
The correctness of Newman’s typability algorithm and
some of its extensions

Herman Geuversa,b, Robbert Krebbersa

aInstitute for Computing and Information Science
Faculty of Science, Radboud University Nijmegen, The Netherlands

bFaculty of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

Abstract

We study Newman’s typability algorithm [14] for simple type theory. The al-
gorithm originates from 1943, but was left unnoticed until [14] was recently
rediscovered by Hindley [10]. The remarkable thing is that it decides typability
without computing a type. We give a modern presentation of the algorithm
(also a graphical one), prove its correctness and show that it implicitly does
compute the principal type. We also show how the typing algorithm can be
extended to other type constructors. Finally we show that Newman’s algorithm
actually includes a unification algorithm.

Keywords: Simply typed lambda calculus, Unification, Typing algorithms

1. Introduction

A type checking algorithm for simple type theory solves the problem whether
an untyped λ-term M can be given a type according to the rules of simple type
theory. As usual, we distinguish between the type checking problem: M : σ (does
the term M have type σ?) and the type synthesis problem: M : ? (compute a
type for the term M). It is a classic result that for simple type theory, these
problems are both decidable [9, 12]. The solution amounts to computing the
principal type of M and then to check whether the given type σ is an instance of
it. All known type checking algorithms for λ-calculus compute a principal type,
using a unification algorithm. It is hard to imagine that one could do something
fundamentally different. However, there is a (seemingly) different way to decide
typing, due to Newman, already in 1943 [14], and recently reviewed by Hindley
[10]. The strategy of Newman’s algorithm is very different from present day
algorithms, because it only decides whether a term is typable and does not
compute its principal type. This looks strange, because the most common way
to decide whether a λ-term is typable is trying to assign a type to it.

Email addresses: herman@cs.ru.nl (Herman Geuvers), mail@robbertkrebbers.nl
(Robbert Krebbers)

Preprint submitted to Theoretical Computer Science June 22, 2011

In this paper, we describe and analyze Newman’s algorithm (Section 3)
and we show that it (implicitly) does compute a principal type. The way it
computes it is actually quite close to other constraint based typing algorithms
for simple type theory, for example Wand’s algorithm [21]. We prove that
Newman’s algorithm is correct and discuss the correspondence with Wand’s
algorithm (Section 4).

Before doing that, we describe Newman’s algorithm directly as a manipu-
lation of the term-graph that represents the λ-term (Section 2). Following the
method described by Newman, we manipulate the term-graph using a sort of
term-graph reduction and if no further reductions are possible, we check whether
a certain relation on the nodes is cyclic. The original term is typable if and only
if the relation is acyclic. The correspondence between the graphical description
and Newman’s is left implicit, but will be clear to the reader. It is more inter-
esting to extend the graphical description to include other type constructions,
like product types and weakly polymorphic types (Section 5).

An important part of a typing algorithm is to solve unification problems.
In the presentation by Wand [21], this is nicely singled out: one first creates a
set of equations, which are then solved by a (standard) unification algorithm
(for example Robinson’s unification algorithm [19]). Looking back at Newman’s
algorithm, it can be observed that Newman does something similar: he creates
a set of equations, which is then modified. To emphasize this, we also give a
description of unification “à la Newman” (Section 6).

1.1. Historical background

Newman’s starting point was Quine’s proposal [18] for a new logical system
called “New Foundations” in 1937. Newman developed an algorithm to decide
typability for that system, but it was also able to decide typability for other type
systems, for example the Principia Mathematica and Church’s simply typed
λ-calculus [5]. The latter connection is not detailed in Newman’s paper, maybe
because Church’s paper had only appeared recently and there was more interest
in Quine’s New Foundations at the time. To be precise, Newman actually uses
a system that is now better known as λ-calculus à la Curry [3], where there is
no type information in the λ-term; λ-calculus à la Church has type information
in the term and then the issue of typability is simple.

In 1944 Church reviewed Newman’s paper [6], but his review was more like
a summary of Newman’s paper concluding with:

The reader’s first impression of Newman’s paper may be that the
machinery introduced is heavy in comparison with the results ob-
tained. The value of the paper is in fact difficult to estimate at
present, as this will depend on the extent to which results obtained
in the future by Newman’s methods justify the weight of machinery.

We could say that Newman was ahead of his time, since there was no actual
need for a typing algorithm until the 1950s and 1960s. But at that point type
theorists seem to have ignored or forgotten about Newman’s work and invented
their own algorithm [10].

2

1.2. Simple type theory and Newman’s type system

A typed λ-calculus can be presented à la Church or à la Curry [3, 7].
In Church-style, a bound variable is typed in the λ-abstraction, for example
λx : α.λy : α→ β.y x : α → (α → β) → β. Furthermore, a free variable is
typed in the context, for example x : α ` λy : α→ β.y x : (α → β) → β.
Alternatives to this syntax are found in the literature, for example where free
variables carry their type as an annotation instead of in the context, for exam-
ple λy : α→ β.y xα : (α → β) → β. Or, if we also let bound variables carry
their type as an annotation: λyα→β .yα→β xα : (α→ β)→ β. The crucial point
is that type information for the variables is fixed and can be computed via a
simple lookup. Therefore, type checking and type-synthesis are trivial: types
can be simply read off from the term.

In this paper a system à la Curry is studied because most functional pro-
gramming languages deal with this and that is also what Newman’s algorithm
is about. Now the variables do not carry any type information and the question
is whether, given an untyped λ-term M , we can decide whether M is typable
(and then give a type for M) or M is not typable. In this section we summarize
the main definitions and introduce notations for the rest of the paper. For an
extensive discussion concerning these notions see, for example [3, 7].

Definition 1.1. The terms in λ→ à la Curry (typically N , M , P , . . .) are
inductively defined as follows.

Λ ::= Var | (ΛΛ) | (λVar.Λ)

Here Var ranges over variables (typically x, y, z, . . .). The types of λ→ (typi-
cally σ, τ , ϕ, . . .) are inductively defined as follows.

Type ::= TVar | (Type→ Type)

Here TVar ranges over type variables (typically α, β, γ, . . .).

A context (typically Γ or ∆) is a finite set of variable declarations x : σ
(x ∈ Var, σ ∈ Type), where all variables are distinct. We write ∆(x) to denote
the type that ∆ assigns to x. The notions of free variables FV(M) of a term M ,
and bound variables BV(M) of a term M , are defined as usual, where λ binds
variables. Similarly, we use the notion of free type variables FTV(σ) of a type
σ, to denote the set of type variables occurring in σ.

We now give the deduction rules for assigning types to terms in simple type
theory. This is the “modern” way of inductively describing the set of well-typed
terms of a type. Newman does not explicitly define the well-typed terms.

Definition 1.2. A λ→-typing judgment Γ ` M : ρ denotes that a λ-term M
has type ρ in context Γ. The derivation rules for deriving such a judgment are
as follows.

3

x : σ ∈ Γ
Γ ` x : σ

(a) Variable

Γ `M : σ → τ Γ ` N : σ
Γ `MN : τ
(b) Application

Γ, x : σ ` P : τ

Γ ` λx.P : σ → τ
(c) Abstraction

We write 6`M if no context Γ and type ρ exist such that Γ `M : ρ.

Definition 1.3. The Type Synthesis (TSP) or Type Assignment Problem
(TAP) is given a λ-term M and a context Γ to find a type ρ such that Γ `M : ρ.

Newman puts a restriction on the λ-terms: he only considers terms M for
which FV(M) ∩ BV(M) = ∅ and for every x ∈ BV(M) there is exactly one
λx-abstraction in M . So the bound and free variables are distinct and no
variable has a duplicate binder. Nowadays, this “restriction” goes under the
name of Barendregt convention [4] which states that, whenever we consider a
number of λ-terms, we may always assume that all free variables are different
from the bound ones and that all bound variables are distinct. We can safely
assume this, because we can always rename bound variables to get a term that
is α-equivalent to it. In the time Newman wrote his article, these issues had
not yet been clarified completely, so Newman simply only considered terms that
satisfy the Barendregt convention. It should be noted, however that the way
Newman presented his algorithm, the actual names of variables do really matter.

1.3. Principal types and most general unifiers

Well-known typing algorithms, like Hindley-Milner’s [9, 12] or Wand’s [21],
decide whether a term is typable by computing its principal type. Also, these
algorithms rely on the computation of a most general unifier. While we postpone
the discussion of Wand’s algorithm until Section 4.2, we will define the notion
of a most general unifier and a principal type now.

