
The Hypergame Paradox in Coq

Robbert Krebbers

Århus University

Abstract. Let’s play a game called hypergame. You pick any game that
is guaranteed to end after a finite number of moves (chess, Go, four on
a row, tic-tac-toe, etc), and then we play it.
It is easy to see that hypergame ends after a finite number of moves: the
number of moves is just one more than it would take to play the chosen
game. But now that we have established finiteness of hypergame, we may
just choose hypergame while playing hypergame, and keep on doing this.
This shows that hypergame is infinite, which is a contradiction.
I will present a simple Coq formalization of the hypergame paradox. In
contrast to the Girard or Hurkens paradox, my formalization uses Coq’s
inductive types instead of Church encodings. Albeit less general (it no
longer provides a paradox in plain λ∗), this approach gives rise to a much
better understandable formalization.

1 Formalization of Hypergame

We represent finite games as strongly normalizing transition relations (called sn

below) R ⊆ A × A over a set of states A. Games do not have an initial state,
any state may be used to initiate the game. Hypergame is formalized as:

Inductive sn {A} (R : A → A → Prop) (x : A) : Prop :=

| sn_intro : (∀ y : A, R x y → sn R y) → sn R x.

Inductive state :=

| start : state

| game {A} (R : A → A → Prop) (Rsn : ∀ x, sn R x) : A → state.

Inductive step : state → state → Prop :=

| step_start {A} (R : A → A → Prop) Rsn x :

step start (game R Rsn x)

| step_game {A} (R : A → A → Prop) Rsn x y :

R x y → step (game R Rsn x) (game R Rsn y).

Starting in state start, one can choose any game R by transitioning to the
state game R Rsn x, where Rsn is a proof that R is strongly normalizing and x
some state of the chosen game. This can be visualized as follows:

start

chess Go
four on
a row

tic-
tac-toe

. . .

2 Finiteness and Infiniteness of Hypergame

We prove that hypergame is finite by case analysis on the initial step, and then
by induction on the proof of strong normalization of the chosen game.

Lemma help_wf A (R : A → A → Prop) Rsn x : sn step (game R Rsn x).

Proof.

induction (Rsn x) as [x _ IH]; constructor; intros S H; revert H IH.

change (step (game R Rsn x) S → match game R Rsn x with

| start => True

| game R Rsn x => (∀ y, R x y → sn step (game R Rsn y)) → sn step S

end); destruct 1; auto. (* manual inversion using match *)

Qed.

Lemma hypergame_wf S : sn step S.

Proof. constructor; destruct 1; auto using help_wf. Qed.

In order to prove that hypergame is not strongly normalizing, we exhibit the
infinite game: start, hypergame, hypergame, hypergame, . . .

Fixpoint infinite (n : nat) : state :=

match n with

| 0 => start | S n => game step hypergame_wf (infinite n)

end.

Lemma infinite_step n : step (infinite n) (infinite (S n)).

Proof. induction n; simpl; constructor; auto. Qed.

Lemma hypergame_not_wf : ¬ sn step (infinite 0).

Proof.

intros Hwf; cut (∀ S, sn step S → ∀ n, S 6= infinite n).

{ intros help; apply (help _ Hwf 0); auto. } (* strengthen the IH *)

induction 1 as [S _ IH]; intros n ->.

apply (IH _ (infinite_step n) (S n)); auto.

Qed.

Definition paradox : False := hypergame_not_wf (hypergame_wf _).

It is important to note that infinite will not be accepted by ordinary versions
of Coq as it contains the subterm @game state (implicit argument displayed using
@), where the constructor game of the inductive type state is applied to state

itself. This results in a “universe inconsistency”. However, Coq 8.5 has introduced
the (unsafe) -type-in-type flag that disables universe checking.

3 Sources

The sources are available at http://robbertkrebbers.nl/misc/hypergame.v

and compile with Coq 8.5 beta 2 with the -type-in-type flag enabled. The file
is self-contained, and consists of 38 lines of code (including white space).

References

1. William S. Zwicker. Playing Games with Games: The Hypergame Paradox. The
American Mathematical Monthly, 94(6):507–514, 1987.

http://robbertkrebbers.nl/misc/hypergame.v

	The Hypergame Paradox in Coq

