
Separation algebras for C verification in Coq

Robbert Krebbers

ICIS, Radboud University Nijmegen, The Netherlands

Abstract. Separation algebras are a well-known abstraction to capture
common structure of both permissions and memories in programming
languages, and form the basis of models of separation logic. As part of
the development of a formal version of an operational and axiomatic se-
mantics of the C11 standard, we present a variant of separation algebras
that is well suited for C verification.
Our variant of separation algebras has been fully formalized using the
Coq proof assistant, together with a library of concrete implementations.
These instances are used to build a complex permission model, and a
memory model that captures the strict aliasing restrictions of C.

1 Introduction

Separation logic [19] is widely used to reason about imperative programs that
use mutable data structures and pointers. Its key feature is the separating con-
junction P ∗ Q that allows to split the memory into two disjoint parts; a part
described by P , and another part described by Q. The separating conjunction
is used for example in the frame rule.

{P} s {Q}
{P ∗ R} s {Q ∗ R}

This rule enables local reasoning about parts of a program. Given a Hoare triple
{P} s {Q}, this rule makes it possible to derive that the triple also holds when
the memory is extended with a disjoint part described by R.

In previous work, we have extended separation logic to deal with intricate
features of the C programming language. In [15] we have extended separation
logic to support non-local control flow in the presence of block scope variables
(with pointers to those), and in [13] we have extended that separation logic to
deal with non-determinism and sequence points in C.

A shortcoming of this first version of our separation logic for C is its rather
basic memory model that merely supports integers and pointers, but no array,
struct, and union types. In order to support these data-types together with the
strict-aliasing restrictions of C11 [10, 6.5p6-7], which allow compilers to perform
type-based alias analysis, one needs a rich memory model. For that reason, we
have developed a memory model based on forests structured according to the
shape of data types in C to accurately describe these restrictions [12].

In this paper, we will show how separation algebras are used for the integra-
tion of our separation logic and our memory model.

2 Robbert Krebbers

Separation logic for C. The key observation of our separation logic in [13] is the
correspondence between non-determinism in expressions and a form of concur-
rency. Inspired by the rule for the parallel composition [18], we have the following
kinds of rules for each operator }.

{P1} e1 {Q1} {P2} e2 {Q2}
{P1 ∗ P2} e1 } e2 {Q1 ∗ Q2}

The intuitive idea of the above rule is that if the memory can be split up into two
parts, in which the subexpressions e1 respectively e2 can be executed safely, then
the full expression e1 } e2 can be executed safely in the whole memory. Since
the separating conjunction ensures that both parts of the memory do not have
overlapping parts that will be written to, it is guaranteed that no interference
of the side-effects of e1 and e2 occurs. It thus effectively rules out expressions as
(*p = 3) + (*p = 4) that have undefined behavior [10, 6.5p2].

Our separation logic uses permissions [4], and therefore the singleton asser-

tion has the shape e1
x7−→ e2 where x is the permission of the object e2 at address

e1. Fractional permissions [5] are used to make sharing of read only memory of
multiple subexpressions possible. This is needed in *p + *p for example.

Permissions are also used to keep track of whether an object has been locked
due to a previous assignment. This is needed to ensure that no undefined behav-
ior because of a sequent point violation occurs (modifying an object in memory
more than once between two sequence points). Furthermore, since C only allows
pointer arithmetic on addresses that exist (i.e. have not been deallocated), we
need existence permissions. Bornat et al. [4] left existence permissions for future
work, but our permission model incorporates these.

Since permissions are used to account for various constraints, they become
very complex, especially when used in a memory model for a real-world language
like C. We will use separation algebras to factor out common structure and to
build the permission and memory model in a more compositional way.

Approach. Separation algebras, as originally defined by Calcagno et al. [6], are
used as models of separation logic. Given a separation algebra, which is a partial
cancellative commutative monoid (A, ∅,∪), a shallow embedding of separation
logic with assertions P,Q : A→ Prop can be defined as:

emp := λx . x = ∅
P ∗ Q := λx .∃x1 x2 . x = x1 ∪ x2 ∧ P x1 ∧Qx2

The prototypical instance of a separation algebra is a heap, where ∅ is the
empty heap, and ∪ the disjoint union. Other useful instances include the booleans
(bool, false,∨) and fractional permissions ([0, 1]Q, 0,+) [4,5] where 0 denotes no
access, 1 exclusive access, and 0 < < 1 read-only access. Separation algebras are
closed under various many (products, finite functions, etc.), and hence complex
instances can be built compositionally.

When formalizing separation algebras in the Coq proof assistant, we quickly
ran into some problems:

Separation algebras for C verification in Coq 3

1. Dealing with partial operations is cumbersome.
2. Dealing with subsets types (modeled as Σ-types) is inconvenient.
3. Operations like the difference operation \ cannot be defined constructively

from just the laws of a separation algebra.

To deal with problem 1 of partiality, we turn ∪ into a total binary operation,
and axiomatize a binary relation x ⊥ y that describes that x and y are disjoint.
Only if x ⊥ y holds, x ∪ y is required to satisfy the algebraic laws.