Definition 1.4. Given a set of type equations E = {ρ1 l σ1, . . . , ρn l σn} and
a substitution δ then δ is a unifier of E, notation δ |= E, if δ(ρ) = δ(σ) for each
ρ l σ ∈ E. We write 6|= E (E is not unifiable) if no substitution δ exists such
that δ |= E.

A substitution δ is the most general unifier of E, notation δ |=mgu E, if
δ |= E and for all τ , if τ |= E then there exists a substitution ν such that
τ = ν ◦ δ. (Any other unifier of E is an instance of δ.)

Definition 1.5. Given a λ-term M , a context Γ and a type τ , then 〈Γ, τ〉 is a
principal pair of M if:

1. Γ `M : τ

2. ∆ `M : ρ =⇒ (∃σ : TVar→ Type . ∆ ⊇ σ(Γ) ∧ ρ = σ(τ))

Definition 1.6. Given a closed λ-term M and a type τ , then τ is a principal
type of M iff 〈∅, τ〉 is a principal pair of M .

4

The goal of a typing algorithm is to compute a principal type for a closed
term and a principal pair for an open term. For λ→, principal types (respec-
tively principal pairs) exist and can be computed. By definition a principal
pair (respectively principal type) is unique up to isomorphism. Here 〈Γ, τ〉 and
〈∆, ρ〉 are isomorphic, notation 〈Γ, τ〉 ∼= 〈∆, ρ〉, if there exist substitutions σ1
and σ2 such that ∆ = σ1(Γ), ρ = σ1(τ), Γ = σ2(∆) and τ = σ2(ρ).

1.4. Some basic notions from rewriting

In this paper we will be using the notions of confluence and strong normal-
ization, not so much for the simple type theory, but for auxiliary relations that
will be defined in what follows. We use the standard terminology of [20, 4, 1],
which we recall here.

Definition 1.7. Let _ be a binary relation on a set A and let __ denote the
transitive reflexive closure of _.

• The relation _ satisfies the diamond property if for every a, b, c ∈ A, if
a _ b and a _ c, then there is a d ∈ A such that b _ d and c _ d.

• The relation _ is confluent if __ satisfies the diamond property. It is
locally confluent if for every a, b, c ∈ A, if a _ b and a _ c, then there is
a d ∈ A such that b __ d and c __ d.

• An element a ∈ A is in _-normal form if there is no b ∈ A for which
a _ b.

• The relation _ is strongly normalizing or terminating if for every element
a ∈ A there is no infinite _-sequence starting from a.

Lemma 1.8. (Newman’s Lemma for abstract rewriting systems [13]).
Let _ be a binary relation on a set A. If _ is strongly normalizing and locally
confluent, then _ is confluent.

2. Newman graphs

We define Newman’s algorithm for λ→. It is derived from [14] and [10],
although the presentation is fundamentally different. First of all, we use a
term-graph notation for λ-terms as indicated in the following definition.

Definition 2.1. Given an untyped λ-term M , we define the term-graph of M ,
Tgraph(M) in the usual way. We replace an application by an @-node and a
λ-abstraction λx.M by a λ-node where we also have a pointer to x as a “shared
leaf”, as indicated in Figure 1 in the left and middle drawing1.

1This is also known as a DAG (Directed Acyclic Graph) in which all occurrences of variables
are shared [2].

5

λ

λ

x

@

λ λT(x.M) =

x

T(M) T(M) T(N)

@T(M N) =

Figure 1: Translating a term to a term-graph.

As an example of a translation of a term to a term-graph, we have depicted
the term-graph of λx.x(λy.x) on the right in Figure 1.

Now we translate the term-graph of the term M , Tgraph(M), into the New-
man graph of M , Ngraph(M). Of course, we could have defined Ngraph(M)
directly from M , but the present definition more clearly emphasizes the relation
between the two.

Definition 2.2. Given an untyped λ-term M with Tgraph(M), the Newman
graph of M , Ngraph(M) is defined as depicted in the figures below. In the
translation we ignore the @ and λx information in the nodes. Instead we give
all nodes a unique label (typically U , V , X, Y , Z,. . .), except for the variable
nodes for which we use the variable name itself as a label. Furthermore, we
replace edges by labeled arrows and remove others.

λ λW

x x

d

r

@

r

d

V

The intuitive meaning of the arrows should be clear:

X d−→ Y iff the domain of the type of X is the type of Y

X r−→ Y iff the range of the type of X is the type of Y

6

(In simple type theory, when σ = ρ → τ , then ρ is called the domain of σ and
τ the range of σ.)

We will now reduce the Newman graph. A reduction step is performed by
joining two congruent nodes, so we first define when two nodes X and Y are
congruent.

Definition 2.3. Given a Newman graph G, the congruence relation X �G Y
between nodes X and Y is inductively defined as follows.

(A1) If U d−→ X and U d−→ Y , then X �G Y

(A2) If U r−→ X and U r−→ Y , then X �G Y

(B) If X d−→ U , X r−→ V and Y d−→ U , Y r−→ V , then X �G Y

The intuitive meaning of X �G Y is “the terms represented by X and
Y have the same type”. (To be precise: the terms represented by X and Y
have the same type if the term represented by G is typable. In case the term
represented by G is not typable, the terms represented by X and Y may not
be typable either. Note that in any case X �G Y is well defined.) Combined
with the intuitive understanding of d−→ and r−→, this clarifies Definition 2.3.
For example clause (A1) of Definition 2.3 then reads: if the domain of the type
of U is both the type of X and the type of Y , then X and Y have the same
type.

When writing X �G Y we will often suppress G, and write X � Y . The
definition can be depicted graphically as follows.

(A1)

X

U

d-

Y
d
-

=⇒ X � Y

(A2)

X

U

r -

Yr
-

=⇒ X � Y

(B)

X

U

r
-

Y r
-

and

X

V

d
-

Y d
-

=⇒ X � Y

Remark 2.4. Although Newman also considers clause (B) in his definition
corresponding to X �G Y , it should be noted that for type checking, only clauses
(A1) and (A2) are needed. So, Theorem 2.8 also holds if we restrict to the
reduction steps that arise from joining nodes that are equal according to clauses
(A1) and (A2). This will be proven in Section 3, Corollary 3.22.

Definition 2.5. A reduction step on Newman graphs, G1 _ G2, is defined by
joining two nodes X and Y from G1 for which we have X � Y . So, if X � Y ,

7

we join the nodes and all incoming and outgoing nodes are redirected to the new
joint node, that we name either X or Y .

We treat an example to show the definitions at work.

Example 2.6. Consider the λ-term M ≡ λx. (λy. y x) (x (λz. z)). We depict
its term-graph Tgraph(M) and its Newman graph Ngraph(M).

λ

λ

λ

@

@

@

zy

x

z

rd

x

y

d

d

r

r r

r

r

d
d

d

V

X

Y Z

W

U

We now join congruent nodes, using the congruence relation � as defined in
Definition 2.3. In the first step, we observe the two congruent nodes X and y,
which we indicate by a box. We join them and then we observe the congruent
nodes V and Y , that we join. The rest of the example should be self-explanatory:
in every step we join the congruent nodes and we indicate the two congruent
nodes that we join in the next step.

z

rd

x

y

d

d

r

r r

r

r

d
d

d

V

X

Y Z

W

U

z

rd

x
d

r

r

r

r

d

d

d

r

V

Z

U

W

Y

X

8

z

rd

x
d

d

d

d

r

r

r

r

U

W

Z

Y

X

z

rd

x
dd

d

r

r

rW

U

Z

Y

In the final graph of the example, no reduction is possible anymore. The
crucial point is now that it contains a cycle and therefore – according to Newman
– the original term is not typable.

Definition 2.7. Given a Newman graph G, the graph G is in normal form if no
distinct nodes X and Y of G are congruent. Moreover the graph G is stratified
in case the transitive closure of d−→ ∪ r−→ contains no cycles.

The reduction _ is strongly normalizing, simply because the number of
nodes decreases, so we will always find a normal form. That the normal form
of a Newman graph is unique, up to renaming of the labels, will be proven in
Section 3. In Section 4 we will also prove that the normal form of Ngraph(M)
is stratified if and only if M is typable in λ→. This is proven by showing how
the reduction of Newman graphs implicitly keeps track of the type information
of the term and thus computes the principal type of a term.

Theorem 2.8. The reduction _ is strongly normalizing and confluent2. More-
over, the normal form of the Newman graph of M is stratified if and only if M
is typable in λ→.

Proof. The first is by Lemma 3.10 and 3.15, the second by Theorem 4.17.

