
A formalization of Γ∞ in Coq

Robbert Krebbers ∗

March 16, 2010

Abstract

In this paper we present a formalization of the type systems Γ∞ in
the proof assistant Coq. The family of type systems Γ∞, described in a
recent article by Geuvers, McKinna and Wiedijk [9], presents type theory
without the need for explicit contexts. A typing judgment in Γ∞ is of the
shape A :∞ B while an ordinary judgment is of the shape Γ ` A : B.

This approach of Geuvers et al. makes a bridge between traditional
logic and type theory. In the former free variables are really free and con-
texts are non-explicit, as in Γ∞. Furthermore Γ∞ could make it possible
to create a stateless version of an LCF style prover.

The important part of [9] is a theorem that states that there is a
natural correspondence between judgments in Γ∞ and ordinary Pure Type
Systems. Their paper contains an informal proof of this theorem. We have
formalized many of their definitions and lemmas which result in a proof
of one direction of this correspondence theorem.

1 Introduction

A judgment in type theory is traditionally of the shape Γ ` A : B where Γ is
a context which gives the types of free variables occurring in the terms A and
B. In a recent article [9], Geuvers, McKinna and Wiedijk have described an
approach to present type theory without the use of explicit contexts. A typing
judgment in Γ∞ is of the shape A :∞ B. One should think of these judgments
as Γ∞ ` A : B where Γ∞ is a fixed infinite context which has infinitely many
variables for each possible type. Geuvers et al. have informally proven that
these systems have exactly the same type correct terms as ordinary Pure Type
Systems.

In this research we have formalized the infrastructure of Γ∞ and proven one
direction of this correspondence theorem in Coq. Our development is inspired by
the framework of Aydemir et al. for formalization of metatheory in Coq [2]. In
this paper we present our formalization, discuss the issues we have occurred and
how we have dealt with those issues. Furthermore we will answer the following
questions:

1. What insights does formalizing Γ∞ give to formalizing metatheory in gen-
eral?

∗Student number: s0513229, e-mail: robbertkrebbers@student.ru.nl, this research is super-
vised by James McKinna (james@cs.ru.nl).

2 1 INTRODUCTION

2. How suitable is the methodology of Aydemir et al.?

1.1 Outline

This paper is outlined as follows. The rest of this section motivates why Γ∞
and a formalization of it are useful. Furthermore we survey previous work on
this topic and describe the typography used in this paper. Section 2 until 5
describe the formalized infrastructure, some formalization issues and important
theorems. In Section 6 we describe the correspondence theorem. In Section 7
we conclude with answers to the questions stated in the previous paragraph and
give directions for further research. For the proofs of all theorems in this paper
we refer to our formal developments.

1.2 Motivation

Pure Type Systems (PTSs) are a generalization of many existing and commonly
used systems like λ→ , λP , system F , system Fω and the Calculus of Construc-
tions (the basis of the Calculus of Inductive Constructions, the type theory of
Coq). Due to the Curry-Howard-de Bruijn correspondence Pure Type Systems
correspond to intuitionistic logics.

The main difference between type theory and traditional logic is that in
type theory free variables are bound to an explicit context, while in logic free
variables are really ‘free’: they are taken from an infinite collection of ‘free’
variables. The systems of Geuvers et al. attempt to made a bridge between
type theory and logic by making type theory look more like traditional logic [9].
Another interesting observation is that Γ∞ makes a difference between free and
bound variables on the level of pseudo-terms already, this approach turns out
to be very convenient for a formalization.

Another reason why Γ∞ is interesting can be found in the application of its
theory in the architecture of a proof assistant. Many proof assistants, for exam-
ple Coq [8] and Hol Light [10], are based on an LCF architecture. This means
that the type checking kernel contains a small number of functions that can
be used to construct well typed terms. Ideally such kernel contains a function
app that constructs the application of two (well typed) terms and throws an
exception if this is not possible [9].

app : term * term -> term

Typically a function like app needs to check whether the contexts are compatible.
However in realistic systems this is a very expensive job because contexts are
very big since they contain all the previously processed definitions [9]. Therefore
the kernel contains an abstract type, the environment, which represents the
context. Although it is perfectly possible to build a kernel in a purely functional
fashion (as the Coq kernel), the environment is usually stored in a global variable
that corresponds to the ‘state’ of the system [9]. This ‘state’ makes reasoning
about the system harder, Γ∞ could make it possible to realize a completely
‘stateless’ architecture.

In the previous paragraphs we have summarized the possible uses of Γ∞,
now one may wonder why it is useful to formalize this system. After all a

3 2 TERMS

formalization does not give full confidence in the system’s correctness, because
absolute correctness cannot be obtained by any means at all [16]. However a
formalization gives more confidence than an informal proof. A formalization
is especially valuable for a system that is fairly new and thus has not been
discussed in the literature yet. Besides [9] left many details of definitions and
proofs implicit, a formalization fills in these gaps.

