
1

Formalization of C:
What we have learned and beyond

Robbert Krebbers

Radboud University, The Netherlands

Now at: Aarhus University, Denmark

December 2, 2015

2

What is this program supposed to do?

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("x=%d,y=%d\n", x, y);

}

Let us try some compilers

I Clang prints x=4,y=7, seems just left-right

I GCC prints x=4,y=8, does not correspond to any order

This program violates the sequence point restriction

I due to two unsequenced writes to x

I resulting in undefined behavior

I thus both compilers are right

2

What is this program supposed to do?

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("x=%d,y=%d\n", x, y);

}

Let us try some compilers

I Clang prints x=4,y=7, seems just left-right

I GCC prints x=4,y=8, does not correspond to any order

This program violates the sequence point restriction

I due to two unsequenced writes to x

I resulting in undefined behavior

I thus both compilers are right

2

What is this program supposed to do?

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("x=%d,y=%d\n", x, y);

}

Let us try some compilers

I Clang prints x=4,y=7, seems just left-right

I GCC prints x=4,y=8, does not correspond to any order

This program violates the sequence point restriction

I due to two unsequenced writes to x

I resulting in undefined behavior

I thus both compilers are right

2

What is this program supposed to do?

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("x=%d,y=%d\n", x, y);

}

Let us try some compilers

I Clang prints x=4,y=7, seems just left-right

I GCC prints x=4,y=8, does not correspond to any order

This program violates the sequence point restriction

I due to two unsequenced writes to x

I resulting in undefined behavior

I thus both compilers are right

3

Underspecification in C11

I Unspecified behavior: two or more behaviors are allowed
For example: order of evaluation in expressions (+57 more)

Non-determinism

I Implementation defined behavior: like unspecified
behavior, but the compiler has to document its choice
For example: size and endianness of integers (+118 more)

Parametrization

I Undefined behavior: the standard imposes no requirements
at all, the program is even allowed to crash
For example: dereferencing a NULL or dangling pointer, signed
integer overflow, . . . (+201 more)

No semantics/crash state

3

Underspecification in C11

I Unspecified behavior: two or more behaviors are allowed
For example: order of evaluation in expressions (+57 more)

Non-determinism

I Implementation defined behavior: like unspecified
behavior, but the compiler has to document its choice
For example: size and endianness of integers (+118 more)

Parametrization

I Undefined behavior: the standard imposes no requirements
at all, the program is even allowed to crash
For example: dereferencing a NULL or dangling pointer, signed
integer overflow, . . . (+201 more)

No semantics/crash state

4

Why does C use underspecification that heavily?

Pros for optimizing compilers:

I More optimizations are possible

I High run-time efficiency

I Easy to support multiple architectures

Cons for programmers/formal methods people:

I Portability and maintenance problems

I Hard to capture precisely in a semantics

I Hard to formally reason about

4

Why does C use underspecification that heavily?

Pros for optimizing compilers:

I More optimizations are possible

I High run-time efficiency

I Easy to support multiple architectures

Cons for programmers/formal methods people:

I Portability and maintenance problems

I Hard to capture precisely in a semantics

I Hard to formally reason about

5

The CH2O project

C sources

CH2O
abstract C

Operational
semantics

Γ, δ ` S1 _ S2

Pure expression
evaluation

[[e]]Γ,ρ,m = ν

Axiomatic
semantics

R, J,T `Γ,δ
{P} s {Q}

Typing
judgment

Γ ` S : fmain

Refinement
judgment

S1 vf
Γ S2 : fmain

Executable
semantics

S2 ∈ execΓ,δ S1

CH2O core C

Soundness &
Completeness

Soundness &
Completeness

Soundness

Type preservation
& progress Invariance

Type soundness

OCaml part Coq part

5

The CH2O project

C sources

CH2O
abstract C

Operational
semantics

Γ, δ ` S1 _ S2

Pure expression
evaluation

[[e]]Γ,ρ,m = ν

Axiomatic
semantics

R, J,T `Γ,δ
{P} s {Q}

Typing
judgment

Γ ` S : fmain

Refinement
judgment

S1 vf
Γ S2 : fmain

Executable
semantics

S2 ∈ execΓ,δ S1

CH2O core C

Soundness &
Completeness

Soundness &
Completeness

Soundness

Type preservation
& progress Invariance

Type soundness

OCaml part Coq part

5

The CH2O project

C sources

CH2O
abstract C

Operational
semantics

Γ, δ ` S1 _ S2

Pure expression
evaluation

[[e]]Γ,ρ,m = ν

Axiomatic
semantics

R, J,T `Γ,δ
{P} s {Q}

Typing
judgment

Γ ` S : fmain

Refinement
judgment

S1 vf
Γ S2 : fmain

Executable
semantics

S2 ∈ execΓ,δ S1

CH2O core C

Soundness &
Completeness

Soundness &
Completeness

Soundness

Type preservation
& progress

Invariance

Type soundness

OCaml part Coq part

5

The CH2O project

C sources

CH2O
abstract C

Operational
semantics

Γ, δ ` S1 _ S2

Pure expression
evaluation

[[e]]Γ,ρ,m = ν

Axiomatic
semantics

R, J,T `Γ,δ
{P} s {Q}

Typing
judgment

Γ ` S : fmain

Refinement
judgment

S1 vf
Γ S2 : fmain

Executable
semantics

S2 ∈ execΓ,δ S1

CH2O core C

Soundness &
Completeness

Soundness &
Completeness

Soundness

Type preservation
& progress

Invariance

Type soundness

OCaml part Coq part

5

The CH2O project

C sources

CH2O
abstract C

Operational
semantics

Γ, δ ` S1 _ S2

Pure expression
evaluation

[[e]]Γ,ρ,m = ν

Axiomatic
semantics

R, J,T `Γ,δ
{P} s {Q}

Typing
judgment

Γ ` S : fmain

Refinement
judgment

S1 vf
Γ S2 : fmain

Executable
semantics

S2 ∈ execΓ,δ S1

CH2O core C

Soundness &
Completeness

Soundness &
Completeness

Soundness

Type preservation
& progress

Invariance

Type soundness

OCaml part Coq part

5

The CH2O project

C sources

CH2O
abstract C

Operational
semantics

Γ, δ ` S1 _ S2

Pure expression
evaluation

[[e]]Γ,ρ,m = ν

Axiomatic
semantics

R, J,T `Γ,δ
{P} s {Q}

Typing
judgment

Γ ` S : fmain

Refinement
judgment

S1 vf
Γ S2 : fmain

Executable
semantics

S2 ∈ execΓ,δ S1

CH2O core C

Soundness &
Completeness

Soundness &
Completeness

Soundness

Type preservation
& progress

Invariance

Type soundness

OCaml part Coq part

5

The CH2O project

C sources

CH2O
abstract C

Operational
semantics

Γ, δ ` S1 _ S2

Pure expression
evaluation

[[e]]Γ,ρ,m = ν

Axiomatic
semantics

R, J,T `Γ,δ
{P} s {Q}

Typing
judgment

Γ ` S : fmain

Refinement
judgment

S1 vf
Γ S2 : fmain

Executable
semantics

S2 ∈ execΓ,δ S1

CH2O core C

Soundness &
Completeness

Soundness &
Completeness

Soundness

Type preservation
& progress Invariance

Type soundness

OCaml part Coq part

6

Part 1
Our experience with standardization

7

Does this have to print the same value?

int a[1];

/* intentionally uninitialized */

printf("%d\n", a[0]);

printf("%d\n", a[0]);

For types without trap values (e.g. unsigned char or int32_t):

indeterminate value = unspecified value

What can we do with these values?

7

Does this have to print the same value?

unsigned char a[1];

/* intentionally uninitialized */

printf("%d\n", a[0]);

printf("%d\n", a[0]);

For types without trap values (e.g. unsigned char or int32_t):

indeterminate value = unspecified value

What can we do with these values?

7

Does this have to print the same value?

unsigned char a[1];

/* intentionally uninitialized */

printf("%d\n", a[0]);

printf("%d\n", a[0]);

For types without trap values (e.g. unsigned char or int32_t):

indeterminate value = unspecified value

What can we do with these values?

8

Defect Report # 260

Question (2001-09-07):

If an object holds an indeterminate value, can that value
change other than by an explicit action of the program?

