghost execution 𝑓 (𝑎){ghost () in the transition system in ΦC.

The then case. When then(𝑝, 𝑓) is executed in the program, we are in state A. We store 𝑓 in 𝑇 ,
and we store ⟦𝜏 →re 1⟧(𝑓 , 𝑓) in ΦA (see the resolve case). Afterwards, when then(𝑝, 𝑓) is executed

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:16 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

in the ghost program, we are in state C. The promise has already been resolved and then(𝑝, 𝑓) will
directly execute 𝑓 (𝑎). Consequently, as part of proving then(𝑝, 𝑓){ghost (), we need to establish
the ghost execution 𝑓 (𝑎){ghost (). Since 𝑓 (𝑎){ghost () is stored in ΦC at this point, we want to
use it to finish the execution. This almost works, but a ł⊲ž gets in the way . . .

3.3.3 Using Later Credits. In the last step, we run into a ł⊲ž when we try to use the 𝑓 (𝑎){ghost ()

stored inΦC. Recall that the transition system is encoded in an invariant, whichwewill denote TS
N

in the following. Hence, when we access the invariant in the final step, we only get ⊲ 𝑓 (𝑎){ghost ()
out, but we need 𝑓 (𝑎){ghost () to finish the proof, so (without later credits) we are stuck.
Let us zoom in on that last proof step. Formally, at that point in the proof, we have to show:

TS
N
⊢ then(𝑝, 𝑓){ghost ()

and since the promise is resolved in the ghost program at that point, we will be in state C. We

may open TS
N
because of the update in ({ghost), but when we open TS

N
, we will only get

access to ⊲TS (see InvOpenUpd), which effectively means we only get ⊲ 𝑓 (𝑎){ghost (). To prove
then(𝑝, 𝑓){ghost (), we need to eliminate the later, but there are no program steps around to justify

an eliminationÐonly ghost program steps (which do not allow later elimination). We are stuck!6

With later credits, the solution is simple. When we reason about then (i.e., when we prove
⊨ then ≤re

log
then : pr(𝜏) × (𝜏 →re 1) →re 1), the execution in the program has plenty of steps that

generate credits that we do not needÐfor example, the initial 𝛽-reduction step of then(𝑝, 𝑓). We
can frame one of these credits £1 to the postcondition, such that it becomes available when we

need to prove then(𝑝, 𝑓){ghost (). That is, instead of TS
N
⊢ then(𝑝, 𝑓){ghost (), we now prove

TS
N
∗ £1 ⊢ then(𝑝, 𝑓){ghost (). Thus, when we open TS

N
this time, we can use the later credit

£1 to eliminate the later and obtain 𝑓 (𝑎){ghost (), finishing the proof.

4 LATER CREDITS FOR LOGICAL ATOMICITY

In this section, we demonstrate another use of later credits, namely for eliminating a lingering
pain point in one of Iris’s specialties: logical atomicity proofs [Jung et al. 2015]. Inspired originally
by the TaDA logic [da Rocha Pinto et al. 2014], logical atomicity is Iris’s technique for proving
functional correctness of (fine-grained) concurrent data structures. Akin to the standard notion of
linearizability [Herlihy and Wing 1990], a logically atomic specification of a concurrent operation
says that the operation appears to take effect atomically, even though it may actually take multiple
physical steps. As a consequence, clients can reason about logically atomic operations (almost) as if
they were physically atomic instructionsÐin particular, they can open invariants around them.
Logical atomicity has been successfully applied to a variety of challenging concurrent data

structures [Jung et al. 2015, 2020; Birkedal et al. 2021; Frumin et al. 2021; Carbonneaux et al. 2022].
Unfortunately, in verifying logical atomicity for data structures that exhibit a common pattern
known as łhelpingž, step-indexing has always caused trouble. łHelpingž refers to the situation
where one thread helps another thread complete its operation. In previous work, proving logical
atomicity for data structures with helping necessitated the use of an ługlyž workaround (to quote
its inventor [Jung 2019]) called łmake-laterablež, which made logical atomicity harder to prove and
harder to use for clients.

With later credits, we can avoid the need for łmake-laterablež entirely, along with its limitations.
To explain how, we will use a concrete example of a concurrent data structure that involves helping:

6One may wonder if we can get 𝑓 (𝑎){ghost () out of the invariant during execution of then(𝑝, 𝑓) in the program, so that

there are still program steps around. The answer is no, because during that execution, the promise will still be in state A.

Thus, 𝑓 will be in the list, not executed, and 𝑓 (𝑎){ghost () is not yet available, since it only enters the invariant in state C.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:17

Implementation

new() ≜ let (𝑏, 𝑝) := (ref (0), ref (0)); fork {bg_thread(𝑏, 𝑝)} ; (𝑏, 𝑝)

incr(𝑏, 𝑝) ≜ let 𝑛 = FAA (𝑝, 1); await_backup(𝑏, 𝑛 + 1);𝑛

get(𝑏, 𝑝) ≜ let 𝑛 = ! 𝑝; await_backup(𝑏, 𝑛);𝑛

get_backup(𝑏, 𝑝) ≜ ! 𝑏
Helper Functions

bg_thread(𝑏, 𝑝) ≜ let 𝑛 = ! 𝑝;𝑏← 𝑛; bg_thread(𝑏, 𝑝) // copy primary to backup, in a loop

await_backup(𝑏, 𝑛) ≜ if ! 𝑏 < 𝑛 then await_backup(𝑏, 𝑛) else () // loop until ! 𝑏 reaches 𝑛

Specification

⊢ {True} new() {𝑐. ∃𝛾 . is_counterN𝛾 (𝑐) ∗ value𝛾 (0)}

is_counterN𝛾 (𝑐) ⊢ ⟨𝑛. value𝛾 (𝑛)⟩ incr(𝑐) ⟨𝑚.𝑚 = 𝑛 ∗ value𝛾 (𝑛 + 1)⟩N

is_counterN𝛾 (𝑐) ⊢ ⟨𝑛. value𝛾 (𝑛)⟩ get(𝑐) ⟨𝑚.𝑚 = 𝑛 ∗ value𝛾 (𝑛)⟩N

is_counterN𝛾 (𝑐) ⊢ ⟨𝑛. value𝛾 (𝑛)⟩ get_backup(𝑐) ⟨𝑚.𝑚 = 𝑛 ∗ value𝛾 (𝑛)⟩N

Fig. 6. Counter with a backup.

a counter with a backup. We explain the counter (in ğ4.1), the intuitive argument for proving its
logical atomicity (in ğ4.2), the reason we cannot implement that intuitive proof argument with
łmake-laterablež (in ğ4.3), and finally how later credits save the day (in ğ4.4).

4.1 A Counter with a Backup

Our motivating example is a counter with a backup (Figure 6). This counter is basically a regular
monotone counter (as described in ğ2.1) with methods incr to increment the counter by 1 and get
to get the current value of the counter. But there is a twist: the value of the counter is stored in
two locationsÐthe primary 𝑝 and the backup 𝑏Ðand these two can get out of sync: the operation
incr eagerly updates the primary 𝑝 , but leaves updating the backup to a background thread (here,
bg_thread). Clients can directly access the backup 𝑏 through a third operation, get_backup, so it
may seem like they can observe the difference between the primary and the backup. What makes
this counter interesting is that they cannot, because incr and get wait for the backup to catch up.
To understand this counter better, let us consider a concrete example:

𝑒count ≜ let 𝑐 = new(); fork {incr(𝑐)} ; let 𝑥 = get(𝑐); let𝑦 = get_backup(𝑐); (𝑥,𝑦)

Depending on when the increment occurs and when the background thread updates the backup 𝑏,
this expression has three possible values: (0, 0), (0, 1), and (1, 1). One value that it does not have
is (1, 0). The outcome (1, 0) is impossible, even though get reads the primary 𝑝 and get_backup

reads the backup 𝑏. The reason is that get waits for the backup to catch up before returning its
result, so we can be sure that any subsequent get_backup cannot read łoutdatedž values.

