Separation Logic for Non-local Control Flow
and Block Scope Variables

Robbert Krebbers
Joint work with Freek Wiedijk

Radboud University Nijmegen

March 19, 2013 @ FoSSaCS, Rome, ltaly

What is this program supposed to do?

int *p = NULL;
1: if (p) {
return (*p);
} else {
int j = 10;
p = &j;
goto 1;
X

What is this program supposed to do?

int *p = NULL;

1: if (p) { memory:
return (*p); p
int j = 10;

p = &j;
goto 1;

}

What is this program supposed to do?

int *p = NULL;

1: if (p) { memory:
return (*p); p
int j = 10;

p = &j;
goto 1;

}

What is this program supposed to do?

int *p = NULL;

1: if (p) { memory:
return (*p); p
int j = 10;

p = &j;
goto 1;

}

What is this program supposed to do?

int *p = NULL;

1: if (p) { memory:
return (*p); p

} else { —
int j = 10;
P = &j;
goto 1;

}

What is this program supposed to do?

int *p = NULL;

1: if (p) { memory:
return (*p); p

} else { —
int j = 10;
p = &j;
goto 1;

}

What is this program supposed to do?

int *p = NULL;

1: if (p) { memory:
return (*p); p
} else {
int j = 10;
p = &j;
goto 1;

}

What is this program supposed to do?

int *p = NULL;

1: if (p) { memory:
return (*p); p
} else {
int j = 10;
p = &j;
goto 1;

}

What is this program supposed to do?

int *p = NULL;

1 if () | memory:
return (xp); p
} else {
int j = 10;
p = &j;
goto 1;
}

It exhibits undefined behavior, thus it may do anything

Undefined behavior in C

» Undefined behavior is shown by “wrong” C programs
» Programs may do anything on undefined behavior

» It allows compilers to omit (expensive) dynamic checks

Undefined behavior in C

v

Undefined behavior is shown by “wrong” C programs

v

Programs may do anything on undefined behavior

v

It allows compilers to omit (expensive) dynamic checks

v

It cannot be checked for statically

v

Not accounting for it means that

> programs can be proven to be correct with respect to the
formal semantics . . .
» whereas they may crash when compiled with an actual compiler

Undefined behavior in C

v

Undefined behavior is shown by “wrong” C programs

v

Programs may do anything on undefined behavior

v

It allows compilers to omit (expensive) dynamic checks

v

It cannot be checked for statically

v

Not accounting for it means that

> programs can be proven to be correct with respect to the
formal semantics . . .
» whereas they may crash when compiled with an actual compiler

This talk: undefined behavior due to dangling pointers by
non-local control flow and block scopes

Goto considered harmful?

T COULD RESTRUCTURE
THE PROGRAMS FLOW

OR USE ONE LITILE
‘GoTo" INSTEAD.

Q%

EH, SCREW GOD PRACTICE.
HOW BAD CAN IT BE?

\ goto ain_sub3;

J'ﬂ

: : ?*CDHPILE»!

http://xkcd.com/292/

http://xkcd.com/292/

Goto considered harmful?

T COULD RESTRUCTURE | | EH, SCREW GQOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN 1T BE?

OR USE ONE LITE. P T—
GOt INSTEAD. jJu

\
IE Jﬁ f : ?*CDHPILE*

http://xkcd.com/292/

Not necessarily:

;/F-{P}...goto main_sub3; ...{Q}

http://xkcd.com/292/

Contribution

A concise small step operational, and axiomatic, semantics for
goto, supporting:

v

local variables (and pointers to those),

v

mutual recursion,

v

separation logic,

» soundness proof fully checked by Coq

Approach

> Execute gotos and returns in small steps

» Not so much to search for labels, ...
» but to naturally perform required allocations and deallocations

Approach

> Execute gotos and returns in small steps

» Not so much to search for labels, ...

» but to naturally perform required allocations and deallocations
» Traversal through the AST in the following directions:

» . downwards to the next statement
» /' upwards to the next statement

Approach

> Execute gotos and returns in small steps

» Not so much to search for labels, ...

