
The λµT-calculus

Herman Geuvers1,2, Robbert Krebbers1 and James McKinna1

1Radboud University Nijmegen
2Eindhoven University of Technology

July 9, 2012

Abstract

Calculi with control operators have been studied as extensions of sim-
ple type theory. Real programming languages contain datatypes, so to
really understand control operators, one should also include these in the
calculus. As a first step in that direction, we introduce λµT, a combi-
nation of Parigot’s λµ-calculus and Gödel’s T, to extend a calculus with
control operators with a datatype of natural numbers with a primitive
recursor.

We consider the problem of confluence on raw terms, and that of strong
normalization for the well-typed terms. Observing some problems with
extending the proofs of Baba et al. and Parigot’s original confluence proof,
we provide new, and improved, proofs of confluence (by complete devel-
opments) and strong normalization (by reducibility and a postponement
argument) for our system.

We conclude with some remarks about extensions, choices, and prospects
for an improved presentation.

1 Introduction

In pursuit, on the one hand, of a satisfactory equational theory of call-by-value
λ-calculus, and on the other, of a means to interpret the computational content
of classical proofs, a variety of calculi with control operators have been pro-
posed. Few of these systems address the problem of how to incorporate prim-
itive datatypes in direct style, preferring instead to consider the usual Church
encoding of datatypes or else to analyze computation over datatypes via CPS-
translations.

In part this appears to arise because of the technical difficulty in getting
standard results such as confluence or strong normalization, and their proof
methods, either for classical calculi, or for simply-typed calculi with datatypes,
to extend to their combination.

This paper introduces a new λ-calculus with control, λµT, in which for ex-
ample constructs for catch and throw may be represented, which moreover has

1

a basic datatype of natural numbers with a primitive recursor, in the style of
Gödel’s T. We demonstrate that it is possible to achieve a synthesis of classical
computation with datatypes with a conventional metatheory of typing and re-
duction. To show how the system can be used in programming, we give a simple
example in 3.16, where we define a function that multiplies the first n values of
f : N→ N and throws an exception as soon as it encounters the value 0.

1.1 Our approach

Since Lafont’s counterexample [GTL89], it is well known that a calculus pro-
viding a general content to classical logic cannot be confluent. It only may
become confluent if one adds an evaluation strategy (call-by-name or call-by-
value). To define a calculus with control operators and datatypes we have
therefore observed a tension between the call-by-name features taken directly
from Parigot’s λµ-calculus, and the need to add certain call-by-value features
to obtain a system that is confluent and satisfies a normal form theorem (each
closed term of type N is convertible to a numeral). The λµT-calculus is therefore
a call-by-name system with strict evaluation on datatypes. To avoid losing a
normal form theorem, we could not make it a full call-by-name system, and to
avoid losing confluence we had to restrict the primitive recursor to only allow
conversion when the numerical argument is a numeral.

Given these technical considerations, we were able to prove that λµT sat-
isfies subject reduction, has a normal form theorem, is confluent and strongly
normalizing. The last two proofs are non-trivial because various niceties are
required to make the standard proof methods work.

Our confluence proof uses the notion of parallel reduction and defines a
complete development for each term. Surprisingly, it was difficult to find a
confluence proof for the original untyped λµ-calculus. Baba, Hirokawa and
Fujita [BHF01] have given a confluence proof for λµ without the →µη-rule
(µα.[α]t→ t provided that α /∈ FCV(t)). Although they suggest how to extend
parallel reduction for the →µη-rule, they do not provide a formal definition of
the complete development nor a proof. Nakazawa [Nak03] has successfully car-
ried out their suggestion for a call-by-value variant of λµ, but does not use the
notion of complete development. Walter Py’s PhD thesis [Py98] was the only
place where we have found a complete proof of confluence for λµ. It uses Aczel’s
generalization of parallel reduction [Acz78] and a number of postponement ar-
guments. In the present paper we extend the methodology of [BHF01] to the
case of λµT, which also includes the →µη-rule.

Our strong normalization proof proceeds by defining relations →A and →B

such that →=→AB :=→A ∪ →B . First we prove that →A is strongly nor-
malizing by the reducibility method. Secondly, we prove that →B is strongly
normalizing and that both reductions commute in a way that we can obtain
strong normalization for →AB . The first phase is inspired by Parigot’s proof of
strong normalization for the λµ-calculus [Par97].

2

1.2 Related work

The extension of simply typed lambda calculus with control operators and the
observation that these operators can be typed using the rules of classical logic is
originally due to Griffin [Gri90] and has lead to a lot of research [Par92, Par93,
dG94, RS94, BS95, Coq96, BB96, AH03, vBLL05], by considering variations on
the control operators, the underlying calculus or the computation rules, or by
studying concrete examples of the computational content of proofs in classical
logic. The λµ-calculus of Parigot [Par92] has become a central starting point
for much research in this area.

The extension with datatypes, to make the calculus into a real programming
language with control operators, has not received so much attention. We briefly
summarize the research done in this direction and compare it with our work.

Murthy has defined a system with control operators, arithmetic, products
and sums in his PhD thesis [Mur90]. His system uses the control operators C and
A (originally due to [Gri90]) and the semantics of these operators is specified by
evaluation contexts rather than local reduction rules, as we do. So his system
does not really describe a calculus for datatypes and control. Furthermore,
Murthy mainly considers CPS-translations to give an operational semantics of
his system and did not prove properties like confluence or strong normalization.

Crolard and Polonowski have considered a version of Gödel’s T with products
and call/cc [CP11]. As with Murthy, the semantics is presented by CPS-
translations instead of a direct specification via a calculus. Therefore properties
like confluence and strong normalization are trivial because they hold for the
target system already.

Barthe and Uustalu have worked on CPS-translations for inductive and coin-
ductive types [BU02]. Their work includes a system with a primitive for iteration
over the natural numbers and the control operator ∆. Unfortunately only some
properties of CPS-translations are proven.

Rehof and Sørensen have described an extension of the λ∆-calculus with
basic constants and functions [RS94]. Unfortunately their extension is quite
limited. For example the primitive recursor nrec takes terms, rather than basic
constants, as its arguments. Their extension does not allow this, making it
impossible to define nrec.

Parigot has described a second-order variant of his λµ-calculus [Par92]. This
system is very powerful, because it includes all the well-known second-order rep-
resentable datatypes. However, it suffers from the same weakness as System F,
namely poor computational efficiency (for example, an O(n)-predecessor func-
tion). Also, as observed in [Par92, Par93], this system does not ensure unique
representation of datatypes. For example, there is no one-to-one correspondence
between natural numbers and closed normal forms of the type of Church nu-
merals.

There have been various investigations into concrete examples of computa-
tional content of classical proofs. Coquand gives an overview in his notes [Coq96].
An earlier example is [BS95], where a binpacking problem is analyzed using proof
transformations. More recent work is by Makarov [Mak06], who takes Griffin’s

3

calculus and adds various rules to optimize the extracted program.
If we look in particular at Gödel’s T, Berger, Buchholz and Schwichten-

berg have described a form of program extraction from classical proofs [BBS00].
Their method extracts a term from a classical proof in which all computation-
ally irrelevant parts are removed. To prove the correctness of their approach
they give a realizability interpretation. However, since their target language is
Gödel’s T, extracted programs do not contain control mechanisms.

Caldwell, Gent and Underwood have considered program extraction from
classical proofs in the proof assistant NuPrl [CGU00]. In their work they extend
NuPrl with a proof rule for Peirce’s law and they associate call/cc to the ex-
traction of Peirce’s law. Now, program extraction indeed results in a program
with control. The main focus of their work is on using program extraction to
obtain efficient search algorithms. The authors do not prove any meta theo-
retical results so it is unclear whether their approach is correct for arbitrary
classical proofs.

1.3 Outline

The paper is organized as follows:

• Section 2 recapitulates Gödel’s T, fixing notation and conventions, to-
gether with the key normal form property.

• Section 3 introduces λµT, our Gödel’s T variant of Parigot’s λµ-calculus
extended with a datatype of natural numbers with primitive recursor nrec.
We define the basic reduction rules, whose compatible closure defines com-
putation in λµT. We show how to represent rules for a statically bound
catch and throw mechanism. We prove subject reduction, and the ex-
tended analogue of the normal form property.

• In Section 4, we develop the corresponding CPS-translation for λµT, and
show it preserves typing and conversion.

• Section 5 contains one of our two principal technical contributions: a direct
proof of confluence on the raw terms of λµT, based on a novel analysis of
complete developments.

• In Section 6, our second technical contribution is to prove SN for our
calculus, using the reducibility method and a postponement argument.

• We close with some conclusions and indications for further work, both in
extending our system with a richer type system, and in investigating a
fully-fledged call-by-value version.

2 Gödel’s T

Gödel’s T (henceforth λT) was introduced by Gödel to prove the consistency
of Peano Arithmetic [SU06]. It arises from λ→ by addition of a base type for

4

natural numbers and a construct for primitive recursion.

Definition 2.1. The types of λT are built from a basic type (the natural num-
bers) and a function type (→) as follows.

ρ, σ, τ ::= N | σ → τ

Definition 2.2. The terms of the λT are inductively defined over an infinite
set of λ-variables (x, y, . . .) as follows.

t, r, s ::= x | λx : ρ.r | ts | 0 | St | nrecρ r s t

Here, ρ ranges over λT-types.

As one would imagine, the terms 0, S and nrec denote zero, the successor
function and primitive recursion over the natural numbers, respectively. We let
FV(t) denote the set of free variables of t and we define the operation of capture
avoiding substitution t[x := r] of r for x in t in the usual way.

Convention 2.3. Although a λ-abstraction and nrec construct are annotated
by a type, we omit these type annotations when they are obvious or not relevant.
Furthermore, we use the Barendregt convention. That is, given an expression,
we may assume that bound variables are distinct from free variables and that all
bound variables are distinct.

Definition 2.4. The derivation rules for λT are as shown in Figure 1.

x : ρ ∈ Γ

Γ ` x : ρ

(a) var

Γ, x : σ ` t : τ

Γ ` λx : σ.t : σ → τ
(b) lambda

Γ ` t : σ → τ Γ ` s : σ
Γ ` ts : τ

(c) app

Γ ` 0 : N
(d) zero

Γ ` t : N
Γ ` St : N

(e) suc

Γ ` r : ρ Γ ` s : N→ ρ→ ρ Γ ` t : N

Γ ` nrecρ r s t : ρ

(f) nrec

Figure 1: The rules for typing judgments in λT.

Definition 2.5. Reduction t → t′ is defined as the compatible closure of the
following rules.

(λx.t)r → t[x := r] (β)

nrec r s 0→ r (0)

nrec r s (St)→ s t (nrec r s t) (S)

As usual, � denotes the reflexive/transitive closure and = denotes the reflex-
ive/symmetric/transitive closure.

5

Although we do not specify a deterministic reduction strategy it is obviously
possible to create a call-by-name and call-by-value version of λT. Yet it is inter-
esting to remark that in a call-by-value version of λT calculating the predecessor
takes at least linear time while in a call-by-name version the predecessor can be
calculated in constant time [CF98].

Fortunately, despite the additional features of λT, the important proper-
ties of λ→, subject reduction, confluence and strong normalization, are pre-
served [Ste72, GTL89].

Because it is convenient to be able to talk about a term representing an
actual natural number we introduce the following notation.

Notation 2.6. n := Sn0

Definition 2.7. Values are inductively defined as follows.

v, w ::= 0 | Sv | λx.r

Theorem 2.8. Given a term t that is in normal form and such that ` t : ρ:

1. If ρ = N, then t ≡ n for some n ∈ N.

2. If ρ = σ → τ , then t ≡ λx.r for a variable x and term r.

As the following indicates, the system λT has quite some expressive power.

Definition 2.9. A function f : Nn → N is representable in λT if there is a
term t with ` t : Nn → N such that:

t m1 . . .mn = f(m1, . . . ,mn)

Theorem 2.10. The functions representable in λT are exactly the functions
that are provably recursive in first-order arithmetic1.

Proof. This is proven in [SU06].

3 The λµT-calculus

In this section we present our Gödel’s T extension of Parigot’s λµ-calculus
(henceforth λµT).

