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Abstract
We present a semantics of a significant fragment of the C program-
ming language as described by the C11 standard. It consists of a
small step semantics of a core language, which uses a structured
memory model to capture subtleties of C11, such as strict-aliasing
restrictions related to unions, that have not yet been addressed by
others. The semantics of actual C programs is defined by transla-
tion into this core language. We have an explicit type system for the
core language, and prove type preservation and progress, as well as
type correctness of the translation.

Due to unspecified order of evaluation, our operational seman-
tics is non-deterministic. To explore all defined and undefined be-
haviors, we present an executable semantics that computes a stream
of finite sets of reachable states. It is proved sound and complete
with respect to the operational semantics.

Both the translation into the core language and the executable
semantics are defined as Coq programs. Extraction to OCaml is
used to obtain a C interpreter to run and test the semantics on actual
C programs. All proofs are fully formalized in Coq.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages

Keywords ISO C11 Standard, Operational Semantics, Executable
Semantics, Interactive Theorem Proving, Coq

1. Introduction
Many programs need a high runtime performance, close control of
the underlying hardware, to be able to run with a minimal runtime
environment, or to be very portable. All these reasons explain the
ongoing popularity of the C programming language, especially for
embedded systems and systems programming in general. Of course
one pays for these benefits by using a low-level language in which
it is very easy to make mistakes with potentially disastrous conse-
quences. This is especially shown by the proliferation of malware
on computers all around the world. Without the widespread use of
C and its derivative languages, malware would have a much harder
time tainting systems everywhere.

An interesting approach to remedy this situation is to use proofs
to establish the safety of C programs. That way one gets all perfor-
mance, control and portability benefits of C, without the dangers
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caused by it. Such approaches range from light weight methods like
static analysis (which is by nature incomplete) to systems where a
user can interactively reason about programs.

Still with systems of the latter kind, it is often unclear whether
the system matches the compiler that is used, or might be used in
the future, because most of these systems are about a version of
C that is quite specific. Moreover, the semantics of C that such a
system embodies is generally not made explicit, which makes it
hard to establish that it does not contain semantic errors.

For this reason, the CH2O project [13–18] aims at developing an
explicit formal semantics that should match the official description
of C, namely the C11 standard [11], as closely as possible. Our goal
is that if one proves something about a program with respect to the
CH2O semantics, it will behave that way with any C11 compliant
compiler. There are two projects that are very close:

• The CompCert project by Leroy et al. [20] has a formal seman-
tics for a C-like language called CompCert C in Coq. This lan-
guage can be compiled with a compiler written in Coq, which
has been proved correct with respect to this formal semantics.

• Ellison and Rosu [6] have developed a formal semantics of C
in the K-framework. In this work the goal is also to explicitly
formally model the C11 standard as closely as possible.

In both projects, as well as in ours, there is a formal description
of a significant part of C close to the C11 standard and an exe-
cutable interpreter that matches the semantics precisely. However,
both projects also differ from our work:

• Proof infrastructure. Although Ellison and Rosu support more
C features than we do, they do not have proof infrastructure
around it. Their semantics, despite being written in a formal
framework, should more be seen as a debugger or state space
search tool. Our entire semantics, as well as proofs of metathe-
oretical properties about it, has been formalized in Coq.

• Explicit typing. Neither of these projects have an explicit no-
tion of typing, whereas we have defined type judgments. There-
fore we have been able to prove properties of our language like
type preservation and progress.

• Formal translation from abstract syntax. We process the ab-
stract syntax of C to an intermediate language inside Coq. We
prove that this translation only yields well-typed programs. Al-
though CompCert’s parser has been formally verified [12], the
majority of the translation from abstract syntax to CompCert C
is performed using unverified OCaml code. This translation in-
volves semantic transformations such as evaluation of constant
expressions, that we have proved sound and complete.

• Core language. Ellison and Rosu do not have an intermediate
language: the semantics operates on the abstract syntax of a pro-
gram itself. We claim that by first going to a core language, the
description of various semantic features becomes more princi-



pled and simpler. For example, this way we do not have dupli-
cation in the semantics of various looping constructs.

• Closer to the C11 standard. In the CompCert semantics the
goal is not to make sure that what can be proved according to
the semantics will hold for any C11 compiler, it just has to hold
for one specific compiler: the CompCert compiler. To that end,
CompCert is allowed to make choices for implementation de-
fined behavior (e.g. integer representations) and gives a seman-
tics to various undefined behaviors (such as aliasing violations).
Like in our work, Ellison and Rosu’s goal is to exactly describe
the C semantics. However, for some programs their semantics is
less precise than ours (see Section 2.4). We can be more precise
because in our memory model data objects are structured like
trees, while in theirs they consist of flat arrays of bytes.

Approach. To be able to test our semantics, we have developed
an ‘interpreter’. This is not an ordinary interpreter that executes a
program according to one interpretation of the C standard, and that
has arbitrary behavior in the case of undefined behavior. Instead,
our interpreter calculates all behaviors of the program that are
allowed by the standard, and when the program has undefined
behavior, it will explicitly state this undefinedness.

Our interpreter is also different from compilers or interpreters
that insert tests for undefined behaviors as a protection. Those com-
pilers or interpreters generally only follow one possible execution
order. Instead, our interpreter is not primarily meant to be a debug-
ging tool, but instead is an exploration tool, intended to explore the
implications of the C standard [5, 30].

We aim to follow the C11 standard [11] as closely as possible.
Unfortunately, the standard is often ambiguous due to its use of
natural language (e.g., see the message [24] on the standard’s com-
mittee’s mailing list, and Defect Reports #260 and #236 [10]). In
the case of ambiguities, we err on the side of caution and favor un-
defined behavior. Since our interests lie in proving the correctness
of C programs with respect to arbitrary C11 compilers, assigning
undefined behavior in the case of doubt is the safe choice.

The organization of this paper follows the structure of our C
interpreter as shown in Figure 1. We have two languages:

• CH2O core C is described in Section 3. This language is quite
abstract, and not very close to actual C.

• CH2O abstract C is described in Section 6. This language is
very close to the abstract syntax trees of actual C.

The interpreter then consists of four passes to get from C source
code to the behavior of the program.

Related work. Apart from the related work discussed above, there
is an abundance of related work on (executable) semantics for large
imperative programming languages in proof assistants.

Norrish has defined a semantics of a large part of the C89 type
system and semantics in the interactive theorem prover HOL [26].
His main focus was to capture non-determinism in expressions, and
our expression semantics is based on his. However, many of the
language features we consider are more recent than C89.

Campbell has defined an executable semantics for Comp-
Cert C [4] and proved soundness and completeness with respect to
the deterministic (leftmost-innermost) operational semantics. The
resulting interpreter, that can be used to effectively test the Comp-
Cert C semantics, has been reimplemented by Leroy as part of the
official CompCert distribution. This reimplementation is also able
to handle non-determinism and explore a program’s whole state
space. Since the amount of non-determinism in CompCert C is
more restrained than in our semantics (it is at most finitary branch-
ing, whereas we have infinitary branching), our completeness proof
with respect to the operational semantics is more involved.

Compared to the CompCert C executable semantics, we handle
a larger part of the interpreter inside Coq. In particular, our transla-
tion from abstract syntax is implemented in Coq, and the machinery
to compute the reachable state set is implemented using a verified
implementation of hash-sets in Coq.

There have been many previous efforts on creating sound and
complete executable semantics. For example, Zhao et al. does
this for (a deterministic version of) LLVM [31], Bodin et al. for
Javascript [2], and Lochbihler and Bulwahn for Java [23]. The latter
uses code extraction to automatically obtain an executable seman-
tics from an inductive definition. Due to excessive non-determinism
in C, our executable semantics has been written by hand.

There has been a lot of related work on tool support for writing
definitions of programming languages which can be automatically
translated to different proof assistants. Most notably, there are the
OTT [29] and Lem [27] tools. Since we wish to use advanced
features of Coq, we have not used such tools.

Contribution. In [14, 18] we have introduced an operational and
axiomatic semantics for subtle features of a C-like language. Since
the focus of these papers was mostly on separation logic, we used
a basic memory model that merely supported integers and pointers.
In this paper, we extend the operational semantics as follows:

• We integrate our new memory model that supports array, struct,
and union types [13, 15]. As usual, such integration suffers from
feature interaction leading to many changes to the operational
semantics (like introducing new language constructs), as well
as the memory model (like extending the permission system).