The counter with a backup is clearly a contrived example. However, it originates from an issue
arising in real data structures that need to be durable. For example, a key-value server will store
the current mapping of keys to values on disk, but also keep an in-memory copy of that mapping
to quickly reply to read requests. Updating the data on disk is inefficient, so a background thread
batches concurrent writes to be able to write them to disk in one go. At any time, the system can
crash and the in-memory copy disappears; after reboot and recovery, the state of the key-value
server is restored from what was stored on disk at the time of the crash. Since the in-memory copy

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:18 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

can be lost, the operations working on it need to wait for their changes to become permanent, so
they avoid returning data that is later lost in a crash. To avoid all the complexities of crashes and
durable state, we have condensed this problem down to its core. The key-value store is replaced by
a single counter, the durable disk is replaced by a second copy of the counter in memory, and we
use get_backup to model the fact that this second copy is observable by clients through crashes.

Helping. The most interesting thing about the counter with a backup is the interaction between
the background thread and the operations get and incr. Take incr for example. incr modifies
the primary 𝑝 , but its effect only becomes observable (through the counter operations) once the
background thread updates the backup 𝑏. In other words, to complete its action, incr needs
assistance from the background thread, which is typically called łhelpingž. In general, helping
means that the point in time when the action of one operation appears to clients to łtake effectžÐ
also known as the linearization point of the operationÐis actually performed by another łhelpingž
thread. For incr, the linearization point is the update of 𝑏 to 𝑛 in the background thread, because
that is when the new counter value actually becomes observable to other get and get_backup

operations. For get, in cases where the operation observes the primary 𝑝 to be larger than the
backup 𝑏, the linearization point is also the update of 𝑏 in the background thread, because only
then can other get and get_backup operations also observe the new value (see the 𝑒count example).

What is particularly interesting about the helping in this exampleÐand what makes it challenging
to verify in existing IrisÐis that at the point when the background thread updates 𝑏, it may have to
help (an arbitrary number of) get operations complete, but it does not know which operations
those are in advance because the get operations do nothing to explicitly communicate their need
to be helped. In fact, the background thread may have to help get operations which only began
immediately before the update of 𝑏 to 𝑛. We call this phenomenon unsolicited helping, in contrast
to the solicited helping that occurs in the incr operation (since the latter communicates explicitly
to the background thread by incrementing 𝑝). As we will soon see, helping (especially unsolicited
helping) makes it difficult to verify data structures like this one in existing Iris, but later credits
offer a simpler way.

4.2 Logical Atomicity

Let us attempt to verify the counter. We want to prove the standard specification of a logically
atomic counter, meaning get (and get_backup) observe the value of the counter at the linearization
point and return it, while incr increments the value at the linearization point and returns the old
value. In the language of logical atomicity, we express this with the specification shown in Figure 6.
Except for the initialization (where atomicity does not matter), the specification consists of several
logically atomic triples ⟨𝑥 . 𝑃⟩ 𝑓 (𝑎) ⟨𝑦. 𝑄⟩E . These are special Hoare triples that describe the atomic
action of 𝑓 at the linearization point. For example, for incr, the logically atomic specification is

⟨𝑛. value𝛾 (𝑛)⟩ incr(𝑐) ⟨𝑚.𝑚 = 𝑛 ∗ value𝛾 (𝑛 + 1)⟩N

indicating that incr updates the value of the counter (identified by the logical name 𝛾) from 𝑛

to 𝑛 + 1. Here, the number 𝑛 is supposed to be the value of the counter at the linearization point.
Since the number 𝑛 is typically not known before the execution of incr (and potentially changes
during its execution), logically atomic triples have an additional binder ł𝑛.ž in their precondition.
This binder can relate the value of 𝑛 at the linearization point to the result of the triple ł𝑚.ž in
the postcondition. In the case of incr, we thus know that it returns the value of the counter at
the linearization point similar to a fetch-and-add. The rest of the specification is bookkeeping: we
keep some state of the counter in an invariant is_counterN𝛾 (𝑐), which means that the proof of incr

needs access to invariant namespace N and that is reflected in the specification (it means clients

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:19

may not open those invariants around a call to incr). We express the value of the counter with the
(non-duplicable) predicate value𝛾 (𝑛), and we connect both pieces through the name 𝛾 .

Logically atomic triples. Fully explaining how one proves and uses logically atomic specifica-
tions is beyond the space limitations of this paper. Fortunately, to understand the step-indexing
troubles that arise, a deep understanding of logical atomicity is not required. It suffices to know a
little bit more about the definition of a logically atomic triple (we are also more explicit about free
variables here):

⟨𝑥 . 𝑃 (𝑥)⟩ 𝑒 ⟨𝑦. 𝑄 (𝑥,𝑦)⟩E ≜ ∀𝑅.
{

AU(𝑥 . 𝑃 (𝑥), 𝑦. 𝑄 (𝑥,𝑦))E𝑅
}

𝑒 {𝑦. 𝑅(𝑦)}

Logically atomic triples are ordinary Hoare triples with a special atomic update AU in their precon-
dition. The atomic update describes the łatomic actionž of the operation. For example, in the case
of incr, the atomic update would be AUinc (𝑅) ≜ AU(𝑛. value𝛾 (𝑛),𝑚. 𝑚 = 𝑛 ∗ value𝛾 (𝑛 + 1))

N
𝑅
,

describing the abstract state change that we want incr to perform.
When we prove a logically atomic triple, it is our job to make sure the atomic update AU is exe-

cuted, meaning we have to update the program state and ghost state atomically in the way described
by the abstract action. We can update our state atomically by either (1) performing a physically
atomic operation that corresponds to the update or (2) by calling another logically atomic operation.
Executing the atomic update yields the łresultž 𝑅(𝑦) in exchange. The fact thatwe have to execute the
update is encoded somewhat implicitly: to prove the triple

{

AU(𝑥 . 𝑃 (𝑥), 𝑦. 𝑄 (𝑥,𝑦))E
𝑅

}

𝑒 {𝑦. 𝑅(𝑦)} ,
we eventually have to establish the postcondition 𝑅(𝑦). The postcondition 𝑅 is universally quantified
and the only way to obtain ownership of the result 𝑅(𝑦) is executing the atomic update.

Proving logical atomicity in the presence of helping. Let us return to helping. In the world
of logical atomicity, helping means the helpee (e.g., incr) transfers its atomic update to the helper
(e.g., the background thread). The helper then executes the atomic update at the linearization point
of the helpee and returns the result (e.g., 𝑅(𝑛)). We refer to this mechanism as the helping exchange.
To understand the helping exchange better, we discuss helping the incr operation. We start

with an idealized version of the exchange, because step-indexing sadly makes the matter more
complicated. To initiate the exchange, incr sets up the following invariant:

𝐼inc (𝑛, 𝑅) ≜ (AUinc (𝑅) ∗ pending) ∨ (𝑅(𝑛) ∗ executed) ∨ acknowledged
N

and shares it with the background thread through the invariant behind is_counterN𝛾 (𝑐). Here, we
use the propositions pending, executed, and acknowledged to distinguish the different stages of the
helping exchange.7 Initially, in the pending stage, incr stores its update in 𝐼inc and then waits for
the background thread. The background thread eventually reads 𝑝 and then updates 𝑏. In the step
where it updates 𝑏, it linearizes the pending increment incr. To do so, it opens the invariant 𝐼inc,
takes out the atomic update AUinc, executes it (similar to how one executes |⇛𝑃), and puts the
result 𝑅(𝑛) back into the invariant (advancing to the executed stage). Finally, incr observes the
change of 𝑏, opens 𝐼inc, and takes out the result 𝑅(𝑛) (advancing to the acknowledged stage).