Problem 2 already appears in the simple case of fractional permissions [0, 1]Q,
where the ∪-operation (here +) can ‘overflow’. We remedy this problem by hav-
ing all operations operate on pre-terms (here Q) and axiomatize a predicate valid
that describes that a pre-term is valid (here 0 ≤ ≤ 1).

Although problems 1 and 2 seem relatively minor for trivial separation al-
gebras like Booleans and fractional permissions, these problems become more
evident for more complex (recursive) separation algebras like those that appear
in our memory model. Our approach makes using plain ML/Haskell-style types
possible. In order to deal with problem 3, we axiomatize the relation ⊆ and the
operation \. Using a choice operator, the \-operation can be defined in terms of
∪, but in Coq (without axioms) that is impossible.

Since the aforementioned problems merely concern ease of formalization, our
solution so far is just a different form of presentation and does not fundamentally
change the notion of a separation algebra. Although our solution results in more
laws, these are generally trivial to prove. Moreover, we describe some machinery
to deal with the additional conditions.

A more fundamental problem is that the standard definition of a separation
algebra allows for very strange instances that do not correspond to a reasonable
separation logic. To that end, Dockins et al. [8] have described various restrictions
of separation algebras: splittability, positivity, disjointness, etc. Of course, we
rather avoid the need to formalize a complex algebraic hierarchy in Coq. Hence,
we define one variant that fits our whole development.

Our variant also includes additional features to abstractly describe exclusive
ownership, which is needed for our permission and memory model.

Related work. Separation algebras were originally defined by Calcagno et al. [6],
but their work dealt with a rather idealized language, and was not aimed at for-
malization in proof assistants. However, many researchers have used separation
algebras and separation logic for realistic languages in proof assistants.

Dockins et al. [8] have formalized separation algebras together with various
restrictions in Coq. They have dealt with the issue of partiality by treating ∪ as
a relation instead of a function. However, this is unnatural, because equational
reasoning becomes impossible and one has to name all auxiliary results.

Bengtson et al. [2] formalized separation algebras in Coq to reason about
object-oriented programs. They have defined ∪ as a partial function, and did not
define any complex permission models. Yet another formalization of separation
algebras is by Klein et al. [11] using the Isabelle proof assistant. Their approach
to partial operations is similar to ours. Section 2 contains a comparison.

4 Robbert Krebbers

In our previous paper on a separation logic for non-determinism and sequence
points in C [13] we used an extension of permission algebras to describe permis-
sions abstractly. Separation algebras are more general: the previous abstraction
contained notions specific to permissions, and therefore the memory model itself
was not an instance. Moreover, separation algebras include an ∅-element, which
is necessary to split the trees of our memory model. The permission model that
we present in this paper is based on our previous one [13], but it is built more
compositionally, and it supports existence permissions.

There has been a significant amount of previous work on formalized memory
models for the C programming language, most notably by Leroy et al. [17] and
Beringer et al. [3] in the context of the CompCert compiler [16]. However, no
previous memory models apart from our own [12] have taken the strict aliasing
restrictions of C11 into account. Thus, in particular no previous work has dealt
with separation logic for such a memory model.

Contribution. Our contribution is fivefold:

– We define a variant of separation algebras that works well in Coq (Section 2).
– We present a complex permission model for an operational and axiomatic

semantics of the C programming language (Section 3 and 4).
– We present a generalization of the memory model that we described in [12]

and show that it forms a separation algebra (Section 5).
– We present an algebraic method to reason about disjointness (Section 6).
– All proofs have been formalized using the Coq proof assistant (Section 7).

Because this paper is part of a large formalization effort, we often omit details
and proofs. The interested reader can find all details online as part of the Coq
development at http://robbertkrebbers.nl/research/ch2o.

2 Simple separation algebras

We first describe our version of separation algebras that is equivalent to tradi-
tional non-trivial, positive, and cancellative separation algebras.

Definition 2.1. A simple separation algebra consists of a set A, with:

– An element ∅ : A
– A predicate valid : A→ Prop
– Binary relations ⊥, ⊆ : A→ A→ Prop
– Binary operations ∪, \ : A→ A→ A

Satisfying the following laws:

1. If x ⊥ y, then y ⊥ x and x ∪ y = y ∪ x
2. If valid x, then ∅ ⊥ x and ∅ ∪ x = x
3. If x ⊥ y and x ∪ y ⊥ z, then

(a) y ⊥ z, x ⊥ y ∪ z and

http://robbertkrebbers.nl/research/ch2o

Separation algebras for C verification in Coq 5

(b) x ∪ (y ∪ z) = (x ∪ y) ∪ z
4. If z ⊥ x, z ⊥ y and z ∪ x = z ∪ y, then x = y
5. If x ⊥ y, then valid x and valid (x ∪ y)
6. There exists an x 6= ∅ with valid x
7. If x ⊥ y and x ∪ y = ∅, then x = ∅
8. If x ⊥ y, then x ⊆ x ∪ y
9. If x ⊆ y, then x ⊥ y \ x and x ∪ y \ x = y

To deal with partiality, we turned ∪ into a total operation. Only if x and y
are disjoint, notation x ⊥ y, we require x ∪ y to satisfy the algebraic laws.