• We extend the language with a type system and prove that the
operational semantics enjoys type presentations and progress.

• We extend the supported C fragment significantly (e.g. type-
defs, enums, static and global variables, initializers, constant
expressions) by defining a translation from a larger fragment of
C. This translation is proved type sound.

• We define an executable semantics that can be used to test the
semantics against actual C programs. This executable semantics
is proved sound and complete. The completeness proof is non-
trivial due to excessive non-determinism in our semantics.

• All definitions and proofs have been formalized using Coq. The
development can be extracted to OCaml, resulting in an inter-
preter that can be used to explore all behaviors of C programs.

This paper describes a large formalization effort, and we only have
space to show representative parts of definitions. All details can be
found online at:

http://robbertkrebbers.nl/research/ch2o/.

2. Challenges
The C11 standard gives compilers considerable freedom in what
behaviors a program may have [11, 3.4]. It uses the following
notions of under-specification:

• Unspecified behavior: two or more behaviors are allowed. For
example: the execution order of expressions. The choice may
vary for each use of the construct.

• Implementation defined behavior: like unspecified behavior, but
the compiler has to document its choice. For example: size and
endianness of integers.

• Undefined behavior: the standard imposes no requirements at
all, the program is even allowed to crash. For example: derefer-
encing a NULL pointer or signed integer overflow.

http://robbertkrebbers.nl/research/ch2o/
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Figure 1. Overview of the architecture of the interpreter.

Under-specification is used extensively to make C portable, and to
allow compilers to generate fast code. For example, when derefer-
encing a pointer, no code has to be generated to check whether the
pointer is valid or not. If the pointer is invalid (NULL or a dangling
pointer), the compiled program may do something arbitrary instead
of having to exit with a nice error message.

Since the CH2O semantics intends to be a formal version of
the C11 standard, it has to capture the behavior of any C compiler,
and has to take all under-specification seriously (even if that makes
the semantics complex). In this section, we will describe a number
of subtle forms of underspecification and give examples of bizarre
behaviors exhibited by actual compilers.

2.1 Sequence point violations and non-determinism
Instead of having to follow a specific execution order, in C the
execution order of expressions is unspecified. This is a common
cause of portability and maintenance problems because a compiler
may use an arbitrary execution order for each expression.

To make more effective optimizations possible (e.g. delaying of
side-effects and interleaving), the C standard requires the program-
mer to ensure that all execution orders satisfy a certain condition. If
this condition is not met, the program has undefined behavior. Let
us consider an example where this is the case:

int x;
int y = (x = 3) + (x = 4);
printf("%d %d\n", x, y);

By considering all possible execution orders, one would naively
expect this program to print 4 7 or 3 7, depending on whether
the assignment x = 3 or x = 4 is executed first. However, the
sequence point restriction does not allow an object to be modified
more than once (or being read after being modified) between two
sequence points [11, 6.5p2]. A sequence point occurs for example
at the end ; of a full expression, before a function call, and after
the first operand of the conditional ? : operator [11, Annex C].
Hence, both execution orders lead to a sequence point violation,
and therefore result in undefined behavior. Indeed, when compiled
with gcc -O2 (version 4.6.4), the above program prints 4 8, which
does not correspond to any of the execution orders.

Non-determinism in C is even more unrestrained than some may
think. The execution order in e1 + e2 is unspecified, but this does
not mean that either e1 or e2 will be executed entirely before the
other. Instead, it means that execution can be interleaved; first a part
of e1, then a part of e2, then another part of e1, and so on. Hence,
the following expression is allowed to print bac:

printf("a") + (printf("b") + printf("c"));

Our approach to handling non-determinism and sequence points
is inspired by Ellison and Rosu [6] and Norrish [26]. Each object in
memory carries a permission that is changed into a locked variant
whenever a write occurs. Having a locked permission, the memory
model prohibits any access (read or write) to this object. At the next
sequence point, the permission is changed back into the unlocked
variant, making future accesses possible again.

2.2 Non-local control and block scope variables
C allows unrestricted gotos which (unlike break and continue) may
not only jump out of blocks, but can also jump into blocks. Blocks
may contain local variables, called block scope variables, which
can be “taken out of their block” by keeping a pointer to them.
Leaving a block results in the memory of these variables being
freed, and thus making pointers to them invalid. Consider:

int *p = NULL;
l: if (p) { return (*p); }

else { int j = 10; p = &j; goto l; }

When the label l is passed for the first time, the variable p is
NULL. Hence, execution continues in the block where p is assigned
a pointer to the block scope variable j. After the goto l, the
block containing j is left, and the memory of j is freed. Hence,
the conditional if(p) on a dangling pointer after the goto yields
undefined behavior.

2.3 Indeterminate memory and pointers
A pointer value becomes indeterminate when the object it points to
reaches the end of its lifetime [11, 6.2.4] (goes out of scope, or has
been deallocated). Not only dereferencing indeterminate pointers
has undefined behavior, but also using such pointers in pointer
arithmetic and pointer comparisons. For example, consider:

int *p = malloc(sizeof(int));
free(p);
int *q = malloc(sizeof(int));
printf("%d\n", p == q);

If both calls to malloc succeed1 the program still has undefined
behavior because p has become indeterminate.

When a pointer has been deallocated, not just the argument
of free becomes indeterminate, but also all other copies of that
pointer. In our memory model we represent pointer values symbol-
ically, and keep track of the memory areas that have been deallo-
cated. The behavior of operations like == depends on the memory
state, which allows us to accurately capture undefined behaviors.

1 The size of the CH2O memory is unbounded, hence malloc cannot fail.
Addressing finiteness of the memory is left for future work.



2.4 Effective types and aliasing restrictions
Aliasing means that multiple pointers refer to the same object in
memory. Consider:

int f(int *p, int *q) {
int x = *q; *p = 10; return x;

}

When f is called with aliased pointers p and q, the assignment
to *p also affects *q. As a result, a compiler cannot transform the
function body of f into the shorter *p = 10; return (*q);.

Unlike this example, there are many situations in which point-
ers can be assumed not to alias. It is essential for an optimizing
compiler to determine when aliasing cannot occur, and use this in-
formation to generate faster code. The technique of determining
whether pointers can alias or not is called alias analysis.

In type-based alias analysis, type information is used to deter-
mine if pointers are aliased. Consider the following example:

short g(int *p, short *q) {
short x = *q; *p = 10; return x;

}

Here, a compiler should be able to assume that p and q are not
aliased because they point to objects with different types. However,
the static type system of C is too weak to ensure that property
because a union type can be used to call g with aliased pointers.

union INT_SHRT { int x; short y; };
union INT_SHRT u = { .y = 3 };
g(&u.x, &u.y);

A union is C’s version of a sum type. Contrary to sum types in
many other programming languages, unions are untagged instead
of tagged, which means that the current variant of a union is not
stored. As a result, unions destroy the property that each memory
area has a unique type that is known at compile time. The effective
type [11, 6.5p6-7] of a memory area thus depends on the run time
behavior of the program.

The strict-aliasing restrictions [11, 6.5p6-7] imply that a pointer
to a variant of a union type (not to the whole union itself) can only
be used for an access (read or write) if the union is in that particular
variant. Calling g with aliased pointers (as in the example where u
is in the y variant, and is accessed through a pointer p to the x
variant) results in undefined behavior.

Contrary to existing formalizations (Leroy et al. [21] and Elli-
son and Rosu [6]) where each object consists of an array of bytes,
we use structured trees [13]. By giving the memory more structure,
we capture the strict-aliasing restrictions: effective types are mod-
eled by the state of the trees in the memory model.

2.5 Type-punning
Despite the aliasing restrictions of C, it is under certain conditions
allowed to access a union through another variant than the current
one. This is called type-punning [11, 6.5.2.3]. Since the C standard
is ambiguous about these conditions2, we follow the interpretation
by the GCC documentation [8]. It states: “type-punning is allowed,
provided the memory is accessed through the union type”.

For example, according to this interpretation the following pro-
gram has implementation defined behavior (on architectures where
shorts do not have trap values):

union INT_SHRT { int x; short y; };

2 The term type-punning is merely used in a footnote, but for the related
common initial segment rule, it uses the notion of visible, which is not
clearly defined either.

union INT_SHRT u; u.x = 3;
printf("%d", u.y);

Type-punning may only be performed directly via an l-value
of union type. Indirect type-punning via a pointer to a particular
variant of a union type yields undefined behavior. For example:

union INT_SHRT u; short *p = &u.y; u.x = 3;
printf("%d", *p);

We formalize the informal semantics of GCC by decorating the
formal references to subobjects with annotations [13]. Whenever a
pointer to a variant of some union is stored in memory, or used as
the argument of a function, the annotations are changed to ensure
that type-punning is no longer possible via that pointer. In [13], we
have shown that the GCC interpretation is correct by proving that a
compiler can indeed perform type-based alias analysis [13].