4.3 Helping without Later Credits

Sadly, without later credits, the helping exchange for incr is more complicated, because step-
indexing gets in the way. To execute AUinc in the background thread, we first have to obtain
ownership of the atomic update, which means taking it out of the invariant 𝐼inc. Unfortunately,
there are some hurdles: AUinc is not timeless and is stored in an invariant (i.e., 𝐼inc), which itself is

7We keep pending, executed, and acknowledged abstract here to simplify the presentation. Internally, they use ghost state

to encode the different stages of the helping mechanism.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:20 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

stored in another invariant (i.e., is_counterN𝛾 (𝑐))Ða step-indexing nightmare. So we cannot just

take AUinc out of the invariant, execute it, and put 𝑅(𝑛) back into the invariant, all in one step.
To escape this nightmare, the typical solicited helping proof is a play in three acts; we use incr

to illustrate it. In the first act, the helper discovers the helpees it is helping (e.g., through reading 𝑝).
At this point, it gains access to a witness ⊲𝑊inc for the waiting helpeeÐa resource relevant for the
helping exchange, but guarded by a ł⊲ž. (It is not so important here what this witness is, only that
we need to access it early.) In the second act, the helper takes a bookkeeping step of execution to
eliminate the later (e.g., the reduction of let). In the third act, the helper reaches the linearization
point (e.g., the update of 𝑏), and uses the witness𝑊inc to obtain access to AUinc and execute it.

This strategy is suboptimal for several reasons. First, the helping exchange is more complicated
than the intuition that we previously outlined and requires additional foresight. Second, making
the dance with the witness𝑊inc work requires delicate step-indexing tricks behind the scenes.
These tricks, known as łmake-laterablež, are so cumbersome that even its inventor called them
ługlyž [Jung 2019]. (With later credits, łmake-laterablež becomes obsolete, so we spare the reader
the details here.) Third, łmake-laterablež comes at a cost: clients of logically atomic specifications
are faced with additional proof obligations when they want to use them. And last but not least, this
strategy does not work for unsolicited helping: we now use get to illustrate why not.
When the background thread reads the primary 𝑝 , it cannot gain access to the witnesses𝑊get

of all the get operations it linearizes. The reason is that they might not be be there yet. That is,
after the read of 𝑝 , a new get operation could arrive. This get will be linearized with the update
to 𝑏, but the background thread could not observe𝑊get yet when it read 𝑝 . Thus, even with the
established bag of tricks, we cannot realize the standard three-part play for get.

4.4 Helping with Later Credits

Enter later credits. With later credits, there is no need for a complicated three-act play because we
can instead just eliminate the requisite number of laters right at the linearization point. Thus, we
can avoid relying on the ugly łmake-laterablež trick in the definition of AU (which in turn means
fewer proof obligations for clients of logically atomic triples), and we can implement the idealized
helping exchange as originally envisioned.
To enable helping proofs, we set up the following scheme with later credits: if a helpee wants

help from a helper, it pays the helper with a later credit £1, which is sent along with the atomic
update AU in the shared invariant. The credit remains in the invariant while the update is pending,
and can be removed when the atomic update has been executed. For example, in the troubling case
of get, the invariant becomes:

𝐼get (𝑛, 𝑅) ≜ (AUget (𝑅) ∗ £1 ∗ pending) ∨ (𝑅(𝑛) ∗ executed) ∨ acknowledged
N

where AUget (𝑅) ≜ AU(𝑛. value𝛾 (𝑛),𝑚.𝑚 = 𝑛 ∗ value𝛾 (𝑛))
N
𝑅

is the atomic update of get.
And that is it! In the presence of later credits, the idealized helping exchange just works. The

later troubles vanish, since the helper always has a credit in hand when it needs to access an atomic
update. For example, if the background thread needs to access the atomic update AUget, then it
can use the later credit stored along side with AUget to eliminate a guarding later from AUget.
Afterwards, it can execute the atomic update and return the result 𝑅(𝑛). Since the update is no
longer pending, it does not have to put any credits back.

For the helpee, producing the later credit is straightforward. In a non-trivial logically atomic op-
eration, there are plenty of bookkeeping steps around that have nothing to do with the linearization
point (e.g., the first step of beta reduction, let bindings, arithmetic, etc.), which all generate credits
(see PureStep). Since each of these steps generates a credit, but there is only one linearization point
per operation, there are typically plenty of credits available.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:21

To validate this point, we used later credits to reprove the major benchmarks for logical atomicity
(e.g., the elimination stack [Jung et al. 2015]) with our simplified definition of AU, replacing the
three-act play by the idealized helping exchange. Make-laterable, be gone!

5 SOUNDNESS OF LATER CREDITS

We have now seen several applications of later credits, but we have yet to discuss how to justify
their soundness. When we add later credits, the main challenge is that we have to ensure that the
program logic remains adequate (i.e., correctness proofs in Iris mean something outside the logic):

Theorem 5.1 (Adeqacy). Let 𝜙 be a first-order predicate on values. If ⊢ {True} 𝑒 {v. 𝜙 (v)} and 𝑒
executes in 𝑛 steps to 𝑒 ′, then 𝑒 ′ can either take another step or 𝑒 ′ is a value v and 𝜙 (v) is true.

The adequacy theorem turns proofs of Hoare triples ⊢ {True} 𝑒 {v. 𝜙 (v)} into a correctness
property of 𝑒 , namely that 𝑒 is safe to execute and only terminates in values satisfying 𝜙 . The
adequacy theorem in the presence of later credits will be the main result of this section. We explain
how it was proved before (in ğ5.1), and why it remains sound even with later credits (in ğ5.2).

5.1 Model of Iris’s Weakest Preconditions without Later Credits

To prove adequacy, we need to know how Iris models Hoare triples. In Iris, Hoare triples are
defined as {𝑃} 𝑒 {v. 𝑄} ≜ □(𝑃 −∗ wp 𝑒 {v. 𝑄}), where wp 𝑒 {v. 𝑄} is the weakest precondition that is
required for 𝑒 to terminate safely in a value v satisfying 𝑄 or else diverge. Hence, to show a Hoare
triple {𝑃} 𝑒 {v. 𝑄} , we show that the precondition 𝑃 implies (in the separation logic sense) the
weakest precondition of 𝑒 . (The persistence modality ł□ž ensures that Hoare triples are duplicable
facts, so we can use them multiple times.)

The definition ofwp 𝑒 {v. 𝑄} itself is quite amouthful (see the supplementarymaterial). To explain
how later credits fit in, we condense it to its core by omitting masks and ignoring concurrency:

wp 𝑒 {v. 𝑄} ≜ |⇛ 𝑄 [𝑒/v] if 𝑒 ∈Val

wp 𝑒 {v. 𝑄} ≜ ∀𝜎. S(𝜎) −∗ |⇛ red(𝑒, 𝜎) ∗
(∀𝑒 ′, 𝜎 ′. (𝑒, 𝜎) → (𝑒 ′, 𝜎 ′) −∗ ⊲ |⇛ S(𝜎 ′) ∗wp 𝑒 ′ {v. 𝑄})

if 𝑒 ∉Val

In the value case, the weakest precondition is simply the postcondition𝑄 after an update. Otherwise,
if 𝑒 is not a value, then the weakest precondition consists of a progress and a preservation part.
(The proposition S is the state interpretation [Jung et al. 2018b, ğ7.3], which ties the heap 𝜎 in the
weakest precondition to the assertions ℓ ↦→v in the program logic. Since the heap is orthogonal to
later credits, we will largely ignore the state interpretation in the following.) The progress part
requires that 𝑒 is never stuck in the current heap, meaning red(𝑒, 𝜎) ≜ (∃𝑒 ′, 𝜎 ′. (𝑒, 𝜎) → (𝑒 ′, 𝜎 ′)).
The preservation part requires us to establish the weakest precondition again after every possible
step of 𝑒 .
When we prove a weakest precondition, the updates (|⇛) in the definition enable us to update

our ghost state (see UpdExec) and the later (⊲) enables us to eliminate laters when we take program
steps (see PureStep). Readers familiar with step-indexing may think of this later modality as a
decrease in the underlying step-index. For example, if we prove wp 𝑒 {v. 𝑄} and we take a pure
step 𝑒 →pure 𝑒

′, then we only need to prove wp 𝑒 ′ {v. 𝑄} later (so one step-index lower), which
justifies removing a guarding later from all assumptions in our current proof context. (Formally,
the rule LaterMono is used to justify removing a later from both the goal and the assumptions.)