Definition 3.1. The terms and commands of λµT are mutually inductively
defined over an infinite set of λ-variables (x, y, . . .) and µ-variables (α, β, . . .)
as follows.

t, r, s ::= x | λx : ρ.r | ts | µα : ρ.c | 0 | St | nrecρ r s t
c, d ::= [α]t

Here, ρ ranges over λT-types (Definition 2.1). We give [α]t lower precedence
than sr, allowing us to write [α]sr instead of [α](sr).

1Here we are allowed to say either Peano Arithmetic (PA) or Heyting Arithmetic (HA),
because a function is provably recursive in PA iff it is probably recursive in HA [SU06].

6

As usual, we let FV(t) and FCV(t) denote the set of free λ-variables and
µ-variables of t, respectively. Moreover, we define substitution t[x := r] of r for
x in t, which is capture avoiding for both λ- and µ-variables, in the obvious way.
Similar to Convention 2.3, we will often omit type annotations for µ-binders.

Notation 3.2. µ .c := µγ.c provided that γ /∈ FCV(c).

Definition 3.3. The typing rules for λµT are as shown in Figure 2.

x : ρ ∈ Γ

Γ; ∆ ` x : ρ

(a) axiom

Γ, x : σ; ∆ ` t : τ

Γ; ∆ ` λx : σ.t : σ → τ

(b) lambda

Γ; ∆ ` t : σ → τ Γ; ∆ ` s : σ

Γ; ∆ ` ts : τ

(c) app

Γ; ∆ ` 0 : N

(d) zero

Γ; ∆ ` t : N

Γ; ∆ ` St : N

(e) suc

Γ; ∆ ` r : ρ Γ; ∆ ` s : N→ ρ→ ρ Γ; ∆ ` t : N

Γ; ∆ ` nrecρ r s t : ρ

(f) nrec

Γ; ∆, α : ρ ` c : |=

Γ; ∆ ` µα : ρ.c : ρ

(g) activate

Γ; ∆ ` t : ρ α : ρ ∈ ∆

Γ; ∆ ` [α]t : |=

(h) passivate

Figure 2: The rules for typing judgments in λµT.

A typing judgment Γ; ∆ ` t : ρ is derivable in λµT in case it is the conclusion
of a derivation tree that uses the rules of Definition 3.3. We say “term t has
type ρ in environment of λ-variables Γ and environment of µ-variables ∆”.

Similarly, a typing judgment Γ; ∆ ` c : |= is derivable in λµT in case it
is the conclusion of a derivation tree that uses the rules of Definition 3.3. We
say “command c is typable in environment of λ-variables Γ and environment of
µ-variables ∆”.

Fact 3.4. The typing judgment is closed under weakening of both environments.
That is, if Γ; ∆ ` t : ρ, Γ ⊆ Γ′ and ∆ ⊆ ∆′, then Γ′; ∆′ ` t : ρ.

In order to define the reduction rules we first define the notions of contexts
and structural substitution. Although the reduction rules merely require con-
texts of a restricted shape (those that are singular) we define contexts of a
more general shape so we can reuse these definitions in our proof of confluence
(Section 5) and strong normalization (Section 6).

Definition 3.5. A λµT-context is defined as follows.

E ::= � | Et | SE | nrec r s E

7

A context is singular if it is the following shape.

Es ::= �t | S� | nrec r s �

Definition 3.6. Given a context E and a term s, substitution of s for the hole
in E, notation E[s], is defined as follows.

�[s] := s

(Et)[s] := E[s]t

(SE)[s] := SE[s]

(nrec r s E)[s] := nrec r s E[s]

Definition 3.7. Given contexts E and F , the context EF is defined by:

�F := F

(Et)F := (EF)t

(SE)F := S(EF)

(nrec r s E)F := nrec r s (EF)

Fact 3.8. E[F [t]] ≡ EF [t]

Using contexts we can now define structural substitution. Structural sub-
stitution of a µ-variable β and a context E for a µ-variable α in t, notation
t[α := βE], recursively replaces each command [α]q in t by [β]E[q′] where
q′ ≡ q[α := βE]. Our notion of structural substitution is more general than
Parigot’s original presentation [Par92]. He defines t[β := α], which renames
each µ-variable β in t into α, and t[α := s], which replaces each command [α]q
in t by [α]q′s where q′ ≡ q[α := s]. Of course, his notions are just instances
of our definition, namely, the former corresponds to t[β := α �] and the latter
to t[α := α (�s)]. Parigot’s presentation suffices for the definition of the re-
duction rules, but our presentation allows us to prove properties like confluence
(Section 5) and strong normalization (Section 6) in a more streamlined way.

Definition 3.9. Structural substitution t[α := βE] of a µ-variable β and a
context E for a µ-variable α is defined as follows.

x[α := βE] := x

(λx.r)[α := βE] := λx.r[α := βE]

(ts)[α := βE] := t[α := βE]s[α := βE]

0[α := βE] := 0

(St)[α := βE] := S(t[α := βE])

(nrec r s t)[α := βE] := nrec (r[α := βE]) (s[α := βE]) (t[α := βE])

(µγ.c)[α := βE] := µγ.c[α := βE]

([α]t)[α := βE] := [β]E[t[α := βE]]

([γ]t)[α := βE] := [γ]t[α := βE] provided that γ 6= α

Structural substitution is capture avoiding for both λ- and µ-variables.

8

Definition 3.10. Reduction t → t′ is defined as the compatible closure of the
following rules.

(λx.t)r → t[x := r] (β)

S(µα.c)→ µα.c[α := α (S�)] (µS)

(µα.c)s→ µα.c[α := α (�s)] (µR)

µα.[α]t→ t provided that α /∈ FCV(t) (µη)

[α]µβ.c→ c[β := α �] (µi)

nrec r s 0→ r (0)

nrec r s (Sn)→ s n (nrec r s n) (S)

nrec r s (µα.c)→ µα.c[α := α (nrec r s �)] (µN)

As usual, �+ denotes the transitive closure, � denotes the reflexive/transitive
closure and = denotes the reflexive/symmetric/transitive closure of →.

Fact 3.11. As in [FH92], the notion of a singular context allows us to replace
the reduction rules →µS, →µR and →µN by the following single rule.

Es[µα.c]→ µα.c[α := αEs]

Fact 3.12. E[µα.c] � µα.c[α := αE]

From a computational point of view one should think of µα.[β]t as a com-
bined operation that catches exceptions labeled α in t and throws the results of
t to β. Following Crolard [Cro99], we define the operators catch and throw.

Definition 3.13. The terms catchα t and throwβ s are defined as follows.

catchα t := µα.[α]t

throwβ s := µ .[β]s

Similar to commands, we give catchα t and throwβ s lower precedence than
sr, allowing us to write catchα sr instead of catchα (sr).

Crolard [Cro99] moreover defines a system with catch and throw as primi-
tives and proves a correspondence with the λµ-calculus. We prove that the above
simulation of catch and throw satisfies a generalization of Crolard’s rules.

Lemma 3.14. We have the following reductions for catch and throw.

1. E[catchα t] � catchαE[t[α := αE]]

2. E[throwα t] � throwα t

3. catchα catchβ t→ catchα t[β := α�]

4. throwα throwβ t→ throwβ t

5. throwα catchβ t→ throwα t[β := α�]

9

6. catchα throwα t→ catchα t

7. catchα t→ t provided that α /∈ FCV(t)

Proof. These reductions follow directly from the reduction rules of λµT, except
for (1) and (2) where we need Fact 3.12.

The catch and throw as defined above give rise to a system with statically
bound exceptions. This is different from exceptions in for example Lisp, where
they are dynamically bound. In a system with dynamically bound exceptions,
substitution is not capture avoiding for exception names.

Example 3.15. Consider the following term:

catchα S((λf : N→ N . catchα f 0) (λx : N . throwα x)).

Here, both occurrences of catch bind different occurrences α. So after two
β-reduction steps we obtain catchα S(catchβ throwα 0) and hence its normal
form is 0. In systems with dynamically bound exceptions this term would reduce
to S0 because the throw would get caught by the innermost catch.

Example 3.16. We consider a simple λµT-program F that, given f : N → N,
computes the product of the first n values of f , that is F n = f 0 ∗ . . . ∗ f n for
n ∈ N. The interest of this program is that it uses the exception mechanism
to stop multiplying once a zero is encountered. First we define addition and
multiplication in the usual way in λµT.

(+) := λnm . nrec m (λxy . Sy) n

(∗) := λnm . nrec 0 (λxy .m+ y) n

Now, given f : N → N, we define the term F : N → N, using a ‘helper function’
H, which does a case analysis on the value of f y, as follows.

F := λx . catchα nrec 1 H (Sx)

H := λym . nrec (throwα 0) (λz .m ∗ Sz) (f y).

Let f : N → N be some term that satisfies f 0 = 3, f 1 = 0 and f 2 = 5. We
show a computation of F 2.

F 2 � catchα nrec 1H 3

� catchαH 2 (nrec 1H 2)

� catchα nrec (throwα 0) (λz . (nrec 1 H 2) ∗ Sz) (f 2)

� catchα (nrec 1H 2) ∗ 5

� catchα (H 1 (nrec 1H 1)) ∗ 5

� catchα (nrec (throwα 0) (λz . (nrec 1H 1) ∗ Sz) (f 1)) ∗ 5

� catchα throwα 0 ∗ 5

� catchα nrec 0 (λxy . 5 + y) (throwα 0)

� catchα throwα 0

� 0

10

In order to prove that λµT satisfies subject reduction we have to prove
that each reduction rule preserves typing. Because some of the reduction rules
involve structural substitution it is convenient to prove an auxiliary result that
structural substitution preserves typing. To express this property we introduce
the notion of a contextual typing judgment, notation Γ; ∆ ` E : σ ⇐ ρ, which
expresses that Γ; ∆ ` t : ρ implies Γ; ∆ ` E[t] : σ.

Definition 3.17. The derivation rules for the contextual typing judgment
Γ; ∆ ` E : σ ⇐ ρ are as shown in Figure 3.

Γ; ∆ ` � : ρ⇐ ρ

(a) hole

Γ; ∆ ` E : σ → τ ⇐ ρ Γ; ∆ ` t : σ

Γ; ∆ ` Et : τ ⇐ ρ

(b) app

Γ; ∆ ` E : N⇐ ρ

Γ; ∆ ` SE : N⇐ ρ

(c) suc

Γ; ∆ ` r : σ Γ; ∆ ` s : N→ σ → σ Γ; ∆ ` E : N⇐ ρ

Γ; ∆ ` nrec r s E : σ ⇐ ρ

(d) nrec

Figure 3: The rules for contextual typing judgments in λµT.

Fact 3.18. Contextual typing judgments do indeed enjoy the intended behavior.
That is, we have Γ; ∆ ` E[t] : σ iff there is a type ρ such that Γ; ∆ ` E : σ ⇐ ρ
and Γ; ∆ ` t : ρ.

Fact 3.19. Typing is preserved under (structural) substitution.

1. If Γ, x : ρ; ∆ ` t : τ and Γ; ∆ ` r : ρ, then Γ; ∆ ` t[x := r] : τ .

2. If Γ; ∆, α : ρ ` t : τ and Γ; ∆ ` E : σ ⇐ ρ, then Γ; ∆, β : σ ` t[α := βE] : τ .

We have corresponding results for commands.

Proof. The first property is proven by mutual induction on the derivations of
Γ, x : ρ; ∆ ` t : τ and Γ, x : ρ; ∆ ` c : |= . All cases are straightforward. The sec-
ond property is proven by induction on the derivations of Γ; ∆, α : ρ ` t : τ and
Γ; ∆, α : ρ ` c : |= . Most cases are straightforward, so we only treat the pas-
sivate case. Let Γ; ∆, α : ρ ` [α]t : |= with Γ; ∆, α : ρ ` t : ρ. By the induction
hypothesis we have Γ; ∆, β : σ ` t[α := βE] : ρ. This leaves us to prove that
Γ; ∆, β : σ ` ([α]t)[α := βE] : |= . Since ([α]t)[α := βE] ≡ [β]E[t[α := βE]], the
result follows from Fact 3.18 and the induction hypothesis.