Newman’s algorithm can be extended to other type constructions in simple
type theory, like product types and weakly polymorphic types. This will be
shown in Section 5. For now, we indicate how we can use Newman’s algorithm
to “read off” the principal type of M from the normal form of the Newman
graph of M . This will be detailed in the Section 4, but an example should be
very explanatory.

Example 2.9. Consider the λ-term P ≡ λx.x(λy.x(λz.y)). If we reduce the
Newman graph of P to normal form we obtain the graph on the left, where U
corresponds to the root node of the term P .

2See Definition 1.7 for a precise definition of these notions.

9

d

d

r

U

x

r

r

V

W

d

d

d

r

U

x

r

r

V

W

d

((α → α) → α) → α

α → α
(α → α) → α

α

The graph contains no cycles. We compute the type “at node U” by labeling
all nodes without outgoing edges by a type variable. In the graph above this is
just node V that we label by α. Then we construct the types at all nodes in the
obvious way: node x has type (α → α) → α because d−→ points to a node with
label α → α and r−→ points to a node labeled with α. So, the principal type of
the term P is ((α→ α)→ α)→ α.

One may suspect that a normal form always has a simple cycle, involving
only one or two nodes. However, this is not the case: if one considers the
Newman graph of the term N ≡ λx.x(λy.y(λz.x)), one can observe that only
one reduction step is possible and then a normal form is obtained with a cycle
of length 4 (hence N is not typable).

3. Newman’s algorithm for λ→

In this section we present Newman’s algorithm in a way close to Newman’s
original presentation [14]. Newman has described his algorithm in a very ab-
stract and general way in order to apply it to various type systems. However,
we are merely interested in λ→, therefore we will specialize our definitions for
the case of λ→. Our description of Newman’s algorithm has a lot in common
with Hindley’s [10], however our description is more extensive and we will prove
some basic properties.

Newman’s algorithm is basically a rewrite system. It starts with a set of
equations presenting the graph of a λ-term. From this set of equations a relation
� is generated which is used to rewrite the equations. This process is iterated
until no further rewriting steps are possible. We prove that Newman’s algorithm
is strongly normalizing and confluent for the case of λ→.

Definition 3.1. A scheme of a λ-term (typically S, S′,. . .) is a finite set of
equations of the following shape.

Name l Name Name Name l λName.Name

Here Name ranges over term names (typically U , V , X, Y , Z, . . .) and variables
(typically x, y, z, . . .). Moreover, let TermNames(S) denote the set of term
names occurring in S and Names(S) the set of names occurring in S.

10

Definition 3.2. Given a λ-term M , the scheme S(M) is computed simultane-
ously with the entrance E(M) of the scheme using the following algorithm.

M S(M) E(M)
x ∅ x
MN {Z l E(M) E(N)} ∪ S(M) ∪ S(N) Z
λx.P {Z l λx.E(P)} ∪ S(P) Z

In the computation of S(M), the new term names Z should be chosen in such
a way that they are fresh. That is, we have to make sure that:

• in the application case, Z /∈ TermNames(S(M)) ∪ TermNames(S(N)),

• in the application case, TermNames(S(M)) ∩ TermNames(S(N)) = ∅,

• in the λ case, Z /∈ TermNames(S(P)).

Example 3.3. The scheme S = S(M) of the λ-term M ≡ λfx.f(fx) is:

U l λf.V V l λx.W W l fZ Z l fx

Definition 3.4. Given a scheme S, the relations d�S , r�S ⊆ Name× Name are
inductively defined as follows.

1. If Z lMN then M d�S N and M r�S Z
2. If Z l λx.P then Z d�S x and Z r�S P

When writing X d�S Y or X r�S Y we will often suppress S, and write
X d� Y or X r� Y , respectively.

Note that the equations correspond to the edges of the term graph and the
relations d� and r� correspond to the edges d−→ and r−→ of the Newman graph
described in the Section 2.

Example 3.5. The relations d� and r� for the λ-term λfx.f(fx) are:

U d� f U r� V V d� x V r� W f d� Z f r� W f d� x f r� Z

Definition 3.6. Given a scheme S, a binary relation �S ⊆ Name × Name is
defined as �S := r�S ∪ d�S.

Definition 3.7. Given a scheme S, a binary relation �S ⊆ Name × Name is
inductively defined as follows.

(A1) If U r� X and U r� Y , then X �S Y
(A2) If U d� X and U d� Y , then X �S Y

(B) If X r� U , Y r� U , X d� V and Y d� V , then X �S Y

As usual, when writing X �S Y or X �S Y we will often suppress S, and
write X � Y or X � Y , respectively.

Newman also included the following clauses in his definition of X � Y .

11

(C1) If X lMN and Y lMN , then X � Y

(C2) If X l λx.P and Y l λx.P , then X � Y

However, as the following lemma indicates, these clauses can be omitted for the
specific case of λ→.

Lemma 3.8. If one of the following properties hold we have X � Y .

1. X lMN and Y lMN

2. X l λx.P and Y l λx.P

Proof. Suppose that X lMN and Y lMN , then by clause (A):

M d� N M r� X M d� N M r� Y =⇒ X � Y

Suppose that X l λx.P and Y l λx.P , then by clause (B):

X d� x X r� P Y d� x Y r� P =⇒ X � Y

Newman informally describes the meaning of X � Y as “X has the same
type as Y ”, which means that X and Y receive the same type according to the
typing rules of λ→. He describes the meaning of X � Y as “X has a higher
type than Y ”, that means that the type that X receives contains the type that
Y receives as a subterm.

Definition 3.9. An η-reduction step3 on schemes, S1
X:=Y
_ S2, is defined by

replacing X by Y in all equations of S1 provided that X 6= Y and X �S Y .

Multiple steps are denoted by S1
ν

__ S2 where ν is a substitution. A scheme S
is in η-normal form if no η-reduction steps are possible.

The following Lemma is also proven by Newman [14].

Lemma 3.10. The notion of η-reduction is strongly normalizing. That is, any
η-reduction path leads to a normal form.

Proof. The number of different term names reduces at each η-reduction step.
Because a scheme consists of finitely many equations it is immediate that
η-reduction leads to a normal form in finitely many steps.

Definition 3.11. A cycle in a scheme S is a sequence X1, . . . Xn ∈ Name for
which:

X1 � X2 ∧ . . . ∧Xn−1 � Xn ∧Xn � X1

A scheme S is stratified if it contains no cycles.

3This notion is something completely different from the well-known η-reduction in the
λ-calculus: λx.Mx→η M provided that x /∈ FV(M).

12

The situation with respect to the scheme and the relations defined from it is
as follows, where an arrow indicates the generation of one entity from another.

λ-term M // Scheme S // Relations d�S , r�S // Relation �S

After an η-reduction step, we obtain a new scheme S′, for which we redefine
the relations d�S′ and r�S′ and thereby the relation �S′ . After having repeated
this process finitely many times we obtain a normal form Sf by Lemma 3.10.
According to Newman M is typable iff Sf is stratified.

In Section 2 we have defined reduction on Newman graphs rather than term
graphs. Likewise, it is also possible to perform η-reduction on the relations d�S
and r�S . This way we do not have to keep track of the equations of the scheme.
However, this results in loss of information because it is not possible to restore
an arbitrary scheme from the relations d�S and r�S . For stratification, as defined
in Definition 3.11, this is however no problem.

Example 3.12. Consider the scheme S = S(M) of the λ-term M ≡ f(fx).

W l fZ Z l fx

f d� Z f r� W f d� x f r� Z

After one step of η-reduction, S
Z:=x
_ S′, the scheme S′ is obtained.

W l fx x l fx

f d� x f r� W f r� x

Finally a normal form Sf is obtained by S′
W :=x
_ Sf .

x l fx

f d� x f r� x

There are no cycles, thus we conclude that Sf is stratified.

The following lemma corresponds to what Newman calls “� and � are
preserved under any homomorphic change of letters”.

Lemma 3.13. If S
ν

__ S′, then for all X,Y ∈ Name we have:

X �S Y =⇒ νX �S′ νY

X �S Y =⇒ νX �S′ νY

Proof. This lemma follows from the observation that � and � depend merely
on the relative positions of the term names in a scheme S.

13

S

S1

S2

S3
∼= S4

A := B

A := C

B := C

C := B

(a)

S

S1

S2

S3

A := B

C := B

C := B

A := B

(b)

S

S1

S2

S3

A := B

B := C

B := C

A := C

(c)

S

S1

S2

S3

A := B

C := D

C := D

A := B

(d)

Figure 2: Cases considered in the proof of Lemma 3.15.