Laws 2–4 describe the traditional laws of a separation algebra: identity, com-
mutativity, associativity, and cancellativity. Law 5 ensures that valid is closed
under ∪. Law 6 ensures that the separation algebra is non-trivial, together with
law 5 this yields valid ∅. Law 7 describes positivity, and laws 8 and 9 fully ax-
iomatize the ⊆-relation and \-operation. Using positivity and cancellativity, we
obtain that ⊆ is a partial order and that ∪ is order preserving and respecting.

Definition 2.2. The simple Boolean separation algebra bool is defined as:

valid x := True

x ⊥ y := ¬x ∨ ¬y
x ⊆ y := x→ y

∅ := false

x ∪ y := x ∨ y
x \ y := x ∧ ¬y

Boyland’s fractional permissions [0, 1]Q [5] where 0 denotes no access, 1 ex-
clusive access, and 0 < < 1 read-only access, form a simple separation algebra.

Definition 2.3. The simple fractional separation algebra Q is defined as:

valid x := 0 ≤ x ≤ 1

x ⊥ y := 0 ≤ x, y ∧ x+ y ≤ 1

x ⊆ y := 0 ≤ x ≤ y ≤ 1

∅ := 0

x ∪ y := x+ y

x \ y := x− y

The version of separation algebras by Klein et al. [11] in Isabelle also treats
∪ as a total operation and uses a relation ⊥. There are some differences:

1. We include a predicate valid to prevent having to deal with subset types.
2. They have weaker premisses for associativity (law 3b), namely x ⊥ y, y ⊥ z

and x ⊥ z instead of x ⊥ y and x ∪ y ⊥ z. Ours are more natural, e.g. for
fractional permissions one has 0.5 ⊥ 0.5 but not 0.5 + 0.5 ⊥ 0.5, and it thus
makes no sense to require 0.5 ∪ (0.5 ∪ 0.5) = (0.5 ∪ 0.5) ∪ 0.5 to hold.

3. We axiomatize \ because Coq does not have a choice operator.

3 Permissions and separation logic for C

Our semantics for the C programming language needs a complex permission
system to account for whether certain operations are allowed or not. We classify
the C permissions using the following permission kinds.

6 Robbert Krebbers

Freeable

Writable

Readable Locked

Existing

⊥

Readable

Freeable Writable

Existing

Locked

◦ (0, 1)

◦ (0, 0)

• (0, 1)

Freed ⊥

Fig. 1. Left: the lattice of permission kinds. Right: the actual permissions.

– Freeable. All operations (reading, writing, deallocation) are allowed.
– Writable. Just reading and writing is allowed.
– Readable. Solely reading is allowed.
– Existing. Objects with permissions of this kind are allowed to have pointers to

them, which can be used for pointer arithmetic but cannot be dereferenced.
Permissions of this kind are called existence permissions in [4].

– Locked. Permissions of this kind are used temporarily for objects that have
been locked due to a write. The original permission of these objects will be
restored at a subsequent sequence point [13].
For example, in (x = 3) + (*p = 4); the assignment x = 3 will lock the
object x. The purpose of this lock is to describe the sequence point restriction
of C that disallows to assign to the same object multiple times during the
execution of the same expression. Hence, if p points to x, the expression
will have undefined behavior. At the sequence point ;, the object x will be
unlocked, and its original permission will thereby be restored.

– ⊥. No operations are allowed at all, and pointers to objects with permission
of this kind are indeterminate. For example, free(p); return (p-p); has
undefined behavior. After the call to free, the pointer p refers to an ob-
ject with a permission of kind ⊥. Therefore, p becomes indeterminate [10,
6.2.4p2], and cannot be used for pointer arithmetic anymore.

As displayed in Figure 1, permission kinds form a lattice (pkind,⊆) where
k1 ⊆ k2 expresses that k1 allows fewer operations than k2. We use permission
kinds as an abstract view of the permission model to allow the operational seman-
tics to determine if certain operations are allowed. However, for our separation
logic we have to deal with sharing. This is needed to:

– Split a Writable or Readable permission into Readable ones. This is needed in
x + x where both parts require read ownership of x.

– Split a Freeable permission into an Existing and Writable one. This is needed
in *(p + 1) = *p = 1 where one part requires write ownership of *p, and
another performs pointer arithmetic on p (which is only allowed if *p exists).

When reassembling split permissions (using ∪), we need to know when exclu-
sive access is regained. Hence, the permission model needs to be more structured.