» but to naturally perform required allocations and deallocations
» Traversal through the AST in the following directions:

» . downwards to the next statement

» /' upwards to the next statement

» ~1toalabel 1: after a goto 1
» 11 to the top of the statement after a return

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

|
y ;

p=~&j gotol

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

|
2N

p=~&j gotol

direction:

hN

memory:

P

e

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

|
2N

p=~&j gotol

direction:

hN

memory:

P

e

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

|
2N

p=~&j gotol

direction:

hN

memory:

P

e

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

|
2N

p=~&j gotol

direction:

hN

memory:

P

e

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

/N

p=~&j gotol

direction:

hN

memory:

P

e

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

|
2N

p=4&j gotol

direction:

hN

memory:

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

|
2N

p=4&j gotol

direction:

/!

memory:

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

/N

p=~&j gotol

direction:

/!

memory:

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

/N

p=~&j gotol

direction:

hN

memory:

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

|
2N

p=4&j gotol

direction:

hN

memory:

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

|
2N

p=4&j gotol

direction:

~1

memory:

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

/N

p=~&j gotol

direction:

~1

memory:

Example

int *p = NULL

1:
if (p)
PN
return (*p) int j = 10

|
2N

p=~&j gotol

direction:

~1

memory:

Example

int *p = NULL

1:
|
if (p)
e N
return (*p) int j = 10
|
/N

p=~&j gotol

direction:

~1

memory:
p

=y

Example

int *p = NULL

1:
|
if (p)
e N
return (*p) int j = 10
|
/N

p=~&j gotol

direction:

~1

memory:
p

=y

Example

int *p = NULL

1:
|
if (p)
e N
return (*p) int j = 10
|
/N

p=~&j gotol

direction:

hN

memory:
p

=y

Example

int *p = NULL

1:
|
if (p)
e N
return (*p) int j = 10
|
/N

p=~&j gotol

direction:

hN

memory:
p

=y

Example

int *p = NULL

1:
|
if (p)
PN
return (*p) int j = 10
|
/N

p=~&j gotol

direction:

hN

memory:
p

=y

How to model the current location in the program

Huet’s zipper

Purely functional way to store a pointer into a data structure

Statement contexts

» Statements:

s :=block s | ¢ := e, | f(€) | skip | goto /

| I:s]|s1;s | if (€) s1 s | return

Statement contexts

» Statements:

s =block s | ¢ :=e | f(€) | skip | goto /

| I:s]|s1;s | if (€) s1 s | return

» The block construct is unnamed as we use De Bruijn indexes

Statement contexts

» Statements:

s :=block s | ¢ := e, | f(€) | skip | goto /

| I:s]|s1;s | if (€) s1 s | return

» The block construct is unnamed as we use De Bruijn indexes

» Singular statement contexts:

Es:=0;s|s;0|if(e)Os|if (e)sn O | /:0

Statement contexts

» Statements:

s :=block s | ¢ := e, | f(€) | skip | goto /

| I:s]|s1;s | if (€) s1 s | return

» The block construct is unnamed as we use De Bruijn indexes

» Singular statement contexts:
Es:=0;s|s;0|if(e)Os|if (e)sn O | /:0
> A pair (E_:g, s) forms a zipper for statements, where

> E_:g is a statement turned
inside-out

> s is the focused substatement A

Program contexts

> Make the zipper stateful to also contain the stack
(to assign memory indexes to local variables)

» Extend the zipper dynamically on function calls

Program contexts

> Make the zipper stateful to also contain the stack
(to assign memory indexes to local variables)

» Extend the zipper dynamically on function calls

» Program contexts k are lists of singular program contexts:
E ::=Es|block, O] ...

where blocky [associates a block scope variable with its
corresponding memory index b

States

A state S(k, ¢, m) consists of a program context k, focus ¢, and
memory m

States

A state S(k, ¢, m) consists of a program context k, focus ¢, and
memory m

We consider the following focuses:

» (d, s) execution of a statement s in direction d

States

A state S(k, ¢, m) consists of a program context k, focus ¢, and
memory m
We consider the following focuses:

» (d, s) execution of a statement s in direction d

» call f V calling a function (V)

States

A state S(k, ¢, m) consists of a program context k, focus ¢, and
memory m
We consider the following focuses:

» (d, s) execution of a statement s in direction d

» call f V calling a function (V)

» return returning from a function

Example

The corresponding state is
S(k, ¢, m), where:

int *p = NULL >k — [
) O; goto |,
| Xxp := int 10; 0,
it (p) blocky, [,
retum/ 1\nt i = 10 if (load xp) return [J,
/0O,
Xp := NULL; [,
/ N\ blocky, O]
p=&j goto 1]

> QS:(/?Xl ::XO)
» m={b, — ptr bj, b — 10}

The small step semantics

Lemma
The small step semantics behaves as traversing through a zipper.
That is, if

S(k, (d, s), m) — S(k, (d', "), m')

thens =s'.

The small step semantics

Lemma
The small step semantics behaves as traversing through a zipper.
That is, if

S(k, (d, s), m) =} S(k, (d', '), m')

then s = s'.

In a picture: if

then s = s,.