2.6 Byte-level operations
Apart from high-level access to objects in memory by means of
typed expressions, C also allows low-level access by means of byte-
wise manipulation. Each object of type τ can be interpreted as an
unsigned char array of length sizeof(τ), which is called the
object representation [11, 6.2.6.1p4]. An object can thus be copied
by copying its object representation. For example:

struct { short x, *r; } s1 = { 10, &s1.x }, s2;
for (size_t i = 0; i < sizeof(s1); i++)
((unsigned char*)&s2)[i] =

((unsigned char*)&s1)[i];

The alignment requirements put restrictions on the addresses at
which objects may be allocated [11, 6.2.8]. For each type τ , there
is an implementation defined integer constant _Alignof(τ). Ob-
jects of type τ should be allocated at addresses that are a multiple of
_Alignof(τ). On 32-bits architectures with _Alignof(short*)=
4 (e.g. x86), the object representation of s1 might be:

1000010000000000 EEEEEEEEEEEEEEEE ································

x padding r

Due to the alignment requirements, the object representation of the
above struct contains a hole. The bytes belonging to these holes
are called padding bytes, and their values remain indeterminate
even after initialization of the whole struct. To facilitate byte-wise
copying of structs, a memory model should allow one to read
and write all bytes, even those that are indeterminate, using an
expression of type unsigned char [11, 6.2.6.1p5]. Note that in
general, reading indeterminate memory has undefined behavior (for
example, reading from an uninitialized int variable).

Our memory model uses a symbolic representation of bits in
order to distinguish determinate and indeterminate memory. This
way, we can precisely keep track of the situations in which reading
and writing indeterminate memory is permitted.

The following excerpt from the C11 standard points out another
challenge with respect to padding bytes [11, 6.2.6.1p6]:

When a value is stored in an object of structure or union
type, including in a member object, the bytes of the object
representation that correspond to any padding bytes take
unspecified values

Let us illustrate this difficulty by an example:

struct { short x, *r; } s1 = { 10, NULL };
((unsigned char*)&s1)[3] = 1;
s1.x = 11;
printf("%d\n", ((unsigned char*)&s1)[3]);



We assign 1 to the third byte ((unsigned char*)&s1)[3] of
the struct s1, and then assign 11 to the field x of the struct s1. The
last assignment makes all padding bytes of s1 indeterminate, and
consequently the argument of printf will be indeterminate. In our
memory model based on trees, we enforce that padding bytes are
always indeterminate, and therefore have this behavior implicitly.

2.7 Arithmetic conversions and overflow
In order to make C portable, the C standard gives compilers a lot
of freedom to represent integers and to perform integer arithmetic.
In particular, the sizes of integer types are implementation defined.
For example, int does not necessarily have to be 32 bits and be
able to exactly hold values between −231 and 231 − 1. Only some
minimum limits are described [11, 5.2.4.2.1]. In order to capture
different architectures, our memory model is parametrized by an
abstract interface of integer implementations.

Overflow of signed integers yields undefined behavior, whereas
overflow has defined behavior (and wraps around modulo) for un-
signed integers. For example, consider the following function:

int f(int x) { return x < x + 1; }

A compiler is thus allowed to optimize the function f to always
return 1. Indeed, when compiled with gcc -O2 (version 4.6.3), the
following program prints INT_MAX < INT_MAX+1 = 1.

printf("INT_MAX < INT_MAX+1 = %d\n", f(INT_MAX));

The integer promotions [11, 6.3.1.1p2] and usual arithmetic
conversions [11, 6.3.1.8p1] make the situations in which signed in-
teger overflow occurs more subtle. For example, the following pro-
gram has defined behavior (provided that SHRT_MAX < INT_MAX)
because the arguments of < are promoted to int type.

printf("SHRT_MAX < SHRT_MAX+1 = %d\n",
SHRT_MAX < SHRT_MAX + 1);

2.8 End-of-array pointers
The way the C standard deals with pointer equality is subtle. Con-
sider the following excerpt [11, 6.5.9p6]:

Two pointers compare equal if and only if [...] or one is
a pointer to one past the end of one array object and the
other is a pointer to the start of a different array object that
happens to immediately follow the first array object in the
address space.

End-of-array pointers are peculiar because they cannot be deref-
erenced. Nonetheless, their use is common programming practice
when looping through arrays.

void inc_array(int *p, int n) {
int *end = p + n;
while (p < end) (*p++)++;

}

End-of-array pointers can also be used in a way that is not stable
under compilation. In the example below, the printf is executed
only if x and y are allocated adjacently in memory (typically the
stack).

int x, y;
if (&x + 1 == &y)
printf("x and y are allocated adjacently\n");

Inspired by the CompCert memory model of Leroy et al. [21],
we represent pointer values symbolically. The use of symbolic

pointer representations restricts the situations in which pointer
arithmetic and pointer comparisons have defined behavior. This
way, we assign undefined behavior to questionable uses of end-
of-array pointers while assigning the correct defined behavior to
pointer comparisons as in the first example above.

3. Operational semantics of CH2O core C
In this section we describe the memory model and the operational
semantics of our fragment of C11, and show how these address the
challenges of Section 2. Since the memory model and operational
semantics are an extension of previous work [13–15, 18], we do not
describe these in detail. We refer to Figure 2 for the syntax and to
the Coq formalization for other details.

3.1 Notations
We let option B denote the option type over B, whose elements
are inductively defined as either ⊥ or x for some x ∈ B. Elements
of the option type are denoted as x? ∈ option B. A partial function
f : A→ option B is called finite if its domain is finite. The set of
these functions is denoted as A→fin B.

We let list B denote the list type over B, whose elements
are inductively defined as either ε or x~x for some x ∈ B and
~x ∈ list B. We let |~x| ∈ N denote the length ~x.

3.2 Memory model
Significant existing formal versions of a semantics of C, in partic-
ular those by Leroy et al. [21] and Ellison and Rosu [6], model the
memory as a finite partial function from object identifiers to ob-
jects, where each object consists of a single array of bytes. Every
block scope, global and static variable, and invocation of malloc
is associated a unique object identifier with its own object in mem-
ory. This approach separates unrelated objects by construction, and
is therefore more suitable for reasoning about memory transforma-
tions than the more intuitive approach of modeling the memory as
an array of bytes (which is closer to an actual machine).

However, since no information about dynamic types is stored
using this approach, not all undefined behaviors related to the alias-
ing restrictions (see Section 2.4) and interactions between high- and
low-level memory accesses (see Section 2.6) can be described ac-
curately. To remedy these shortcomings, we model the memory as
a finite partial function from object identifiers to well-typed trees
whose structure corresponds to the structure of data types in C. The
leafs of these trees consist of arrays of (symbolic) bits that represent
base values (integers and pointers).

The key concepts of our memory model are the following.

• Pointers contain paths following the structure of types. These
paths, called references, have annotations ◦ and • to restrict
the situations in which type-punning has defined behavior (see
Section 2.5 for the description of type-punning).

The annotation • means that type-punning (accessing an-
other variant of the union than the current one) is allowed.

The annotation ◦ means that type-punning is forbidden.

Whenever a pointer is stored in memory, its annotations are set
to ◦. These annotations give a formal treatment of the strict-
aliasing restrictions of C11. Pointers are annotated with the type
to which they are cast.

• Bits are represented symbolically because each object (includ-
ing those containing pointers and indeterminate memory) can
be interpreted as an unsigned char array called the object rep-
resentation (see Section 2.6). A bit is either a concrete bit 0 or
1, the ith bit (ptr p)i of a pointer p, or the indeterminate bit E.
Integers are represented using sequences of concrete bits, and
pointers as sequences of abstract pointer bits.