Separation algebras for C verification in Coq 7

Definition 3.1. A C permissions system is a separation algebra A with func-
tions kind : A→ pkind, lock, unlock, 12 : A→ A and token : A satisfying:

unlock (lock x) = x provided that Writable ⊆ kind x (1)

kind (lock x) = Locked provided that Writable ⊆ kind x (2)

kind
(
1
2x
)

=

{
Readable if Writable ⊆ kind x

kind x otherwise
(3)

kind token = Existing (4)

kind (x \ token) =

{
Writable if kind x = Freeable

kind x if Existing ⊂ kind x
(5)

The 1
2 -operation is used to split a Writable or Readable permission x into

two Readable permissions 1
2x. Permissions of kind Locked cannot be split using

1
2 because such permissions require exclusive write ownership. The \-operation
is used to take an existence permission token of some permission. In particular,
it is used to split a Freeable permission x into an Existing permission token and
Writable permission x \ token. The existence permission token has kind Existing
and thus allows solely pointer arithmetic.

A possible permission model satisfying these laws is (a subset of) the following
three dimensional space:

{Freed}+ {◦, •} ×Q× [0, 1]Q.

Figure 1 displays how the elements of this model project onto their kinds. This
permission model combines fractional permissions to account for read/write own-
ership with counting permissions to account for the number of existence permis-
sions (i.e. tokens) that have been handed out. The annotations {◦, •} describe
whether a permission is locked • or not ◦. Although counting permissions are
traditionally modeled by natural numbers [4], our model uses rational numbers
to allow the counting part to be splittable as well.

Our organization of permissions is inspired by CompCert [17], but has the ad-
ditional Locked node. Since CompCert only deals with an operational semantics
for C, it does not need to make a distinction between permissions and permission
kinds. Therefore, a coarse permission model suffices.

4 Extended separation algebras

In this section we extend simple separation algebras with some features that
will be used for our memory model. Moreover, we present various instances of
separation algebras that will be used to contruct a C permission system.

Definition 4.1. A separation algebra extends a simple separation algebra with:

– Predicates splittable, unmapped, unshared : A→ Prop

8 Robbert Krebbers

– A unary operation 1
2 : A→ A

Satisfying the following laws:

10. If x ⊥ x, then splittable (x ∪ x)
11. If splittable x, then 1

2x ⊥
1
2x and 1

2x ∪
1
2x = x

12. If splittable y and x ⊆ y, then splittable x
13. If x ⊥ y and splittable (x ∪ y), then 1

2 (x ∪ y) = 1
2x ∪

1
2y

14. unmapped ∅, and if unmapped x, then valid x
15. If unmapped y and x ⊆ y, then unmapped x
16. If x ⊥ y, unmapped x and unmapped y, then unmapped (x ∪ y)
17. unshared x iff valid x and for all y with x ⊥ y we have unmapped y

The predicate unmapped describes whether storage with given permission
is allowed to contain content or should be empty. Dually, unshared x describes
whether a permission x has exclusive ownership of its storage. This means that
all permissions disjoint to x do not allow their storage to contain content. The
following table describes how the C permissions are classified using the predicates
unmapped and unshared.

unshared unmapped Examples

Readable permissions

X The ∅ permission and Existing permissions

X Freeable, Writable and Locked permissions

X X The Freed permission

For separation algebras where unmapped and unshared make no sense (for
example, the memory model in Section 5), we let unmapped x := x = ∅ and
unshared x := False. These definitions trivially satisfy laws 14–17.

The 1
2 -operation is partial because permissions without read ownership (for

example those of kind Locked) cannot be split. Similar to the treatment of ∪, we
turn 1

2 into a total function and let splittable describe if a permission can be split
(laws 10 and 11). Law 12 makes sure that splittable permissions are infinitely
splittable, and law 13 ensures that 1

2 distributes over ∪.

Definition 4.2. The Boolean separation algebra bool is extended with:

splittable x := ¬x
unmapped x := ¬x

1
2x := x

unshared x := x

Definition 4.3. The fractional separation algebra Q is extended with:

splittable x := 0 ≤ x ≤ 1

unmapped x := x = 0

1
2x := 0.5 · x

unshared x := x = 1

A crucial part of the C permissions is the ability to lock permissions after
an assignment to describe the sequence point restriction [13]. The lockable sep-
aration algebra adds annotations {◦, •} to account for whether a permission is
locked • or not ◦. Permissions that are locked have exclusive write ownership,
and are thus only disjoint from those that do not allow content.

Separation algebras for C verification in Coq 9

Definition 4.4. Given a separation algebra A, the lockable separation algebra
L(A) := {◦, •} ×A over A is defined as:

valid (◦x) := valid x

∅ := ◦ ∅
◦x ⊥ ◦ y := x ⊥ y
•x ⊥ • y := False

◦x ∪ ◦ y := ◦ (x ∪ y)

•x ∪ • y := • (x ∪ y)

valid (•x) := unshared x

◦x ⊥ • y := x ⊥ y ∧ unmapped x ∧ unshared y

•x ⊥ ◦ y := x ⊥ y ∧ unshared x ∧ unmapped y

◦x ∪ • y := • (x ∪ y)

•x ∪ ◦ y := • (x ∪ y)

We omitted the definition of some relations and operations in the previous
and coming definitions due to space restrictions.