Answer (2003-03-06):

An object with indeterminate value has a bit pattern
representation which remains constant during its lifetime.

Answer (2004-09-28):

In the case of an indeterminate value [. . .] the actual bit-
pattern may change without direct action of the program.

8

Defect Report # 260

Question (2001-09-07):

If an object holds an indeterminate value, can that value
change other than by an explicit action of the program?

Answer (2003-03-06):

An object with indeterminate value has a bit pattern
representation which remains constant during its lifetime.

Answer (2004-09-28):

In the case of an indeterminate value [. . .] the actual bit-
pattern may change without direct action of the program.

9

Status of Defect Report # 260

I Decided no change to the standard text was needed

I Defect report about C99

I Defect report superseded by C11

I All relevant text in C11 identical to the same text in C99

10

Why do we care about indeterminate values?

struct S { short x; short *r; } s1 = { 10, &s1.x };

unsigned char *p = (unsigned char*)&s1;

01010000 00000000 E E E E E E E E E E E E E E E E •

x padding r

p p + 1 p + 2

Byte-wise copy:

struct S s2;

for (size_t i = 0; i < sizeof(struct S); i++)

((unsigned char*)&s2)[i] = ((unsigned char*)&s1)[i];

10

Why do we care about indeterminate values?

struct S { short x; short *r; } s1 = { 10, &s1.x };

unsigned char *p = (unsigned char*)&s1;

01010000 00000000 E E E E E E E E E E E E E E E E •

x padding r

p p + 1 p + 2

Byte-wise copy:

struct S s2;

for (size_t i = 0; i < sizeof(struct S); i++)

((unsigned char*)&s2)[i] = ((unsigned char*)&s1)[i];

11

Defect Report # 451 [Krebbers & Wiedijk 2013]

Question (2013-08-30):

Can an uninitialized variable with automatic storage
duration [. . .] change its value without direct action of
the program?

Answer (2014-04-07):

an uninitialized value under the conditions described can
appear to change its value.
[. . .]
This viewpoint reaffirms the C99 DR260 position.
[. . .]
The committee agrees that this area would benefit from
a new definition of something akin to a “wobbly” value
and that this should be considered in any subsequent
revision of this standard.

12

Resolution in CH2O

Special indeterminate “wobbly” bit:

Inductive bit :=

| BIndet : bit

| BBit : bool → bit

| BPtr : ptr_bit → bit.

I Indeterminate bits can be copied as unsigned char

I Operations on values with indeterminate bits (cast, addition,
if-then-else, . . .) give undefined behavior

Possibly too much undefined behavior, but that is sound for
program verification

12

Resolution in CH2O

Special indeterminate “wobbly” bit:

Inductive bit :=

| BIndet : bit

| BBit : bool → bit

| BPtr : ptr_bit → bit.

I Indeterminate bits can be copied as unsigned char

I Operations on values with indeterminate bits (cast, addition,
if-then-else, . . .) give undefined behavior

Possibly too much undefined behavior, but that is sound for
program verification

13

Part 2
Separation logic for C

14

Non-determinism and sequence points

int x = 0, y = 0, *p = &x;

int f() { p = &y; return 17; }

int main() {

*p = f();

printf("x=%d,y=%d\n", x, y);

}

Let us try some compilers

I Clang prints x=0,y=17

I GCC prints x=17,y=0

Non-determinism appears even in innocently looking code

14

Non-determinism and sequence points

int x = 0, y = 0, *p = &x;

int f() { p = &y; return 17; }

int main() {

*p = f();

printf("x=%d,y=%d\n", x, y);

}

Let us try some compilers

I Clang prints x=0,y=17

I GCC prints x=17,y=0

Non-determinism appears even in innocently looking code

15

Brief introduction to separation logic [Reynolds et al.]

Hoare triple {P} s {Q}: if P holds beforehand, then:

I s does not crash

I Q holds afterwards when terminating with v

Separating conjunction P ∗ Q: subdivide the memory into
disjoint parts P and Q

Points-to predicate a 7−→ v : the memory consists of only a value
v at address a

Example: {x 7−→ 0 ∗ y 7−→ 0} x:=10; y:=12 {x 7−→ 10 ∗ y 7−→ 12}

Frame rule: for local reasoning

{P} s {Q}
{P ∗ R} s {Q ∗ R}

15

Brief introduction to separation logic [Reynolds et al.]