Operators
}c ∈ compop ::= == | <= | <
}a ∈ arithop ::= + | - | * | / | %
}b ∈ bitop ::= & | | | ^
}s ∈ shiftop ::= << | >>
} ∈ binop ::= }c | }b | }a | }s
}u ∈ unop ::= - | ~ | !
α ∈ assign ::= := | } := | :=}

Types
k ∈ K := Set of integer ranks

t ∈ tag := Set of struct/union names

si ∈ signedness ::= signed | unsigned

τi ∈ inttype ::= si k

τb ∈ basetype ::= τi | τ∗ | void

τ, σ ∈ type ::= τb | τ [n] | struct t | union t

Γ ∈ env := tag→fin list type

Separation algebras and permissions
L(A) := {◦, •} ×A (Lockable SA)

C(A) := Q×A (Counting SA)

T xT (A) := A× T with x ∈ T (Tagged SA)

p ∈ perm := L(C(Q))

Memory model
o ∈ index := Set of memory indexes

r ∈ refseg ::=
τ [n]
↪−−→ i | struct t

↪−−−→ i | union t
↪−−−→q i with q ∈ {◦, •}

~r ∈ ref := list refseg

a ∈ addr ::= (o : τ, ~r, i)σ>σ′

p ∈ ptr ::= NULL τ | a
b ∈ bit ::= 0 | 1 | (ptr p)i | E

b ∈ pbit := T E
bit(perm)

vb ∈ baseval ::= indet τb | intτi z | ptr p | byte~b with z ∈ Z
v ∈ val ::= vb | arrayτ ~v | structt ~v

| uniont (i, v) | uniont ~v

w ∈ mtree ::= baseτb
~b | arrayτ ~w | structt

#   »

w~b

| uniont (i, w, ~b) | uniont ~b

m ∈ mem := index→fin (mtree× bool + type)

Ω ∈ lockset := index→fin list bool

CH2O core C

f ∈ funname := Set of function names

l ∈ labelname := Set of label names

e ∈ expr ::= xτi | [v]Ω | [a]Ω | ∗e | &e | e .l r | e .r r
| [r := e1]e2 | e1 α e2 | f(~e) | abort τ

| load e | allocτ e | free e | }u e | e1 } e2

| e1 ? e2 : e3 | (e1, e2) | (τ) e

s ∈ stmt ::= e | skip | goto l | throw n | return e | l :

| localτ s | catch s | s1 ; s2

| loop s | if (e) s1 else s2

δ ∈ funenv := funname→fin stmt

CH2O core C states

Es ∈ ectxs ::= ∗2 | &2 | 2 .l r | 2 .r r | [r := 2]e2

| [r := e1]2 | 2 α e2 | e1 α 2

| f(~e1,2, ~e2) | load 2 | allocτ 2 | free 2

| }u 2 | 2} e2 | e1 } 2

| 2 ? e2 : e3 | (2, e2) | (τ) 2

E ∈ ectx := list ectxs

Ss ∈ sctxs ::= catch 2 | 2 ; s2 | s1 ; 2 | loop 2

| if (e) 2 else s2 | if (e) s1 else 2

Se ∈ sctxe ::= 2 | return 2 | if (2) s1 else s2

Ps ∈ ctxs ::= Ss | localo:τ 2 | (Se, e)

| resume E | params f # »oτ

P ∈ ctx := list ctxs

d ∈ direction ::= ↘ | ↗ | y l | ↑n | ↑↑ v
φU ∈ undef ::= E E〈e〉 | ESe〈[v]Ω〉
φ ∈ focus ::= (d, s) | e | call f ~v | return f v | undef φU

S ∈ state ::= S(P, φ, m)

Figure 2. Syntax of CH2O core C. In these definitions we let i, n ∈ N.

By representing bits symbolically, we ensure that additional in-
formation that is stored to describe certain undefined behaviors
is preserved while performing byte-wise operations on object
representations.

• Memory trees are abstract trees whose structure corresponds to
the shape of data types. These are used to represent each object
in memory. For example, the memory tree corresponding to
struct { short x, *r; } s = { 33; &s.x } might be:

1000010000000000 EEEEEEEEEEEEEEEE ································

The leafs of memory trees contain symbolic bits: the integer 33
is represented by its binary representation 1000010000000000,

the padding is represented by symbolic indeterminate bits E, and
the pointer p by a sequence (ptr p)0 . . . (ptr p)31. These bits
are annotated with permissions. Permissions are built modu-
larly using a telescope of separation algebras [15].
The memory is a forest of memory trees. Compared to modeling
each object in memory as an array of bits, memory trees store
the variant of each union, and are explicit about padding bits.

• Abstract values are similar to memory trees, but have base val-
ues (integers and pointers) on their leafs. The abstract value of
struct { short x, *r; } s = { 33; &s.x } might be:

33 •



Abstract values are used in the external interface of the memory
model (which consists of functions to perform stores and loads)
and hide internal details of the memory (permissions, padding,
and object representations).

The external interface of the CH2O memory model consists of
operations with the following types:

( )〈 〉Γ : mem→ addr→ option val (1)
forceΓ : addr→ mem→ mem (2)

( )[ := ]Γ : mem→ addr→ val→ mem (3)
writableΓ : addr→ mem→ Prop (4)

lockΓ : addr→ mem→ mem (5)
unlock : lockset→ mem→ mem (6)
allocΓ : index→ type→ bool→ mem→ mem (7)

freeable : addr→ mem→ Prop (8)
free : index→ mem→ mem (9)

The operation m〈a〉Γ yields the value stored at address a in the
memorym. This operation yields⊥ in case the permissions are not
sufficient for a read access, effective types are violated, or in case
a is an end-of-array address. Reading from (the abstract) memory
is not a pure operation, it may affect the effective types [11, 6.5p6-
7]. That means, whenever a union is accessed using an address to
a different variant (provided the annotations ◦ and • permit it), the
variant of the union should be changed in memory. This impurity
is factored out by the operation forceΓ a m.

The operation m[a := v]Γ stores the value v at address a in m.
A memory store is only permitted in case permissions are sufficient,
effective types are not violated, and the address is not end-of-array.
These side-conditions are described by writableΓ a m.

After a successful store, the operation lockΓ a m is used to lock
the object at address a in m. The lock operation temporarily re-
duces the permissions of a to prohibit all accesses to a. Locking
yields a formal treatment of the sequence point restriction (which
states that modifying an object more than once between two se-
quence points is undefined behavior, see Section 2.1). At a subse-
quent sequence point (for example, at the end ; of a full expression,
or after the first operand of the conditional ? : operator has been
evaluated), the operation unlock Ω m is used to unlock previously
locked objects Ω in memory m. Unlocking has the intended effect
of making subsequent accesses possible again.

The operation allocΓ o τ β m allocates a new object of type τ
in the memory m. The new object has object identifier o /∈ dom m
which is non-deterministically chosen by the operation semantics
(see Section 3.3). The boolean β expresses whether the new object
is allocated by malloc (the expression allocτ e in our language).

Conversely, the operation free o m deallocates an object with
object identifier o in the memory m. For the case of malloced
memory, the side-condition freeable a m ensures that the permis-
sions are sufficient, and that a indeed points to a whole malloced
object with object identifier index a.

As part of the Coq development, we have proven many proper-
ties about the interaction of memory operations. For example that
stores to non-overlapping addresses commute.

3.3 Expression semantics
We define the semantics of expressions and statements by a small
step operational semantics. That means, computation is defined as
the reflexive transitive closure of a reduction relation. For expres-
sions, we first define head reduction _h, and use evaluation con-
texts (as introduced by Felleisen et al. [7]) to select a redex in a
whole expression. Given a stack ρ ∈ list index, the rules for head
reduction are as follows:

1. (xτi ,m)_h ([topτ o]∅,m) if ρ(i) = o

2. (∗[ptr a]Ω,m)_h ([a]Ω,m) if a is not a dangling address

3. (&[a]Ω,m)_h ([ptr a]Ω,m)

4. ([a]Ω .l r,m)_h ([a′]Ω,m)
where a′ is obtained by appending r to a

5. ([v]Ω .r r,m)_h ([v′]Ω,m)
where v′ is the sub-value at location r in v

6. ([r := [v1]Ω1 ][v2]Ω2 ,m)_h ([v′]Ω1∪Ω2 ,m)
where v′ is obtained by inserting v1 at location r in v2

7. ([a]Ω1 :=[v]Ω2 ,m)_h ([v]{a}∪Ω1∪Ω2
, lockΓ a (m[a :=v]Γ))

provided that writableΓ a m

8. (load [a]Ω,m)_h ([v]Ω, forceΓ a m) if m〈a〉Γ = v

9. (allocτ [intτi n]Ω,m)_h ([ptr a]Ω, allocΓ o (τ [n]) true m)
for any o satisfying o /∈ dom m, where a is the 0-th element
of topτ [n] o, and provided that n 6= 0, and sizeofΓ τ · n is
representable by an integer of type signed ptr rank

10. (free [ptr a]Ω,m)_h ([void]Ω, free (index a) m)
provided that freeable a m

11. (}u[v]Ω,m)_h ([}u v]Ω,m)
provided that Γ;m ` (}u v) defined

12. ([v1]Ω1 } [v2]Ω2 ,m)_h ([v1} v2]Ω1∪Ω2 ,m)
provided that Γ;m ` (v1} v2) defined

13. (([v]Ω, e),m)_h (e, unlock Ω m)

14. ([v]Ω ? e2 : e3,m)_h (e2, unlock Ω m) if istruem v

15. ([v]Ω ? e2 : e3,m)_h (e3, unlock Ω m) if isfalse v

16. ((τ) [v]Ω,m)_h ([(τ)v]Ω,m)
provided that Γ;m ` (τ)v defined

(Rule 7 just includes the case of a normal assignment :=, the
rules for assignment operators } := and :=} are similar).