The C permission model needs existence permissions that allow pointer arith-
metic but do not supply read or write ownership. The counting separation algebra
over A has elements (x, y) with x ∈ Q and y ∈ A. Here, x counts the number
of existence permissions that have been handed out. Existence permissions are
elements (x, ∅) with x < 0. To ensure that the counting separation algebra is
closed under ∪ and preserves splittability, the counter x is rational.

Definition 4.5. We let z1 and z2 denote the first and second projection of z.

Definition 4.6. Given a separation algebra A, the counting separation algebra
C(A) := Q×A over A is defined as:

valid x := valid x2 ∧ (unmapped x2 → x1 ≤ 0) ∧ (unshared x2 → 0 ≤ x1)

∅ := (0, ∅)
x ⊥ y := x2 ⊥ y2 ∧ (unmapped x2 → x1 ≤ 0) ∧ (unmapped y2 → y1 ≤ 0)

∧ (unshared (x2 ∪ y2)→ 0 ≤ x1 + y1)

x ∪ y := (x1 + y1, x2 ∪ y2)

Finally, we need to extend permissions with a permission Freed to keep track
of whether storage has been deallocated. Deallocated storage is not allowed to
contain any content, and pointers to deallocated storage are indeterminate and
thereby cannot be used for pointer arithmetic.

Definition 4.7. Given a separation algebra A, the freeable separation algebra
F(A) := {Freed}+A over A is defined by extending the separation algebra with:

valid Freed := True

Freed ⊥ Freed := False

Freed ∪ Freed := Freed

unmapped Freed := True

x ⊥ Freed := x = ∅
Freed ⊥ y := y = ∅
x ∪ Freed := Freed

Freed ∪ y := Freed

unshared Freed := True

Combining the previous separation algebras, we now define the C permission
model. It is easy to verify that it satisfies the laws of Definition 3.1.

10 Robbert Krebbers

Definition 4.8. C permissions are defined as

perm := F(L(C(Q)))

with:

kind z :=

Freeable if z = ◦ (0, 1)

Writable if z = ◦ (x, 1) with x 6= 0

Readable if z = ◦ (x, y) with 0 < y < 1

Existing if z = ◦ (x, 0) with x 6= 0

Locked if z = • (x, y)

⊥ otherwise

lock z :=

{
• (x, y) if z = ◦ (x, y)

z otherwise

unlock z :=

{
◦ (x, y) if z = • (x, y)

z otherwise

token := ◦ (−1, 0)

5 The C memory model and strict aliasing

In type-based alias analysis, type information is used to determine whether point-
ers are aliased or not. Consider:

float f(int *p, float *q) { float x = *q; *p = 10; return x; }

Here, a compiler should be able to assume that p and q are not aliased because
their types differ. However, the (static) type system of C is too weak to enforce
this restriction since a union type can be used to call f with aliased pointers.

union INT_FLT { int x; float y; } u = { .y = 3.14 };

f(&u.x, &u.y);

A union is the C version of the sum type, but contrary to traditional sum types,
unions are untagged instead of tagged. This means that the variant of a union
cannot be obtained. Unions destroy the property that each memory area has a
unique type that is statically known. The effective type [10, 6.5p6-7] of a memory
area hence depends on the run-time behavior of the program.

The strict-aliasing restrictions of C11 [10, 6.5p6-7] ensure that a pointer to
a variant of a union type (not to the whole union itself) can only be used for an
access (a read or store) if the union has that particular variant. Calling g with
aliased pointers (as in the example where u has the y variant, and is accessed
through a pointer p to the x variant) results in undefined behavior.

Under certain circumstances it is nonetheless allowed to access a union using
a pointer to another variant than its current one, this is called type-punning [10,
6.5.2.3]. For example, the function g has defined behavior (on architectures with
size_of(int) ≤ size_of(float) and where ints do not have trap values):

Separation algebras for C verification in Coq 11

int g() { union INT_FLT u; u.y = 3.0; return u.x; }

Type-punning may only be performed directly via an l-value of union type.
The function h below thus exhibits undefined behavior because type-punning is
performed indirectly via a pointer p to a variant of the union.

int h() { union INT_FLT u; int *p = &u.x; u.y = 3.0; return *p; }

Significant existing formal versions of C (e.g. those by Leroy et al. [17] and
Ellison and Rosu [9]) model the memory as a finite partial function to objects,
where each object consists of an array of bytes. Since these existing formal
versions of C do not keep track of the variants of unions, they cannot capture
the strict-aliasing restrictions of C11.

Instead of using an array of bytes to represent the contents of each object, our
memory model [12] uses structured trees that have arrays of bits that represent
base values (integers and pointers) on the leafs. This modification captures the
strict-aliasing restrictions: effective types are modeled by the state of these trees.

A generalization of our memory model [12], where the leafs of the trees are
elements of a separation algebra instead of just bits, forms a separation algebra.
The original version of the memory model can be re-obtained by instantiating
the generalized version with (permission annotated) bits.