Theorem 3.20. The λµT-calculus satisfies subject reduction.

Proof. We have to prove that all reduction rules preserve typing.

1. Proving that the result holds for the →β , →0 and →S-rule is straightfor-
ward, so we omit that.

11

2. To prove that the result holds for the →µR, →µS and →µN-rule it is suf-
ficient to show that the result holds for Es[µα.c] → µβ.c[α := βEs] by
Fact 3.11. Given Γ; ∆ ` Es[µα.c] : τ we use Fact 3.18 to obtain a type σ
such that Γ; ∆ ` µα.c : σ and Γ; ∆ ` E : τ ⇐ σ.

Γ; ∆, α : σ ` c : |=

Γ; ∆ ` µα.c : σ Γ; ∆ ` Es : τ ⇐ σ

Γ; ∆ ` Es[µα.c] : τ

→
Γ; ∆, β : τ ` c[α := βEs] : |=

Γ; ∆ ` µβ.c[α := βEs] : τ

Here we have Γ; ∆, β : τ ` c[α := βEs] : |= by Fact 3.19.

3. For the →µη-rule we have the following.

Γ; ∆, α : ρ ` t : ρ

Γ; ∆ ` [α]t : |=
Γ; ∆ ` µα.[α]t : ρ

→ Γ; ∆ ` t : ρ

Since α /∈ FV(t), we have Γ; ∆ ` t : ρ by strengthening.

4. For the →µi-rule we have the following.

Γ; ∆, α : ρ, β : ρ ` c : |=

Γ; ∆, α : ρ ` µβ.c : ρ

Γ; ∆, α : ρ ` [α]µβ.c : |=

→ Γ; ∆, α : ρ ` c[β := α �] : |=

Here we have Γ; ∆, α : ρ ` c[β := α �] : |= by Fact 3.19 and the fact that
Γ; ∆, α : ρ ` � : ρ⇐ ρ.

The →S-rule, in contrast to the corresponding rule of λT (Definition 2.5),
only allows conversion when the numerical argument is a numeral. This re-
striction ensures that primitive recursion is not performed on terms that might
reduce to a term of the shape µα.c. If we omit this restriction we lose confluence.

Example 3.21. We illustrate this by considering a variant of our system with
the following rule instead.

nrec r s (St)→ s t (nrec r s t) (S′)

Now we can reduce the term t ≡ µα.[α]nrec 0 (λxh.2) (Sµ .[α]4) to two distinct
normal forms:

t ≡ µα.[α]nrec 0 (λxh.2) (Sµ .[α]4)

→ µα.[α]nrec 0 (λxh.2) (µ .[α]4) (µS)

→ µα.[α]µ .[α]4 (µN)

→ µα.[α]4 (µi)

→ 4 (µη)

12

and:

t ≡ µα.[α]nrec 0 (λxh.2) (Sµ .[α]4)

→ µα.[α](λxh.2) (µ .[α]4) (nrec 0 (λxh.2) (µ .[α]4)) (S′)

� µα.[α]2 (β)

→ 2 (µη)

Alternatively, in order to obtain a confluent system, it is possible to remove
the →S-rule while retaining the unrestricted →µS′ -rule. However, then we can
construct closed terms t : N that are in normal form but are not a numeral. An
example of such a term is µα.[α]Sµβ.[α]0.

Lemma 3.22. Given a value v such that ; ∆ ` v : ρ, we have:

1. If ρ = N, then v ≡ n.

2. If ρ = σ → τ , then t ≡ λx.r for some variable x and term r.

Proof. This result is proven by induction on the structure of values.

Lemma 3.23. Given a term t that is in normal and such that ; ∆ ` t : ρ, then
t is a value or t ≡ µα.[β]v for some value v.

Proof. By induction on the derivation ; ∆ ` t : ρ.

(var) Let ; ∆ ` x : ρ with x : ρ ∈ ∅. Now we obtain a contradiction since
x : ρ /∈ ∅.

(λ) Let ; ∆ ` λx.r : σ → τ . Now we are immediately done.

(app) Let ; ∆ ` rs : τ with ; ∆ ` r : σ → τ and ; ∆ ` s : σ. Now by the induction
hypothesis and Lemma 3.22 we have r ≡ λx.r′ or r ≡ µα.[β]v. But since
rs should be in normal form we obtain a contradiction.

(zero) Let ; ∆ ` 0 : N. Now we are immediately done.

(suc) Let ; ∆ ` St : N with ; ∆ ` t : N. Now we have t ≡ n or t ≡ µα.[β]v
by the induction hypothesis and Lemma 3.22. In the former case we are
immediately done, in the latter case we obtain a contradiction because the
→µS-rule can be applied.

(nrec) Let ; ∆ ` nrec r s t : ρ with ; ∆ ` t : N. Now we have t ≡ n or t ≡ µα.[β]v
by the induction hypothesis and Lemma 3.22. But in both cases we obtain
a contradiction because the reduction rules →µ0, →µS and →µN can be
applied, respectively.

(act/pas) Let ; ∆ ` µα.[β]t : ρ with ; ∆, α : ρ ` t : τ and β : τ ∈ (∆, α : ρ). Now
we have that t is a value or t ≡ µα.[β]v by the induction hypothesis. In
the former case we are immediately done, in the latter case we obtain a
contradiction because the →µi-rule can be applied.

13

Theorem 3.24. Given a term t that is in normal form and such that ; ` t : N,
then t ≡ n for some n ∈ N.

Proof. By Lemma 3.23 we obtain that t ≡ v or t ≡ µα.[β]v for some value v.
In the former case we have t ≡ n by Lemma 3.22. In the latter case we have
β = α since t is closed for µ-variables, so t ≡ µα.[α]n by Lemma 3.22. But now
we obtain a contradiction because we can apply the →µη-rule.

4 CPS-translation of λµT into λT

In this section we will present a CPS-translation from λµT into λT. We will use
this CPS-translation to prove the main result of this section: the functions that
are representable in λµT are exactly the functions that are provably recursive
in first-order arithmetic.

Definition 4.1. Let ¬ρ denote ρ → ⊥ for a fixed type ⊥. Given a type ρ, the
negative translation ρ◦ of ρ is mutually inductively defined with ρ• as follows.

ρ◦ := ¬¬ρ•

N• := N

(σ → τ)
•

:= σ◦ → τ◦

Definition 4.2. Given λT-terms t and r, the CPS-application t • r of t and r
is defined as follows.

t • r := λk.t(λl.lrk)

Definition 4.3. Given a λT-term t, the negative of t is defined as follows.

t := λk.kt

Fact 4.4. If Γ ` t : (σ → τ)
◦

and Γ ` r : σ◦, then Γ ` t • r : τ◦.

Definition 4.5. Given a λµT-term t, then the CPS-translation t◦ of t into λT

is inductively defined as follows.

x◦ := λk.xk

(λx.t)
◦

:= λk.k(λx.t◦)

(tr)
◦

:= t◦ • r◦

0◦ := 0

(St)
◦

:= λk.t◦(λl.k(Sl))

(nrecρ r s t)
◦

:= λk.t◦(λl.nrec r◦ s′ l k)

where s′ := λxp.s◦ • x • p
(µα.c)

◦
:= λkα.c

◦

([α]t)
◦

:= t◦kα

Here kα is a fresh λ-variable for each µ-variable α.

14

In the translation of nrecρ r s t we see that we are required to evaluate t
first, simply because it is the only way to obtain a numeral from t.

Fact 4.6. If Γ ` t : N, then Γ ` t : N◦.

Theorem 4.7. The translation from λµT into λT preserves typing. That is:

Γ; ∆ ` t : ρ in λµT =⇒ Γ◦,∆◦ ` t◦ : ρ◦ in λT

where Γ◦ = {x : ρ◦ | x : ρ ∈ Γ} and ∆◦ = {kα : ¬ρ• | α : ρ ∈ ∆}.

Proof. We prove that we have Γ; ∆ ` t : ρ and Γ; ∆ ` c : |= by mutual induction
on the derivations Γ◦,∆◦ ` t◦ : ρ◦ and Γ◦,∆◦ ` t◦ : ⊥, respectively. Most of
the cases are straightforward, so we treat just one interesting case.

(nrec) Let Γ; ∆ ` nrecρ r s t : ρ with Γ; ∆ ` r : ρ, Γ; ∆ ` s : N→ ρ→ ρ and
Γ; ∆ ` t : N. Now we have Γ◦,∆◦ ` r◦ : ρ◦, Γ◦,∆◦ ` s◦ : (N→ ρ→ ρ)

◦

and Γ◦,∆◦ ` t◦ : N◦ by the induction hypothesis. Furthermore we have
s′ ≡ λxp.s◦ • x • p : N→ ρ◦ → ρ◦ as shown below.

s◦ : (N→ ρ→ ρ)
◦

x : N (a)
x : N◦

(b)
s◦ • x : (ρ→ ρ)

◦
p : ρ◦

(c)
s◦ • x • p : ρ◦

λxp.s◦ • x • p : N→ ρ◦ → ρ◦

Here, step (a) follows from Fact 4.6 and step (b) and (c) follow from
Fact 4.4. So Γ◦,∆◦ ` (nrecρ r s t)

◦
: ρ◦ as shown below.

t◦ : N◦

r◦ : ρ◦ s′ : N→ ρ◦ → ρ◦ l : N

nrec r◦ s′ l : ρ◦ k : ¬ρ•

nrec r◦ s′ l k : ⊥
λl.nrec r◦ s′ l k : ¬N

t◦(λl.nrec r◦ s′ l k) : ⊥
λk.t◦(λl.nrec r◦ s′ l k) : ρ◦

Fact 4.8. For each n ∈ N we have n◦ � n.

Proof. By induction on n.

1. Let n = 0. We have 0◦ ≡ 0 by Definition 4.5.

2. Let n > 0. We have n◦ � n by the induction hypothesis and hence:

n+ 1◦ ≡ λk.n◦(λl.k(Sl))

� λk.(λq.qn)(λl.k(Sl))

� λk.k(Sn)

≡ n+ 1

15

Lemma 4.9. For each term t we have λk.t◦k → t◦.

Proof. This follows immediately from the Definition 4.5 since the translation t◦

of a term t is of the shape λl.t′, so λk.(λl.t′)k � λk.t′[l := k] ≡ t◦.

Lemma 4.10. We have λk.nrec r◦ s′ n k = nrec r◦ s′ n for s′ ≡ λxp.s◦ • x•p.

Proof. We distinguish the following cases.

1. Let n = 0. The result follows from Lemma 4.9.

2. Let n > 0. Now we have the following.

λk.nrec r◦ s′ n k � λk.s′ n− 1 (nrec r◦ s′ n− 1) k

� λk.(s◦ • n− 1 • nrec r◦ s′ n− 1) k

≡ λk.(λk2.(s
◦ • n− 1) (λl.l (nrec r◦ s′ n− 1) k2)) k

� λk.(s◦ • n− 1) (λl.l (nrec r◦ s′ n− 1) k)

≡ s◦ • n− 1 • nrec r◦ s′ n− 1

= s′ n− 1 (nrec r◦ s′ n− 1)

= nrec r◦ s′ n

Lemma 4.11. The translation from λµT into λT preserves (structural) substi-
tution. That is:

1. t◦[x := r◦] � (t[x := r])
◦

2. (t[α := β �])
◦ ≡ t◦[kα := kβ]

3. (t[α := β (S�)])
◦ � t◦[kα := λl.kβ(Sl)]

4. (t[α := β (�s)])◦ � t◦[kα := λl.ls◦kβ]

5. (t[α := β (nrec r s �)])
◦ � t◦[kα := λl.nrec r◦ s′ l kβ]

Proof. These results are proven by induction on the structure of t.

Lemma 4.12. The translation from λµT into λT preserves convertibility. That
is, if t1 = t2, then t1

◦ = t2
◦.

Proof. By induction on the derivation of t1 → t2. Most of the cases are straight-
forward, so we treat just one interesting case.