The leafs of expressions, values [v]Ω and addresses [a]Ω, are an-
notated with a finite set Ω ∈ lockset of locked addresses. This set
is initially empty, but whenever a write is performed, the written
object is locked in memory and its address is added to Ω (see rule 7
for assignment above). Locking a enforces the sequence point re-
striction because the permission model [14, 15] enforces that con-
secutive reads and writes to a will fail. Whenever a sequence point
occurs, for example in rule 14 for the conditional expression, the
locked objects in Ω are unlocked. This makes subsequent accesses
to these objects possible again.

The C standard distinguishes l-values and r-values [11, 6.3.2.1].
This distinction originates from the assignment e1 = e2 where the
left-hand side does not denote an actual value, but an address. L-
values (that do not have array type) are implicitly converted to r-
values by l-value conversion [11, 6.3.2.1p2].

In CH2O core C we make this distinction, as well as the conver-
sion between the two, explicit. L-values reduce to addresses [a]Ω
while r-values reduce to abstract values [v]Ω. The expressions ∗e,
&e and load e are used to map between the two. CH2O abstract C
has implicit l-value conversion which is being disambiguated dur-
ing the translation to core C (see Section 6).

CH2O core C uses De Bruijn indices for local variables, which
means that a local variable xτi refers to the i-th item on the stack
ρ ∈ list index. Accessing the value of a local variable has an extra
level of indirection: the stack ρ contains a reference to the value in
memory instead of the value of the variable itself. This way, point-
ers to both local and allocated storage are treated uniformly. Evalu-
ation of a variable xτi consists of looking up its object identifier o in
the stack ρ, and returning the address topτ o := (o : τ, ε, 0)τ>τ to



the top of the memory tree at position o in memory (rule 1). Using
a load, the actual value can be obtained (rule 8).

Due to explicit l-value conversion, CH2O core C has two oper-
ators for field indexing of structs and unions: e .l r for l-values,
and e .r r for r-values. The semantics of these operators are differ-
ent: the first refines an address to refer to the corresponding field
(rule 4), whereas the latter refines the actual value (rule 5).

In the reduction of whole programs (see Section 3.4), we allow
E [ e1 ] to reduce to E [ e2 ] provided that (e1,m1) _h (e2,m2).
To make expression evaluation non-deterministic (see Section 2.1),
we include both the contexts 2 + e2 and e1 + 2. However, to
enforce that the first operand of the conditional e1 ? e2 : e3 is
executed entirely before the others, it is essential that we omit the
contexts e1 ? 2 : e3 and e1 ? e2 : 2. This approach is also used
by Norrish [26], Leroy [20] and Ellison and Rosu [6]. Also, like
Ellison and Rosu [6], we implicitly use non-determinism to capture
undefined behavior due to sequence point violations. For example,
in x + (x = 10) only one execution order (performing the read
after the assignment) leads to a sequence point violation.

The side-condition Γ;m ` (v1} v2) defined for binary oper-
ators depends on the memory m (rule 12). This is needed because
operations on pointers (for example comparing a pointer, see Sec-
tion 2.3) only have defined behavior in case the pointers in question
have not been deallocated.

The abort expression abort τ does not have a corresponding
rule for head reduction and therefore has undefined behavior as
explained in Section 3.4. The translation from CH2O abstract C
inserts abort τ expressions in branches of the program that should
not be reached to describe all undefined behaviors.

Contrary to our previous work [14], we take the integer pro-
motions [11, 6.3.1.1p2] and the usual arithmetic conversions [11,
6.3.1.8p1] for operators into account (see Section 2.7). Naively, it
seems best to make these promotions and conversions explicit in
core C and let the translation of CH2O abstract C into core C insert
appropriate casts. However, for assignment operators it is unclear
how this could be handled by translation. For example, consider:

int x = INT_MAX;
x += INT_MAX + 2U;

This program has defined behavior, and x has the value 0 after
its execution. Since INT_MAX + 2U has type unsigned int, the
addition x + (INT_MAX + 2U) performed by the assignment op-
erator += promotes both arguments to unsigned int, and the re-
sult will thus wrap around modulo instead of exhibiting undefined
behavior. However, if we would have homogeneous assignment op-
erators, then we would have to insert the following int cast:

int x = INT_MAX;
x += (int)(INT_MAX + 2U);

In this case, (int)(INT_MAX + 2U) results in signed integer
overflow which causes undefined behavior.

3.4 Whole programs semantics
The small step reduction _ of program states S(P, φ, m) uses a
zipper-like data structure P , called a program context [18], which
describes the location of the part of the program φ, called the focus,
that is being executed. Program contexts extend the traditional zip-
per [9] by annotating each block scope variable with its associated
object identifier, and furthermore contain the full call stack of the
program. We have five kinds of focuses φ:

• The focus (d, s) describes execution of a statement s in di-
rection d. The directions correspond to the different forms of
(non-local) control: down ↘, up ↗, goto y, throw ↑, or top ↑↑.

When a goto l statement is executed, the direction is changed,
and a small step traversal through the zipper is performed until
the label l has been reached where normal control flow is
resumed. This is described by the following rules:

S(P, (↘, goto l), m) _ S(P, (y l, goto l), m)

S(P, (y l, Ss[ s ]), m) _ S(Ss P, (y l, s), m)

if l ∈ labels s

S(Ss P, (y l, s), m) _ S(P, (y l, Ss[ s ]), m)

if l /∈ labels s

S(P, (y l, l :), m) _ S(P, (↗, l :), m)

The point of this traversal is not so much to search for the label,
but much more to incrementally calculate the required alloca-
tions and deallocations. Instead, the point of this traversal is
to accurately describe the interaction between the goto/break/-
continue/return statement and block scope variables (see Sec-
tion 2.2 for its subtleties).
When entering a scope with a local variable localτ s (this con-
struct is nameless because we use De Bruijn indices for vari-
ables), the singular context localo:τ 2 is appended to the head
of the program context. The rule for goto is:

S(P, (y l, localτ s), m)

_ S((localτ :o 2)P, (y l, s), allocΓ o τ false m)

Here, we should have o /∈ dom m and l ∈ labels s. After
execution of this rule, the program context associates the block
scope variable with its object identifier o. The corresponding
stack getstackP of a program context P (which is used by the
expression semantics) is obtained by an iteration over P .

• The focus undef φU describes undefined behavior. The unde-
fined state φU indicates how the undefined behavior is caused.

• The focus e describes execution of an expression e. For exam-
ple, provided (e1,m1)_h (e2,m2), we have:

S(P, E [ e1 ], m1) _ S(P, E [ e2 ], m2)

The non-deterministic decomposition in an evaluation context
E and subexpression e1 models unspecified execution order of
expressions.
In case the expression e1 is unsafe, i.e. it is a redex that cannot
be _h-reduced (due to undefined behavior), we have:

S(P, E [ e1 ], m) _ S(P, undef (E E〈e1〉), m)

For function calls we have the following rule:

S(P, E [ f([v0]Ω0 , . . . , [vn]Ωn) ], m)

_ S((resume E)P, call f ~v, unlock (
⋃

~Ω) m)

This rule is not part of the expression head reduction _h be-
cause it changes the focus to call f ~v.