Because the author has solely experience with the proof assistants Coq [8]
and Mizar [14] we have used Coq for this development. Mizar is less suitable
for our developments because it does not contain the machinery for inductive
types. Despite the choice for Coq, our development does not require much of its
specific infrastructure. Our development only relies on libraries for finite sets
and lists therefore this research could be repeated in any proof assistant with
support for inductive types.

1.3 Previous work

Other research such as [13, 1] has already shown that it is possible to formalize
big parts of the theory of Pure Type Systems in a proof assistant. Unfortu-
nately none of these formalizations are suitable to adapt for our developments.
McKinna and Pollack’s formalization [13] is written in Lego [15], a proof assis-
tant whose development has stopped over 10 years ago. Adams’ formalization
[1] is written in Coq but does not distinct between free and bound variables and
uses solely De Bruijn indexes what makes it unsuitable for Γ∞.

Bruno Barras’ formalization of Coq in Coq [4] also uses solely De Bruijn
indexes and is written for an ancient version of Coq. Therefore we have chosen
to use the framework of Aydemir et al. in Coq [2] as a starting point for our
developments. This framework contains formalizations of λ→, the Calculus of
Constructions and parts of ML.

1.4 Typography

This paper uses informal notations resulting from a manual translation from
our Coq sources into LATEX. Names in verbatim style correspond to names of
definitions and lemmas in our formal development. Furthermore we use the
usual logical symbols like ∧, =⇒ , ∀ and set operations like ∅, ∪ and ∈.
Moreover we drop type labels (e.g. for the range of logical quantifiers) almost
everywhere. Because we are dealing with two languages, the terms of ordinary
PTSs and the terms of Γ∞, we denote constructors explicitly, for example we
write (psrt s) or (asrt s) instead of s to avoid any confusion.

2 Terms

In this section we present our formalization of usual lambda terms and lambda
terms in Γ∞-style (from now on type annotated terms). First we discuss various
methods how one could deal with bound variables and what method we have
chosen to use, then we focus on specific problems we have encountered in our
developments.

4 2 TERMS

The standard approach, most commonly used on paper, is to represent all
variables as strings. This approach has various problems: one has to deal with
variable capture (e.g. in the definition of substitution) and α-equivalence has to
be defined explicitly. Moreover the following example shows that this approach
is error-prone.

Example 2.1. Consider the term λy.(λxy.xy)y, we should be careful that we
do not β-reduce it to nonsense like λyλy.yy. We should rename the inner occur-
rence of y to a fresh name, for example y′, this results in the correct β-normal
form λyy′.yy′.

McKinna and Pollack [13] presented a method which makes a difference
between free and bound variables in pseudo-terms already. This solves the
problem of variable capture but α-equivalence still has to be defined explicitly
(or be avoided). De Bruijn indexes [7] are one of the most standard methods
to solve that problem. Variables are encoded by natural numbers referring to
the depth of their binder, this method gives a unique representation of each
α-equivalence class.

Example 2.2. Consider the term λxy.yx, this term is represented with De
Bruijn indexes1 by λλ01.

As you can see this is very unnatural to read and reasoning about free
variables is even worse. The locally nameless solution with de Bruijn indexes
for bound variables and names for free variables, discussed in [12, 2], combines
the advantages of De Bruijn variables with usual naming of free variables.

Having a difference between bound and free variables is a good thing because
that is an essential feature of Γ∞. However there is a major difference between
free variables in Γ∞ and free variables in the usual lambda calculus, in Γ∞
free variables xA are annotated by their types A. Thus we have to deal with a
different language of pseudo-terms for both systems. Having separate languages
for each system results in a lot of duplicate code, all basic operations (e.g. free
variable substitution and opening of a De Bruijn index) and lemmas about those
operations need to be defined twice. Hence we discuss some methods to describe
these two languages in one language of pseudo-terms.

1. We could use a different constructor for each kind of free variable in the
definition of pseudo-terms, this results in pseudo-terms of the following
shape.

T ::= s | n | x | xT | ΠT .T | λT .T | T T
With the closure predicates (Section 2.1) we have to ensure that no free
variables of the wrong kind are used. Unfortunately this approach makes
it impossible to define a set containing just type annotated variables. Fur-
thermore the extra constructor results in clutter in definitions and proofs.

2. We could use a mutual inductive type of the following shape.

T ::= s | n | x | V∞ | ΠT .T | λT .T | T T with V∞ ::= xT

Although this type basically represents the same language as the previous
type the mutual type makes it possible to create sets containing solely type
annotated variables, unfortunately we still have that extra constructor.

1Note that De Bruijn originally numbers from 1 instead of 0.