Proving adequacy. Let us now return to the adequacy theorem. To simplify the proof sketch,
we prove a slightly weaker form (which ignores progress, because progress is proven analogously),
and we start directly with the weakest precondition (instead of a Hoare triple):

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:22 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

Lemma 5.2. Let ⊢ wp 𝑒0 {v. 𝜙 (v)}. If (𝑒0, 𝜎0) →
𝑛 (𝑒𝑛, 𝜎𝑛) where 𝑒𝑛 is a value, then 𝜙 (𝑒𝑛) holds.

Proof Sketch. We initialize the state interpretation S, obtaining ⊢ |⇛S(𝜎0) ∗wp 𝑒0 {v. 𝜙 (v)}.
Consider the case where 𝑛 > 0 and (𝑒0, 𝜎0) → (𝑒1, 𝜎1) →

𝑛−1 (𝑒𝑛, 𝜎𝑛). We unfold the weakest
precondition and thus obtain:

⊢ |⇛S(𝜎0) ∗(∀𝜎. S(𝜎) −∗ |⇛red(𝑒0, 𝜎) ∗(∀𝑒
′, 𝜎 ′. (𝑒0, 𝜎)→ (𝑒

′, 𝜎 ′) −∗ ⊲ |⇛ S(𝜎 ′) ∗wp 𝑒 ′ {v. 𝜙 (v)}))

Since we have the the state interpretation S and a step of 𝑒0, we can instantiate the assumptions,
drop red(𝑒0, 𝜎), and obtain ⊢ |⇛ ⊲ |⇛ S(𝜎1) ∗wp 𝑒1 {v. 𝜙 (v)}. Doing the same again for the next step
under the modalities ł|⇛ ⊲ |⇛ž yields ⊢ (|⇛ ⊲ |⇛)2 S(𝜎2) ∗wp 𝑒2 {v. 𝜙 (v)}. We can then inductively
repeat this process until we reach the value 𝑒𝑛 . At that point, we obtain ⊢ (|⇛ ⊲ |⇛)𝑛 |⇛𝜙 (𝑒𝑛) after
dropping the state interpretation. Thus, the weakest precondition yields our desired postcondition
𝜙 (𝑒𝑛), albeit under a number of updates and later modalities. (We arrive at the same conclusion for
𝑛 = 0.) Finally, to obtain 𝜙 (𝑒𝑛) without the updates and laters, we use Lemma 5.3 (below). □

In Iris, if one proves a first-order proposition 𝜙 under an interleaving of updates and laters,
then 𝜙 must hold, since it neither depends on step-indexing nor on resources:

Lemma 5.3. Let 𝜙 be a first-order proposition. If ⊢ (|⇛ ⊲ |⇛)𝑛 |⇛𝜙 , then 𝜙 holds.

How exactly this lemma is proven does not really matter for later credits, so we will not digress
here.8 What is important for us is that (1) it holds and (2) we can use it to prove adequacy of Hoare
triples. With Lemma 5.3, we conclude our review of the original adequacy proof in Iris.

5.2 Modeling Later Credits

With later credits, we introduce an additional layer in between program steps and laters. In the
definition of the weakest precondition above, the later ł⊲ž enables later eliminations. It tightly
couples them to program steps, since after each program step, we get to eliminate another later.
Later credits relax this connection. With later credits, a credit £1 becomes available with every
program step. We can spend it immediately to eliminate a later, or we can save it for another proof
step. This łamortizedž form of reasoning about later eliminations works, because all that matters
for adequacy is that in an 𝑛-step execution at most 𝑛 laters are eliminated. It matters less (as we
will see below) when these laters are eliminated, so we delegate the responsibility to łtrackž later
eliminations to a new modality, the later elimination update |⇛le𝑃 .

The weakest precondition. We redefine the weakest precondition (roughly) as:

wp 𝑒 {v. 𝑄} ≜ |⇛le𝑄 [𝑒/v] if 𝑒 ∈Val

wp 𝑒 {v. 𝑄} ≜ ∀𝜎. S(𝜎) −∗ |⇛le red(𝑒, 𝜎) ∗
(∀𝑒 ′, 𝜎 ′.(𝑒, 𝜎)→ (𝑒 ′, 𝜎 ′) −∗ £1 −∗ |⇛leS(𝜎

′) ∗wp 𝑒 ′ {v. 𝑄})
if 𝑒 ∉Val

The changes are highlighted in purple: we use later elimination updates instead of standard updates
and we make a new credit available after every step. In this updated definition, the connection
between program steps and later eliminations is relaxed, because physical steps yield later credits
which can subsequently be used for later eliminations virtually anywhere in the the rest of a proof.

8Readers familiar with step-indexing can think of the proof of Lemma 5.3 as picking the step-index 𝑛 + 1, which lets one

obtain the first-order proposition 𝜙 at step-index 1, meaning 𝜙 must hold.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:23

Adequacy. Let us return to adequacy. For simplicity, we focus again on the special case:

Lemma 5.4. Let ⊢ wp 𝑒0 {v. 𝜙 (v)}. If (𝑒0, 𝜎0) →
𝑛 (𝑒𝑛, 𝜎𝑛) where 𝑒𝑛 is a value, then 𝜙 (𝑒𝑛) holds.

Proof Sketch. The proof starts virtually unchanged, meaning we unfold the weakest precondi-
tion 𝑛 times and we instantiate the execution of 𝑒0. We then obtain:

⊢ (|⇛le (£1 −∗ |⇛le))
𝑛 |⇛le 𝜙 (𝑒𝑛)

Instead of updates and laters, here we iterate later elimination updates and credit assumptions
ł£1 −∗ž. We can pull all the credit assumptions out and obtain £𝑛 ⊢ (|⇛le |⇛le)

𝑛 |⇛le𝜙 (𝑒𝑛). Using
transitivity of ł |⇛lež, this can be simplified to £𝑛 ⊢ |⇛le𝜙 (𝑒𝑛). From here, the desired goal 𝜙 (𝑒𝑛)
follows by chaining soundness of the later elimination update Lemma 5.5 (below) and Lemma 5.3. □

In the proof of Lemma 5.4, we can see that later credits delegate the responsibility of later
management to the later elimination update. The proof boils down to £𝑛 ⊢ |⇛le𝜙 (𝑒𝑛), and from
there we can retrieve the łamortizedž interleaving of laters through the following soundness lemma:

Lemma 5.5. If £𝑛 ⊢ |⇛le𝜙 , then ⊢ (|⇛ ⊲ |⇛)𝑛 |⇛ 𝜙 .

In other words, the later elimination update aggregates all of our step-index decreases and ghost
state updates. We first define it and then return to the proof of Lemma 5.5 below.