Example 3.14. Consider the scheme S = S(M) of the λ-term M ≡ λx.xx.

W l λx.V V l xx

W d� x W r� V x d� x x r� V

This scheme contains a cycle. By Lemma 3.13 we conclude that if we reduce
S to a normal form Sf this scheme will contain a cycle as well, thus Sf is not
stratified either.

Note that the previous example does not claim that Sf is unique, but only
that in whatever normal form Sf we end up with, Sf is not stratified. We now
prove that Sf is unique up to isomorphism, where S1 and S2 are isomorphic,
notation S1

∼= S2, if there exist substitutions σ1 and σ2 such that S2 = σ1(S1)
and S1 = σ1(S2). The following Lemma is also proven by Newman [14].

Lemma 3.15. The notion of η-reduction is locally confluent up to renaming of

term names. That is given a scheme S and reductions S
ν
_ S1 and S

δ
_ S2,

there are schemes S3 and S4 and reductions S1
ν′

__ S3 and S2
δ′

__ S4 such that
S3
∼= S4.

Proof. Consider the following cases.

1. If ν and δ are equal then S1 = S2 and no further reduction is needed.

2. If ν and δ are each other’s inverse (ν = [A := B] and δ = [B := A]) then
S1
∼= S2 and no further reduction is needed.

3. If ν = [A := B] and δ = [A := C] then there are reductions S1 _ S3 and
S2 _ S4 such that S3

∼= S4 as shown in Figure 2a. These reductions are
valid according to Lemma 3.13.

4. For the other cases there are reductions S1 _ S3 and S2 _ S3 as shown
in Figure 2b-2d. These reductions are valid according to Lemma 3.13.

These are all the possible cases because there are two cases with two different
term names involved, three cases with three different term names involved and
only one case with four different term names involved.

The following Theorem was also proven by Newman [14].

Theorem 3.16. Each scheme S has a normal form (henceforth Sf) which is
unique up to isomorphism.

14

Proof. The notion of η-reduction is strongly normalizing by Lemma 3.10 and
locally confluent by Lemma 3.15, thus using Newman’s Lemma for abstract
rewriting systems (Lemma 1.8) η-reduction is confluent. Hence the normal
form Sf of S is unique up to isomorphism.

Corollary 3.17. The following properties hold for each scheme S.

1. Whether Sf is stratified is independent of the order of η-reduction.

2. The number of steps in an η-reduction path from S to Sf is fixed and
moreover less or equal to the number of names in S.

Another interesting observation is that the (B) clause in Definition 3.7 can
be omitted. That is, given a scheme S, in order to determine whether Sf is
stratified we do not need to perform any reduction steps by clause (B). We
introduce the following definition before we prove this result.

Definition 3.18. Let S _A S′ denote an η-reduction step by clause (A1) or
(A2) and let S _B S′ denote an η-reduction step by clause (B).

Lemma 3.19. If S1 _B S2 _A S3 then S1 _A S4 for some S4.

Proof. Let X d�S1
U , Y d�S1

U , X r�S1
V , Y r�S1

V and let S1
X:=Y
_B S2 be the

resulting _B-step. Now we have to consider the following cases.

1. There exists a Z 6= U such that X d�S1 Z or Y d�S1 Z. Then we can
perform an _A-step in S1, namely [U := Z].

2. There exists a Z 6= V such that X r�S1 Z or Y r�S1 Z. Then we can
perform an _A-step in S1, namely [V := Z].

3. There does not exist a Z as described in the preceding cases. Then the
step S2 _A S3 does not depend on the substitution of Y for X, so we can
do the same _A-step in S1.

Corollary 3.20. We have the following properties.

1. A _B-step cannot create an _A-step. That is, if S is in _A-normal
form and S _B S′, then S′ is in _A-normal form.

2. The reduction _B can be postponed. That is, given a scheme S, we have
S __A S

′ __B Sf for some S′.

Proof. The first follows immediately from Lemma 3.19. For the second: every
scheme S reduces to a (unique) scheme in normal form Sf (Theorem 3.16) with
a reduction sequence of fixed length (Corollary 3.17). By Lemma 3.19, we can
move all _A-steps to the beginning of the reduction sequence.

Lemma 3.21. Given a scheme S that is in _A-normal form and let S _B S′,
then S contains a cycle if S′ contains a cycle.

Proof. Let X d�S U , Y d�S U , X r�S V , Y r�S V and let S
X:=Y
_B S′ be the

resulting _B-step. Let C be the cycle in S′. We now exhibit a cycle in S by
distinguishing the following cases.

15

1. The cycle C includes Y . Since S is in _A-normal form we know by
Corollary 3.20 that S′ is in _A-normal form. Hence there is no Z 6= U
such that Y d�S′ Z or Z 6= V such that Y r�S′ Z, therefore C includes
W �S′ Y d�S′ U or W �S′ Y r�S′ V for some name W . So in S we either
have W �S Y or W �S X. In the first case we are finished: C is also a
cycle in S. In the second case we have X d�S U or X r�S V , so we can
rearrange C into a cycle in S by passing through X instead of Y .

2. The cycle C does not include Y . Then C already exists in S.

Corollary 3.22. Given a scheme S and let S __A S′ such that S′ is in
_A-normal form, Sf is stratified iff S′ is stratified.

Proof. The normal form of scheme S′ is the same as the one of S, which is Sf .
Due to Corollary 3.20, we have S′ __B Sf and each scheme in this reduction
sequence is in _A-normal form. By Lemma 3.21, we find that for each S1 _A S2

in this reduction sequence, S1 contains a cycle iff S2 contains a cycle. Thus, Sf
is stratified iff S′ is stratified.

4. Computing a type using Newman’s algorithm

In this section we prove that Newman’s algorithm is correct and we extend it
to result in a principal type. Furthermore, we compare it to Wand’s algorithm
and his correctness proof [21].

4.1. Correctness of Newman’s algorithm

To prove soundness and completeness with respect to typing we define a
set of type equations for each scheme. Firstly, we prove that the most general
unifier of these equations gives rise to a principal type. Secondly, we prove
that performing η-reduction while keeping track of the performed substitutions
corresponds to computing a most general unifier.

Definition 4.1. Given a scheme S, a set of type equations E(S) is inductively
defined as follows.

1. If Z lMN then M l N → Z ∈ E(S)

2. If Z l λx.P then Z l x→ P ∈ E(S)

Here X is a fresh type variable for each term name X.

Fact 4.2. Given a scheme S and X,Y, Z ∈ Name, we have:

X d� Y ∧X r� Z ⇐⇒ X l Y → Z ∈ E(S)

Definition 4.3. Given a λ-term M , define ΓM := {x : x | x ∈ FV(M)}.

Lemma 4.4. Given a λ-term M and a substitution σ such that σ |= E(S(M)),
we have σ(ΓM) `M : σ(E(M)).

Proof. This property is proven by induction on the structure of M .

16

(var) Now E(x) = x. The result is immediate because x : σ(x) ` x : σ(x) for
each substitution σ.

(app) Now S(MN) = {E(MN) l E(M) E(N)} ∪ S(M) ∪ S(N). So we have
σ |= E(S(M)) and σ |= E(S(N)) and therefore by the induction hypothesis
σ(ΓM) ` M : σ(E(M)) and σ(ΓN) ` N : σ(E(N)). Moreover we have
σ(E(M)) = σ(E(N)) → σ(E(MN)) hence by the application rule and
weakening σ(ΓMN) `MN : σ(E(MN)).

(λ) Similar to the preceding case.

Lemma 4.5. Given a derivable typing judgment ∆ ` M : ρ, there exists a
substitution σ such that σ |= E(S(M)), ∆ ⊇ σ(ΓM) and ρ = σ(E(M)).

Proof. This property is proven by induction on the type derivation ∆ `M : ρ.

(var) Let ∆ ` x : ρ such that x : ρ ∈ ∆. Now E(x) = x and S(x) = ∅.
Define σ = [x := ρ]. Then we have σ |= E(S(x)). Also ∆ ⊇ σ(Γx) and
ρ = σ(E(M)), so we are done.

(app) Let ∆ ` MN : ρ, then we have ∆ ` M : δ → ρ and ∆ ` N : δ. Now
E(MN) = Z and S(MN) = {Z l E(M) E(N)} ∪ S(M) ∪ S(N). By the
induction hypothesis we obtain substitutions σN and σM . We define σ as
follows.