5 2 TERMS

3. We could define pseudo terms polymorphically, this results in pseudo terms
of the following shape.

T (v) ::= s | n | v | ΠT (v).T (v) | λT (v).T (v) | T (v)T (v)

Let V∞ ::= xT (V∞). The types T (x) and T (V∞) represent usual pseudo-
terms respectively type annotated pseudo-terms.

Definition 2.3. The pseudo-terms (formally trm) are defined as follows.

binder ::= abs | pi
trm var ::= srt | bvr nat | fvr var

| bnd binder (trm var) (trm var)
| app (trm var) (trm var)

avar ::= avr var (trm avar)

Here srt and var2 have decidable equality. Finite sets of var and avar are
named vars respectively avars. Furthermore we make the following assumption
which expresses that var has infinitely many elements.

var fresh : ∀L ∈ vars . ∃x ∈ var . x /∈ L

When doing case analysis on terms we often want to say that λ and Π behave
in exactly the same way. The type binder allows us to combine these cases and
thus saves a lot of copying and pasting [13].

Definition 2.4. Usual pseudo-terms and type annotated pseudo-terms are in-
stances of pseudo-terms.

ptrm ::= trm var atrm ::= trm avar

Despite that the definition avar ::= avr var (trm avar) might looks innocent
it is very complicated: it contains “nested” recursive dependencies between
pseudo-terms and variables. Unfortunately this resulted in some implementation
issues in Coq which are addressed now.

1. The induction scheme for atrm which Coq automatically generates is often
not strong enough because avr contains sub-terms wherefore we may need
an induction hypothesis. Even with the Scheme command Coq is unable
to generate the required induction scheme automatically [6], therefore we
had to define it manually.

Also Coq’s decide equality tactic is unable to automate the proof of
the theorem stating that atrm has decidable equality. We had to prove
this manually by double induction using the previously defined “nested”
induction scheme.

2. We would like to define a polymorphic function that computes the free
variables of a term, its signature should be as follows.

fv : ∀var . trm var → finset var
2We abstract from the actual implementation of these types. It is possible to implement

these types using the natural numbers as previous research such as [2] has shown.

6 2 TERMS

Unfortunately it is impossible to create polymorphic finite sets with Coq’s
finite set library, one has to make an instance of the finite set module
(which requires a proof of decidable equality) for each kind separately.
Type classes may solve this problem, but unfortunately the author was
unable to try so because Coq’s finite set library is not implemented using
type classes (yet).

3. It is impossible to define the hereditary free variables as follows.

hfv (asrt s) = hfv (abvr n) = ∅
hfv (afvr (avr v t)) = {avr v t} ∪ (hfv t) (†)

hfv (abnd b t1 t2) = hfv (aapp t1 t2) = (hfv t1) ∪ (hfv t2)

In (†) it is obvious that t is a sub-term of afvr (avr v t), but Coq disagrees.
In the general case constructions like this can result in ill-defined functions,
hence Coq does not allow it [11]. We have worked around this by defining
the function hfv’ which is parametrized by the function hfv avar [11].

Definition 2.5. The free variables fv t of a pseudo-term t are defined as fol-
lows.

fv (psrt s) = fv (pbvr s) = ∅
fv (pfvr x) = {x}

fv (pbnd b t1 t2) = fv (papp t1 t2) = (fv t1) ∪ (fv t2)

We need various notions of free variables on type annotated terms because
we want to obtain free variables with and without type labels. Besides there is
no way to easily map between finite sets of different types using Coq’s finite set
library. Since these notions differ for the constructor afvr solely we describe
just these cases. Note that hfv and ahfv are actually defined by a parametrized
function.

Definition 2.6. fva (afvr (avr v t)) = {v}

Definition 2.7. afva (afvr (avr v t)) = {avr v t}

Definition 2.8. hfv (afvr (avr v t)) = {v} ∪ (hfv t)

Definition 2.9. ahfv (afvr (avr v t)) = {avr v t} ∪ (ahfv t)

Furthermore we need the notion of hereditary free type variables [9].

Definition 2.10. ahfv type (afvr (avr v t)) = ahfv t

Some obvious correspondence lemmas:

Lemma 2.11. fva afva : x ∈ fva t ⇐⇒ ∃A.avr x A ∈ afva t

Lemma 2.12. hfv ahfv : x ∈ hfv t ⇐⇒ ∃A.avr x A ∈ ahfv t

Lemma 2.13. ahfv type subseteq ahfv : x ∈ ahfv type t =⇒ x ∈ ahfv t

We would like to worry about the implementation of bound variables by De
Bruijn indexes as little as possible, therefore we define the following operation.

7 2 TERMS

Definition 2.14. Opening of a De Bruijn index k for u in t (formally open rec)
is defined as follows.

