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Aliasing

Aliasing: multiple pointers referring to the same object

int f(int *p, int *q) {

int x = *p; *q = 314; return x;

}

If p and q alias, the original value n of *p is returned

n

p q

Optimizing x away is unsound: 314 would be returned

Alias analysis: to determine whether pointers can alias
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Aliasing with different types

Consider a similar function:

int h(int *p, float *q) {

int x = *p; *q = 3.14; return x;

}

It can still be called with aliased pointers:

union { int x; float y; } u;

u.x = 271;

return h(&u.x, &u.y);

x
y

&u.x &u.y

C89 allows p and q to be aliased, and thus requires it to return 271

C99/C11 allows type-based alias analysis:

I A compiler can assume that p and q do not alias

I Reads/writes with “the wrong type” yield undefined behavior
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Undefined behavior in C

“Garbage in, garbage out” principle

I Programs with undefined behavior are not statically excluded

I Instead, these may do literally anything when executed

I Compilers are allowed to assume no undefined behavior occurs

I Allows them to omit (expensive) dynamic checks

A formal C semantics should account for undefined behavior
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Bits and bytes

Interplay between low- and high-level

I Each object should be represented as a sequence of bits
. . . which can be inspected and manipulated in C

I Each object can be accessed using typed expressions
. . . that are used by compilers for optimizations

Hence, the formal memory model needs to keep track of more
information than present in the memory of an actual machine

The standard is unclear on many of such difficulties
Opportunities for a formal semantics to resolve this unclarity!
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Contribution

An abstract formal memory for C supporting

I Types (arrays, structs, unions, . . . )

I Strict aliasing restrictions (effective types)

I Byte-level operations

I Type-punning

I Indeterminate memory

I Pointers “one past the last element”

I Parametrized by an interface for integer types

I Formalized together with essential properties in Coq



How to treat pointers

Others (e.g. CompCert) Our approach
Memory: a finite map of cells
which consist of arrays of bytes

Pointers: pairs (x , i) where x
identifies the cell, and i the off-
set into that cell

Too little information to cap-
ture strict aliasing restrictions
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Three kinds of values

Our formal description has three kinds of values. For

struct { short x, *p; } s = { 33; &s.x }

we have:

I An abstract value with machine integers and pointers as leafs:

33 •

I A memory value with arrays of bits as leafs:

1000010000000000 ································

I An array of bits:

1000010000000000 ································
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Bits and memory values

I Bits are represented symbolically (à la bytes in CompCert):

b ::= 0 | 1 | (ptr p)i | indet

I Gives “the best of both worlds”: allows bitwise hacking on
integers while keeping the memory abstract

I Memory values are defined as:

w ::= baseτb
~b | array ~w

| structs ~w | unions (i ,w) | unions
~b

I Memory values have (unique) types
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Example

Consider:

struct T {

union U { signed char x[2]; int y; } u;

void *p;

} s = { { .x = {33,34} }, s.u.x + 2 }

As a picture:
xs 7→ ws =

.0

signed char: 10000100 01000100

void∗: (ptr p)0 (ptr p)1 . . . (ptr p)31

p

Here we have:

I p = (xs ,
T
 0

U
 0, 2)signed char>void

I mtobits ws =
100001001000100 indet . . . indet (ptr p)0 (ptr p)1 . . . (ptr p)31
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Memory values to bits?

Let us reconsider memory values:

w ::= baseτb
~b | array ~w

| structs ~w | unions (i ,w) | unions
~b

How to do the conversion of bits?

I Seems impossible

I Given bits of

union U { int x; int y; }

should we choose the variant x or y?

Solution: postpone this choice by storing it as a unionU ~b
. . . and change it into a unionU (i ,w) node on a lookup

Hard part: dealing with this choice in abstract values and the
various operations
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Type-punning

Type-punning: reading a union using a pointer to another variant

C11: vaguely mentioned in a footnote

GCC: allowed if “the memory is accessed through the union type”

Given:

union U { int x; float y; } t;

Defined behavior:

t.y = 3.0; return t.x; // OK

Undefined behavior:

int *p = &t.x; t.y = 3.0; return *p; // UB

Formalized by decorating pointers with annotations
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Strict-aliasing Theorem

Theorem (Strict-aliasing)

Given:

I addresses m ` a1 : σ1 and m ` a2 : σ2
I with annotations that do not allow type-punning

I σ1, σ2 6= unsigned char

I σ1 not a subtype of σ2 and vice versa

Then there are two possibilities:

I a1 and a2 do not alias

I accessing a1 after a2 (and vice versa) has undefined behavior

Corollary Compilers can perform type based alias analysis
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Memory extensions

To prove program transformations correct one has to relate:

I the memory of the original program to

I the memory of the the transformed program

We have m1 v m2 if m2 allows more behaviors than m1:

I More memory content determinate

indet v b

I Fewer restrictions on effective types

unionu (i ,w) v unionu
~b

Theorem ”copy by assignment” v ”byte-wise copy”
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Formalization in Coq

Type theory is ideal for the combination programming/proving

I The devil is in the details, Coq is extremely useful for
debugging of definitions

I Useful to prove meta-theoretical properties

I Use of type classes for parametrization by machine integers

I Use of type classes for overloading of notations

I 8.500 lines of code



Future research

I Integration into our operational semantics [K, POPL’14]
. . . and make it (reasonably efficiently) executable

I Memory injections à la CompCert

I Integration into our axiomatic semantics [K, POPL’14]

I Floating point numbers, bit fields, variable length arrays

I The const, volatile and restrict qualifier

I Verification Condition generator in Coq



Questions

Sources: see http://robbertkrebbers.nl/research/ch2o/

http://robbertkrebbers.nl/research/ch2o/