1. Let nrec r s (Sn)→ s n (nrec r s n). Now:

(nrec r s (Sn))
◦ ≡ λk.(Sn)

◦
(λl.nrec r◦ s′ l k)

� λk.Sn (λl.nrec r◦ s′ l k) (a)

� λk.nrec r◦ s′ (Sn) k

→ λk.s′ n (nrec r◦ s′ n) k

� λk.(s◦ • n • nrec r◦ s′ n) k

= λk.(λk2.(s
◦ • n) (λl.l (nrec r◦ s′ n) k2)) k

16

= λk.(s◦ • n) (λl.l (nrec r◦ ′s n) k)

= s◦ • n • nrec r◦ s′ n
= s◦ • n • λk2.nrec r

◦ s′ n k2 (b)

= s◦ • n • λk2.n (λl.nrec r◦ s′ l k2)

= s◦ • n • λk2.n
◦ (λl.nrec r◦ s′ l k2) (c)

≡ (s n (nrec r s n))
◦

Here, step (a) holds by Fact 4.8, step (b) holds by Lemma 4.10 and step
(c) holds by Fact 4.8.

Theorem 4.13. Each function f : Nn → N that is representable in λµT is
representable in λT. That is, if a term t with ; ` t : Nn → N represents the
function f in λµT, then there exists a term t′ with ` t′ : Nn → N that represents
the function f in λT.

Proof. Suppose that t : Nn → N represents f : Nn → N in λµT. That means
that f(m1, . . . ,mn) = t m1 . . .mn. Now define a term t′ as follows.

t′ := λx1 : N . . . λxn : N . (t◦ • x1 • . . . • xn) (λx : N . x)

Now we have t◦ : (Nn → N)
◦

by Theorem 4.7, xi : N◦ by Fact 4.6 and therefore
t◦ • x1 • . . . • xn : N◦ by Fact 4.4. Hence by setting ⊥ = N we have t′ : N. Now
it remains to prove that f(m1, . . . ,mn) = t′ m1 . . .mn.

t′ m1 . . .mn = (t◦ •m1 • . . . •mn) λx.x

= (t◦ •m1
◦ • . . . •mn

◦) λx.x (a)

= (t m1 . . .mn)
◦
λx.x

= (f(m1, . . . ,mn))
◦
λx.x (b)

= f(m1, . . . ,mn) λx.x (c)

= f(m1, . . . ,mn)

Here, step (a) holds by Fact 4.8, step (b) holds by Lemma 4.12 and step (c)
holds by Fact 4.8.

Corollary 4.14. The functions representable in λµT are exactly those that are
provably recursive in first-order arithmetic.

Proof. This result follows immediately from Theorem 2.10 and 4.13.

5 Confluence of λµT

To prove confluence one typically uses the notion of parallel reduction, as in-
troduced by Tait and Martin-Löf. Intuitively, a parallel reduction relation ⇒
allows to contract a number of redexes in a term simultaneously. Following Taka-
hashi [Tak95], ⇒ can be defined by induction over the term structure, making
it easy to prove that it is preserved under substitution. Then one proves that
⇒ satisfies:

17

• The diamond property : if t1 ⇒ t2 and t1 ⇒ t3, then there exists a t4 such
that t2 ⇒ t4 and t3 ⇒ t4, in a diagram:

t1

{� �#
t2

�#

t3

{�
t4

• ⇒ ⊂�: if t1 ⇒ t2, then t1 � t2.

• � ⊂ ⇒∗: if t1 � t2, then t1 ⇒∗ t2.

Thus one obtains confluence of→. To streamline proving the diamond property
of ⇒ one can define the complete development of a term t, notation t�, which is
obtained by contracting all redexes in t. Now it suffices to prove that t1 ⇒ t2
implies t2 ⇒ t�1. Unfortunately, as observed in [Fuj97, BHF01], adopting the no-
tion of parallel reduction in a standard way does not work for λµ. The resulting
parallel reduction relation will only be weakly confluent and not confluent.

In this section we will focus on resolving this problem for λµT. For an
extensive discussion of parallel reduction and its application to various systems
we refer to [Tak95]. A simple-minded parallel reduction relation, obtained by
extending Parigot’s parallel reduction [Par92] to λµT, would have the follow
rules:

(t6.1) If c⇒ c′, then µα.c⇒ µα.c′.

(t6.2) If c⇒ c′ and s⇒ s′, then (µα.c)s⇒ µα.c′[α := α (�s′)].

(t6.3) If c⇒ c′, then S(µα.c)⇒ µα.c′[α := α (S�)].

(t6.4) If r ⇒ r′, s⇒ s′ and c⇒ c′, then
nrec r s µα.c⇒ µα.c′[α := α (nrec r′ s′ �)].

(t7) If t⇒ t′ and α /∈ FCV(t), then µα.[α]t⇒ t′.

(c1) If t⇒ t′, then [α]t⇒ [α]t′.

(c2) If c⇒ c′, then [α]µβ.c⇒ c′[β := α�].

As has been observed in [Fuj99], Parigot’s original parallel reduction relation
is not confluent. Similarly, the parallel reduction as defined above for λµT is
not confluent. Let us (as in [BHF01]) consider the term (µα.[α]µγ.[α]x)y, this
term contains both a (t6.2) and a (c2)-redex. However, after contracting the

18

(t6.2)-redex, we obtain the term µα.[α](µγ.[α]xy)y, in which the (c2)-redex is
blocked.

(µα.[α]µγ.[α]x)y

qy $,
µα.[α](µγ.[α]xy)y

��

(µα.[α]x)y

��
µα.[α]µγ.[α]xy +3 µα.[α]xy

Although it is possible to prove that this relation is weakly confluent, weak
confluence is not quite satisfactory. Of course, since λµT is strongly normalizing
(Theorem 6.34), it would give confluence by Newman’s lemma. However, an
untyped version of λµT is of course not strongly normalizing, hence we do not
obtain confluence for raw terms this way.

Baba, Hirokawa and Fujita [BHF01] noticed that this problem could be
repaired by allowing a µβ to “jump over a whole context” to its corresponding
[α]. Their version of the (c2)-rule is as follows.

(c2) If c⇒ c′ and E ⇒ E′, then [α]E[µβ.c]⇒ c′[β := αE′].

Here E and E′ are contexts and parallel reduction on contexts is defined by re-
ducing all its components in parallel. This (c2)-rule performs “deep” structural
substitutions and renaming in one step and thus covers and extends the original
rules (t6.1-4) and (c2)

Baba et al. [BHF01] have shown that their relation ⇒ is confluent for λµ
without the (t7) rule. It is not confluent if the (t7) rule is included. Let us (as
in [BHF01]) consider the term µα.[α](µβ.[γ]x)yz.

µα.[α](µβ.[γ]x)yz

z�

$,
(µβ.[γ]x)yz

��
µα.[γ]x (µβ.[γ]x)zks

In the conclusion of their work they suggest that this problem can be repaired
by considering a series of structural substitutions (t6.1-4) as one step. This ap-
proach has been carried out successfully by Nakazawa for a call-by-value variant
of λµ [Nak03]. However, Nakazawa did not use the notion of complete develop-
ment. We will follow the approach suggested by Baba et al. for λµT and use
the notion of complete development.

Definition 5.1. Parallel reduction t ⇒ t′ on terms is mutually inductively
defined with parallel reduction c ⇒ c′ on commands and parallel reduction
E ⇒ E′ on contexts as follows.

19

(t1) x⇒ x

(t2) 0⇒ 0

(t3) If t⇒ t′, then λx.t⇒ λx.t′.

(t4) If t⇒ t′ and Es ⇒ E′, then Es[t]⇒ E′[t′].

(t5) If t⇒ t′ and r ⇒ r′, then (λx.t)r ⇒ t′[x := r′].

(t6) If c⇒ c′ and E ⇒ E′, then E[µα.c]⇒ µα.c′[α := αE′].

(t7) If t⇒ t′ and α /∈ FCV(t), then µα.[α]t⇒ t′.

(t8) If r ⇒ r′, then nrec r s 0⇒ r′.

(t9) If r ⇒ r′ and s⇒ s′, then nrec r s (Sn)⇒ s′ n (nrec r′ s′ n).

(c1) If t⇒ t′, then [α]t⇒ [α]t′.

(c2) If c⇒ c′ and E ⇒ E′, then [α]E[µβ.c]⇒ c′[β := αE′].

(E1) �⇒ �

(E2) If E ⇒ E′ and t⇒ t′, then Et⇒ E′t′.

(E3) If E ⇒ E′, then SE ⇒ SE′.

(E4) If E ⇒ E′, r ⇒ r′ and s⇒ s′, then nrec r s E ⇒ nrec r′ s′ E′.

Furthermore, ⇒∗ denotes the transitive closure of ⇒.

For conciseness of presentation, we specify most of the forthcoming lemmas
just for terms. Yet they can always be mutually stated and mutually inductively
proven for commands and contexts.

Lemma 5.2. Parallel reduction is reflexive. That is, t⇒ t for all terms t.

Proof. By induction on t. We use the rules (t1-4), (t6), (c1) and (E1-4).

Lemma 5.3. If E ⇒ E′ and t⇒ t′, then E[t]⇒ E′[t′].

Proof. By induction on the derivation of E ⇒ E′.

Lemma 5.4. If Es is singular and Es ⇒ E′, then E′ is singular.

Proof. By a case analysis on the derivation of Es ⇒ E′.

Lemma 5.5. If t⇒ t′, then FV(t′) ⊆ FV(t) and FCV(t′) ⊆ FCV(t).

Proof. By induction on the derivation of t⇒ t′.

Lemma 5.6. Parallel reduction is preserved under (structural) substitution.

1. If t⇒ t′ and s⇒ s′, then t[x := s]⇒ t′[x := s′].

20

2. If t⇒ t′ and E ⇒ E′, then t[α := βE]⇒ t′[α := βE′].

Proof. By induction on the derivation of t⇒ t′. We treat some cases.

(t6) Let F [µγ.c] ⇒ µγ.c′[γ := γF ′] with c ⇒ c′ and F ⇒ F ′. Now we have
c[α := βE] ⇒ c′[α := βE′] and F [α := βE] ⇒ F ′[α := βE′] by the
induction hypothesis. Therefore we have the following.

(F [µγ.c])[α := βE] ≡ (F [α := βE])[µγ.c[α := βE]]

⇒ µγ.c′[α := βE′][γ := γ(F ′[α := βE′])]

≡ µγ.c′[γ := γF ′][α := βE′]

≡ (µγ.c′[γ := γF ′])[α := βE′]

In the before last step we use a substitution lemma. This is possible
because γ /∈ FCV(E) by the Barendregt convention and thus γ /∈ FCV(E′)
by Lemma 5.5.

(c2) Let [α]F [µγ.c] ⇒ c′[γ := αF ′] with c ⇒ c′ and F ⇒ F ′. Now we have
c[α := βE] ⇒ c′[α := βE′] and F [α := βE] ⇒ F ′[α := βE′] by the
induction hypothesis. Therefore we have the following.

([α]F [µγ.c])[α := βE] ≡ [β]E(F [α := βE])[µγ.c[α := βE]]

⇒ c′[α := βE′][γ := βE′(F ′[α := βE′])]

≡ c′[γ := αF ′][α := βE′]

≡ (c′[γ := αF ′])[α := βE′]

In the before last step we use a substitution lemma. This is possible
because γ /∈ FCV(E) by the Barendregt convention and thus γ /∈ FCV(E′)
by Lemma 5.5.

A crucial property of a parallel reduction is that a one step reduction is an
instance of a parallel reduction and that a parallel reduction is an instance of a
multi-step reduction.

Lemma 5.7. Parallel reduction enjoys the intended behavior. That is:

1. If t→ t′, then t⇒ t′.

2. If t⇒ t′, then t� t′.

Proof. The first property is proven by induction on the derivation of t → t′

using that parallel reduction is reflexive (Lemma 5.2). The second by induction
on the derivation of t⇒ t′ using an obvious substitution lemma for �.