• The focus call f ~v describes calling a function f with arguments
v. The rule for calling a function is:

S(P, call f ~v, m1) _ S((params f # »oτ)P, (↘, s), m2)

Here, m2 is obtained by allocating the function arguments v at
object identifiers ~o with types ~τ . The reduction relation _ is
parametrized by an environment δ ∈ funname →fin stmt that
maps function names to function bodies. For the above rule, we
thus should have δ f = s. The program context params f # »oτ
delimits the stack of the callee, and behaves like a sequence
localo0:τ0 2, . . . , localo|~o|:τ|~o| 2.



• The focus return f v describes returning from a function f with
return value v. Some of the corresponding rules are:

S((paramsf # »oτ)P, (↑↑ v, s),m) _ S(P, return v , free ~o m)

S((resume E)P, return v , m) _ S(P, E [ [v]∅ ], m)

Distinguishing different kinds of states for different forms of
program execution is inspired by Leroy’s CompCert C [19]. How-
ever, our treatment of statement execution is entirely different.

The C standard describes while, for, and do-while looping state-
ments [11, 6.8.5]. Adding all of these looping statements as primi-
tives to CH2O core C would cause duplication (since the semantics
of these loops are similar). To that end, we only have a statement
loop s for an infinite loop, which combined with the throw n state-
ment that jumps to the nth surrounding catch s block, can encode
all C loops (see Section 6 for the translation).

4. Type system of CH2O core C
Contrary to strongly typed programming languages like Java, ML
or Safe Haskell, the C programming language does not enjoy type
safety. That means, well-typedness according to the C type system
does not ensure the absence of crashes. The reason for this is that
even well-typed programs may exhibit executions with undefined
behaviors such as dereferences of the NULL pointer, or aliasing or
sequence point violations.

Nonetheless, the C type system still ensures the absence of basic
mistakes like using an integer where a pointer is expected (without
explicit cast) or using an undeclared variable. Clearly, the following
program is not valid and should be ruled out by the type system:

int f(int x) {
if(0) { return &x; } else { return 10; }

}

We will present a type system for CH2O core C and prove that
it enjoys type preservation and a weak form of type safety. This
weak form of type safety guarantees that a well-typed program can
keep on reducing, while possibly eventually reaching a final state or
an undef φU state. From a programmer’s point of view, weak type
safety gives few guarantees because a program may still crash, but
from a formalist point of view, it ensures that our semantics behaves
well and that we have not forgotten any reductions.

For each syntax category we introduce a corresponding typing
judgment. For example, for types we have the judgment Γ ` τ that
ensures that τ does not contain any cyclic structs and unions. The
typing judgment for expressions is Γ,Γf ,Γm, ~τ ` e : τlr, where:

• The map Γ ∈ tag →fin list type associates a list of field types
to each struct/union name.

• The map Γf ∈ funname →fin (list type × type) associates a
list of argument types and a return type to each function name.

• The map Γm ∈ index→fin (type× bool) associates a type and
boolean to each object identifier. The boolean indicates whether
the object has been deallocated or is still alive. For technical
reasons, we keep track of the types of deallocated objects.

• The list ~τ ∈ list type gives the types of the De Bruijn variables.

The type τl, τr ∈ type + type indicates whether the expression
yields an l-value (address) or r-value (abstract value). We list some
typing rules (with typing environments omitted from now on):

~τ(i) = τ

xτi : τl

e : τl

&e : (τ∗)r

Γf (f) = (~τ, σ) ~e : ~τr

f(~e) : σr

The typing judgment for expression contexts E : τlr � σlr

states that given an expression e of type τlr, the expression E [ e ]
obtained by substituting e for the hole 2 in E has type σlr.

The typing judgment for statements is of the shape s : (β, τ ?).
Here, τ ? ∈ option type denotes the type of the return statements in
s, and is ⊥ if s does not contain any returns, and β ∈ bool denotes
whether s is statically known to never reach the end because it
always executes a return statement. We list some typing rules:

skip : (false, ⊥)

e : τr

return e : (true, τ) goto l : (true, ⊥)

s1 : (β1, τ1?) s2 : (β2, τ2?) τ ?
1 ∪ τ ?

2 = σ?

s1 ; s2 : (β2, σ?)

Here,∪ : option type→ option type→ option (option type)
is defined as τ ∪ τ := τ , ⊥ ∪ τlr := τlr, and τlr ∪ ⊥ := τlr.

The judgment δ : Γf for function environments ensures that
each function body in δ ∈ funname →fin stmt is well-typed with
respect to its prototype in Γf ∈ funname →fin (list type × type).
Finally, the judgment S : g ensures that all components of the state
S are typed with respect to a main function g ∈ funname (in CH2O
core C, main can be any function g of any type, so we need to
ensure that the argument and return types match).

Lemma 4.1. All typing judgments satisfy uniqueness of typing and
have a corresponding type inference function.

Proof. Since all type judgments are defined in a syntax directed
fashion, this follows trivially.

Fact 4.2. All typing judgments are closed under weakening.

Lemma 4.3 (Type preservation). If a state S1 with S1 : g and
S1 _ S2, then for resulting state S2 we have S2 : g.

Proof. By case analysis on the derivation of S1 _ S2, using the
fact that all memory operations preserve typing.

Lemma 4.4 (Weak progress). If a state is typed S1 : g, then either:

1. It can reduce further, that is S1 _ S2 for some S2.
2. It is an undefined state, that is S1 = S(P, undef φU , m) for

some P, φU and m.
3. It is a final state, that is S1 = S(ε, return g v, m) for some v

and m.
4. The labels are incorrect, that is S1 = S(P, (y l, s), m) for

some P, l, s and m with l /∈ labels s ∪ labels P .
5. The throws are incorrect, that is S1 = S(P, (↑n, s), m) for

some P, n, s and m with n 6< num catches P .

Proof. By case analysis on the structure of S1.

For technical reasons, we do not let the judgment S1 : g ensure
correctness of gotos and throws. To that end, the progress theorem
includes two cases to account for stuck non-local control. However,
the judgment δ : Γf for function environments ensures that all gotos
and throws are correct. To that end, whenever we start from an
initial state, these cases of stuck non-local control cannot happen.

Theorem 4.5 (Weak type safety). Given an initial state S1 for
main g with arguments ~v, then if S1 _∗ S2 we have either:

1. S2 _ S3 for some S3.
2. S2 = S(P, undef φU , m) for some P, φU and m.
3. S2 = S(ε, return g v, m) for some v and m.

Proof. Using Lemmas 4.4 and 4.3, and the fact that _ preserves
validity of gotos and throws.



5. Executable semantics of CH2O core C
The semantics of CH2O core C (Section 3) is defined as an induc-
tively defined reduction relation _ : state→ state→ Prop.
Since this relation is not executable, we also define a corresponding
function exec : state → Pfin(state) that computes the finite set of
consecutive states.

In previous work [13], we already defined basic operations, such
as accessing the memory or performing a cast, as Coq functions that
are effectively executable. Hence, creating an executable version of
our semantics seems straightforward. However, non-determinism
makes the situation more complicated.

• Execution of expressions is non-deterministic. For example, in
(*p = 1) + (*q = 2), the assignments may be executed in
any order. This occurs in the following rule:

S(P, E [ e1 ], m1) _ S(P, E [ e2 ], m2)

Here, an expression is decomposed non-deterministically in an
evaluation context E and a subexpression e1.

• The choice of picking an object identifier for newly allocated
memory is non-deterministic. For example, this occurs in the
rule for entering a block scope with a local variable:

S(P, (↘, localτ s), m)

_ S((localo:τ 2)P, (↘, s), allocΓ o τ false m)

Here, any unused object identifier o /∈ dom m may be chosen.

The first source of non-determinism is finitary because expres-
sions can only be decomposed in a finite number of ways. However,
there is an infinite choice of picking fresh object identifiers.

In order to deal with the first source of non-determinism, we
define a function redexes : expr → Pfin(ectx× expr) that decom-
poses an expression into a finite set of all possible combinations of
evaluation contexts and redexes.

Lemma 5.1 (Soundness and completeness of redex splitting). We
have (E , e) ∈ redexes e′ iff e′ = E [ e ] and e is a redex.

The second source of non-determinism is more difficult to deal
with. Since there is an infinite choice of fresh object identifiers, we
cannot just try them all. Instead, we will just pick one:

exec (S(P, (↘, localτ s), m)) :=

let o := fresh m in
{S((localτ :o 2)P, (↘, s), allocΓ o τ false m)}

Using a canonical object identifier for newly allocated memory
removes the second source of non-determinism entirely. For the
soundness theorem, this choice does not matter.

Theorem 5.2 (Soundness). If S2 ∈ exec S1, then S1 _ S2.