The later elimination update. The later elimination update can be defined using the existing
connectives of Iris, so we never have to touch the underlying model. In fact, we have discussed
almost all the pieces that are needed to define it. There is just one missing, the credit supply £•𝑚.
The credit supply £•𝑚 is a piece of ghost state tracking the total number of available credits. That
is, its value𝑚 is, at any time, the sum of all the credits £𝑛 distributed in the logic. Thus, it satisfies
the following rules:

SupplyBound

£•𝑚 ∗ £𝑛 ⊢𝑚 ≥ 𝑛
SupplyDecr

£• (𝑛 +𝑚) ∗ £𝑛 ⊢ |⇛£•𝑚

The rule SupplyBound ensures that £•𝑚 is an upper bound. The rule SupplyDecr allows us to
decrement the supply by giving up some credits. Readers familiar with Iris’s model of resources
can think of the supply £•𝑚 and the credits £𝑛 as the elements of the resource algebra Auth(N, +).9

We now turn to the later elimination update. Based on what we have seen, |⇛le must be a monad,
must connect later credits to later eliminations, and must enable ghost state updates. We define:

|⇛le𝑃 ≜ ∀𝑛. £•𝑛 −∗ |⇛ ((£•𝑛 ∗ 𝑃) ∨ (∃𝑚 < 𝑛. £•𝑚 ∗ ⊲ |⇛le𝑃))

Let us break the definition into pieces. First, the definition quantifies over the current credit
supply £•𝑛. As a consequence, when we prove |⇛le𝑃 , we can make use of the rules SupplyDecr
and SupplyBound to (potentially) decrease the credit supply if we are willing to give up a later
credit £1. Second, after an update to the ghost state, the later elimination update offers a choice: we
can either (1) return the supply and prove 𝑃 (turning it into a standard update), or (2) decrease the
supply and correspondingly wrap the goal with a later, thereby enabling one later to be eliminated
from any assumption in the context. (Note that the latter case is analogous to how ⊲ was used
to support later elimination in Iris’s original definition of the weakest precondition.) Finally, the
definition is recursive, so we can repeat both ghost state updates and later eliminations (if we have
additional credits). This recursion is handled with Iris’s guarded fixpoints [Jung et al. 2018b, ğ5.6].
Let us now return to the soundness statement of the later elimination update:

9To be precise, the later credits £𝑛 ≜ ◦𝑛
𝛾lc are the fragments and the supply £•𝑚 ≜ •𝑚

𝛾lc is the authoritative element

of the resource algebra Auth(N, +) . Both pieces are connected through the ghost name 𝛾lc, which is chosen globally.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:24 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

Lemma 5.5. If £𝑛 ⊢ |⇛le𝜙 , then ⊢ (|⇛ ⊲ |⇛)𝑛 |⇛ 𝜙 .

Proof Sketch. We allocate £•𝑛 and £𝑛, meaning we obtain ⊢ |⇛ (£•𝑛 ∗ £𝑛). Using our assump-
tion £𝑛 ⊢ |⇛le𝜙 , we obtain ⊢ |⇛ (£•𝑛 ∗ |⇛le𝜙). Analogous to the adequacy proof of the weakest
precondition, we then unroll the later elimination update. That is, after unfolding ł |⇛lež, we have:

⊢ |⇛£•𝑛 ∗(∀𝑛. £•𝑛 −∗ |⇛ ((£•𝑛 ∗ 𝜙) ∨ (∃𝑚 < 𝑛. £•𝑚 ∗ ⊲ |⇛le𝜙)))

which can be simplified to ⊢ |⇛ |⇛ (£•𝑛 ∗ 𝜙) ∨ (∃𝑚 < 𝑛. ⊲(£•𝑚 ∗ |⇛le𝜙)). In the left branch of the
disjunction, we are done (using UpdReturn, UpdBind, and LaterIntro). In the right branch, we are
in a similar situation as before: we have a separating conjunction of the credit supply and a later
elimination update (i.e., £•𝑚 ∗ |⇛le𝜙). Thus, we can repeat the unfold-then-simplify step. Every time
we consider the right branch, the credit supply decreases (e.g., from 𝑛 to some𝑚 < 𝑛) and, since 𝑛
is finite, this decrease can happen at most 𝑛 times. Consequently, after 𝑛 unfold-then-simplify steps,
we know the left branch must have been chosen. □

Backwards compatibility. In large parts of Iris, including the weakest precondition, we replace
the standard update modality ł|⇛ž with the later elimination update ł |⇛lež (see the supplementary
material). Since |⇛le and |⇛ satisfy nearly identical rules, the later credits mechanism is mostly
backwards compatible. The only rules that the new update modality does not satisfy are interaction
rules with Iris’s łplainly modalityž ■ 𝑃 . These rules were introduced by Timany et al. [2018] for a
logical relation for Haskell’s ST monad, but are rarely used elsewhere in the Iris ecosystem.

6 EXTENSIONS

In this section, we discuss prior techniques to extend step-indexing and explain how later credits
complement them. We give an overview of the techniques in the following table:

Number of laters that can be eliminated per program step

Traditional step-indexing 1 −→ 1 −→ 1 −→ 1 −→ 1 . . .
Folklore extension 𝑘 −→ 𝑘 −→ 𝑘 −→ 𝑘 −→ 𝑘 . . . for fixed 𝑘 upfront
Flexible step-indexing 1 −→ 2 −→ 3 −→ 4 −→ 5 . . .
Transfinite step-indexing 𝑛1 −→ 𝑛2 −→ 𝑛3 −→ 𝑛4 −→ 𝑛5 . . . for arbitrary 𝑛𝑖 per step

Traditional step-indexing allows for the elimination of exactly one later per program step. It is
folklore that this can be relaxed to𝑘 laters per program step. Jourdan [2021] shows that the number𝑘
does not have to be fixed upfront, but can depend on the program execution, so one can eliminate 1
later after the first step, 2 after the second, 3 after the third, etc. This extension of step-indexing uses
time receipts [Mével et al. 2019] to keep track of the number of program steps. It is also possible to
eliminate an arbitrary number of laters per step as shown by Svendsen et al. [2016] for step-indexed
logical relations and Spies et al. [2021] for Iris. This requires a transfinitely step-indexed model, i.e.,
one with ordinals instead of natural numbers as step indices.
In all of these techniques, later elimination remains coupled to program stepsÐi.e., a later can

only be eliminated if the goal is a weakest precondition. Later credits are fundamentally different,
because they turn the right to eliminate a later into an ownable resource £1 that can be saved and
used even when the goal is merely an update modality. This decoupling is crucial for proofs where
there is no program in sight when a later needs to be eliminated (e.g., the examples from ğ3 and ğ4).
That said, later credits can be combined with these techniques to unlock additional, interesting

applications. We combine flexible step-indexing and later credits (in ğ6.1) and use them for two
examples: prepaid invariants and reverse refinements. We then discuss the extension of later credits
to transfinite step-indexing and point out trade-offs compared to flexible finite step-indexing (ğ6.2).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:25

ReceiptTimeless

timeless(©𝑛)

PureStepReceipt

{𝑃 ∗ £1 ∗©1} 𝑒2 {v. 𝑄} 𝑒1 →pure 𝑒2

{𝑃} 𝑒1 {v. 𝑄}

ReceiptCreditsPost

{𝑃} 𝑒 {v. 𝑄} 𝑒 ∉Val

{𝑃 ∗©𝑛} 𝑒 {v. 𝑄 ∗ £𝑛 ∗©𝑛}

Fig. 7. The proof rules for later credits with flexible step-indexing.