σ(Y) = σM (Y) if Y ∈ Names(S(M))

σ(Y) = σN (Y) if Y ∈ Names(S(N))

σ(Z) = ρ

σ(α) = α otherwise

This substitution is well defined because

(a) The term MN satisfies the Barendregt convention and therefore all
bound variables in M and N are fresh.

(b) The term names assigned to the subterms of M and N are disjoint
(by Definition 3.2).

(c) By the induction hypothesis we have σM (x) = ∆(x) for all variables
x ∈ FV(M) and σN (x) = ∆(x) for all variables x ∈ FV(N).

By the induction hypothesis we have σ |= E(S(M)), σ |= E(S(N)) and
σ(E(M)) = δ → ρ = σ(E(N))→ σ(Z), so σ |= E(S(MN)). Moreover, we
have ∆ ⊇ σ(ΓMN) and ρ = σ(E(MN)), so we are done.

(λ) Let ∆ ` λx.P : δ → ρ, then we have ∆, x : δ ` P : ρ. Now E(λx.P) = Z
and S(λx.P) = {Z l λx.E(P)} ∪ S(P). By the induction hypothesis we
obtain a substitution σP . We define σ as follows.

σ(Y) = σP (Y) if Y ∈ Names(S(P))

σ(x) = δ

σ(Z) = δ → ρ

σ(α) = α otherwise

17

By the induction hypothesis we obtain that σ |= E(S(P)) and
σ(Z) = δ → ρ = σ(x)→ σ(E(P)), hence σ |= E(S(λx.P)). Moreover, we
have ∆ ⊇ σ(Γλx.P) and δ → ρ = σ(E(λx.P)), so we are done.

Corollary 4.6. The equations à la Newman are correct. That is, given a λ-term
M and its scheme S = S(M), we have

1. If σ |=mgu E(S) then 〈σ(E(M)), σ(ΓM)〉 is a principal pair of M .

2. If 6|= E(S) then 6`M .

Proof. Immediate from Lemma 4.4 and 4.5.

Now that we have shown that the first part of Newman’s algorithm actu-
ally consists of the generation of type equations, we will prove that performing
η-reduction corresponds to computing a most general unifier. First we define a
substitution Ŝ for each scheme S that is stratified and in normal form. Also,
we prove that this is in fact the most general unifier of E(S).

Definition 4.7. Given a scheme S that is stratified and in _A-normal form,
the substitution Ŝ : TVar→ Type is defined as follows.

Ŝ(α) =

{
Ŝ(β)→ Ŝ(γ) if α l β → γ ∈ E(S)

α otherwise

Lemma 4.8. Given a scheme S that is stratified and in _A-normal form, the
substitution Ŝ is well defined.

Proof. In order to show that Ŝ is well defined we have to prove that the definition
of Ŝ is unambiguous and total.

For the first condition we have to show that for each Z there is at most one
equation Z l X → Y ∈ E(S). Let us suppose the contrary, Z l X → Y ∈ E(S)
and Z l A→ B ∈ E(S), now by Fact 4.2 we have X � A and Y � B. So a
contradiction is obtained because S is in _A-normal form.

Moreover by Fact 4.2 and stratification we know that no cycles in the type
equations exist, hence Ŝ is total.

Lemma 4.9. Given a scheme S that is stratified and in _A-normal form, we
have Ŝ |=mgu E(S).

Proof. We have Ŝ(X) = Ŝ(A) → Ŝ(B) for each X l A→ B ∈ E(S) by defini-

tion, hence Ŝ |= E(S). So it remains to prove that Ŝ is a most general unifier of
E(S). Therefore suppose that we have a substitution δ such that δ |= E(S). Now

we should define a substitution σ such that σ ◦ Ŝ = δ. We define σ := δ. We
prove that δ(Ŝ(X)) = δ(X) for all X ∈ Name by well-founded induction over �S
(this is allowed because S is stratified). So suppose that we have δ(Ŝ(Y)) = δ(Y)

for all Y ∈ Name such that X � Y . Now we prove that δ(Ŝ(X)) = δ(X) by
distinguishing the following cases.

18

1. X l A→ B ∈ E(S). Then we have δ(Ŝ(A)) = δ(A) and δ(Ŝ(B)) = δ(B)

by the hypothesis. Hence we have δ(Ŝ(X)) = δ(X) as shown below.

δ(Ŝ(X)) = δ(Ŝ(A))→ δ(Ŝ(B)) = δ(A)→ δ(B) = δ(X)

2. X l A→ B /∈ E(S). Then we have δ(Ŝ(X)) = δ(X).

Lemma 4.10. Given a scheme S that is not stratified, we have 6|= E(S).

Proof. If S is not stratified, E(S) contains a cycle and therefore 6|= E(S).

So far we have proven two parts of the correctness of Newman’s algorithm:
the equations E(S) are correct and Ŝf is the most general unifier of E(Sf). So
it remains to show how we can use Newman’s algorithm to compute a most
general unifier of E(S). As introduced before, we will do this by keeping track
of the substitutions while performing η-reduction. Because these substitutions
replace names for names instead of types for type variables we introduce the
following definition.

Definition 4.11. Given a substitution ν : Name → Name, the substitution
ν : TVar→ TVar is defined as ν(X) = ν(X).

In the remainder of this section we will prove that if S
ν

__ Sf then Ŝf ◦ ν
is the most general unifier of E(S) iff Sf is stratified. This finally leads to a
correctness proof of Newman’s algorithm.

Lemma 4.12. If S
ν

__ S′ and δ |= E(S′) then δ ◦ ν |= E(S).

Proof. Immediate because δ |= ν(E(S)) implies δ ◦ ν |= E(S).

Lemma 4.13. If S
X:=Y
_ S′ and δ |= E(S) then δ(X) = δ(Y).

Proof. We prove this result by distinguishing the following cases.

(A1) Z l X → V , Z l Y → W ∈ E(S). Now we have δ(Z) = δ(X) → δ(V)
and δ(Z) = δ(Y) → δ(W). So δ(X) → δ(V) = δ(Y) → δ(W) and
therefore δ(X) = δ(Y).

(A2) Similar to the preceding case.

(B) X l V → W, Y l V → W ∈ E(S). Now we have δ(X) = δ(V) → δ(W)
and δ(Y) = δ(V)→ δ(W) and therefore δ(X) = δ(Y).

Corollary 4.14. If S
ν

__ S′ and δ |= E(S) then δ ◦ ν = δ.

Proof. Immediate from Lemma 4.13.

Lemma 4.15. If S
ν

__ S′ and δ |= E(S) then δ |= E(S′).

Proof. We have to prove that we have δ(νX) l δ(νA)→ δ(νB) for each equa-
tion X l A→ B ∈ E(S). By assumption we have δ(X) l δ(A) → δ(B) so by
Corollary 4.14 we are done.

19

Theorem 4.16. Given a scheme S and let S
ν

__ Sf , we have:

1. If Sf is stratified then Ŝf ◦ ν |=mgu E(S).

2. If Sf is not stratified then 6|= E(S).

Proof. By Lemma 4.9 we have Ŝf |= E(Sf) and by Lemma 4.12 we obtain that

Ŝf ◦ ν |= E(S). So for the first property it remains to prove that Ŝf ◦ν is a most
general unifier of E(S). Therefore let us suppose that we have a substitution δ
such that δ |= E(S). By Lemma 4.15 we have δ |= E(Sf) and by Lemma 4.9

we obtain a substitution σ such that δ = σ ◦ Ŝf . Now it remains to prove that

δ = σ ◦ Ŝf ◦ ν, but by Corollary 4.14 we have δ = δ ◦ ν, so we are done.
To prove the second property let us suppose that we have a substitution δ

such that δ |= E(S), then by Lemma 4.15 we have δ |= E(Sf). But now we
obtain a contradiction with Lemma 4.10 because Sf is not stratified.

Theorem 4.17. Newman’s algorithm is sound and complete with respect to

typing. That is, given a λ-term M , its scheme S = S(M) and let S
ν

__ Sf , we
have:

1. If Sf is stratified then 〈σ(E(M)), σ(ΓM)〉, where σ = Ŝf ◦ ν, is a principal
pair of M .

2. If Sf is not stratified then 6`M .

Proof. Immediate from Corollary 4.6 and Theorem 4.16.

4.2. Comparison with the algorithm of Wand

The generation of type equations as defined in Definition 4.1 and the state-
ments of Lemma 4.4 and 4.5 look quite similar to Wand’s algorithm and his
correctness proof [21], respectively. However we show that there are some no-
table differences between Wand’s method and ours (borrowed from Newman).