Proof. By case analysis on S1 using Lemma 5.1.

The converse of the above theorem is not true. Given a reduction
S1 _ S2, we do not necessarily have S2 ∈ exec S1 because the
operational semantics may have used a different object identifier.
For completeness, we show that this choice does not matter.

Definition 5.3. A state S1 is an f -permutation of state S2, notation
S1 ∼f S2, if S2 is obtained by renaming the object identifiers in
S1 with respect to f : index→ option index.

Fact 5.4. We have the following properties:

1. Identity: S ∼f S for f with f x = x for each x ∈ dom S.
2. Composition: If S1 ∼f S2 and S2 ∼f ′ S3, then S1 ∼f ′◦f S3.
3. Symmetry: If S1 ∼f S2, then S2 ∼f−1 S1.

4. Weakening: If S1 ∼f S2 and f ′ ⊇ f , then S1 ∼f ′ S2.

Lemma 5.5. If S1 _ S2 and S′1 ∼f S1, then there exists an
f ′ ⊇ f and S′2 such that:

S′1 S′2

S1 S2

f f ′

Proof. By case analysis on the derivation of S1 _ S2.

Lemma 5.6. If S1 _ S2, then there exists an f and S′2 such that:

S′2

S1 S2

f
exec

Here, S1
exec
_ S′2 denotes S′2 ∈ exec S1.

Proof. By case analysis on the derivation of S1 _ S2. Lemma 5.1
is used for expression steps, and properties of the memory model
for steps that involve allocation of new objects.

Theorem 5.7 (Completeness). If S1 _∗ S2, then there exists an f
and S′2 such that:

S′2

S1 S2

f
exec

∗

∗

Proof. By induction from the right on the derivation of S1 _∗ S2.
In the inductive case, we have S1 _∗ S2 _ S3. By the induction
hypothesis we obtain an f and S′2 with S1

exec
_ ∗ S′2 and S′2 ∼f S2.

Next, we obtain an f1 and S′3 with S′2 _ S′3 and S′3 ∼f1 S3

by Lemma 5.5. Using Lemma 5.6, we obtain an f2 and S′′3 with
S′2

exec
_ S′′3 and S′′3 ∼f2 S′3. Displayed as a diagram:

S′′3

S′2 S′3

S1 S2 S3

f2

f

exec

f1
exec

∗

∗

By composition of permutations, we have S′′3 ∼f1◦f2 S3, which
concludes the proof.

6. CH2O abstract C
CH2O abstract C bridges the gap between the abstract syntax tree
obtained from the parser (Section 7) and CH2O core C. Its syntax
therefore closely resembles the structure of a .c file. In particular, it
uses named variables instead of De Bruijn indices, makes type an-
notations (such as those on variables) implicit, and extends CH2O
core C with various features (such as enums and C-like loops). Its
semantics is specified by translation into core C. In this section we
will highlight some differences between both languages and prove
type soundness of the translation.

Like a .c file, the syntax of CH2O abstract C (see Figure 3)
consists of a sequence of declarations:

• The items (s, struct #  »τ x) and (u, union #  »τ x) declare a struct s
or union u with fields ~x of type ~τ .

• The item (t, typedef τ) declares a typedef t abbreviating τ .

• The item (u, enum
#             »

x := e? : τi) declares an enumeration type
u. This declares constants ~x of integer type τi whose values are
specified by the constant expressions ~e?. The type τi is not fixed
because it may differ for each enum [11, 6.7.2.2p4].



x ∈ string := Set of strings

k ∈ cintrank ::= char | short | int | long | long long | ptr

si ∈ signedness ::= signed | unsigned

τi ∈ cinttype ::= si? k

τ ∈ ctype ::= void | def x | τi | τ∗ | τ [e]

| struct x | union x | enumx | typeof e

e ∈ cexpr ::= x | constτi z | sizeof τ | τi min

| τi max | τi bits | &e | ∗e | e1 α e2

| x(~e) | abort | allocτ e | free e

| }u e | e1 } e2 | e1 && e2 | e1 || e2

| e1 ? e2 : e3 | (e1, e2) | (τ) I | e . x
r ∈ crefseg ::= [e] | .x

I ∈ cinit ::= e | { #            »#»r := I}
sto ∈ cstorage ::= static | extern | auto

s ∈ cstmt ::= e | skip | goto x | break | continue

| return e? | {s} | #  »
sto τ x := I? ; s

| typedef x := τ ; s | s1 ; s2 | x : s

| while(e) s | for(e1 ; e2 ; e3) s

| do s while(e) | if (e) s1 else s2

d ∈ decl ::= struct #  »τ x | union #  »τ x | typedef τ

| enum
#             »

x := e? : τi | global I? :
#  »
sto τ

| fun (
#     »

τ x?) s? :
#  »
sto τ

Θ ∈ decls := list (string × decl)

Figure 3. Syntax of CH2O abstract C. The operators are shared with core C, see Figure 2.

• The item (x, global I? :
#  »
sto τ) declares a global variable x

with initializer I?.
• The item (f, fun (

#     »

τ x?) s? :
#  »
sto τ) declares a function f with

return type τ and arguments ~x of type ~τ . If the function body s?

is omitted, the function can already be used in consecutive (mu-
tually recursive) function declarations but has to be redeclared
with a corresponding function body later.

The translator from CH2O abstract C into core C turns a sequence
of declarations Θ into:

• An environment Γ ∈ env of struct/union declarations.
• An environment Γf ∈ funenv of function types.
• An initial memory m ∈ mem that contains storage for global

and static variables declared in Θ.
• A function environment δ ∈ funname →fin stmt that contains

statements for all function declarations in Θ.

An important part of the translation into CH2O core is evaluation
of constant expressions [11, 6.6]. For example, an array type τ [e]
may use an arbitrary expression e to specify the length. The type
int[sizeof(x) + 10] is thus valid C.

To evaluate such expressions during translation, we have de-
fined an evaluator [[ ]]Γ,ρ,m : expr → option (addr + val) for
constant expressions. It returns an address or value depending on
whether the expression is an l- or r-value. An improvement on work
by others is that we have proved soundness and completeness of
this evaluator with respect to the operational semantics.

Lemma 6.1. Constant expression evaluation is sound and com-
plete. That is, given a constant expression e, then:

[[ e ]]Γ,getstackP,m = v iff S(P, e, m) _∗ S(P, v, m).

The translator transforms traditional C looping constructs into
primitive constructs. For example, while(e) s is translated into:

catch (loop (if (e′) skip else throw 0 ; catch s′))

Here, e′ and s′ are the translations of e and s, respectively. The
break and continue statements in s are translated into throw 1 and
throw 0, that jump to the outer, respectively the inner catch.

As noted in Section 3, C makes a distinction between l-values
(that denote addresses) and r-values (that denote abstract values).
Since this distinction is implicit in CH2O abstract C, but explicit in
core C, we have to disambiguate it. In particular, we have to insert

casts to perform l-value conversion [11, 6.3.2.1p2]. For example,
the expression ∗p := y is translated into:

∗(load xτ∗i ) := load xτj

Here, i and j are the De Bruijn indices corresponding to p and y.
Also, we disambiguate field indexing e . i into e′ .l r and e′ .r r
depending on whether e is an l- or r-value.

In abstract C, the integer literal 0 is overloaded to denote both
the NULL pointer and the integer constant 0 [11, 6.3.2.3p3]. We
have to disambiguate this form of overloading in the translation to
core C, because the typing rules of various expressions have special
cases for NULL pointers [11, 6.5].

A subtle part is the translation of compound literals. Consider:

struct S { int x, y, z; } s = { .y=10, .x=11 };

Here, fields can be initialized in any order, and fields that are
not initialized receive the value 0. We translate such initializers into
sequence of [ := ] inserts into val 0 (struct S), the struct value
initialized with zeros.

Finally, C provides many macros like INT_MIN to obtain infor-
mation about the sizes of integer types [11, 5.2.4.2.1]. CH2O ab-
stract C has primitive constructs for these macros, such as τi min.
Since our translator is parametrized by an environment that de-
scribes the integer sizes of the architecture, these constructs will
be translated into a value that depends on the architecture.

Theorem 6.2 (Type soundness). If the translator succeeds with
environments Γ, Γf , δ, and initial memory m, they are well-typed.

7. Testing the semantics
In order to compute the behaviors of a C program, we have turned
the single step function exec : state → Pfin(state) into two
functions to compute a stream of reachable states.