6.1 Flexible Step-Indexing

Similar to Jourdan [2021] and Mével et al. [2019], we use time receipts to reflect the number of
previous program steps into Iris. The rules of our extension are shown in Figure 7. Each execution
step produces a time receipt ©1 and a credit £1 (PureStepReceipt). The receipts can be used to
generate later credits (ReceiptCreditsPost). That is, if we own 𝑛 receipts ©𝑛, then we can leverage
these receipts to generate an additional 𝑛 credits £𝑛 after the next step of execution. We now briefly
sketch two applications of this extension. Their details can be found in the supplementary material.

Prepaid invariants. Prepaid invariants 𝑅
N

pre ≜ 𝑅 ∗ £1 ∗©1
N
store a later credit and a time

receipt. Their rules are as follows:

InvPreAlloc
{

𝑃 ∗ 𝑅
N

pre

}

𝑒
{

v. 𝑄
}

{𝑃 ∗ £1 ∗©1 ∗ ⊲𝑅} 𝑒 {v. 𝑄}

InvPreOpen

{𝑅 ∗ 𝑃} 𝑒 {v. 𝑅 ∗𝑄}E\N N ⊆ E 𝑒 physically atomic
{

𝑅
N

pre ∗ 𝑃
}

𝑒
{

v. 𝑄
}

E

Their distinguishing feature is that they can be opened around physically atomic instructions
without a guarding later (InvPreOpen). The trick is that when we open the underlying invariant the
later credit £1 can be used to eliminate the guarding later from 𝑅, and the time receipt ©1 can be
used to restore the later credit in the postcondition (with ReceiptCreditsPost). A consequence of
this trick is that we need to provide a credit and receipt when allocating the invariant (InvPreAlloc).
Since there is no ł⊲ž in InvPreOpen, we do not have to worry about later elimination when we work
with, for example, nested invariants (see ğ1). However, we cannot open prepaid invariants around
updates without a guarding later (see InvOpenUpd), because updates do not generate later credits.

Reverse refinements. Later credits with flexible step-indexing can also solve an issue with
step-indexed logical relations described by Svendsen et al. [2016]. The problem they highlight
involves proving a contextual equivalence 𝐹 𝑒 ≡ctx 𝑒 : 𝜏 for all expressions 𝑒 : 𝜏 given a function
𝐹 : 𝜏 → 𝜏 . One strategy to show such an equivalence is to split proving the equivalence into the
two contextual refinements 𝐹 𝑒 ≤ctx 𝑒 : 𝜏 and 𝑒 ≤ctx 𝐹 𝑒 : 𝜏 . To prove these contextual refinements,
one can prove the expressions logically refine each other, according to a step-indexed logical
relation ≤log (analogous to ğ3). In a logical refinement of the form 𝑒1 ≤log 𝑒2 : 𝜏 , steps of 𝑒1 allow
elimination of laters. Thus, in the direction 𝐹 𝑒 ≤log 𝑒 : 𝜏 , evaluating 𝐹 𝑒 takes steps that provide
opportunities to eliminate laters. In the reverse refinement 𝑒 ≤log 𝐹 𝑒 : 𝜏 , that is not the caseÐwe
need to prove 𝑒 ≤log 𝐹 𝑒 : 𝜏 for all 𝑒 : 𝜏 , meaning that 𝑒 could be a value, which takes no steps.
Svendsen et al. use a transfinite step-indexed logical relation to address this. But transfinite

step-indexed models come with trade-offs (see ğ6.2), so we show that later credits provide an
alternate solution. We do this by extending ReLoC and proving the reverse refinement example of
Svendsen et al., as well as a new and more difficult example involving concurrent memoization.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

100:26 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

6.2 Transfinite Step-Indexing

When combining Transfinite Iris [Spies et al. 2021] with later credits, we obtain a rule that allows
us to allocate an arbitrary number of credits in the postcondition of an expression:

CreditsPost

{𝑃} 𝑒 {v. 𝑄} 𝑒 ∉Val

{𝑃} 𝑒 {v. 𝑄 ∗ £𝑛}

At first glance, transfinite step-indexing may seem like a strict improvement over flexible step-
indexing since it lets us obtain 𝑛 credits in each step without the need for time receipts (cf. Re-
ceiptCreditsPost). But there is a trade-off: As Spies et al. [2021] explain, the commuting rules
LaterExists and LaterSep are not sound in a transfinite model. These rules are used widely in
existing Iris proofs (e.g., for logical atomicity), and it is not clear whether all of those proofs could be
salvaged in Transfinite Iris. Conversely, the rule CreditsPost is unsound in a finitely step-indexed
modelÐit allows us to prove {True} skip { . False} as shown in the supplementary material [Spies
et al. 2022]. Thus, advanced users of later credits have a choice: work in the flexible finite model
with time receipts, or work in the transfinite model without the commuting rules.

7 RELATED WORK

Multiple later eliminations per step. Svendsen et al. [2016] and Jourdan [2021] have proposed
techniques to generalize the traditional approach of łone-later-per-stepž to allow multiple step-
index decreases per step. We have discussed these techniques in ğ6. As explained there, later
credits are not an alternative to these techniques, they complement them. In particular, for the
applications presented in this workÐespecially those in ğ3 and ğ4Ðit is vital that we can eliminate
later modalities even when we are not proving a Hoare triple, which neither approach supports.

Steel. Steel [Swamy et al. 2020; Fromherz et al. 2021] is a shallow embedding of concurrent
separation logic in F★. Inspired by Iris, Steel supports dynamically allocated invariants but unlike
Iris, opening an invariant in Steel does not introduce a later. Nevertheless, the underlying soundness
argument crucially relies on program steps [Swamy et al. 2020, Page 18], as in Iris. The difference
arises because Steel treats ghost operations such as opening invariants as explicit ghost code that can
take steps (which can then be erased before execution), allowing them to hide the later modality from
the rule to open invariants. The price for this more convenient interface is a loss in expressivenessÐ
there is no Steel connective corresponding to Iris’s update modality (łghost actions without codež,
which logically atomic specifications are built on), and the authors of Steel say that łcontextual
refinement proofs are beyond what is possible in Steelž [Fromherz et al. 2021, Page 27].

Logical atomicity and linearizability. The main point of logical atomicity is to put user-
defined, linearizable operations on (almost) the same footing as physically atomic instructions. In
particular, users can open invariants around logically atomic operations. Prior work on logical
atomicity either does not support helping [da Rocha Pinto et al. 2014] or relies on impredicative
invariants in a step-indexed separation logic [Svendsen and Birkedal 2014; Jung et al. 2015, 2020]
with its suite of later elimination challenges. Later credits thus represent a significant step forward
for logical atomicity proofs in general.
As Birkedal et al. [2021] show, logical atomicity can also be used to prove the more traditional

notion of linearizability [Herlihy and Wing 1990]. To express and prove linearizability, many
alternative approaches have been studied in prior work [Elmas et al. 2010; Liang and Feng 2013;
Turon et al. 2013; Sergey et al. 2015; Chakraborty et al. 2015; Khyzha et al. 2016; Nanevski et al. 2019].
Those alternatives do not rely on impredicative invariants and, hence, they do not suffer from the
step-indexing problems that later credits help solve. Instead, they have other means of expressing

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

Later Credits: Resourceful Reasoning for the Later Modality 100:27

and establishing linearizability, e.g., specifications that expose the effects of linearizable operations
using a PCM of event histories [Sergey et al. 2015; Nanevski et al. 2019]. What these approaches
cannot do, compared to logical atomicity, is allow clients to treat linearizable operations łas ifž
they were physically atomic, meaning clients cannot open invariants around such user-defined
operations, which is the main selling point of logical atomicity.