Wand describes his algorithm with a skeleton and an action table. Given a
closed term M one starts with an empty set of equations E and a set of goals
G consisting of one initial goal (∅,M, α) where α is a fresh type variable. While
the set of goals G is non-empty one picks a goal g from G, deletes it from G,
and uses the following action table to generate new goals and equations.

g SG(g) EQ(g)
(Γ, x, τ) ∅ τ l Γ(x)
(Γ, λx.M, τ) (Γ;x : α1,M, α2) τ l α1 → α2

(Γ,M P, τ) (Γ,M, α→ τ), (Γ, P, α) ∅

The newly generated goals SG(g) are added to the set of goals G and the newly
generated equations EQ(g) are added to the set of equations E. This process is
repeated until the set of goals G is empty. The correctness of Wand’s algorithm
states that δ |=mgu E iff δ(α) is a principal type of M .

So we observe at least the following important differences between Wand’s
method and ours.

20

1. Wand’s algorithm results in a set of type equations of the shape σ l τ
where σ, τ ∈ Type. In our method the generated equations are of the shape
α l β → γ where α, β, γ ∈ TVar.

2. Wand’s algorithm works for terms that do not satisfy the Barendregt
convention. Therefore Wand’s algorithm keeps track of the free variables
explicitly by carrying a context around.

3. Wand’s algorithm takes a type variable α as its input. For the generated
equations E we have δ |=mgu E iff δ(α) is a principal type of M . Our

algorithm results in a type variable E(M) and a set of equations E(M) such
that δ |=mgu E(S(M)) iff δ(E(M)) is a principal type of M . So, Wand’s
algorithm generates equations top-down while our algorithm generates
equations bottom-up.

One could try to modify Wand’s action table in such a way that it results
in type equations of the required shape4 in the following way.

g SG(g) EQ(g)
(Γ, x, α) ∅ α l Γ(x)
(Γ, λx.M,α) (Γ;x : α1,M, α2) α l α1 → α2

(Γ,M P, α) (Γ,M, α1), (Γ, P, α2) α1 l α2 → α

However, in the case of a variable an equation of the shape α l β is gener-
ated. Unfortunately, due to Wand’s top-down approach we cannot take these
equations into account in the application and λ cases.

5. Extension with other type constructions

The typing algorithm à la Newman can be extended to include other type
constructors. First we show how to include product types. This is a proper
extension of Newman’s method, because the algorithm should now also fail due
to conflicting type constructors, a case Newman does not deal with. This requires
a refinement of the notion of being stratified. Other “simple extensions”, like
sum types can be added in a similar way.

Secondly, we show how to add weak polymorphism, which involves universal
quantification over type variables (but only on the top level). This is more
interesting, because it is basically only relevant if we consider terms inside a
context, in which the variables have weakly polymorphic types.

5.1. Product types

We first look into product types, so we define the rules of the system.

4For clarity of presentation we generate type equations instead of term equations that have
to be translated into type equations.

21

Definition 5.1. The system λ→ is extended with product types as follows.
Firstly, we extend the terms to include pairing and the projections.

Λ ::= Var | 〈Λ,Λ〉 | π1Λ | π2Λ | (ΛΛ) | (λVar.Λ)

Secondly, we extend the simple types with product types.

Type ::= TVar | (Type→ Type) | (Type× Type)

Thirdly, we extend Definition 1.2 to include the following rules.

Γ `M : σ Γ ` N : τ
Γ ` 〈M,N〉 : σ × τ

(a) Pairing

Γ `M : σ × τ
Γ ` π1M : σ

(b) First Projection

Γ `M : σ × τ
Γ ` π2M : τ

(c) Second Projection

Now we extend the tree of a term and the graph of a term to include pairing
and projection constructions.

Definition 5.2. We extend the translation of terms to trees and the translation
of trees to Newman graphs as depicted in the figure. We write Tgraph(M) for
the tree we obtain and Ngraph(M) for the Newman graph we obtain. In the
construction of the Newman graph, we again choose a fresh label for each node.

πiπi

T(M) T(N)

T(M) = T(<M, N>) = <,>

T(M)

V<,>

1 2

π
21

π
W

2

W

1

The intuition will be clear again:

X 1−→ Y iff X is a product type whose first component type is Y

X 2−→ Y iff X is a product type whose second component type is Y.

22

We now extend the notion of congruence between nodes to include the new
arrows in the graph.

Definition 5.3. The notion of congruence �G between nodes in a Newman
graph of Definition 2.3 is extended by adding the following inductive clauses.

1. If U 1−→ X and U 1−→ Y , then X �G Y

2. If U 2−→ X and U 2−→ Y , then X �G Y

3. If X 1−→ U , X 2−→ V and Y 1−→ U , Y 2−→ V , then X �G Y

The notion of reduction of Definition 2.5 is immediately extended: we can
join nodes X and Y in case X � Y , where the congruence relation X � Y is
now the one of Definition 5.3. A graph is in normal form in case no further
reductions are possible. The only notion that really changes is that of a graph
being stratified.

Definition 5.4. Given a Newman graph G in the system extended with products,
then G is stratified in case the following conditions hold.

1. The relation 1−→ ∪ 2−→ ∪ d−→ ∪ r−→ contains no cycles.

2. The relation 1−→ ∪ 2−→ ∪ d−→ ∪ r−→ contains no conflict.

Here we define a conflict as a node X that has an outgoing arrow l1−→ and an
outgoing arrow l2−→ such that l1 ∈ {1, 2} and l2 ∈ {d, r}.

Note that the new case in the definition of stratified corresponds to the case
of conflicting function symbols in the unification algorithm. In the type system
with only→, we have only one function symbol, so unification can only fail due
to the occurs check (the cyclicity in the definition of stratified). In the presence
of products, one can also fail due to conflicting type constructors.

Lemma 5.5. The reduction _ is strongly normalizing and confluent. Moreover,
the normal form of the Newman graph of M is stratified if and only if M is
typable in λ→ extended with products.

Example 5.6. Consider the λ-term M ≡ λx.x(π1x). The normal form of its
Newman graph is depicted below and one can observe that it is not stratified,
due to a conflict in the node x.

d

r

r

V

U

d

1
Wx

Just as we have done for arrow types in example 2.9, one can now add type
information to the nodes in a stratified Newman graph, to compute the type of
the original term. We will not detail that here.

23

5.2. Weak polymorphism

In this section we treat the λ-calculus with weak polymorphism (henceforth
λ2w) and give a typing algorithm “à la Newman”. The weak polymorphism
means that the types of our system are type schemes, of the form ∀~α.σ, where
σ is a simple type.

Definition 5.7. The weakly polymorphic types are of the following form

Typeω ::= ∀TVar.Typeω | Type

The free type variables, FTV(σ), of a weakly polymorphic type are inductively
defined as follows.

FTV(α) = {α}
FTV(σ → τ) = FTV(σ) ∪ FTV(τ)

FTV(∀α.σ) = FTV(σ)\{α}

A context Γ is now a sequence of declarations of the form x : σ, where σ is
a weakly polymorphic type.

Definition 5.8. A λ2w-typing judgment Γ ` M : ρ denotes that a λ-term M
has type ρ in context Γ. The derivation rules for deriving such a judgment are
as follows.

x : σ ∈ Γ
Γ ` x : σ

(c) Variable

Γ `M : σ → τ Γ ` N : σ
Γ `MN : τ

(d) Application

Γ, x : σ ` P : τ
τ ∈ Type

Γ ` λx.P : σ → τ
(e) Abstraction

Γ `M : σ α 6∈ FTV (Γ)
Γ `M : ∀α.σ

(f) Generalization

Γ `M : ∀α.σ τ ∈ Type
Γ `M : σ[α := τ]

(g) Instantiation

Example 5.9. Consider a derivation of x : ∀β.β → β ` xx : ∀α.α → α. We
abbreviate Γ = x : ∀β.β → β.

Γ ` x : ∀β.β → β

Γ ` x : (α→ α)→ α→ α

Γ ` x : ∀β.β → β

Γ ` x : α→ α

Γ ` xx : α→ α
Γ ` xx : ∀α.α→ α

Note that we cannot abstract over x, because it has a weakly polymorphic
type. So the term λx.xx is not typable in λ2w.

To extend the notion of Newman graph to include terms of λ2w, we only
have to look at the polymorphic variables in the context, as the term structure
does not change. So, we define the translation of a declaration x : ∀~α.σ into a
Newman graph. First we define the translation of a simple type into a Newman
graph. (We could do this via first defining the tree of the type, but we skip that
step now.)