• The function all : Pfin(state) → (Pfin(state)× Pfin(state))ω

computes a stream of all reachable states. The nth element
(S, N) of the stream (all I) contains the intermediate states
S ⊆ state and normal forms N ⊆ state after n steps starting
in initial states I ⊆ state.

• The function some : (N → N) → state → (state + state)ω

computes a specific execution stream. Given a selection func-
tion f : N→ N that specifies which redexes should be chosen,
the stream (some f I) represents a trace starting in I ∈ state.



In the disjoint union (state + state), the left variant is an inter-
mediate state, while the right variant is a normal form. Once in
normal form, the stream stays constant.

We have extracted the above Coq functions to OCaml and com-
bined this code with the CIL parser by Necula et al. [25], using a
small layer of OCaml glue3. That way we can test our semantics
on actual source files. Since the syntax of CH2O abstract C is close
to the structure of .c files, the translation from CIL abstract syntax
trees to CH2O abstract syntax is straightforward.

The extracted Coq code, combined with the OCaml layer which
loops through the computed streams, yields an interpreter called
ch2o. This interpreter has three modes: first execution order, ran-
dom execution order (-r), and all possible execution orders (-t).
For example, given the program:

int f(int *p, int z) { return *p = z; }
int main() {
int x, y = f(&x, 3) + f(&x, 4) + f(&x, 3);
return x;

}

The output of this program using ch2o -t is:

......+;!|???***%%%%%%%****??|||?????|||||!;:::;;
!!;::++++--,,,,,,,,,,,,,,
"" 3
"" 4

In the output, the density of the symbols indicate the size of
the reachable state sets, e.g. “,” means 2 states, and “%” means
between 1025 and 4096 states. The strings ""3 and ""4 indicate
the possible behaviors of the program: it either has the empty output
and returns 3, or it has the empty output and returns 4. Although x
is modified multiple times in the same expression, this program has
defined behavior because function calls have a sequence point.

We filter out duplicate states for efficiency (using hash maps
implemented and verified in Coq, see Section 8). Therefore, the
number of reachable states reduces near the end, and the behavior
""3 is not included twice.

To test the semantics against actual C programs, we need the
printf function that prints a string to the standard output and re-
turns the length of the printed string [11, 7.21.6.3]. Since strings
and I/O are not yet part of the CH2O semantics, we have temporar-
ily implemented these using a trick in the OCaml layer. The OCaml
layer translates each printf call into a call to a function that com-
putes the length of the resulting string without actual side-effects.
When a printf calls occurs during execution, the OCaml loop
handles the actual print. We made a small modification to the in-
terpreter, as we store the output state with the CH2O states, but this
has not affected the CH2O core semantics.

We have tested our semantics using a small test suite for both
defined and undefined behavior. This test suite is partially based on
subtle examples from the C standard [11], C defect reports [10], and
tests by Ellison and Rosu [6]. Since we formally proved many prop-
erties of our language [13–15, 18], there were not many bugs. Bugs
that we discovered were not fundamental, and related to forgotten
implicit casts, or too lenient restrictions on integer operations.

The CH2O operational semantics is defined with clarity and its
use for interactive theorem proving in mind, rather than taking com-
putational efficiency seriously. Although our executable semantics
is a naive implementation of it that just performs single steps, it is
still efficient enough explore the state space of small programs.

3 In fact, we use a fork of CIL by CompCert that does not perform any
simplifications of the C abstract syntax trees.

The CH2O interpreter is significantly faster than the semantics
of Ellison and Rosu. For example, calculating all behaviors of the
following seemingly innocent but very non-deterministic program:

int x = 10, *p = &x;
return *p + *p + *p + *p + *p + *p;

takes 8s using our semantics and 16m using the Ellison and Rosu
semantics. This difference is explained by the fact that we avoid
the overhead of a framework like the K-framework by using Coq’s
extraction mechanism and the optimizing OCaml compiler.

Due to the complex nature of the CH2O memory model, our
interpreter is slower than CompCert’s on programs with large ar-
rays or structs (that we represent as lists). Calculating one execution
stream of an obfuscated C code contest submission to compute 590
decimals of π by the second author4, takes 20m using the CH2O in-
terpreter, 1m using the CompCert interpreter, and did not terminate
within reasonable time using the Ellison and Rosu semantics.

8. Implementation and formalization in Coq
All proofs in this paper have been fully formalized using the Coq
proof assistant. We used the extraction mechanism of Coq [22]
to obtain OCaml code corresponding to the translator from CH2O
abstract C and the executable semantics.

The Coq development involves a significant amount of monadic
programming. Multiple components use the option monad for par-
tial functions, the executable semantics uses the set monad for the
set of reachable states, and the translator uses the exception monad
to propagate error messages. Coq’s type class mechanism is used
to overload monadic notations such as the do notation.

Type classes are also used to let the Coq development corre-
spond well to the definitions on paper and to parametrize the whole
development by an abstract interface that describes implementation
defined properties (such as the sizes of integers).

The Coq development makes heavy use of finite sets and finite
maps. These data structures are implemented as radix-2 search trees
in canonical form to obtain both logarithmic time operations and
extensional equality. To make reasoning about finite maps and sets
convenient, we have developed a substantial library of theory and
automation to abstract from implementation details. Radix-2 search
trees are also used to implement hash-maps, which are used to filter
out duplicates in the reachable state set of the interpreter.

Because the semantics described in this paper is very large, it is
quite cumbersome to prove properties about it without automation.
To this end, we have combined interactive proofs with automated
proofs using Ltac.

The proof of completeness (Theorem 5.7) uses in the Coq de-
velopment a more general notion of memory refinements of which
the permutations of Definition 5.3 are an instance. Using this more
general notion we have not just established that the semantics is in-
variant under renaming, but also under other internal properties of
the memory representation that should not be exposed.

The Coq development, which is entirely constructive and axiom
free, consists of the following parts:

Component LOC
Prelude (lists, monads, maps, sets, hash tables, . . . ) 12.218
Memory (pointers, values, memory trees, . . . ) 13.686
Operational semantics (type safety, . . . ) 4.822
Refinements 5.631
Executable semantics (soundness & completeness) 456
Translator from abstract C into core C 1.778
OCaml glue (translator from CIL, printf hack, . . . ) 1.014
Total 39.605

4 A C11 version of http://www.cs.ru.nl/~freek/notes/pi.c.

http://www.cs.ru.nl/~freek/notes/pi.c


9. Conclusion
We have defined an operational and executable semantics for a sig-
nificant fragment of C11, that have been proved sound and com-
plete with respect to each other in Coq. Contrary to previous work,
we have used a typed core language, and specified the semantics of
C programs by translation into this core language. This translation
is implemented as a Coq program that has been proved sound.

Using the extraction mechanism of Coq this yields an interpreter
that can explore the full state-space of a C program. We followed
the C11 standard closely, and as a result our interpreter can detect
subtle undefined behaviors not yet addressed by others.

Since C is a large and subtle language, there are many direc-
tions for future work. First of all, features could be added to the se-
mantics. For example, floats [3], bit-fields, concurrency [28], const
qualifiers, register storage, etc.

Despite the fact that the biggest part of our interpreter has
been implemented in Coq, it still uses some glue that is written in
OCaml. In particular, the translation of string literals and printf
(that is currently just present for debugging purposes) is inaccurate.
To implement these features properly, we have to support functions
on a variable number of arguments, I/O, and the const qualifier in
CH2O core C. Instead of supporting just basic forms of I/O such as
printf, it may better to support external function calls in a general
way. The work of Beringer et al. [1] may be useful for that.

Instead of using the CIL parser, which is written in OCaml, it
would be interesting to use the parser by Jourdan et al. [12] that is
part of CompCert and has been implemented and verified in Coq.
This way, the entire interpreter could be implemented in Coq.

We have tested our semantics on a small test suite. Considering
the bugs that we have found this way were minor and easy to fix, it
seems to indicate that using a proof assistant to prove metatheory
about the language [13–15, 18] has already provided a good way
of debugging the semantics. Nonetheless, it would be useful to test
the semantics with a more extensive test suite, like the GCC torture
tests [8], or using a tool like CSmith [30].

Lastly, our implementation of the executable semantics imple-
ments the operational semantics in a rather naive way, and is using
inefficient data structures to represent the memory (for example, it
uses lists to represent array objects). In order to make the interpreter
more robust, it would be useful to optimize the executable seman-
tics. This could be achieved by using more efficient data structures,
or by contracting more redexes in one step.
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