Hoare triple {P} s {Q}: if P holds beforehand, then:

I s does not crash

I Q holds afterwards when terminating with v

Separating conjunction P ∗ Q: subdivide the memory into
disjoint parts P and Q

Points-to predicate a 7−→ v : the memory consists of only a value
v at address a

Example: {x 7−→ 0 ∗ y 7−→ 0} x:=10; y:=12 {x 7−→ 10 ∗ y 7−→ 12}

Frame rule: for local reasoning

{P} s {Q}
{P ∗ R} s {Q ∗ R}

15

Brief introduction to separation logic [Reynolds et al.]

Hoare triple {P} s {Q}: if P holds beforehand, then:

I s does not crash

I Q holds afterwards when terminating with v

Separating conjunction P ∗ Q: subdivide the memory into
disjoint parts P and Q

Points-to predicate a 7−→ v : the memory consists of only a value
v at address a

Example: {x 7−→ 0 ∗ y 7−→ 0} x:=10; y:=12 {x 7−→ 10 ∗ y 7−→ 12}

Frame rule: for local reasoning

{P} s {Q}
{P ∗ R} s {Q ∗ R}

16

Separation logic for C expressions

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 } e2 {Q1 ∗ Q2}

What does this mean:

I Split the memory into two disjoint parts

I Prove that e1 and e2 can be executed safely in their part

I Now e1 } e2 can be executed safely in the whole memory

Disjointness⇒ no sequence point violation (accessing the same
location twice in one expression)

16

Separation logic for C expressions

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 } e2 {Q1 ∗ Q2}

What does this mean:

I Split the memory into two disjoint parts

I Prove that e1 and e2 can be executed safely in their part

I Now e1 } e2 can be executed safely in the whole memory

Disjointness⇒ no sequence point violation (accessing the same
location twice in one expression)

16

Separation logic for C expressions

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 } e2 {Q1 ∗ Q2}

What does this mean:

I Split the memory into two disjoint parts

I Prove that e1 and e2 can be executed safely in their part

I Now e1 } e2 can be executed safely in the whole memory

Disjointness⇒ no sequence point violation (accessing the same
location twice in one expression)

17

Hoare “triples”

Statement judgment: R, J,T `Γ,δ {P} s {Q}

Type environmentsGoto/return/switch conditions

Expression judgment: `Γ,δ {P} e {Q}

Q : val→ assert

If P holds beforehand, then

I e does not crash

I Q v holds afterwards when terminating with v

17

Hoare “triples”

Statement judgment: R, J,T `Γ,δ {P} s {Q}

Type environmentsGoto/return/switch conditions

Expression judgment: `Γ,δ {P} e {Q}

Q : val→ assert

If P holds beforehand, then

I e does not crash

I Q v holds afterwards when terminating with v

17

Hoare “triples”

Statement judgment: R, J,T `Γ,δ {P} s {Q}

Type environmentsGoto/return/switch conditions Q : assert

Expression judgment: `Γ,δ {P} e {Q}

Q : val→ assert

If P holds beforehand, then

I e does not crash

I Q v holds afterwards when terminating with v

18

Some actual rules

Binary operators:

`Γ,δ {P1} e1 {Q1} `Γ,δ {P2} e2 {Q2}
∀v1 v2 . (Q1 v1 ∗ Q2 v2 |=Γ,δ ∃v ′ . (v1 } v2) ⇓ v ′ ∧ Q ′ v ′)

`Γ,δ {P1 ∗ P2} e1 } e2 {Q ′}

Simple assignments:

`Γ,δ {P1} e1 {Q1} `Γ,δ {P2} e2 {Q2} Writable ⊆ kind γ

∀p v .
(
Q1 p ∗ Q2 v |=Γ,δ ∃v ′ . (τ)v ⇓ v ′ ∧(

(p
γ7−→
µ

– : τ) ∗ ((p
lock γ7−−−−→
µ
| v ′ |◦ : τ) −∗ Q′ v ′)