To define the complete development of a term t, we need to decide which
redexes to contract. This job is non-trivial because ⇒ is very strong: In one
step it is able to move a subterm that is located very deeply in the term to the
outside. For example, consider the command e:

e ≡ En[µαn.[αn] . . . E1[µα1.[α1]E0[µα0.c]] . . .] (1)

21

where all the µαi.[αi]Ei−1 are µη-redexes. That is, αi /∈ FCV(Ej) for all
0 ≤ j < i ≤ n and αi /∈ FCV(c) for all 0 ≤ i ≤ n. Intuitively one would be
urged to contract the (t7)-redexes immediately. That yields:

E′n[. . . E′1[E′0[µα0.c
′]]]

given complete developments E′i of Ei and c′ of c. However, this is not the
complete development of e. We have [αi+1]Ei[µαi.d] ⇒ d for each i such that
0 ≤ i < n, hence the whole command e reduces to c′. As this example indicates,
it is impossible to determine whether a (t7)-redex should be contracted without
looking more deeply into the term. In order to define the complete development
we introduce a special kind of context consisting of a series of nested (t7)-
redexes, as in (1). Furthermore, we define a case distinction on terms.

Definition 5.8. A λµT η-context (or simply: an η-context) is defined as fol-
lows.

H ::= � | E[µα.[α]H] provided that α /∈ FCV(H)

The operation of substitution of a term for the hole in an η-context is defined
in the usual way. However, since these contexts contain µ-binders it is impor-
tant that this operation is capture avoiding for µ-variables. Note also that—in
general—an η-context is not a context in the sense of Definition 3.5.

Lemma 5.9. Each term t is of exactly one of the following shapes.

variable 1. x

value 2. n

3. λx.s

redex 4. (λx.s)r

5. nrec r s n

6. H[r] with H 6≡ � and r ≡ E[λx.s], r ≡ E[0] or r ≡ E[x]

7. H[E[µβ.c]] with c ≡ [γ]s and γ 6= β, or c ≡ [β]s and β ∈ FCV(s)

other 8. sr with s 6≡ E[µβ.c] and s 6≡ λx.t
9. nrec r s u with u 6≡ E[µβ.c] and u 6≡ n

10. Su with u 6≡ E[µβ.c] and u 6≡ n

Proof. We prove that t is always of one of the given shapes by induction on
the structure of t. Furthermore, because these shapes are non-overlapping it is
immediate that t is always of exactly one of the given shapes.

Definition 5.10. The complete development t� of a term t is defined (using
the case distinction established in Lemma 5.9) as:

1. x� := x

22

2. n� := n

3. (λx.s)� := λx.s�

4. ((λx.s)r)� := s�[x := r�]

5. (nrec r s 0)� := r�

6. (nrec r s (Sn))� := s� n (nrec r� s� n)

7. (H[r])� := H�[r�]

provided that H 6≡ � and r ≡ E[λx.s], r ≡ E[0] or r ≡ E[x].

8. (H[E[µβ.c]])� := µβ.c�[β := βH�E�]

provided that c ≡ [γ]s and γ 6= β, or c ≡ [β]s and β ∈ FCV(s).

9. (sr)� := s�r�

provided that s 6≡ E[µβ.c] and s 6≡ λx.t

10. (nrec r s u)� := nrec r� s� u�

provided that u 6≡ E[µβ.c] and u 6≡ n

11. (Su)� := Su�

provided that u 6≡ E[µβ.c] and u 6≡ n

with the complete development c� of a command c defined as:

1. ([α]E[µβ.c])� := c�[β := αE�]

2. ([α]t)� := [α]t�

provided that t 6≡ E[µβ.c]

the complete development E� of a context E defined as:

1. �� := �

2. (Et)� := E�t�

3. (SE)� := SE�

4. (nrec r s E)� := nrec r� s� E�

and the complete development H� of an η-context H defined as:

1. �� := �

2. (E[µα.[α]H])� := E�H�

Towards a proof of confluence, we now want to prove the following property:
if t⇒ t′, then t′ ⇒ t�. This is proven by induction on the structure of t; the most
interesting cases are when t ≡ H[r] (case 7 of Definition 5.10) or t ≡ H[E[µβ.c]]
(case 8 of Definition 5.10). For these cases we need some special lemmas.

23

Lemma 5.11. Let r be a term such that r ≡ E[λx.s], r ≡ E[0] or r ≡ E[x],
and H an η-context. If [α]H[r] ⇒ c with α /∈ FCV(H[r]), then c ≡ [α]s with
H[r]⇒ s and α /∈ FCV(s).

Proof. By induction on the structure of H.

Lemma 5.12. Let r be a term such that r ≡ E[λx.s], r ≡ E[0] or r ≡ E[x], and
H an η-context such that H 6≡ �. If H[r]⇒ t and for every strict subexpression
e of H[r] we have e⇒ e′ implies e′ ⇒ e�, then t⇒ H�[r�].

Proof. We have to consider three cases for the reduction H[r]⇒ t.

(t4) Let H[r] ≡ Es[Er[µβ.[β]H1[r]]] ⇒ E′s[s] with Es a singular context such
that Es ⇒ E′s, and Er[µβ.[β]H1[r]]⇒ s. By assumption we have E′s ⇒ E�s
and s⇒ (Er[µβ.[β]H1[r]])� ≡ E�r [H�1 [r�]]. Therefore, by Lemma 5.3, we
obtain that E′s[s]⇒ E�s [E�r [H�1 [r�]]] ≡ (H[r])�.

(t6) Let H[r] ≡ E[µβ.[β]H1[r]] ⇒ µβ.c[β := βE′] with E ⇒ E′ and moreover
[β]H1[r]⇒ c. By Lemma 5.11, we know that c ≡ [β]s with H1[r]⇒ s and
β /∈ FCV(s). So we are in the situation

H[r] ≡ E[µβ.[β]H1[r]]⇒ µβ.[β]E′[s]

with E ⇒ E′ and H1[r]⇒ s. Now E′ ⇒ E� and s⇒ (H1[r])� ≡ H�1 [r�] by
assumption. Therefore µβ.[β]E′[s]⇒ E�[H�1 [r�]] ≡ (H[r])� by Lemma 5.3
and rule (t7).

(t7) Let H[r] ≡ µβ.[β]H1[r] ⇒ s with H1[r] ⇒ s. By assumption we have
s⇒ (H1[r])� ≡ H�1 [r�]. Therefore s⇒ H�1 [r�] ≡ (H[r])�.

Lemma 5.13. Let E be a context, H an η-context, γ a µ-variable, and let d
be a command such that d ≡ [β]s with β 6= γ or d ≡ [γ]s with γ ∈ FCV(s).
If H[E[µγ.d]] ⇒ t and for every strict subexpression e of H[E[µγ.d]] we have
e⇒ e′ implies e′ ⇒ e�, then t⇒ µα.d�[γ := αH�E�].

Proof. We prove this result by simultaneously proving the following three prop-
erties by induction on the length of H.

1. If H[E[µγ.d]]⇒ t, then E2[t]⇒ µα.d�[γ := αE�2H
�E�].

2. If H[E[µγ.d]]⇒ t, then [α]E2[t]⇒ d�[γ := αE�2H
�E�].

3. If [α]H[E[µγ.d]]⇒ c, then c⇒ d�[γ := αH�E�].

The base case is where H ≡ �. We only treat a number of instances for the
step case, so let H ≡ E1[µβ.[β]H1].

1. Let E1[µβ.[β]H1[E[µγ.d]]] ⇒ t. Analyzing the possible steps we prove
that for every context E2 we have:

E2[t]⇒ µα.d�[γ := αE�2E
�
1H
�
1E
�].

24

(t4) Let E1 ≡ EsEr where Es is a singular context and let t ≡ E′s[s]
with Es ⇒ E′s and Er[µβ.[β]H1[E[µγ.d]]] ⇒ s. We can apply the
induction hypothesis for property (1) to Er[µβ.[β]H1]. Now we find
that for every context E2 we have:

E2[E′s[s]]⇒ µα.d�[γ := αE�2E
�
sE
�
rH
�
1E
�].

(t6) Let E1[µβ.[β]H1[E[µγ.d]]] ⇒ µβ.c[β := βE′1] with E1 ⇒ E′1 and
[β]H1[E[µγ.d]]⇒ c. The induction hypothesis for property (3) yields
c⇒ d�[γ := βH�1E

�]. Using the substitution Lemma 5.6 and the rule
(t6), we conclude that for any context E2 we have:

E2[µβ.c[β := βE′1]]⇒ µβ.d�[γ := βE�2E
�
1H
�
1E
�].

(t7) Let E1 ≡ � and µβ.[β]H1[E[µγ.d]] ⇒ s with H1[µγ.d] ⇒ s. The
induction hypothesis for property (1) applied to H1[E[µγ.d]] tells us
that for any context E2 we have:

E2[s]⇒ µγ.d�[γ := γE�2H
�
1E
�].

2. A similar argument to the one used for (1) also proves (2).

3. Let [α]E1[µβ.[β]H1[E[µγ.d]]] ⇒ c. Analyzing the possible steps we prove
that we have:

c⇒ d�[γ := αE�1H
�
1E
�].

(c1) Let [α]E1[µβ.[β]H1[E[µγ.d]]]⇒ [α]s with E1[µβ.[β]H1[E[µγ.d]]]⇒ s.
To close this case, we have to make a finer case analysis of the pos-
sible steps that have led to s. This is similar to what we have done
for property (1) above. To close the case we also need the induction
hypothesis for property (1) and property (2).

(c2) Let [α]E1[µβ.[β]H1[E[µγ.d]]] ⇒ c[β := αE′1] with E1 ⇒ E′1 and
[β]H1[E[µγ.d]] ⇒ c. We apply the induction hypothesis for prop-
erty (3) to conclude that c ⇒ d�[γ := βH�1E

�]. Therefore we have
c[β := αE′1]⇒ d�[γ := αE�1H

�
1E
�] by the substitution Lemma 5.6 and

we are done.

Theorem 5.14. If t1 ⇒ t2, then t2 ⇒ t�1.

Proof. We prove this result by mutual induction on the structure of terms,
commands and contexts. We use the case distinction made in Lemma 5.9. We
consider some interesting cases.

1. Let t1 ≡ x. In this case just reduction (t1) is possible, so x⇒ x� ≡ x.

2. Let t1 ≡ (λx.s1)r1. In this case the following reductions are possible.

(t4) (λx.s1)r1 ⇒ (λx.s2)r2 with s1 ⇒ s2 and r1 ⇒ r2. Now we have
s2 ⇒ s�1 and r2 ⇒ r�1 by the induction hypothesis. Therefore we have
(λx.s2)r2 ⇒ ((λx.s1)r1)� ≡ s�1[x := r�1].

25

(t5) (λx.s1)r1 ⇒ s2[x := r2] with s1 ⇒ s2 and r1 ⇒ r2. Now we
have s2 ⇒ s�1 and r2 ⇒ r�1 by the induction hypothesis. Therefore
s2[x := r2]⇒ ((λx.s1)r1)� ≡ s�1[x := r�1] by Lemma 5.6.

3. Let t1 ≡ H1[r1] with H1 6= � and r1 ≡ E[λx.s], r1 ≡ E[0] or r1 ≡ E[x].
Suppose t1 ⇒ t2. Then t2 ⇒ H�1 [r�1] ≡ t�1 by Lemma 5.12.

4. Let t1 ≡ H1[E1[µβ.c1]] with c1 ≡ [γ]s and γ 6= β, or c1 ≡ [β]s and
β ∈ FCV(s). Suppose t1 ⇒ t2, then t2 ⇒ µα.c�1[β := αH�1E

�
1] ≡ t�1 by

Lemma 5.13.

5. Let t1 ≡ s1r1 with s1 6≡ E[µα.c] and s1 6≡ λx.s. In this case just reduction
(t4) is possible, so s1r1 ⇒ s2r2 with s1 ⇒ s2 and r1 ⇒ r2. Now s1 ⇒ s�2
and r2 ⇒ r�1 by the induction hypothesis, so s2r2 ⇒ (s1r1)� ≡ s�1r�1 .

Corollary 5.15. Parallel reduction satisfies the diamond property. That is, if
t1 ⇒ t2 and t1 ⇒ t3, then there exists a term t4 such that t2 ⇒ t4 and t3 ⇒ t4.

Proof. Let t4 = t�1. Now we have t2 ⇒ t�1 and t3 ⇒ t�1 by Theorem 5.14.

Theorem 5.16. Reduction on λµT is confluent. That is, if t1 � t2 and t1 � t3,
then there exists a term t4 such that t2 � t4 and t3 � t4.