{k → u} srt s = srt s

{k → u} bvr i = if (k = i) then u else (bvr i)
{k → u} fvr x = fvr x

{k → u} bnd b t1 t2 = bnd b {k → u}t1 {k + 1→ u}t2
{k → u} app t1 t2 = app {k → u}t1 {k → u}t2

Notation 2.15. We write tu (formally open) for {0→ u} t.

Definition 2.16. Substitution of a free variable x for u in t (formally subst)
is defined as follows.

[x→ u] srt s = srt s

[x→ u] bvr i = bvr i

[x→ u] fvr y = if (x = y) then u else (fvr y)
[x→ u] bnd b t1 t2 = bnd b [x→ u]t1 [x→ u]t2

[x→ u] app t1 t2 = app [x→ u]t1 [x→ u]t2

2.1 Local closure

Unfortunately the representation of terms presented in the previous section is
not isomorphic to well-formed lambda terms.

Example 2.17. Consider the term bvr 0, here 0 does not resolve to any binder
and therefore this is not a well-formed lambda term.

Therefore we define the predicates pterm and aterm which select the well-
formed terms. We use co-finite quantification presented by Aydemir et al. [2],
this method gives a strong induction principle without having to worry about
free variables often.

Definition 2.18. A pseudo-term t ∈ ptrm is locally closed if pterm t, where
pterm is defined by the rules in Figure 1.

pterm (psrt s)
(a) term srt

pterm (pfvr x)
(b) term fvr

pterm t1 ∀x 6∈ L.pterm tx2
pterm (pbnd b t1 t2)

(c) term bnd

pterm t1 pterm t2
pterm (papp t1 t2)

(d) term app

Figure 1: Closure of usual lambda terms.

A more commonly used approach to describe the closed terms is the exists-
fresh approach, here the bnd-rule is defined as follows.

8 2 TERMS

pterm t1 ∃x /∈ fv t2 . pterm tx2
pterm (pbnd b t1 t2)

We have proven that closed terms described by the exists-fresh approach
correspond exactly to closed terms described by the co-finite quantification ap-
proach. For a more extensive discussion about various approaches to describe
closed terms and their correspondence we refer to [2]. Now that we have defined
the notion of closed terms we are able to prove various important lemmas.

Lemma 2.19. psubst pterm : pterm t ∧ pterm u =⇒ pterm [x→ u]t

Lemma 2.20. psubst intro : x /∈ fv t ∧ pterm u =⇒ tu = [x→ u]tx

Lemma 2.21. open pterm : pterm tx ∧ pterm u =⇒ pterm tu

Lemma 2.22. open var unique : x /∈ fv t1 ∧ x /∈ fv t2 ∧ tx1 = tx2 =⇒ t1 = t2

Lemma 2.23. shape pterm : pterm t =⇒ ∃u.t = ux.

Now we define a similar predicate for type annotated terms. Note that such
notion of closure is also required for the original representation described in [9],
but unfortunately, despite its importance, it is left implicit.

Definition 2.24. A type annotated pseudo-term t ∈ atrm is locally closed if
aterm t, where aterm is a modification of pterm. The relevant changes are
shown in Figure 2.

aterm t
aterm (afvr (avr x t))

(a) aterm afvr

aterm t1 aterm A ∀x 6∈ L.aterm tavr x A
2

aterm (abnd b t1 t2)
(b) aterm bnd

Figure 2: Closure of type annotated terms.

One may wonder why we use an arbitrary type label A for x instead of the
more obvious choice t1, because in any reasonable type system the type of x is
t1. Choosing t1 results in problems while trying to prove subst term because
the type label is changed in the goal but not in the induction hypothesis.

· · · · · · H : aterm [v → u]tavr x t1
2

aterm [v → u]tavr x ([v→u]t1)
2

This would most likely require the notion of hereditary substitution. Further-
more this approach is troublesome for the definition of β-reduction because [9]
requires that β-reduction should never take place in labels. Moreover one could
try to represent aterm bnd as follows.

aterm t1 ∀(avr x A) 6∈ L.aterm A =⇒ aterm tavr x A
2

aterm (abnd b t1 t2)

This definition gives a stronger induction hypothesis, but non strictly positive
occurrences of an inductive type are not allowed in Coq.

9 2 TERMS

2.2 β-reduction and equality

In this section we define the notion of β-reduction on usual terms and type
annotated terms, this notion is required for the conversion rule in PTSs and
Γ∞. To reduce the number of cases we have to consider in case analyses we use
non-overlapping β-reduction [13] instead of ordinary β-reduction.

Definition 2.25. A term t1 reduces in one non-overlapping step to t2 if t1 →p t2
(formally pbeta), where →p is defined by the rules in Figure 3.

pterm (pbnd abs t1 t2) pterm u

papp (pbnd abs t1 t2) u→p t
u

(a) pbeta red

t1 →p t
′
1 t2 →p t

′
2

papp t1 t2 →p papp t′1 t
′
2

(b) pbeta app

t1 →p t
′
1 ∀x 6∈ L.tx2 →p t

′x
2

pbnd b t1 t2 →p pbnd b t′1 t
′
2

(c) pbeta bnd

Figure 3: Non-overlapping β-reduction on usual lambda terms.