24

d

U

r
T(σ→τ) = U

T(σ) T(τ)
α

β

d

d

r

V

Figure 3: Translating a type to a Newman graph.

Definition 5.10. Given a type σ ∈ Type, we define the Newman graph of this
type, Ngraph(σ) by induction as described in Figure 3, where we choose a fresh
label (U in the picture) and we share all identical type variables in one leaf.

As an example we indicate the translation of α→ β → α in Figure 3. Here
we see the sharing of node α.

Definition 5.11. Given a context Γ = x1 : ∀ ~α1.σ1, . . . , xn : ∀ ~αn.σn and an
untyped λ-term M with FV(M) ⊂ {x1, . . . , xn}, we define the Newman graph
of M as in Definition 2.2, with the proviso that:

1. Every occurrence of a free variable xi is labeled uniquely and replaced by
the Newman graph of its type, Ngraph(σi[~αi := ~β]) where xi : ∀ ~αi.σi ∈ Γ

and ~β consists of fresh type variables.

2. All occurrences of free type variables in the types of x1, . . . , xn are shared.

To see what the definition means exactly, we treat an example.

Example 5.12. Let us consider the λ-term M ≡ x y x in the context
Γ = x : ∀α.(α→ β)→ α, y : ∀γ.(β → γ)→ γ. Then the Newman graph of M
in Γ is as follows.

r

r

d

r

d

r

d

d

r

d

d

d

rd

r

r

We see that the graph of the type of x occurs twice, because x occurs twice in
the term M . Furthermore, the free type variable β is shared by all the three type
trees, of the first occurrence of x, of y, and of the second occurrence of x.

25

The congruence relation (Definition 2.3) does not change, and neither does
the reduction on Newman graphs (Definition 2.5). The normal form of the
Newman graph of a λ2w-term is again unique up to renaming of labels and we
have the following Lemma.

Lemma 5.13. The reduction _ is strongly normalizing and it is confluent.
Moreover, the normal form of the Newman graph of M is stratified if and only
if M is typable in λ2w.

We can also “read off” the type from the Newman graph in normal form. As
we are in λ2w, we want to generalize as many type variables as possible. This
can be done by keeping track of the variables that are “fixed in the context”,
like β in the example context of Example 5.12.

To show this, we look at the term Q ≡ (λy. y x) (x (λz. z)) in the context
Γ = x : ∀α.α → α. Remark that this term is closely related to the term
M ≡ λx. (λy. y x) (x (λz. z)) that we have considered in Example 2.6 and which
is not typable in λ→.

Example 5.14. Let us consider the λ-term Q ≡ (λy. y x) (x (λz. z)) in the
context Γ = x : ∀α.α→ α. We draw its Newman graph and reduce it to normal
form. In boxes and in circles we indicate the congruent nodes that we join in a
couple of larger steps.

d

d

d

r

r r

r

d

d

d

r

r

rd

y

d

d

d

r

r r

r
d

d
r

d

d

z

V

α

x

Z

Y

x'U

d

d

d

r

r r

r

d

d

d

r

r

rd

r

rd

U

V

Y

d

r

d
r

α
d

x'

26

The graph in normal form contains no cycle, so we conclude that the term is
typable. We can again read off the type by annotating the nodes without outgoing
edges with type variables and constructing the type for the node U . We conclude
that the principal type of the term in λ2w is: ∀α.α→ α.

6. Unification à la Newman

In the previous sections we have seen that Newman’s algorithm consists of
the following steps.

1. Create a set of equations from a term.

2. Using these term equations, define relations corresponding to type con-
straints. From these relations a congruence relation is created.

3. Rewrite the equations by replacing a name by another congruent one;
restart from (2) until no more rewrites are possible.

Newman rewrites the equations, but we have seen that we can also rewrite
the relations, and basically forget about the equations after step (1). In our
graphical representation we have reformulated Newman’s algorithm as follows.

1. Create a set of equations from a term and from that a set of relations
corresponding to type constraints.

2. Define from these relations a congruence relation on names.

3. Rewrite the relations by replacing a name by another congruent one;
restart from (2) until no more rewrites are possible.

Our relations for deciding typing are d−→ and r−→ for λ→ (Section 2) and d−→,
r−→, 1−→, and 2−→ for λ→ extended with products (Section 5.1). These relations

correspond to type constraints of the shape α l β → γ and α l β × γ.
As shown in Section 4, the phases of Newman’s algorithm are comparable

to the typing algorithm of Wand, where a set of equations is created, which is
then “solved” by a unification algorithm. We have seen that the equations of
Wand are constructed top-down, while Newman creates the relations bottom-
up. However, on another track, Newman’s algorithm is very close to what
happens in Wand’s algorithm, because the steps (2) and (3) in the description
above actually do unification! In this section we will make this precise and show
that Newman’s method gives rise to a unification algorithm and actually a quite
efficient one. It is in set-up very close to what is called unification of term DAGs
(Directed Acyclic Graphs) in [16, 2]. Before going into the definitions we give
an example that should clarify the connection with unification.

Example 6.1. Suppose we have a first order language with two function sym-
bols: f of arity 2 and h of arity 1. Now we want to find a unifier for the
one-member set of equations E = {f(x, h(v)) l f(h(y), x)}.

We introduce names for all subterms and replace E by the equivalent set
of equations E′ = {A l f(x,B), B l h(v), A l f(C, x), C l h(y)}. We now
rewrite E′ by replacing a symbol X by Y in case the set of equations contains
two equations of the shape U l f(. . . , X, . . .) and U l f(. . . , Y, . . .), where X

27

A

f1

C

h

y

f2

v

A

f1

C

h

y

x

f1

A

f1

f2

B C

f2

h
h

v y

A

f1

f2

B C

f2

h
h

v y

f2

[x:=C] [B:=C] [v:=y]

h

Figure 4: Unification algorithm á la Newman graphically.

and Y are in the same position in the argument list of f . The rewriting goes as
follows.

A l f(x,B)
B l h(v)
A l f(C, x)
C l h(y)

 ⇒[x:=C]

A l f(C,B)
B l h(v)

A l f(C,C)
C l h(y)

 ⇒[B:=C]

 A l f(C,C)
C l h(v)
C l h(y)

 ⇒[v:=y]

{
A l f(C,C)
C l h(y)

}
If we collect the substitutions we have performed along the way, we obtain the
most general unifier [x := h(y), v := y] of E.

In the example we see that we never substitute a compound term, but only
names for names. This prevents a size blow up that one could encounter in a
simple-minded ordinary unification algorithm. We also give a graphical repre-
sentation of the unification, based on the same example.

Example 6.2. Let us consider the set of equations E = {f(x, h(v)) l f(h(y), x)}
again. We now replace each term by a Newman graph, which is a DAG obtained
by creating for every subterm f(t, q) a new node U with f1−→ pointing to the node
of subterm t and f2−→ pointing to the node of subterm q. We share variable nodes.
Furthermore, we represent an equation r l s by joining the two top nodes of the
terms r and s. For E, this produces the Newman graph depicted in Figure 4.

We now define precisely how unification “à la Newman” works. Let a signa-
ture be given with function symbols with fixed arity (typically f , g, . . .) and
first order terms over this signature (typically t, q, . . .). We first define for every
term t a set of equations of the form U l t, where U is a “term name” that
names the subterm q of t.

Definition 6.3. Given a first order term t, the set of Newman equations
Neqns(t) is defined as follows.

1. Create a fresh term name (typically U , V , X, Y , Z) to name each non-
variable subterm of t.

28

2. Create a set of equations Neqns(t) from t by putting U l f(L1, . . . , Ln)
where U is the name of the subterm f(t1, . . . , tn) and Li is the name of
the subterm ti (and Li is just x if ti is the variable x).

Equivalently, we could have defined the Newman graph of a term, by de-
picting a term as a DAG, where all the nodes are labeled by the term names
introduced in Definition 6.3. We now pursue the equational approach, but we
could equivalently have defined everything graphically. In any case is it good to
keep also the graphical presentation of Example 6.2 in mind. We now define the
Newman equations for a set of unification problems, which are equations of the
form t l q. The idea is to take, for the unification problem t l q, the Newman
equations for t and the Newman equations for q (Definition 6.3) and to add an
equation U l V that equates the “roots” of t and q.

Definition 6.4. Given a set of equations E, the set of Newman equations
Neqns(E) is inductively defined as follows.