Proof. By Corollary 5.15 and the fact that t ⇒∗ t′ if and only if t � t′, which
follows immediately from Lemma 5.7.

6 Strong normalization of λµT

In this section we prove that the λµT-calculus is strongly normalizing. Unfortu-
nately we cannot use the CPS-translation as defined in Section 4 to prove this
result. Our CPS-translation merely preserves typing and convertibility whereas
it does not preserve reduction. Defining a CPS-translation that is strictly re-
duction preserving (each reduction step corresponds to one or more reduction
steps under the translation) is already non-trivial for the λµ-calculus, as Ikeda
and Nakazawa [IN06] have shown. We failed to extend their approach to λµT

due to difficulties translating the nrec construct.
Instead we prove strong normalization by defining two reductions →A and

→B such that →=→AB :=→A ∪ →B . In Section 6.1 we prove, using the
reducibility method, that →A is strongly normalizing. In Section 6.2 we prove
that →B is strongly normalizing and that both reductions commute in a way
that we can obtain strong normalization for →AB .

To prove strong normalization of the second order call-by-value λµ-calculus,
Nakazawa [Nak03] characterizes reductions whose strictness is preserved by a
modified CPS-translation. Nakazawa also uses a postponement argument, but
the proof is very different from ours.

Definition 6.1. Let →A denote the compatible closure of the reduction rules
→β, →µS, →µR, →0, →S and →µN. Let →B denote the compatible closure of
the reduction rules →µη and →µi.

26

Definition 6.2. Given a notion of reduction →X (e.g. →A or →B), the set of
strongly normalizing terms, notation SNX , is inductively defined as follows.

1. If for all terms t′ with t→X t′ we have t′ ∈ SNX , then t ∈ SNX .

Fact 6.3. If t is in →X-normal form, then t ∈ SNX .

Fact 6.4. If t ∈ SNX and t�X t′, then t′ ∈ SNX .

6.1 Strong normalization of →A

In this subsection we prove that →A-reduction is strongly normalizing using
the reducibility method. Our proof is inspired by Parigot’s proof of strong
normalization for the λµ-calculus [Par97].

Since we only consider →A-reduction we will omit subscripts from all nota-
tions. Moreover, for conciseness of notation we specify most of the forthcoming
lemmas only for terms and not for commands.

The reducibility method is originally due to Tait [Tai67], who proposed the
following interpretation for →-types.

[[α]] := SN

[[σ → τ]] := {t | ∀s ∈ [[σ]] . ts ∈ [[τ]]}

This interpretation makes it possible to prove strong normalization of λ→ in a
very short and elegant way [Geu08, for example]. Instead of proving that a term
t of type ρ is strongly normalizing one proves a slight generalization, namely
t ∈ [[ρ]]. This method also extends to λT [GTL89, for example].

Unfortunately, for λµ it becomes more complicated. If a term of the shape
λx.r consumes an argument, the λ-abstraction vanishes. However, if a term of
the shape µα.c consumes an argument the µ-abstraction remains, hence it is
not possible to predict how many arguments µα.c will consume. To repair this
issue Parigot has proposed a way to switch between a term that is a member
of a certain reducibility candidate and one that is strongly normalizing when
applied to a certain set of sequences of arguments.

In λµT a term of the shape µα.c is not only able to consume arguments on
its right hand side, but is also able to consume an unknown number of S’s and
nrec’s. Therefore we generalize Parigot’s idea to contexts so that we are able
to switch between a term that is a member of a certain reducibility candidate
and one that is strongly normalizing in a certain set of contexts.

Before going into the details of the proof we state some facts.

Fact 6.5. If t ∈ SN, then we have that the length of each→A-reduction sequence
starting at t is bounded. We use the notation ν(t) to denote this bound.

Proof. The result holds because →A-reduction is finitely branching.

Fact 6.6. If t ∈ SN and t→ t′, then ν(t′) < ν(t).

Fact 6.7. →A-reduction is preserved under (structural) substitution.

27

1. If t→ t′, then t[x := s]→ t′[x := s].

2. If s→ s′, then t[x := s] � t[x := s′].

3. If t→ t′, then E[t]→ E[t′] and t[α := βE]→ t′[α := βE].

4. If E → E′, then E[t]→ E′[t] and t[α := βE] � t[α := βE′].

We now extend the notion of strongly normalizing terms to strongly normal-
izing contexts. Informally a context is strongly normalizing if all its sub-terms
are strongly normalizing.

Definition 6.8. The set of strongly normalizing contexts, notation SN�, is
inductively defined as follows.

1. � ∈ SN�

2. If E ∈ SN� and t ∈ SN, then Et ∈ SN�.

3. If E ∈ SN�, then SE ∈ SN�.

4. If E ∈ SN�, r ∈ SN and s ∈ SN, then nrec r s E ∈ SN�.

Parigot’s approach has another advantage; for the expansion lemmas we do
not need to worry about the interpretation of types. We merely need the notion
of being strongly normalizing (with respect to some context).

Lemma 6.9. Let E be a context and r a term such that r ≡ x, r ≡ (λx.r)t,
r ≡ nrec r s n or r ≡ Es[µα.c]. If E[r]→ t, then we have:

1. t ≡ E[r′] with r → r′, or,

2. t ≡ E′[r] with E → E′.

Proof. We prove the result by induction on the structure of E. We consider only
the case E ≡ Ft. Here we use the assumption about the shape of r to derive
that F [r] cannot be of the shape λx.s or µβ.c. This guarantees that F [r]t is not
a redex, by which the result follows immediately.

Lemma 6.10. If r ∈ SN and E[t[x := r]] ∈ SN, then E[(λx.t)r] ∈ SN.

Proof. We use Fact 6.5 to prove this result by well-founded induction on ν(r) +
ν(E[t[x := r]]). By Definition 6.2 we have to show that for each term w with
E[(λx.t)r]→ w we have w ∈ SN.

1. Let w ≡ E[t[x := r]]. Now E[t[x := r]] ∈ SN by assumption.

2. Let w ≡ E[(λx.t′)r] and t → t′. Now E[t[x := r]] → E[t′[x := r]] by
Fact 6.7, hence E[t′[x := r]] ∈ SN. By the induction hypothesis we have
E[(λx.t′)r] ∈ SN since ν(E[t′[x := r]]) < ν(E[t[x := r]]).

3. Let w ≡ E[(λx.t)r′] and r → r′. Now E[t[x := r]] � E[t[x := r′]] by
Fact 6.7 and therefore E[t[x := r′]] ∈ SN. By the induction hypothesis we
have E[(λx.t)r′] ∈ SN since ν(r′) < ν(r).

28

4. Let w ≡ E[(λx.t)r] and E → E′. Now E[t[x := r]] → E′[t[x := r]] by
Fact 6.7, hence E′[t[x := r]] ∈ SN. By the induction hypothesis we have
E′[(λx.t)r] ∈ SN since ν(E′[t[x := r]]) < ν(E[t[x := r]]).

Lemma 6.9 guarantees that we have considered all possible shapes of w.

Lemma 6.11. If F s ∈ SN� and E[µα.c[α := αF s]] ∈ SN, then E[F s[µα.c]] ∈ SN.

Proof. The proof is similar to the proof of Lemma 6.10.

Corollary 6.12. If F ∈ SN� and E[µα.c[α := αF]] ∈ SN, then E[F [µα.c]] ∈ SN.

Proof. By induction on the structure of F .

1. Let F ≡ �. We have E[µα.c] ≡ E[µα.c[α := α�]] for each context E and
command c, so by assumption we are done.

2. Let F ≡ GsH. By an obvious substitution lemma and assumption we have
E[µα.c[α := αH][α := αGs]] ≡ E[µα.c[α := αF]] ∈ SN. Therefore we have
E[Gs[µα.c[α := αH]]] ∈ SN by Lemma 6.11. Hence E[Gs[H[µα.c]]] ∈ SN

by the induction hypothesis.

Lemma 6.13. For each context E we have the following.

1. If E[r] ∈ SN and s ∈ SN, then E[nrec r s 0] ∈ SN.

2. If E[s n (nrec r s n)] ∈ SN, then E[nrec r s (Sn)] ∈ SN.

Proof. We use Fact 6.5 and prove (1) by induction on ν(E[r]) + ν(s) and (2)
by induction on ν(E[s n (nrec r s n)]). Similar to the proof of Lemma 6.10 we
distinguish various cases.

Parigot extends the well-known functional construction of two sets of terms
S and T (S → T := {t | ∀u ∈ S . tu ∈ T}) to a set S of sequences of terms and
a set T of terms as follows.

S → T := {t | ∀~u ∈ S . t~u ∈ T}

Moreover, he defines the notion of reducibility candidates in such way that
each reducibility candidate R can be expressed as S → SN for a certain set of
sequences of terms S. Therefore he is able to switch between the proposition
t ∈ R and the proposition t~u ∈ SN for all ~u ∈ S. We extend Parigot’s notion of
functional construction to contexts in the obvious way.

Definition 6.14. Given a set of contexts E and a set of terms T , the functional
construction E → T is defined as follows.

E → T := {t | ∀E ∈ E . E[t] ∈ T}

Given two sets of terms S and T , then S → T is defined as follows.

S → T := {�u | u ∈ S} → T

29

Remark that, for sets of terms S and T , our definition of the functional
construction S → T is equivalent to the ordinary definition.

S → T = {�u | u ∈ S} → T = {t | ∀u ∈ S . tu ∈ T}

Keeping in mind that we wish to express each reducibility candidate R as
E → SN for some E , one might try to define the collection of reducibility can-
didates as the smallest set that contains SN and is closed under functional con-
struction and arbitrary intersection. But then {nrec Ω Ω �} → SN = ∅ is a
valid candidate too. To avoid this we should be a bit more careful.

Definition 6.15. We define the collection of reducibility candidates, R, in-
ductively as follows.

(sn) SN ∈ R

(
⋂

) If ∅ ⊂ R ⊆ R, then
⋂

R ∈ R.

(app) If S, T ∈ R, then S → T ∈ R.

(suc) If T ∈ R, then {S�} → T ∈ R.

(nrec) If S, T ∈ R, then {nrec r s � | r ∈ T, s ∈ S → T → T} → T ∈ R.

Lemma 6.16. For each R ∈ R we have the following.

1. R ⊆ SN

2. E[x] ∈ R for each x and E ∈ SN�.

Proof. We prove these results simultaneously by induction on the generation of
R. We consider some interesting cases.

(sn) Let R = SN. We certainly have R ⊆ SN. Also, E[x] ∈ SN by Lemma 6.9.

(
⋂

) Let R =
⋂

R. By the induction hypothesis we have T ⊆ SN for each
T ∈ R. Therefore we have

⋂
R ⊆ SN, so the first property holds.

By the induction hypothesis we also have E[x] ∈ T for each T ∈ R and
E ∈ SN�. Therefore we have E[x] ∈ R for each E ∈ SN�, so the second
property holds as well.

(suc) Let R = {S�} → T . To prove the first property, we suppose that t ∈ R.
This means that St ∈ T . Therefore St ∈ SN because T ⊆ SN by the
induction hypothesis. Now certainly t ∈ SN, so the first property holds.

To prove the second property we have to show that E[x] ∈ R. By the
induction hypothesis we have E[x] ∈ T for each E ∈ SN�. In particular
we have SE[x] ∈ T . This means that E[x] ∈ R, so the second property
holds as well.

30

(nrec) Let R = {nrec r s � | r ∈ T, s ∈ S → T → T} → T . To prove the first
property, we suppose that t ∈ R. This means that nrec r s t ∈ T for each
r ∈ T and s ∈ S → T → T . By the induction hypothesis we have an
x ∈ T and y ∈ S → T → T , hence nrec x y t ∈ T . Thus t ∈ SN because
T ⊆ SN by the induction hypothesis, so the first property holds.

To prove the second property we have to show that E[x] ∈ R. By the
induction hypothesis we have E[x] ∈ T for each E ∈ SN�. In particular
we have nrec r s E[x] ∈ T . This means that E[x] ∈ R, so the second
property holds as well.

As we have remarked before, we wish to express each reducibility candidate
R as E → SN for some set of contexts E . Now we will make that idea precise.