β-reduction is defined such that only closed terms participate in reduction,
hence we are able to prove the following lemma.

Lemma 2.26. pbeta pterm : t1 →p t2 =⇒ pterm t1 ∧ pterm t2

Lemma 2.27. psubst pbeta : t1 →p t2∧pterm u =⇒ [x→ u]t1 →p [x→ u]t2

The notion of β-reduction on type annotated terms is defined nearly the
same as on usual terms, except for the binder case. Note that this definition
forbids β-reduction to take place in type labels, as required by [9].

Definition 2.28. A type annotated term t1 reduces in one non-overlapping
step to t2 if t1 →a t2 (formally abeta), where →a is a modification of →p. The
relevant changes are shown in Figure 4.

t1 →a t
′
1 aterm A ∀x 6∈ L.tavr x A

2 →a t
′avr x A
2

abnd b t1 t2 →a abnd b t′1 t
′
2

(a) abeta bnd

Figure 4: Non-overlapping β-reduction on type annotated terms.

Note that it is possible to use t1 or t′1 as type label for t2, but to remain
consistent with aterm we use an arbitrary type label A.

Lemma 2.29. abeta aterm : t1 →a t2 =⇒ aterm t1 ∧ aterm t2

Lemma 2.30. asubst abeta : t1 →a t2∧aterm u =⇒ [x→ u]t1 →a [x→ u]t2

Definition 2.31. The reflexive symmetric transitive closure ≈(R,S) (formally
equiv) of a binary relation R and a predicate S such that R t1 t2 =⇒ S t1 ∧ S t2
is defined by the rules in Figure 5.

10 3 TRANSLATION BETWEEN TERMS

S t
t ≈(R,S) t

(a) equiv refl

t1 ≈(R,S) t2

t2 ≈(R,S) t1

(b) equiv sym

t1 ≈(R,S) t2 t2 ≈(R,S) t3

t1 ≈(R,S) t3

(c) equiv trans

R t1 t2
t1 ≈(R,S) t2

(d) equiv step

Figure 5: Reflexive symmetric transitive closure.

Now we can define β-equivalence ≈p on usual lambda terms as ≈(pterm,pbeta)

and β-equivalence ≈a on type annotated terms as ≈(aterm,abeta). Since only
closed terms participate in our definitions of β-reduction this is well-defined.
The following important lemmas are now trivial to prove.

Lemma 2.32. pbeta equiv pterm : t1 ≈p t2 =⇒ pterm t1 ∧ pterm t2

Lemma 2.33. abeta equiv aterm : t1 ≈a t2 =⇒ aterm t1 ∧ aterm t2

3 Translation between terms

In this section we discuss the operations used to translate between terms of
both systems, these operations are necessary for the correspondence theorems
discussed in Section 6. First we define the translation from type annotated
terms to usual terms, this operation is informally described by erasure of type
labels.

Definition 3.1. |M | (formally atp) is the translation of M to a usual term.

|asrt s| = psrt s

|abvr n| = pbvr n

|afvr (avr x a)| = pfvr x

|abnd b t1 t2| = pbnd b |t1| |t2|
|aapp t1 t2| = papp |t1| |t2|

The following lemmas are proven in the formal development.

Lemma 3.2. atp open : |tu| = |t||u|

Lemma 3.3. aterm imp pterm : aterm t =⇒ pterm |t|

Lemma 3.4. abeta imp pbeta : t1 →a t2 =⇒ |t1| →p |t2|

Lemma 3.5. abeta imp pbeta equiv : t1 ∼=a t2 =⇒ |t1| ∼=p |t2|

Before we are able to define the translation in the other direction we need
the notion of environments to bind variables to terms (or rather types).

Definition 3.6. An environment env, usually written as Γ, is a finite associa-
tion list.

env ::= list (var× ptrm)

Pairs are denoted as x : A, besides we have the obvious operations on contexts
like x : A ∈ Γ and dom Γ.

11 3 TRANSLATION BETWEEN TERMS

At first sight this translation looks easy: label the free variables with the
corresponding types in the environment. It would be convenient to define this
operation as proposed in [9].

Proposition 3.7. MΓ is the type annotated term of M in Γ.

(psrt s)Γ = asrt s

(pbvr n)Γ = abvr n

(pfvr x)Γ = afvr (avr x AΓ) if x : A ∈ Γ
(pbnd b t1 t2)Γ = abnd b (t1)Γ (t2)Γ

(papp t1 t2)Γ = aapp (t1)Γ (t2)Γ

Unfortunately we are not allowed to define it like this in Coq (and any
terminating theory) because this function has the following “bad” properties.