Definition 5.1. C-trees over a separation algebra A are defined as:

w ∈ ctreeA ::= baseτb ~x | arrayτ ~w | structs
−−~w~x | unionu (i, w, ~x) | unionu ~x

where x ∈ A. C-maps (m ∈ cmapA) are finite partial functions of a countable
set of memory indexes (o ∈ index) to pairs of booleans and C-trees.

In the above definition, s, u ∈ tag range over struct and union names (called
tags), τb ∈ basetype ranges over base types (signed char, unsigned int, τ∗, . . .),
and τ ∈ type ranges over types (τb, τ [n], struct s, union s).

C-trees have two kinds of union nodes: unionu (i, w, ~x) represents a union in
a particular variant i with padding ~x, and unionu ~x represents a union whose
variant is unknown. Unions of the latter kind can be obtained by byte-wise
copying and appear in uninitialized memory. When accessing (reading or writing)
a union unionu ~x using a pointer to variant i, the bits ~x will be interpreted as
a C-tree w of variant i, and the node is changed into unionu (i, w, ~x′) where ~x′

corresponds to the remaining padding. It is important to note that the variant
of a union is internal to the memory model, and should not be exposed through
the operational semantics because an actual machine does not store it.

Padding between struct fields is stored in the current version of our memory
model, whereas it was absent in the original version [12]. For the actual instan-
tiation, we have defined a predicate in the Coq formalization to ensure that
padding always consists of indeterminate bits so as to be C11 compliant1.

1 In particular: “When a value is stored in an object of structure or union type,
including in a member object, the bytes of the object representation that correspond
to any padding bytes take unspecified values” [10, 6.2.6.1p6].

12 Robbert Krebbers

struct T {
union U {

signed char x[2]; int y;
} u;
void *p;

} s = {
{ .x = {33,34} }, s.u.x + 2

}

ws =

.0

signed char: 1000010001000100 ???????? ????????

void∗: (ptr p)0 (ptr p)1 . . . (ptr p)31

p

Fig. 2. The C-tree ws corresponding to the object s declared in the C code on the left
(on the x86 architecture). Permissions are omitted for simplicity.

The nodes (w, β) of C-maps are annotated with a boolean β to account for
whether storage has been allocated dynamically using malloc (if β = true) or
statically as a block scope variable (if β = false).

The original version of the memory model used specific nodes for objects
that have been deallocated. In the current version we make it more uniform and
represent such objects by a tree with Freed permissions at all leafs.

Definition 5.2. Bits are defined as:

b ∈ bit ::= 1 | 0 | (ptr p)i | ?

where p ∈ ptr ranges over pointers represented as paths through C-trees (see [12]
for the formal definition).

A bit is either a concrete bit 0 or 1, the ith fragment bit (ptr p)i of a pointer
p, or the indeterminate bit ?. As shown in Figure 2, integers are represented by
concrete sequences of bits, and pointers by sequences of fragments. This way of
representing pointers is similar to Leroy et al. [17], but is on the level of bits
instead of bytes. The actual bit representation flatten w of a C-tree w is obtained
by flattening it. For the C-tree ws in Figure 2 we have:

flatten ws = 10000100 01000100 ???????? ???????? (ptr p)0 (ptr p)1 . . . (ptr p)31

In order to re-obtain the actual memory model, we instantiate C-maps with
permission annotated bits. For that, we use the tagged separation algebra that
extends each element of an existing separation algebra with a tag.

Definition 5.3. Given a separation algebra A and a set of tags T with default
tag t ∈ T , the tagged separation algebra Tt:T (A) := A× T over A is defined as:

valid x := valid x1 ∧ (unmapped x1 → x2 = t)

∅ := (∅, t)
x ⊥ y := x1 ⊥ y1 ∧ (unmapped x1 ∨ x2 = y2 ∨ unmapped y1)

∧ (unmapped x1 → x2 = t) ∧ (unmapped y1 → y2 = t)

x ∪ y :=

{
(x1 ∪ y1, y2) if x2 = t

(x1 ∪ y1, x2) otherwise

Separation algebras for C verification in Coq 13

The tagged separation algebra Tt:T (A) ensures that each element x ∈ A with
unmapped x element has the default tag t. For the case of permission annotated
bits T?:bit(perm), we use the symbolic bit ? that represents indeterminate storage
as the default tag to ensure that unmapped permissions have no content.

Definition 5.4. The C memory is defined as:

mem := cmap (T?:bit(F(L(C(Q))))).

C-trees do not form a separation algebra because they do not have a single
∅ element (they have one for each type). However, apart from ∅ all other rela-
tions and operations can be defined by lifting those of the underlying separation
algebra from the leafs to the trees. Defining the separation algebra structure on
C-maps is then straightforward, the operations on the trees are lifted to finite
functions, and the ∅ element is defined as the empty partial function.