))
`Γ,δ {P1 ∗ P2} e1 := e2 {Q′}

Comma:

`Γ,δ {P} e1 {λ .P ′ ♦} `Γ,δ {P ′} e2 {Q}
`Γ,δ {P} (e1, e2) {Q}

18

Some actual rules

Binary operators:

`Γ,δ {P1} e1 {Q1} `Γ,δ {P2} e2 {Q2}
∀v1 v2 . (Q1 v1 ∗ Q2 v2 |=Γ,δ ∃v ′ . (v1 } v2) ⇓ v ′ ∧ Q ′ v ′)

`Γ,δ {P1 ∗ P2} e1 } e2 {Q ′}

Simple assignments:

`Γ,δ {P1} e1 {Q1} `Γ,δ {P2} e2 {Q2} Writable ⊆ kind γ

∀p v .
(
Q1 p ∗ Q2 v |=Γ,δ ∃v ′ . (τ)v ⇓ v ′ ∧(

(p
γ7−→
µ

– : τ) ∗ ((p
lock γ7−−−−→
µ
| v ′ |◦ : τ) −∗ Q′ v ′)

))
`Γ,δ {P1 ∗ P2} e1 := e2 {Q′}

Comma:

`Γ,δ {P} e1 {λ .P ′ ♦} `Γ,δ {P ′} e2 {Q}
`Γ,δ {P} (e1, e2) {Q}

18

Some actual rules

Binary operators:

`Γ,δ {P1} e1 {Q1} `Γ,δ {P2} e2 {Q2}
∀v1 v2 . (Q1 v1 ∗ Q2 v2 |=Γ,δ ∃v ′ . (v1 } v2) ⇓ v ′ ∧ Q ′ v ′)

`Γ,δ {P1 ∗ P2} e1 } e2 {Q ′}

Simple assignments:

`Γ,δ {P1} e1 {Q1} `Γ,δ {P2} e2 {Q2} Writable ⊆ kind γ

∀p v .
(
Q1 p ∗ Q2 v |=Γ,δ ∃v ′ . (τ)v ⇓ v ′ ∧(

(p
γ7−→
µ

– : τ) ∗ ((p
lock γ7−−−−→
µ
| v ′ |◦ : τ) −∗ Q′ v ′)

))
`Γ,δ {P1 ∗ P2} e1 := e2 {Q′}

Comma:

`Γ,δ {P} e1 {λ .P ′ ♦} `Γ,δ {P ′} e2 {Q}
`Γ,δ {P} (e1, e2) {Q}

19

Part 3
Conclusions & Future work

20

Conclusion

Formal methods can be applied to real programming languages

I Large part of the C11 standard formalized in Coq

I Many oddities in the C11 standard text discovered

I Metatheory is important to establish sanity of specification

I Executable semantics important to test specification

I Extensions of separation logic developed

21

More features

I Formalized parser and preprocessor

I Floating point arithmetic

I Bitfields

I Untyped malloc

I Variadic functions

I Register storage class

I Type qualifiers

I External functions and I/O

22

Symbolic execution for separation logic for expressions

Expression judgment: A `Γ,δ {P} e {Q}

Invariant

Symbolic execution:

I Use static analysis to determine which objects are written to

I Put read-only objects in invariant:

A1 ∗ A2 `Γ,δ {P} e {Q}
A1 `Γ,δ {A2 ∗ P} e {A2 ∗ Q}

I Invariant can be freely shared, but must be maintained by
each atomic expression

23

Concurrency

I Concurrency primitives: locks, message passing, . . .
I Rule out any racy concurrency
I Well-understood and easy to reason about [Hobor, Appel, . . .]

I Sequentially consistent concurrency
I Thread-pool semantics
I Difficult to reason about
I Works well in separation logic [O’Hearn, Svendsen,

Dinsdale-Young, Birkedal, Parkinson, Dreyer, Turon, . . .]
I Not sound with respect to C11 concurrency

I Weak memory concurrency
I Still open problems w.r.t. semantics [Sewell, Batty, . . .]
I Very challenging in separation logic [Vafeiadis, . . .]

24

Questions

PhD thesis & Coq sources:
http://robbertkrebbers.nl/thesis.html

http://robbertkrebbers.nl/thesis.html