1. The result is undefined if a free variable does not occur in the context.

2. It may “loop” if the context is ill-defined (e.g. Γ = A : B,B : A).

Therefore we need to find another way to define this function, we will discuss
several unsuccessful approaches first.

1. We tried defining the operation by mutual induction on the structure of
the context and the pseudo-term and let it yield an option type. The
mutual induction ensures that the function terminates since the length of
the environment decreases. Unfortunately mutual induction and option
types are inconvenient to reason with. The first is due the non-mutual
inductive definition of a PTS, the latter because an option type results
in many extra case analyses.

2. We tried to construct MΓ and AΓ simultaneously by induction on the
structure of the derivation of Γ ` M : A. This method has the following
problems.

(a) Consider the ordinary definition of the λ rule (with side conditions
omitted).

Γ, x : A `Mx : Bx Γ ` ΠA.B : s
Γ ` λA.M : ΠA.B

In order to construct (λA.M)Γ and (ΠA.B)Γ we need to obtain AΓ.
By structural induction we only know (ΠA.B)Γ, but we have no clue
about its shape, hence we cannot obtain AΓ. Therefore we need to
modify the λ rule to a well-known equivalent [5].

Γ, x : A `Mx : Bx Γ ` A : s1 Γ, x : A ` Bx : s2

Γ ` λA.M : ΠA.B
(b) Lemmas about β-conversion, like t1 →p t2 =⇒ (t1)Γ →a (t2)Γ

depend on Γ ` M : A. Not only is it hard to prove this lemma, it
also requires 3 versions of the same lemma. Take Γ ` A : B and
Γ ` M : N , then we need to prove it for A →p M , B →p N and
A→p N (we can omit M →p B by symmetry).

12 3 TRANSLATION BETWEEN TERMS

(c) It is very hard to reason about the shape of the results, for example
a trivial lemma like (psrt s)Γ = asrt s is hard to prove (especially
because inversion on functions is not implemented in Coq).

3. We can reformulate Proposition 3.7 as a relation. But this function is
defined on the structure of pseudo-terms instead of the structure of closed
terms. Hence it does not give sufficiently strong induction hypotheses.

Therefore we have to define this translation in the same way as we have
defined closed terms (Section 2.1) and β-reduction (Section 2.2).

Definition 3.8. A pseudo-term t ∈ ptrm translates to t′ ∈ atrm in Γ iff t Γ t
′,

where pta is mutually defined with pta wde by the rules in Figure 6.

pta wde Γ
psrt s Γ asrt s

(a) pta srt

pta wde Γ A Γ A
′
x : A ∈ Γ

x Γ avr x A
(b) pta fvr

t1 Γ t
′
1 ∀x 6∈ L.tx2 (Γ,x:psrt s) t

′avr x (asrt s)
2

pbnd b t1 t2 Γ pbnd b t′1 t
′
2

(c) pta bnd

t1 Γ t
′
1 t2 Γ t

′
2

papp t1 t2 Γ aapp t′1 t
′
2

(d) pta app

pta wde nil
(e) pta wde nil

A Γ A
′ pta wde Γ

x /∈ dom Γ
pta wde (Γ, x : A)

(f) pta wde cons

Figure 6: Translation from usual lambda terms to type annotated terms.

Again this notion is defined in such way that only closed terms and valid
environments participate in the translation. Hence we are able to prove the
following lemmas.

Lemma 3.9. pta term : t Γ t
′ =⇒ pterm t ∧ aterm t′

Lemma 3.10. pta wd env : t Γ t
′ =⇒ pta wde Γ

Now we should prove that this relation behaves as a function, i.e. its result
is uniquely defined and exists if certain preconditions hold. First notice that in
the definition of pta bnd the type (asrt s) is used as the label of x instead of an
arbitrary type. If we use an arbitrary label we need a renaming lemma to prove
pta unique, but our renaming lemma (Lemma 3.13) depends on pta unique.

Lemma 3.11. pta unique : t Γ t1 ∧ t Γ t2 =⇒ t1 = t2

Lemma 3.12. pta exists

pterm t ∧ fv t ⊆ dom Γ ∧ pta wde Γ =⇒ ∃t′.t Γ t
′

In our proof of pta exists we ended up with a goal of the following shape.

· · · t1 Γ t
′
1 H : ∀x /∈ L . ∀Γ =⇒ ∃t′2.tx2 Γ t

′
2

∃t′.pbnd b t1 t2 Γ t
′

13 3 TRANSLATION BETWEEN TERMS

An obvious choice for the required witness is (abnd b t′1 t
′
2), where t′2 could

be obtained by instantiating H with a fresh variable x and using shape pterm
afterwards. But now we have to show that pbnd b t1 t2 Γ abnd b t′1 t′2,
unfortunately aterm bnd is universally quantified which means this yields an
universally quantified goal. Sadly we only know it holds just for our freshly
taken x, therefore we need the following renaming lemma.