The ∪-operation on (disjoint) C-trees is defined as follows:

baseτb ~x1 ∪ baseτb ~x2 := baseτb (~x1 ∪ ~x2)

arrayτ ~w1 ∪ arrayτ ~w2 := arrayτ (~w1 ∪ ~w2)

structs
−−−~w1~x1 ∪ structs

−−−~w2~x2 := structs (
−−−~w1~x1 ∪

−−−~w2~x2)

unionu (i, w1, ~x1) ∪ unionu (i, w2, ~x2) := unionu (i, w1 ∪ w2, ~x1 ∪ ~x2)

unionu (i, w1, ~x1) ∪ unionu ~x2 := merge∪ (unionu (i, w1, ~x1)) ~x2

unionu ~x1 ∪ unionu (i, w2, ~x2) := merge∪ (unionu (i, w2, ~x2)) ~x1

Here, mergef w ~x yields a modified version of w in which the elements on the
leaves are combined with ~x using the function f .

The above definition makes it possible to split storage of compound data-
types into smaller parts. However, splitting a union into a part with write own-
ership and a part with mere existence permissions is quite subtle because the
variant of a union can change at run-time:

unionu (i, w1, ~x1) = unionu (i, w′
1,
~x′1) ∪ part with existence permissions

⇓ switching from variant i to j

unionu (j, w2, ~x2) = unionu (j, w′
2,
~x′2) ∪ part with existence permissions

Hence, for the part of a union that has mere existence permissions we always
use the node unionu ~x with unknown variant. This restriction is enforced in the
rules for disjointness and validity. Some representative rules are listed below:

valid ~x

valid (unionu ~x)

valid w valid ~x ¬(unmapped w ∧ unmapped ~x)

valid (unionu (i, w, ~x))

flatten w1 ++ ~x1 ⊥ ~x2 valid w1 ¬(unmapped w1 ∧ unmapped ~x1) unmapped ~x2

unionu (i, w1, ~x1) ⊥ unionu ~x2

14 Robbert Krebbers

Since operations that change the variant (type-punning and byte-wise copy-
ing) are only allowed if the entire union has exclusive write ownership, the con-
straint unmapped ~x2 ensures that disjointness is preserved under such operations.

6 Reasoning about disjointness

For the soundness proof of the axiomatic semantics in [13] we often had to reason
about preservation of disjointness under memory operations. To ease that kind
of reasoning, we have defined some machinery. In this section we will show that
the machinery of [13] extends to any separation algebra.

Definition 6.1. Disjointness of a sequence ~x, notation⊥ ~x, is defined as:

1. ⊥ []
2. If x ⊥

⋃
~x and⊥ ~x, then⊥ (x :: ~x)

Notice that⊥ ~x is stronger than merely having xi ⊥ xj for each i 6= j. For
example, using fractional permissions, we do not have⊥ [0.5, 0.5, 0.5] whereas
we clearly do have 0.5 ⊥ 0.5. Using disjointness of sequences we can for example
state the associativity law (law 3 of Definition 2.1) in a more symmetric way:

if⊥ [x, y, z] then x ∪ (y ∪ z) = (x ∪ y) ∪ z.

Next, we define a relation ~x1 ≡⊥ ~x2 that captures that sequences ~x1 and ~x2
behave equivalently with respect to disjointness.

Definition 6.2. Equivalence of ~x1 and ~x2 with respect to disjointness, notation
~x1 ≡⊥ ~x2, is defined as:

~x1 ≤⊥ ~x2 := ∀x .⊥ (x :: ~x1)→⊥ (x :: ~x2)

~x1 ≡⊥ ~x2 := ~x1 ≤⊥ ~x2 ∧ ~x2 ≤⊥ ~x1

It is straightforward to show that ≤⊥ is reflexive and transitive, is respected
by concatenation of sequences, and is preserved by list containment. Hence,
≡⊥ is an equivalence relation, a congruence with respect to concatenation of
sequences, and is preserved by permutations. The following results allow us to
reason algebraically about disjointness.

Lemma 6.3. If ~x1 ≤⊥ ~x2, then⊥ ~x1 implies⊥ ~x2.

Lemma 6.4. If ~x1 ≡⊥ ~x2, then⊥ ~x1 if and only if⊥ ~x2.

Theorem 6.5. We have the following algebraic properties:

∅ :: ~x ≡⊥ ~x (6)

(x1 ∪ x2) :: ~x ≡⊥ x1 :: x2 :: ~x provided that x1 ⊥ x2 (7)⋃
~x1 :: ~x2 ≡⊥ ~x1 ++ ~x2 provided that⊥ ~x1 (8)

x2 :: ~x ≡⊥ x1 :: (x2 \ x1) :: ~x provided that x1 ⊆ x2 (9)

Separation algebras for C verification in Coq 15

7 Formalization in Coq

All proofs in this paper have been fully formalized using Coq [7]. We used Coq’s
notation mechanism combined with unicode symbols and type classes to let the
code correspond as well as possible to the definitions in this paper. The Coq
development contains many parts that are not described in this paper, including
the features of the original memory model [12].