Hoare sextuples

Our Hoare sextuples are of the shape

A; J; RE{P}s{Q}

Hoare sextuples

Our Hoare sextuples are of the shape
A; J; RE{P}s{Q}

where:
» {P}s{Q} is a Hoare triple, as usual

Hoare sextuples

Our Hoare sextuples are of the shape
A; J; RE{P}s{Q}

where:
» {P}s{Q} is a Hoare triple, as usual

» A maps function names to their pre- and post-conditions

Hoare sextuples

Our Hoare sextuples are of the shape
A; J; RE{P}s{Q}

where:
» {P}s{Q} is a Hoare triple, as usual
» A maps function names to their pre- and post-conditions

> J maps labels to their jumping condition
When executing a goto /, the assertion J/ has to hold

Hoare sextuples

Our Hoare sextuples are of the shape
A; J; RE{P}s{Q}

where:
» {P}s{Q} is a Hoare triple, as usual
» A maps function names to their pre- and post-conditions

> J maps labels to their jumping condition
When executing a goto /, the assertion J/ has to hold

» R has to hold to execute a return

Hoare sextuples

Our Hoare sextuples are of the shape
A; J; RE{P}s{Q}

where:
» {P}s{Q} is a Hoare triple, as usual
» A maps function names to their pre- and post-conditions

> J maps labels to their jumping condition
When executing a goto /, the assertion J/ has to hold

» R has to hold to execute a return

Remark: the assertions P, Q, J and R correspond to the directions
N, /', ~ and 1 of traversal

Some Hoare rules

Composition:

A; J; RE{P}s1 {P'} A; J; RE{P}{Q}

A; J; RF{P}s ;5 {Q}

Some Hoare rules

Composition:

A; J; RE{P}s1 {P'} A; J; RE{P}{Q}
A; J; RF{P}s ;5 {Q}

Goto:

A; J; RE{J 1} s{Q}

A; J; RE{JI}goto I{Q} A; J; RE{JI}/:5{Q}

Some Hoare rules

Composition:

A; J; RE{P}s1 {P'} A; J; RE{P}{Q}
A; J; RF{P}s ;5 {Q}

Goto:

A; J; RE{J 1} s{Q}

A; J; RE{JI}goto I{Q} A; J; RE{JI}/:5{Q}

Return:

A; J; RE{R}return{Q}

The frame rule

Used for local reasoning

A; J; RE{P}s{Q}

A Jx A R« AF{Px A}s{Q = A}

The block scope variable rule

A, Jtsxxgr—- RTxxprr-F{PT*xxg—>-}s{Q7T*xy+—-}

A; J; R {P}block s{Q}

When entering a block:
» The De Bruijn indexes are lifted: (-) 1

» The memory is extended: (_) * xp — -

The block scope variable rule

A, Jtsxxgr—- RTxxprr-F{PT*xxg—>-}s{Q7T*xy+—-}

A; J; RE{P}block s{Q}

When entering a block:
» The De Bruijn indexes are lifted: (-) 1
» The memory is extended: (_) * xp — -

When leaving a block: the reverse

The block scope variable rule

A, Jtsxxgr—- RTxxprr-F{PT*xxg—>-}s{Q7T*xy+—-}

A; J; R {P}block s{Q}

When entering a block:
» The De Bruijn indexes are lifted: (-) 1
» The memory is extended: (_) * xp — -

When leaving a block: the reverse

Important: using De Bruijn indexes avoids shadowing

Formalization in Coq

» Extremely useful for debugging

P

Proved
in Coq

Formalization in Coq

» Extremely useful for debugging
» Notations close to those on paper ; ‘)

» Also supports while and functions with r’/
return values —)

Proved

in Coq

Formalization in Coq

» Extremely useful for debugging

» Notations close to those on paper :]J '

» Also supports while and functions with r’/
return values -

> Uses lots of automation Eroved

» 3500 lines of code in Coq

Future research

» Expressions with side effects (recently finished)

» Machine integers (recently finished)

Future research

Expressions with side effects (recently finished)

v

Machine integers (recently finished)

v

The C type system (in progress)
Non-aliasing restrictions (in progress)

v

v

Future research

Expressions with side effects (recently finished)

v

v

Machine integers (recently finished)

v

The C type system (in progress)
Non-aliasing restrictions (in progress)

v

Verification condition generator in Coq

v

Future research

Expressions with side effects (recently finished)

v

v

Machine integers (recently finished)

v

The C type system (in progress)
Non-aliasing restrictions (in progress)

v

Verification condition generator in Coq

v

v

Correspondence with CompCert

Questions

Sources: http://robbertkrebbers.nl/research/ch2o0/

http://robbertkrebbers.nl/research/ch2o/