Lemma 3.13. pta rename : A Γ A′ ∧ B Γ B′ ∧ y /∈ dom E ∧ x /∈ fv t1 ∧
(avr x A) /∈ afva t2

tx1 (Γ,x:A) t
avr x A′

2 =⇒ ty1 (Γ,y:B) t
avr y B′

2

For the proof of pta rename we need a substitution lemma, but first we
require the weakening lemma and the notion of substitution on environments
and hereditary free variable substitution.

Lemma 3.14. pta weaken : pta wde (Γ,Σ,∆)

t (Γ,∆) t
′ =⇒ t (Γ,Σ,∆) t

′

Definition 3.15. Hereditary substitution of a free variable x for u in t (for-
mally hsubst) is defined as follows.

[x→h u] asrt s = srt s

[x→h u] abvr i = bvr i

[x→h u] afvr (avr y B) = if (avr y B = y) then u

else (afvr (avr y [x→h u]B))
[x→h u] abnd b t1 t2 = abnd b [x→h u]t1 [x→h u]t2

[x→h u] aapp t1 t2 = aapp [x→h u]t1 [x→h u]t2

Lemma 3.16. pta subst : u Γ u
′ ∧A Γ A

′

t (Γ,x:A,∆) t
′ =⇒ [x→ u]t (Γ,[x→u]∆) [avr x A′ →h u

′]t′

Note that non-hereditary substitution does not work because substitution
takes place in the environment and hence may change the type labels. For
example non-hereditary substitution of A for s in y (A:s,y:A) y

A results in
y (y:s) y

A which is certainly not correct.
Now we are able to prove the following lemmas which state that β-reduction

and β-equality are preserved under translation. We need these lemmas for the
correspondence theorems in Section 6.

Lemma 3.17. pbeta imp abeta

t1 →p t2 ∧ t1 Γ t
′
1 ∧ t2 Γ t

′
2 =⇒ t′1 →a t

′
2

Lemma 3.18. pbeta imp abeta equiv

t1 ≈p t2 ∧ t1 Γ t
′
1 ∧ t2 Γ t

′
2 =⇒ t′1 ≈a t

′
2

14 5 PURE TYPE SYSTEMS À LA Γ∞

The proof of pbeta imp abeta equiv contains a tricky part in the transitiv-
ity case. Consider the following diagram.

t1

Γ

�� �O
�O
�O

≈p t2

(Γ,Σ)

��

≈p t3

Γ

�� �O
�O
�O

t′1 ≈a ? ≈a t′3

Here we are supposed to specify a witness for ? such that the diagram commutes,
but there may be free variables in t2 that are bound by Γ, hence pta exists
does not yield the required witness. We solve this by widening Γ to (Γ,Σ) where
dom Σ = fv t2\dom Γ such that each x ∈ dom Σ has some bogus type assigned.

Lemma 3.19. pta wde widen

∀L . pta wde Γ =⇒ ∃Σ . L ⊆ dom (Γ,Σ) ∧ pta wde (Γ,Σ)

4 Pure Type Systems

In this section we present our representation of Pure Type Systems. We only
describe lemmas required for our developments, for an extensive discussion of
PTSs and their properties we refer to [3] and for a more substantial formalization
of PTSs we refer to [13, 1].

Definition 4.1. A Pure Type System (PTS) is s system with derivation rules
given in Figure 7 (formally pts) and is parametrized by the following relations:

1. Axioms, axiom ⊆ sort× sort

2. Rules, rule ⊆ sort× sort× sort

Because a PTS is defined in the same way as closed terms it automatically
follows that any term, type, and type in its context is closed.

Lemma 4.2. pts imp pterm

Γ `M : A =⇒ pterm M ∧ pterm A ∧ ∀y : C ∈ Γ . pterm C

Lemma 4.3. pts fv : Γ `M : B

(∃y : C ∈ Γ . x ∈ fv C) ∨ x ∈ fv M ∨ x ∈ fv B =⇒ x ∈ dom Γ

5 Pure Type Systems à la Γ∞

In this section we present our representation of Pure Type Systems à la Γ∞.

Definition 5.1. A Pure Type System (PTS) à la Γ∞ is a system with derivation
rules given in Figure 8 (formally ginf) and parametrized by the relations axiom
and rule.