In the Coq development, we used Coq’s setoid machinery [20] to conveniently
rewrite using the relations ≤⊥ and ≡⊥ (see Definition 6.2). Using this, we have
implemented a tactic that automatically solves entailments of the form:

H0 :⊥ ~x0, . . . , Hn :⊥ ~xn ` ⊥ ~x

where ~x and ~xi (for i ≤ n) are arbitrary Coq expressions built from ∅, ∪ and
⋃

.
This tactic works roughly as follows:

1. Simplify hypotheses using result 6-8 of Theorem 6.5.
2. Solve side-conditions by simplification using the same results and a solver

for list containment (implemented by reflection).
3. Repeat these steps until no further simplification is possible.
4. Finally, solve the goal by simplification and list containment.

The Coq definitions corresponding to our memory model involve a lot of list
surgery to translate between bit sequences and trees. To ease proofs about list
surgery, we have developed a large library of general purpose theory. This library
not only includes theory about lists, but also about finite sets, finite functions,
and other data structures that are used heavily in the formalization.

8 Conclusions and further research

The eventual goal of this research is to develop an operational and axiomatic
semantics (based on separation logic) for a large part of the C11 programming
language [14]. This paper is an important step towards combining our separation
logic [15,13] with our memory model [12]. However, a separation logic that can
deal with the full (non-concurrent) C memory model remains future work.

For the operational semantics, one only needs a memory model that uses a
coarse permission system, like the one used in CompCert [17]. In order to obtain
a more concise operational semantics, one may therefore like to separate the
memory model used in the operational semantics (with coarse permissions) from
the one used in the axiomatic semantics (with rich permissions). The approach
of juicy memories by Stewart and Appel [1, Chapter 42] might be useful.

It may be interesting to investigate what other permission models satisfy our
requirements (see Definition 3.1). The permission model of Dockins et al. [8] may
be a candidate.

Acknowledgments. I thank Freek Wiedijk and the anonymous referees for their
helpful comments. This work is financed by NWO.

16 Robbert Krebbers

References

1. A. W. Appel, editor. Program Logics for Certified Compilers. Cambridge University
Press, 2014.

2. J. Bengtson, J. B. Jensen, F. Sieczkowski, and L. Birkedal. Verifying Object-
Oriented Programs with Higher-Order Separation Logic in Coq. In ITP, volume
6898 of LNCS, pages 22–38, 2011.

3. L. Beringer, G. Stewart, R. Dockins, and A. W. Appel. Verified Compilation for
Shared-Memory C. In ESOP, volume 8410 of LNCS, pages 107–127, 2014.

4. R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson. Permission Ac-
counting in Separation Logic. In POPL, pages 259–270, 2005.

5. J. Boyland. Checking Interference with Fractional Permissions. In SAS, volume
2694 of LNCS, pages 55–72, 2003.

6. C. Calcagno, P. W. O’Hearn, and H. Yang. Local Action and Abstract Separation
Logic. In LICS, pages 366–378, 2007.

7. Coq Development Team. The Coq Proof Assistant Reference Manual, 2012.
8. R. Dockins, A. Hobor, and A. W. Appel. A Fresh Look at Separation Algebras

and Share Accounting. In APLAS, volume 5904 of LNCS, pages 161–177, 2009.
9. C. Ellison and G. Rosu. An executable formal semantics of C with applications.

In POPL, pages 533–544, 2012.
10. International Organization for Standardization. ISO/IEC 9899-2011: Program-

ming languages – C. ISO Working Group 14, 2012.
11. G. Klein, R. Kolanski, and A. Boyton. Mechanised Separation Algebra. In ITP,

volume 7406 of LNCS, pages 332–337, 2012.
12. R. Krebbers. Aliasing restrictions of C11 formalized in Coq. In CPP, volume 8307

of LNCS, 2013.
13. R. Krebbers. An Operational and Axiomatic Semantics for Non-determinism and

Sequence Points in C. In POPL, pages 101–112, 2014.
14. R. Krebbers and F. Wiedijk. A Formalization of the C99 Standard in HOL, Isabelle

and Coq. In CICM, volume 6824 of LNAI, pages 297–299, 2011.
15. R. Krebbers and F. Wiedijk. Separation Logic for Non-local Control Flow and

Block Scope Variables. In FoSSaCS, volume 7794 of LNCS, pages 257–272, 2013.
16. X. Leroy. Formal verification of a realistic compiler. CACM, 52(7):107–115, 2009.
17. X. Leroy, A. W. Appel, S. Blazy, and G. Stewart. The CompCert Memory Model,

Version 2. Research report RR-7987, INRIA, 2012.
18. P. W. O’Hearn. Resources, Concurrency and Local Reasoning. In CONCUR,

volume 3170 of LNCS, pages 49–67, 2004.
19. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local Reasoning about Programs

that Alter Data Structures. In CSL, volume 2142 of LNCS, pages 1–19, 2001.
20. M. Sozeau. A New Look at Generalized Rewriting in Type Theory. Journal of

Formalized Reasoning, 2(1), 2010.

	Separation algebras for C verification in Coq