E Neqns(E)
∅ ∅
{f(~t) l g(~q)} ∪ E′ Neqns(f(~t)) ∪Neqns(g(~q)) ∪ {U l V } ∪Neqns(E′)

Here U is the name of f(~t) and V is the name of g(~q).

So, a set of equations is transformed into a set of equations generated from
the equations for terms, extended with equations that equate all names of the
top terms.

Definition 6.5. Given a set of equations E, we rewrite the set of Newman
equations E′ = Neqns(E) as follows.

(A) If E′ contains the equations N l f(L1, . . . , Ln) and N l f(K1, . . . ,Kn),
then perform the substitution [Li := Ki] for some i such that Li 6= Ki on
all equations in E′.

(B) If E′ contains the equations N l f(L1, . . . , Ln) and M l f(L1, . . . , Ln),
then perform the substitution [N := M] on all equations in E′.

In the definition of rule (A), it is also possible to consecutively perform
substitutions σ1, . . . , σn, where σ1 = [L1 := K1], σ2 = [L2 := σ1(K2)], . . . ,
σn = [Ln := σn1(. . . (σ1(Kn) . . .)] on all equations in E′. While this might be
more efficient it does not correspond to Newman’s original method.

Definition 6.6. Given a set of equations E, the set of equations E has a
conflict if it contains equations U l f(~L), U l g(~K) with f 6= g. The set
of equations E has a circularity if it contains a set of equations of the form
{N1 l f1(. . . , L1, . . .), L1 l f1(. . . , L2, . . .), . . . , Ln l fn(. . . , N1, . . .)}. More-
over, the set of equations E is stratified if it contains no conflict and no circu-
larity.

29

We have seen that rule (B) can be omitted for λ→ (Corollary 3.22). Here,
the situation is the same, rule (B) is not needed to compute the most general
unifier of a set equations: a set of equations E in (A)-normal form is stratified
iff the (B)-normal form of E is stratified. However, there may be cases where
one can only perform a (B) step, so the rule is not superfluous if one wants to
reduce the number of equations as much as possible.

Definition 6.7. Given a set E of equations on first order terms, unification à
la Newman is defined as the process that does the following.

1. Generate the set of Newman equations Neqns(E).

2. Rewrite the set Neqns(E) according to the rules of Definition 6.5.

3. If no rule applies (nor (A), nor (B)), we terminate, say with a set of
equations E′, and then

• we stop with failure in case E′ contains a circularity or a conflict,

• otherwise we create the answer substitution by composing the substi-
tutions we have performed along the way with E′.

Proposition 6.8. Unification à la Newman decides whether a set of equations
E is unifiable, and if so, it computes the most general unifier of the set E.

The proof is basically the same as for Theorem 4.16. However, there is some
additional work, because we can now also fail because of a conflict. In simple
type theory, there is only one function symbol (the type constructor →), so the
only way one can fail is due to a circularity.

In this section we have shown that Newman’s typing algorithm implicitly
includes all the basic ideas for a unification algorithm. We have used the DAG
representation of terms to present the idea behind the algorithm and to precise
the connection with our graphical presentation of Newman’s typing algorithm
in Section 2. The space complexity of this unification algorithm à la Newman
is very good because a blow-up in size is prevented since we never substitute a
compound term. However, the algorithm is non-deterministic since we do not
explicitly specify how to choose equations and how to check for circularity or
conflicts. For an example of an efficient and completely worked out algorithm
for unification of DAGs we refer to [2]. Their algorithm contains a clever repre-
sentation of equivalence classes of congruent nodes and stores some additional
information in the nodes in order to obtain an almost linear time complexity.
Moreover, for linear time algorithms we refer to [16, 11].

7. Conclusions

We have studied Newman’s typability algorithm and shown that it is correct
for λ→ and that it implicitly computes the principal type of the term. It turns
out that Newman’s method lends itself very well to a graphical representation
and that it is quite flexible in that it can be extended to other type construc-
tions and stronger type disciplines like weakly polymorphic λ-calculus. In its

30

modular set-up – even though that is not made so explicit by Newman itself –
the algorithm is closely related to Wand’s, even though the actual generation of
the set of type equations is performed in a different way.

Looking back, Newman was ahead of his time: not only did he define a
typing algorithm, but his algorithm also includes the basics of an efficient uni-
fication algorithm. In his case, this was just used to solve type equations, but
it generalizes directly to other equations, as we have shown.

An interesting question is whether Newman’s algorithm can be generalized
to cover a polymorphic let-construction. Then one has terms let x = N in P ,
where N can be of a weakly polymorphic type. For typing, the situation is now
fundamentally asymmetric: the type computed for N is “passed on to” the com-
putation of the type for P . In Newman’s algorithm, we are not obliged to first
normalize the graph of N and then continue (via a kind of “copying step” of the
graph of N) with the graph of P , so it is not so clear how to adapt Newman’s
method to include let-polymorphism. On the other hand, it is also not straight-
forward to extend constraint based typing algorithms (for example Wand’s al-
gorithm) to include let-polymorphism. Recent research [8, 15, 17] has shown
that constraint based typing algorithms can be extended to let-polymorphism
by not only considering equality constraints but also instantiation constraints.
It would be interesting to see whether Newman’s method can be extended to
such constraints and therefore could be applied to let-polymorphism.

Acknowledgments. We are grateful to the anonymous referees who provided
several helpful suggestions. Also, we thank James McKinna for comments on
early drafts of this paper.

References

[1] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[2] F. Baader and W. Snyder. Unification Theory. In J.A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume I, pages
447–533. Elsevier Science Publishers, 2001.

[3] H. Barendregt. Lambda calculi with types. In Handbook of Logic in Com-
puter Science, pages 117–309. Oxford University Press, 1992.

[4] H. P. Barendregt. The lambda calculus: its syntax and semantics, vol-
ume 103 of Studies in Logic and the Foundations of Mathematics. North-
Holland, 1984.

[5] A. Church. A Formulation of the Simple Theory of Types. The Journal of
Symbolic Logic, 5(2):56–68, 1940.

[6] A. Church. Review of [14]. The Journal of Symbolic Logic, 9:50–52, 1944.

31

[7] H. Geuvers. Introduction to type theory. In Language Engineering and Rig-
orous Software Development, International LerNet ALFA Summer School
2008, Piriapolis, Uruguay, Revised, Selected Papers, volume 5520 of LNCS.
Springer, 2009.

[8] F. Henglein. Polymorphic Type Inference and Semi-Unification. PhD thesis,
Rutgers University, 1989.

[9] J. R. Hindley. The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society, 146:29–60, 1969.

[10] J. R. Hindley. M. H. Newman’s Typability Algorithm for Lambda-calculus.
Journal of Logic and Computation, 18(2):229–238, 2008.

[11] A. Martelli and U. Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems, 4(2):258–282, 1982.

[12] R. Milner. A Theory of Type Polymorphism in Programming. Journal of
Computer and System Sciences, 17:348–375, 1978.

[13] M. H. A. Newman. On Theories with a Combinatorial Definition of “Equiv-
alence”. Annals of Mathematics, 43(2):223–243, 1942.

[14] M. H. A. Newman. Stratified Systems of Logic. Proceedings of the Cam-
bridge Philosophical Society, 39(2):69–83, 1943.

[15] M. Odersky, M. Sulzmann, and M. Wehr. Type inference with constrained
types. Theory and Practice of Object Systems, 5(1):35–55, 1999.

[16] M. S. Paterson and M. N. Wegman. Linear unification. Journal of Com-
puter and System Sciences, 16(2):158–167, 1978.

[17] F. Pottier and D. Rémy. The Essence of ML Type Inference. In Ben-
jamin C. Pierce, editor, Advanced Topics in Types and Programming Lan-
guages, chapter 10, pages 389–489. MIT Press, 2005.

[18] W. V. Quine. New Foundations for Mathematical Logic. American Math-
ematical Monthly, 44:70–80, 1937.

[19] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Prin-
ciple. J. ACM, 12(1):23–41, January 1965.

[20] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[21] M. Wand. A Simple Algorithm and Proof for Type Inference. Fundamenta
Infomaticae, 10:115–122, 1987.

32

	Introduction
	Historical background
	Simple type theory and Newman's type system
	Principal types and most general unifiers
	Some basic notions from rewriting

	Newman graphs
	Newman's algorithm for
	Computing a type using Newman's algorithm
	Correctness of Newman's algorithm
	Comparison with the algorithm of Wand

	Extension with other type constructions
	Product types
	Weak polymorphism

	Unification à la Newman
	Conclusions