Definition 6.17. Given an R ∈ R, a set of contexts R⊥ is inductively defined
on the generation of R as follows.

SN⊥ := {�}

(
⋂

R)
⊥

:=
⋃
{T⊥ | T ∈ R}

(S → T)
⊥

:= {�} ∪ {E(�u) | u ∈ S,E ∈ T⊥}

({S�} → T)
⊥

:= {�} ∪ {E(S�) | E ∈ T⊥}

({nrec r s �} → T)
⊥

:= {�} ∪ {E(nrec r s �) | r ∈ T, s ∈ S → T → T,E ∈ T⊥}

Fact 6.18. For each R ∈ R we have � ∈ R⊥.

Lemma 6.19. For each R ∈ R we have R = R⊥ → SN.

Proof. By induction on the generation of R. We consider some interesting cases.

(sn) Let R = SN. We have R = {�} → SN, so we are done.

(
⋂

) Let R =
⋂

R. By the induction hypothesis we have T = T⊥ → SN for
each T ∈ R. Therefore we have the following.

R =
⋂
{T | T ∈ R}

=
⋂
{T⊥ → SN | T ∈ R}

=
⋂
{{t | ∀E ∈ T⊥ . E[t] ∈ SN} | T ∈ R}

= {t | ∀T ∈ R, E ∈ T⊥ . E[t] ∈ SN}

= {t | ∀E ∈
⋃
{T⊥ | T ∈ R} . E[t] ∈ SN}

=
⋃
{T⊥ | T ∈ R} → SN

31

(nrec) Let R = {nrec r s � | r ∈ T, s ∈ S → T → T} → T . By the induction
hypothesis we have T = T⊥ → SN. Therefore we have the following.

R = {nrec r s � | r ∈ T, s ∈ S → T → T} → T

= {nrec r s � | r ∈ T, s ∈ S → T → T} → T⊥ → SN

= {t | ∀r ∈ T, s ∈ S → T → T . nrec r s t ∈ T⊥ → SN}
= {t | ∀E ∈ T⊥, r ∈ T, s ∈ S → T → T . E[nrec r s t] ∈ SN}
= {t | t ∈ SN ∧ ∀E ∈ T⊥, r ∈ T, s ∈ S → T → T . E[nrec r s t] ∈ SN}
=
(
{�} ∪ {E(nrec r s �) | r ∈ T, s ∈ S → T → T,E ∈ T⊥}

)
→ SN

The before last step holds because for all terms t, if E[nrec r s t] ∈ SN

for all E ∈ T⊥, r ∈ T , s ∈ S → T → T , then also t ∈ SN. This is because
T⊥, T and S → T → T are non-empty by Fact 6.18 and Lemma 6.16.

Lemma 6.20. For each R ∈ R we have t ∈ R iff E[t] ∈ SN for all E ∈ R⊥.

Proof. We have t ∈ R iff t ∈ R⊥ → SN by Lemma 6.19, and t ∈ R⊥ → SN iff
E[t] ∈ SN for all E ∈ R⊥ by Definition 6.14.

Now, to prove strong normalization of →A, it remains to give an interpreta-
tion [[ρ]] ∈ R for each type ρ. As a first attempt, we could adapt the definition
for λ→, which we have given in the introduction of this section.

[[N]] := SN

[[σ → τ]] := [[σ]]→ [[τ]]

Unfortunately, the interpretation of N does not contain enough structure to
prove the following properties.

1. If t ∈ SN, then St ∈ SN.

2. If t ∈ SN, r ∈ S and s ∈ SN → S → S, then nrec r s t ∈ S.

Here, the term t could reduce to a term of the shape µα.c and is thereby able
to consume the surrounding S or nrec. To define an interpretation of N that
contains more structure we introduce the following definition.

Definition 6.21. We define the collection N inductively as follows.

(sn) SN ∈ N

(suc) If S ∈ N , then {S�} → S ∈ N .

(nrec) If S ∈ N and T ∈ R, then {nrec r s � | r ∈ T, s ∈ S → T → T} → T ∈ N .

Fact 6.22. N ⊆ R

32

Definition 6.23. The interpretation [[ρ]] of a type ρ is defined as follows.

[[N]] :=
⋂
N

[[σ → τ]] := [[σ]]→ [[τ]]

Fact 6.24. For each type ρ we have [[ρ]] ∈ R.

Lemma 6.25. For each n ∈ N we have n ∈ [[N]].

Proof. In order to prove this result we have to show that n ∈ R for all R ∈ N
and n ∈ N. We proceed by induction on the generation of R.

(var) Let R = SN. Now we have to show that n ∈ SN for all n ∈ N. However, n
is in normal form, so we certainly have n ∈ SN.

(suc) Let R = {S�} → S. Now we have n ∈ S for all n ∈ N by the induction
hypothesis. It remains to show that Sn ∈ S for all n ∈ N. However,
Sn ≡ n+ 1, so the required result follows from the induction hypothesis.

(nrec) Let R = {nrec r s � | r ∈ T, s ∈ S → T → T} → T . Now we have
n ∈ S for all n ∈ N by the induction hypothesis. It remains to show that
nrec r s n ∈ T for all S ∈ N , T ∈ R, r ∈ T , s ∈ S → T → T and n ∈ N.
We proceed by induction on n.

(a) Let n = 0. We have E[r] ∈ SN for all E ∈ T⊥ by Lemma 6.20 and
s ∈ SN by Lemma 6.16. Hence E[nrec r s 0] ∈ SN by Lemma 6.13
and therefore nrec r s 0 ∈ T by Lemma 6.20.

(b) Let n > 0. We have nrec r s n− 1 ∈ T by the induction hypothesis.
Furthermore, because s ∈ S → T → T and n− 1 ∈ S, we have
s n− 1 (nrec r s n− 1) ∈ T , so E[s n− 1 (nrec r s n− 1)] ∈ SN for
all E ∈ T⊥ by Lemma 6.20. Therefore E[nrec r s (Sn− 1)] ∈ SN by
Lemma 6.13, so nrec r s n ∈ T by Lemma 6.20.

Lemma 6.26. If t ∈ [[N]], then St ∈ [[N]].

Proof. Assume that t ∈ [[N]]. This means, t ∈ R for all R ∈ N . Now we have to
prove that St ∈ R for all R ∈ N . But for all R ∈ N we have {S�} → R ∈ N ,
hence t ∈ {S�} → R by assumption and therefore St ∈ R.

Lemma 6.27. If r ∈ [[ρ]], s ∈ [[N→ ρ→ ρ]] and t ∈ [[N]], then nrec r s t ∈ [[ρ]].

Proof. We have [[N]] ∈ N by Definition 6.23, so if t ∈ [[N]], then nrec r s t ∈ T
for all T ∈ R, r ∈ T and s ∈ [[N]]→ T → T by Definition 6.21. Also [[ρ]] ∈ R by
Fact 6.24 and [[N→ ρ→ ρ]] = [[N]]→ [[ρ]]→ [[ρ]] , hence nrec r s t ∈ [[ρ]].

Theorem 6.28. Let x1 : ρ1, . . . , xn : ρn;α1 : σ1, . . . , αm : σm ` t : τ such that
ri ∈ [[ρi]] for all 1 ≤ i ≤ n and Ej ∈ [[σj]]

⊥
for all 1 ≤ j ≤ m, then:

t[x1 := r1, . . . , xn := rn, α1 := α1 E1, . . . , αm := αm Em] ∈ [[τ]].

33

Proof. Abbreviate Γ = x1 : ρ1, . . . , xn : ρn, ∆ = α1 : σ1, . . . , αm : σm, with
t′ ≡ t[x1 := r1, . . . , xn := rn, α1 := α1 E1, . . . , αm := αm Em], and
c′ ≡ c[x1 := r1, . . . , xn := rn, α1 := α1 E1, . . . , αm := αm Em]. Now by mutual
induction we prove that Γ; ∆ ` t : τ implies t′ ∈ [[τ]] and that Γ; ∆ ` c : |=

implies c′ ∈ SN.

(var) Let Γ; ∆ ` x : σ with x : σ ∈ Γ. Now we have x′ ∈ [[σ]] by assumption.

(λ) Let Γ; ∆ ` λx : σ.t : σ → τ with Γ, x : σ; ∆ ` t : τ . Moreover let u ∈ [[ρ]]

and E ∈ [[τ]]
⊥

. Now we have t′[x := u] ∈ [[τ]] by the induction hypothesis
and so E[t′[x := u]] ∈ SN by Lemma 6.20. Therefore E[(λx.t′)u] ∈ SN by
Lemma 6.10 and hence (λx.t′)u ∈ [[τ]] by Lemma 6.20, so λx.t′ ∈ [[σ → τ]]
by Definition 6.14.

(app) Let Γ; ∆ ` ts : τ with Γ; ∆ ` t : σ → τ and Γ; ∆ ` s : σ. Now we have
t′ ∈ [[σ → τ]] = [[σ]]→ [[τ]] and s′ ∈ [[σ]] by the induction hypothesis, hence
t′s′ ∈ [[τ]] by Definition 6.14.

(zero) Let Γ; ∆ ` 0 : N. Now we have 0 ∈ [[N]] by Lemma 6.25.

(suc) Let Γ; ∆ ` St : N with Γ; ∆ ` t : N. Now we have t′ ∈ [[N]] by the induction
hypothesis and therefore St′ ∈ [[N]] by Lemma 6.26.

(nrec) Let Γ; ∆ ` nrec r s t : ρ with Γ; ∆ ` r : ρ, Γ; ∆ ` s : N→ ρ→ ρ and
Γ; ∆ ` t : N. Now we have r′ ∈ [[ρ]], s′ ∈ [[N→ ρ→ ρ]] and t′ ∈ [[N]] by the
induction hypothesis. Therefore nrec r′ s′ t′ ∈ [[ρ]] by Lemma 6.27.

(act) Let Γ; ∆ ` µα : ρ.c : ρ with Γ; ∆.α : ρ ` c : |= . Moreover let E ∈ [[ρ]]
⊥

.
Now we have c′[α := αE] ∈ SN by the induction hypothesis. Hence
µα.c′[α := αE] ∈ SN and therefore E[µα.c′] ∈ SN by Corollary 6.12,
so µα.c′ ∈ [[ρ]] by Lemma 6.20.

(pas) Let Γ; ∆ ` [α]t : |= with α : σ ∈ ∆ and Γ; ∆ ` t : σ. Now we have

t′ ∈ [[σ]] by the induction hypothesis. Also, we have a context E ∈ [[σ]]
⊥

by assumption. Therefore E[t′] ∈ SN by Lemma 6.20 and so [α]E[t′] ∈ SN

because ([α]t)′ = [α]E[t′].

Corollary 6.29. If Γ; ∆ ` t : ρ, then t ∈ SNA.

Proof. We have xi ∈ [[ρi]] for each xi : ρi ∈ Γ by Lemma 6.16 and � ∈ [[σj]]
⊥

for
each αj : σj ∈ ∆ by Fact 6.18. Therefore t ∈ [[ρ]] by Theorem 6.28 and hence
t ∈ SNA by Fact 6.24 and Lemma 6.16.

6.2 Strong normalization of →AB

In this section we prove that →B is strongly normalizing and that →A-steps
can be advanced. Together with strong normalization of →A this is sufficient
to prove strong normalization of →AB . Proving strong normalization of →AB

34

from →A and →B is not specific to λµT. Krebbers2 provides a proof of this
result based on abstract relations in the Coq proof assistant.

Lemma 6.30. For each term t we have t ∈ SNB.

Proof. By performing a →µη or →µi-reduction step on t, the term t reduces
strictly in its size and therefore →B-reduction is strongly normalizing.

Lemma 6.31. A single →A-reduction step can be advanced. That means, if
t1 →B t2 →A t3, then there is a t4 such that the following diagram commutes.

t1

A

��

B // t2

A

��
t4

AB
// // t3

Proof. We prove this lemma by distinguishing cases on t1 →B t2 and t2 →A t3,
we treat some interesting cases.

1. Let (λx.t)r →B (λx.t)r′ →A λx.t[x := r′] with r →B r′. Now by an
obvious substitution lemma we have t[x := r] �AB t[x := r′], hence the
following diagram commutes.