Reordering refinements. For stateful programming languages Benton et al. investigated re-
ordering refinements based on type-and-effect systems in a series of papers [Benton et al. 2006;
Benton and Buchlovsky 2007; Benton et al. 2007, 2009]. Their work was extended by Thamsborg
and Birkedal [2011] to a language with higher-order state and effect-masking. We focus on the
work of Krogh-Jespersen et al. [2017] (which generalizes Thamsborg and Birkedal [2011]) and
Timany et al. [2018], because they consider languages with cyclic features such as higher-order
state and recursive types. These cyclic features are typically what motivate the use of step-indexing
in a logical relation, but they also add an additional layer of complexity in reordering proofs.
Krogh-Jespersen et al. [2017] prove reorderings in a concurrent stateful language with an effect
type system; their model supports reorderings of operations that write to disjoint parts of the heap
and thus does not scale to the promise operations in ğ3. Timany et al. [2018] prove reorderings
for a sequential language in the presence of Haskell’s ST monad. They verify reorderings of pure
computations (with stateful subcomputations encapsulated using ST), but for stateful computations
they only show the expected monadic rules for the state monad. As mentioned earlier, our definition
of reordering refinement is inspired by Timany et al. [2018]. The crucial difference is that we łbake
inž support for later credits. As a consequence, we can prove the higher-order stateful reorderings
of the promise operations (in ğ3), which are beyond the model of Timany et al. The key step in the
proof, where we use an impredicative invariant to transfer the source execution between operations,
is only possible because we can use later credits to eliminate the irksome laters that pop up.

ACKNOWLEDGMENTS

We wish to thank Jacques-Henri Jourdan and Yusuke Matsushita for feedback and helpful discus-
sions, Upamanyu Sharma for supplying the original example that led to the counter with a backup,
and the anonymous reviewers for their helpful feedback. This research was supported in part by a
European Research Council (ERC) Consolidator Grant for the project łRustBeltž, funded under the
European Union’s Horizon 2020 Framework Programme (grant agreement no. 683289), in part by
the Dutch Research Council (NWO), project 016.Veni.192.259, in part by NSF award 2123864, and in
part by generous gifts from Oracle Labs and Google.

REFERENCES

Amal Ahmed. 2004. Semantics of types for mutable state. Ph. D. Dissertation. Princeton University.

Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N. Swadi, Gang Tan, and Daniel C. Wang. 2010. Semantic

foundations for typed assembly languages. TOPLAS 32, 3 (2010), 1ś67. https://doi.org/10.1145/1709093.1709094

Andrew W. Appel and David A. McAllester. 2001. An indexed model of recursive types for foundational proof-carrying

code. TOPLAS 23, 5 (2001), 657ś683. https://doi.org/10.1145/504709.504712

Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. 2007. A very modal model of a

modern, major, general type system. In POPL. 109ś122. https://doi.org/10.1145/1190216.1190235

Nick Benton and Peter Buchlovsky. 2007. Semantics of an effect analysis for exceptions. In TLDI. 15ś26. https://doi.org/10.

1145/1190315.1190320

Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2007. Relational semantics for effect-based program

transformations with dynamic allocation. In PPDP. 87ś96. https://doi.org/10.1145/1273920.1273932

Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. 2009. Relational semantics for effect-based program

transformations: higher-order store. In PPDP. 301ś312. https://doi.org/10.1145/1599410.1599447

Nick Benton, Andrew Kennedy, Martin Hofmann, and Lennart Beringer. 2006. Reading, writing and relations. In APLAS.

LNCS, Vol. 4279. 114ś130. https://doi.org/10.1007/11924661_7

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190315.1190320
https://doi.org/10.1145/1190315.1190320
https://doi.org/10.1145/1273920.1273932
https://doi.org/10.1145/1599410.1599447
https://doi.org/10.1007/11924661_7

100:28 Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer

Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem Jaber, Kasper Svendsen, and Nikos Tzevelekos. 2021.

Theorems for free from separation logic specifications. PACMPL 5, ICFP (2021), 1ś29. https://doi.org/10.1145/3473586

Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Stùvring, Jacob Thamsborg, and Hongseok Yang. 2011. Step-

indexed Kripke models over recursive worlds. In POPL. 119ś132. https://doi.org/10.1145/1926385.1926401

Stephen Brookes. 2007. A semantics for concurrent separation logic. TCS 375, 1-3 (2007), 227ś270. https://doi.org/10.1016/j.

tcs.2006.12.034

Alexandre Buisse, Lars Birkedal, and Kristian Stùvring. 2011. Step-Indexed Kripke Model of Separation Logic for Storable

Locks. In MFPS (ENTCS, Vol. 276). 121ś143. https://doi.org/10.1016/j.entcs.2011.09.018

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. 2018. VST-Floyd: A separation logic

tool to verify correctness of C programs. JAR 61, 1-4 (2018), 367ś422. https://doi.org/10.1007/s10817-018-9457-5

Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli. 2022. Applying

formal verification to microkernel IPC at Meta. In CPP. 116ś129. https://doi.org/10.1145/3497775.3503681

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019. Verifying concurrent, crash-safe systems

with Perennial. In SOSP. 243ś258. https://doi.org/10.1145/3341301.3359632

Soham Chakraborty, Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. 2015. Aspect-oriented linearizability proofs.

LMCS 11, 1 (2015). https://doi.org/10.2168/LMCS-11(1:20)2015

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A logic for time and data abstraction. In

ECOOP (LNCS, Vol. 8586). 207ś231. https://doi.org/10.1007/978-3-662-44202-9_9

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020. RustBelt meets relaxed memory.

PACMPL 4, POPL (2020), 34:1ś34:29. https://doi.org/10.1145/3371102

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical Step-Indexed Logical Relations. LMCS 7, 2:16 (2011), 1ś37.

https://doi.org/10.2168/LMCS-7(2:16)2011

Tayfun Elmas, Shaz Qadeer, Ali Sezgin, Omer Subasi, and Serdar Tasiran. 2010. Simplifying Linearizability Proofs with

Reduction and Abstraction. In TACAS (LNCS, Vol. 6015). 296ś311. https://doi.org/10.1007/978-3-642-12002-2_25

Aymeric Fromherz, Aseem Rastogi, Nikhil Swamy, Sydney Gibson, Guido Martínez, Denis Merigoux, and Tahina Ramananan-

dro. 2021. Steel: proof-oriented programming in a dependently typed concurrent separation logic. PACMPL 5, ICFP,

1ś30. https://doi.org/10.1145/3473590

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A mechanised relational logic for fine-grained concurrency.

In LICS. 442ś451. https://doi.org/10.1145/3209108.3209174

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained

Concurrency and Logical Atomicity. LMCS 17, 3 (2021). https://doi.org/10.46298/lmcs-17(3:9)2021

Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, and Robbert Krebbers. 2020. Scala step-by-step: soundness

for DOT with step-indexed logical relations in Iris. PACMPL 4, ICFP (2020), 114:1ś114:29. https://doi.org/10.1145/3408996

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness condition for concurrent objects. TOPLAS

12, 3 (1990), 463ś492. https://doi.org/10.1145/78969.78972

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris: session-type based reasoning in separation

logic. PACMPL 4, POPL (2020), 6:1ś6:30. https://doi.org/10.1145/3371074

Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson. 2021. Machine-checked semantic

session typing. In CPP. 178ś198. https://doi.org/10.1145/3437992.3439914

Jacques-Henri Jourdan. 2021. Flexible number of logical steps per physical step. https://gitlab.mpi-sws.org/iris/iris/-

/merge_requests/595 Iris merge request 595.

Ralf Jung. 2019. Logical Atomicity in Iris: The Good, the Bad, and the Ugly. https://people.mpi-sws.org/~jung/iris/logatom-

talk-2019.pdf Presented at the Iris Workshop (https://iris-project.org/workshop-2019/).