(λx.t)r

A

��

B // (λx.t)r′

A

��
t[x := r]

AB
// // t[x := r′]

2. Let Es[µα.[α]µβ.c]→B Es[µα.c[β := α �]]→A µα.c[β := α �][α := αEs].
Now the following diagram commutes by an obvious substitution lemma.

Es[µα.[α]µβ.c]

A

��

B // Es[µα.c[β := α �]]

A

��
µα.[α]Es[µβ.c[α := αEs]]

A
))

µα.c[β := α �][α := αEs]

µα.[α]µβ.c[α := αEs][β := βEs]

B

55

Corollary 6.32. A single→A-reduction step after multiple→B-reduction steps
can be advanced. That means, if t1 �B t2 →A t3, then there is a t4 such that
the following diagram commutes.

t1

A

��

B // // t2

A

��
t4

AB
// // t3

2The Coq proof is available at http://robbertkrebbers.nl/misc/sn commute.{v,html}.

35

http://robbertkrebbers.nl/misc/sn_commute.html

Proof. The result holds by repeatedly applying Lemma 6.31 starting from right
to left as the diagram indicates.

t1

A

��

B // t2

A

��

B // // tn−1

A

��

B // tn

A

��
t′1 AB

// // t′2 AB
// // t′n−1 AB

// // t′n

Lemma 6.33. If t ∈ SNA, then t ∈ SNAB.

Proof. We prove this result by induction on the derivation of t ∈ SNA, so by
the induction hypothesis we obtain that for each term t′ with t →A t′ we have
t′ ∈ SNAB . By Lemma 6.30 we have t ∈ SNB , hence it suffices to prove that for all
reduction sequences t�B t2 →A t3 we have t3 ∈ SNAB . Now by Corollary 6.32
we obtain a t4 such that the following diagram commutes.

t

A

��

B // // t2

A

��
t4

AB
// // t3

By the induction hypothesis we have t4 ∈ SNAB . Therefore, since t4 �AB t3,
we have t3 ∈ SNAB by Fact 6.4, so we are done.

Theorem 6.34. If t is well-typed, then t ∈ SNAB.

Proof. This result follows directly from Theorem 6.33 and Corollary 6.29.

7 Conclusions and further work

In this paper we have introduced the λµT-calculus, an extension of Parigot’s λµ-
calculus to include a type of natural numbers N with primitive recursion nrec,
à la Gödel’s T. We have proven the main meta-theoretical properties and have
shown that exactly the provably recursive functions in first-order arithmetic can
be represented.

In order to maintain confluence and a normal form theorem the λµT-calculus
is not a straightforward combination of the λµ-calculus and Gödel’s T. Both
these systems are originally call-by-name, whereas λµT is a call-by-name system
with strict evaluation on datatypes.

In our treatment of the reduction rules in λµT, we have observed a tension
between the call-by-name features taken directly from Parigot’s original calcu-
lus, and the need to restrict the rules for the datatypes to be call-by-value. We
plan to investigate a fully-fledged call-by-value version of λµT (see for exam-
ple [OS97, Py98] for definitions of a call-by-value variant of λµ). We expect that,
apart from our proof of strong normalization, most of our results will extend

36

to such a system. For a proof of strong normalization we will likely experience
problems related to those discussed in [DN05]. The key issue is our Lemma 6.10,
which states that if r ∈ SN and E[t[x := r]] ∈ SN, then E[(λx.t)r] ∈ SN. In a call-
by-value variant the reduction rule v(µα.c)→ µα.c[α := α (v�)] will complicate
this because (λx.t)r is not solely a β-redex anymore.

Instead of the λµ-calculus it would be interesting to consider a system with
the control operators catch and throw as primitive (see Figure 4 for the typing
rules). Such a system is described by Crolard [Cro99], who proves a correspon-
dence with λµ. Herbelin [Her10] also considers a variant of such a system to
define an intuitionistic logic that proves a variant of Markov’s principle.

Γ; ∆, α : ρ ` t : ρ

Γ; ∆ ` catchα t : ρ

(a) catch

Γ; ∆ ` t : ρ α : ρ ∈ ∆

Γ; ∆ ` throwα t : τ

(b) throw

Figure 4: The typing rules for the primitives catch and throw.

The further reaching goal would be to define a dependently typed λ-calculus
with datatypes and control operators that allows program extraction from clas-
sical proofs. In such a calculus one can write specifications of programs, which
can then be proven using classical logic. The extraction mechanism would then
extract a program from such a proof, where the classical reasoning steps are ex-
tracted to control operators. This would yield programs-with-control that are
correct by construction because they are extracted from a proof of the specifi-
cation. This would extend the well-known extraction method for constructive
proofs, see [PM89] for example, to classical proofs.

This goal is particularly useful to obtain provably correct algorithms where
the use of control operators would really pay off (for example if a lot of back-
tracking is involved). See [CGU00] for applications to classical search algo-
rithms. The work of Makarov [Mak06] may also be useful here, as it gives ways
to optimize program extraction to make it feasible for practical programming.

Acknowledgments We are grateful to the anonymous referees who spotted
some mistakes in earlier versions of this paper and provided several helpful
suggestions.

References

[Acz78] Peter Aczel. A general Church-Rosser theorem. Technical report, University
of Manchester, 1978.

[AH03] Zena M. Ariola and Hugo Herbelin. Minimal Classical Logic and Control
Operators. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and
Gerhard J. Woeginger, editors, ICALP, volume 2719 of LNCS, pages 871–
885. Springer, 2003.

37

[BB96] Franco Barbanera and Stefano Berardi. A symmetric lambda calculus for
classical program extraction. Information and Computation, 125(2):103–
117, 1996.

[BBS00] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined
Program Extraction from Classical Proofs. In Annals of Pure and Applied
Logic, pages 77–97. Springer Verlag, 2000.

[BHF01] Kensuke Baba, Sachio Hirokawa, and Ken-etsu Fujita. Parallel Reduction
in Type Free λµ-calculus. ENTCS, 42:52–66, 2001.

[BS95] Ulrich Berger and Helmut Schwichtenberg. Program development by proof
transformation. In Helmut Schwichtenberg, editor, Proof and Computa-
tion, NATO Advanced Study Institute, International Summer School held
in Marktoberdorf, Germany, 1993, volume 139 of Series F: Computer and
Systems Sciences, pages 1–45. Springer-Verlag, 1995.

[BU02] Gilles Barthe and Tarmo Uustalu. CPS Translating Inductive and Coin-
ductive Types. In Peter Thiemann, editor, PEPM, pages 131–142. ACM,
2002.

[CF98] Löıc Colson and Daniel Fredholm. System T, call-by-value and the minimum
problem. Theoretical Computer Science, 206(1-2):301–315, 1998.

[CGU00] James L. Caldwell, Ian P. Gent, and Judith Underwood. Search Algorithms
in Type Theory. Theoretical Computer Science, 232(1-2):55–90, 2000.

[Coq96] Thierry Coquand. Computational content of classical logic. In Semantics
and Logics of Computation, pages 470–517. Cambridge University Press,
1996.

[CP11] Tristan Crolard and Emmanuel Polonowski. A program logic for higher-
order procedural variables and non-local jumps, 2011. Technical report
TR-LACL-2011-4. http://arxiv.org/abs/1112.1554.

[Cro99] Tristan Crolard. A confluent lambda-calculus with a catch/throw mecha-
nism. Journal of Functional Programming, 9(6):625–647, 1999.

[dG94] Philippe de Groote. A CPS-translation of the λµ-calculus. In Sophie Tison,
editor, CAAP, volume 787 of LNCS, pages 85–99. Springer, 1994.

[DN05] René David and Karim Nour. Why the usual candidates of reducibility do
not work for the symmetric λµ-calculus. ENTCS, 140:101–111, 2005.

[FH92] Matthias Felleisen and Robert Hieb. The Revised Report on the Syntactic
Theories of Sequential Control and State. Theoretical Computer Science,
103(2):235–271, 1992.

[Fuj97] Ken-etsu Fujita. Calculus of Classical Proofs I. In R. K. Shyamasundar
and Kazunori Ueda, editors, ASIAN, volume 1345 of LNCS, pages 321–335.
Springer, 1997.

[Fuj99] Ken-etsu Fujita. Explicitly Typed λµ-calculus for Polymorphism and Call-
by-Value. In Jean-Yves Girard, editor, TLCA, volume 1581 of LNCS, pages
162–176. Springer, 1999.

[Geu08] Herman Geuvers. Introduction to type theory. In Ana Bove, Lúıs Soares
Barbosa, Alberto Pardo, and Jorge Sousa Pinto, editors, LerNet ALFA
Summer School, volume 5520 of LNCS, pages 1–56. Springer, 2008.

38

http://arxiv.org/abs/1112.1554

[Gri90] Timothy G. Griffin. A Formulae-as-Types Notion of Control. In POPL,
pages 47–58. ACM, 1990.

[GTL89] Jean Y. Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge
University Press, 1989.

[Her10] Hugo Herbelin. An Intuitionistic Logic that Proves Markov’s Principle. In
LICS, pages 50–56. IEEE Computer Society, 2010.

[IN06] Satoshi Ikeda and Koji Nakazawa. Strong normalization proofs by CPS-
translations. Information Processing Letters, 99(4):163–170, 2006.

[Mak06] Yevgeni Makarov. Practical program extraction from classical proofs. In
MFPS, volume 155 of ENTCS, pages 521 – 542, 2006.

[Mur90] Chetan Murthy. Extracting Constructive Content from Classical Proofs.
PhD thesis, Cornell University, 1990.

[Nak03] Koji Nakazawa. Confluency and Strong Normalizability of Call-by-Value
λµ-calculus. Theoretical Computer Science, 290(1):429–463, 2003.

[OS97] C.-H. Luke Ong and Charles A. Stewart. A Curry-Howard foundation for
functional computation with control. In POPL, pages 215–227, 1997.

[Par92] Michel Parigot. λµ-calculus: An Algorithmic Interpretation of Classical
Natural Deduction. In Andrei Voronkov, editor, LPAR, volume 624 of
LNCS, pages 190–201. Springer, 1992.

[Par93] Michel Parigot. Classical Proofs as Programs. In Georg Gottlob, Alexander
Leitsch, and Daniele Mundici, editors, Kurt Gödel Colloquium, volume 713
of LNCS, pages 263–276. Springer, 1993.

[Par97] Michel Parigot. Proofs of Strong Normalisation for Second Order Classical
Natural Deduction. Journal of Symbolic Logic, 62(4):1461–1479, 1997.

[PM89] Christine Paulin-Mohring. Extracting Fω’s programs from proofs in the
Calculus of Constructions. In POPL. ACM, 1989.

[Py98] Walter Py. Confluence en λµ-calcul (in French). PhD thesis, Université de
Savoie, 1998.

[RS94] Jakob Rehof and Morten Heine Sørensen. The λ∆-calculus. In Masami
Hagiya and John C. Mitchell, editors, TACS, volume 789 of LNCS, pages
516–542. Springer, 1994.

[Ste72] Sören Stenlund. Combinators, λ-terms and proof theory. D. Reidel Dor-
drecht, 1972.

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard
Isomorphism, volume 149 of Studies in Logic and The Foundations of Math-
ematics. Elsevier Science, 2006.

[Tai67] William W. Tait. Intensional Interpretations of Functionals of Finite Type
I. Journal of Symbolic Logic, 32(2):198–212, 1967.

[Tak95] Masako Takahashi. Parallel Reductions in λ-Calculus. Information and
Computation, 118(1):120–127, 1995.

[vBLL05] Steffen van Bakel, Stéphane Lengrand, and Pierre Lescanne. The Language
χ: Circuits, Computations and Classical Logic. In Mario Coppo, Elena
Lodi, and G. Michele Pinna, editors, ICTCS, volume 3701 of LNCS, pages
81–96. Springer, 2005.

39

	Introduction
	Our approach
	Related work
	Outline

	Goedel's T
	The lambda-mu-T-calculus
	CPS-translation of lambda-mu-T into lambda-T
	Confluence of lambda-mu-T
	Strong normalization of lambda-mu-T
	Strong normalization of (A)
	Strong normalization of (AB)

	Conclusions and further work