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt: Securing the foundations of the

Rust programming language. PACMPL 2, POPL (2018), 66:1ś66:34. https://doi.org/10.1145/3158154

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In ICFP. 256ś269. https:

//doi.org/10.1145/2951913.2951943

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. JFP 28 (2018), e20. https://doi.org/10.

1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs. 2020.

The future is ours: prophecy variables in separation logic. PACMPL 4, POPL (2020), 45:1ś45:32. https://doi.org/10.1145/

3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and invariants as an orthogonal basis for concurrent reasoning. In POPL. 637ś650. https://doi.org/10.1145/

2676726.2676980

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

https://doi.org/10.1145/3473586
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1016/j.entcs.2011.09.018
https://doi.org/10.1007/s10817-018-9457-5
https://doi.org/10.1145/3497775.3503681
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.2168/LMCS-11(1:20)2015
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1145/3371102
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1145/3473590
https://doi.org/10.1145/3209108.3209174
https://doi.org/10.46298/lmcs-17(3:9)2021
https://doi.org/10.1145/3408996
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3371074
https://doi.org/10.1145/3437992.3439914
https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/595
https://gitlab.mpi-sws.org/iris/iris/-/merge_requests/595
https://people.mpi-sws.org/~jung/iris/logatom-talk-2019.pdf
https://people.mpi-sws.org/~jung/iris/logatom-talk-2019.pdf
https://iris-project.org/workshop-2019/
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1145/2951913.2951943
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980

Later Credits: Resourceful Reasoning for the Later Modality 100:29

Artem Khyzha, Alexey Gotsman, and Matthew J. Parkinson. 2016. A Generic Logic for Proving Linearizability. In FM (LNCS,

Vol. 9995). 426ś443. https://doi.org/10.1007/978-3-319-48989-6_26

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,

and Derek Dreyer. 2018. MoSeL: A general, extensible modal framework for interactive proofs in separation logic.

PACMPL 2, ICFP (2018), 77:1ś77:30. https://doi.org/10.1145/3236772

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. 2017a. The essence of

higher-order concurrent separation logic. In ESOP (LNCS, Vol. 10201). 696ś723. https://doi.org/10.1007/978-3-662-54434-

1_26

Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017b. Interactive proofs in higher-order concurrent separation logic.

In POPL. 205ś217. https://doi.org/10.1145/3093333.3009855

Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. 2017. A relational model of types-and-effects in higher-order

concurrent separation logic. In POPL. 218ś231. https://doi.org/10.1145/3093333.3009877

Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, and Lars Birkedal. 2020.

Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems. In ESOP (LNCS, Vol. 12075). 336ś365.

https://doi.org/10.1007/978-3-030-44914-8_13

Hongjin Liang and Xinyu Feng. 2013. Modular verification of linearizability with non-fixed linearization points. In PLDI.

459ś470. https://doi.org/10.1145/2491956.2462189

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time credits and time receipts in Iris. In ESOP (LNCS,

Vol. 11423). 3ś29. https://doi.org/10.1007/978-3-030-17184-1_1

Aleksandar Nanevski, Anindya Banerjee, Germán Andrés Delbianco, and Ignacio Fábregas. 2019. Specifying concurrent

programs in separation logic: morphisms and simulations. PACMPL 3, OOPSLA (2019), 161:1ś161:30. https://doi.org/10.

1145/3360587

Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. TCS 375, 1-3 (2007), 271ś307. https://doi.org/10.1016/

j.tcs.2006.12.035

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local reasoning about programs that alter data structures.

In CSL (LNCS, Vol. 2142). 1ś19. https://doi.org/10.1007/3-540-44802-0_1

John C. Reynolds. 2002. Separation logic: A logic for shared mutable data structures. In LICS. 55ś74. https://doi.org/10.

1109/LICS.2002.1029817

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Specifying and Verifying Concurrent Algorithms with

Histories and Subjectivity. In ESOP (LNCS, Vol. 9032). 333ś358. https://doi.org/10.1007/978-3-662-46669-8_14

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2021.

Transfinite Iris: Resolving an existential dilemma of step-indexed separation logic. In PLDI. 80ś95. https://doi.org/10.

1145/3453483.3454031

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Rebbers, Lars Birkedal, and Derek Dreyer. 2022. Later

credits Coq development and technical documentation. https://doi.org/10.5281/zenodo.6702804 Latest development at

https://plv.mpi-sws.org/later-credits/.

Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract predicates. In ESOP (LNCS, Vol. 8410). 149ś168.

https://doi.org/10.1007/978-3-642-54833-8_9

Kasper Svendsen, Filip Sieczkowski, and Lars Birkedal. 2016. Transfinite step-indexing: Decoupling concrete and logical

steps. In ESOP (LNCS, Vol. 9632). 727ś751. https://doi.org/10.1007/978-3-662-49498-1_28

Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and Guido Martínez. 2020. SteelCore: an

extensible concurrent separation logic for effectful dependently typed programs. PACMPL 4, ICFP (2020), 121:1ś121:30.

https://doi.org/10.1145/3409003

Joseph Tassarotti, Ralf Jung, and Robert Harper. 2017. A higher-order logic for concurrent termination-preserving refinement.

In ESOP (LNCS, Vol. 10201). 909ś936. https://doi.org/10.1007/978-3-662-54434-1_34

Jacob Thamsborg and Lars Birkedal. 2011. A Kripke logical relation for effect-based program transformations. In ICFP.

445ś456. https://doi.org/10.1145/2034773.2034831

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. 2018. A logical relation for monadic encapsulation

of state: proving contextual equivalences in the presence of runST. PACMPL 2, POPL (2018), 64:1ś64:28. https:

//doi.org/10.1145/3158152

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and Hoare-style reasoning in a logic for

higher-order concurrency. In ICFP. 377ś390. https://doi.org/10.1145/2500365.2500600

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, William Mansky, Benjamin C.

Pierce, and Steve Zdancewic. 2021. Verifying an HTTP Key-Value Server with Interaction Trees and VST. In ITP (LIPIcs,

Vol. 193). 32:1ś32:19. https://doi.org/10.4230/LIPIcs.ITP.2021.32

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 100. Publication date: August 2022.

https://doi.org/10.1007/978-3-319-48989-6_26
https://doi.org/10.1145/3236772
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1007/978-3-662-54434-1_26
https://doi.org/10.1145/3093333.3009855
https://doi.org/10.1145/3093333.3009877
https://doi.org/10.1007/978-3-030-44914-8_13
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1007/978-3-030-17184-1_1
https://doi.org/10.1145/3360587
https://doi.org/10.1145/3360587
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.5281/zenodo.6702804
https://plv.mpi-sws.org/later-credits/
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.1145/3409003
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/2034773.2034831
https://doi.org/10.1145/3158152
https://doi.org/10.1145/3158152
https://doi.org/10.1145/2500365.2500600
https://doi.org/10.4230/LIPIcs.ITP.2021.32

	Abstract
	1 Introduction
	2 Later Credits in a Nutshell
	2.1 An Iris Primer
	2.2 Later Credits in Iris

	3 Later Credits for Reordering Refinements
	3.1 ReLoC: Logical Relations in Iris
	3.2 Reorderability Extension
	3.3 Promises with Later Credits

	4 Later Credits for Logical Atomicity
	4.1 A Counter with a Backup
	4.2 Logical Atomicity
	4.3 Helping without Later Credits
	4.4 Helping with Later Credits

	5 Soundness of Later Credits
	5.1 Model of Iris's Weakest Preconditions without Later Credits
	5.2 Modeling Later Credits

	6 Extensions
	6.1 Flexible Step-Indexing
	6.2 Transfinite Step-Indexing

	7 Related Work
	Acknowledgments
	References