15 5 PURE TYPE SYSTEMS À LA Γ∞

axiom s1 s2` psrt s1 : psrt s2

(a) pts srt

Γ ` A : psrt s
x 6∈ Γ

Γ, x : A ` pfvr x : A

(b) pts var

Γ ` A : psrt s Γ `M : C
x 6∈ Γ

Γ, x : A `M : C

(c) pts weak

Γ ` A : psrt s1 ∀x /∈ L.Γ, x : A ` Bx : psrt s2
rule s1 s2 s3

Γ ` ppi A B : psrt s3

(d) pts pi

∀x /∈ L.Γ, x : A `Mx : Bx Γ ` ppi A B : psrt s

Γ ` pabs A M : ppi A B

(e) pts abs

Γ `M : ppi A B Γ ` N : A

Γ ` papp M N : BN

(f) pts app

Γ `M : A Γ ` B : psrt s
A ≈p B

Γ `M : B

(g) pts conv

Figure 7: The deduction rules of a PTS

Now one might wonder whether our definition using co-finite quantification
corresponds to the original definition given in [9]. To give the reader more
confidence we have also stated a definition using the exists-fresh approach. The
Π rule of this definition is displayed below, the λ rule is defined similarly.

A :∞ asrt s1 (avr x A) /∈ ahfv B Bavr x A :∞ asrt s2
rule s1 s2 s3

api A B :∞ asrt s3

Moreover we have proven that derivations in this exists-fresh version of Γ∞
correspond exactly to derivations in the co-finite version. The proof of one
direction is trivial but for the other direction we need a renaming lemma which
is stated below.

Lemma 5.2. ginf imp aterm : M :∞ A =⇒ aterm M ∧ aterm A

Lemma 5.3. ginf ahfv well typed

(avr x A) ∈ ahfv M ∪ ahfv C ∧ M :∞ C =⇒ ∃s.A :∞ asrt s

Lemma 5.4. ginf hsubst

M :∞ B ∧ N :∞ A =⇒ [avr x A→h N]M :∞ [avr x A→h N]B

Lemma 5.5. ginf rename : avr x A /∈ ahfv M ∪ ahfv B ∧ aterm A

Mafvr (avr x A) :∞ Bafvr (avr x A) =⇒ Mafvr (avr y A) :∞ Bafvr (avr y A)

Note that non-hereditary substitution does not work here either, for example
xys1 :∞ ys1 is derivable in Γ∞, but if we substitute s1 for ys1 we obtain nonsense
like xys1 :∞ s1. It is also remarkable that this lemma is much easier to prove
than the equivalent lemma for PTSs. This is obviously caused because Γ∞ does
not have contexts and therefore we do not have to worry about weakening.

16 7 CONCLUSIONS AND FURTHER RESEARCH

axiom s1 s2
asrt s1 :∞ asrt s2

(a) ginf srt

A :∞ asrt s

afvr (avr x A) :∞ A

(b) ginf var

A :∞ asrt s1 ∀x /∈ L.Bavr x A :∞ asrt s2
rule s1 s2 s3

api A B :∞ asrt s3

(c) ginf pi

∀x /∈ L.Mx :∞ Bx api A B :∞ asrt s

aabs A M :∞ api A B

(d) ginf abs

M :∞ api A B N :∞ A

aapp M N :∞ BN

(e) ginf app

M :∞ A B :∞ asrt s
A ≈a B

M :∞ B

(f) ginf conv

Figure 8: The deduction rules of a PTS in Γ∞-style

6 The correspondence theorem

Now we have defined the necesarry infrastructure and have proven the required
lemmas about PTSs and Γ∞ we can state one direction of the correspondence
theorem between PTSs and Γ∞.

Theorem 6.1. pts exists ginf

Γ `M : A =⇒ ∃M ′∃A′ . M Γ M
′ ∧ A Γ A

′ ∧ M ′ :∞ A′

We have used the following lemmas to prove pts exists ginf.

Lemma 6.2. pts pta wde : Γ `M : A =⇒ pta wde Γ

Lemma 6.3. pts imp ginf

Γ `M : A ∧ M Γ M
′ ∧ A Γ A

′ =⇒ M ′ :∞ A′

The proof of the other direction of this lemma is unfortunately absent in
this development.

7 Conclusions and further research

In this paper we have discussed our formalization of Γ∞ in Coq, this led to
various insights which we discuss in this section.

Dealing with two languages that only differ with respect to their free vari-
ables is an important part of this development. We have discussed that creating
separate definitions for each language is undesirable because it results in dupli-
cation of definitions and lemmas. This problem is not discussed in previous work
such as [1, 13, 2, 5] (simply because they did not need it), hence we developed
a method ourselves.

We have discussed (and dismissed) various methods to realize this goal.
Nonetheless our definite method suffers from many implementation issues; Coq

17 REFERENCES

is unable to derive induction schemes automatically, it is not possible to define
“nested” recursive functions easily and we were unable to construct an abstract
type representing finite sets of variables. Thus we still had to do much work two
times, so there is definitely further research required to improve this methodol-
ogy.

Co-finite quantification presented by Aydemir et al. [2] worked quite well for
our developments. We tried exists-fresh approaches as well but rapidly ended up
with the same issues as described in [2]; the induction hypothesis are not strong
enough to prove various lemmas in an easy way. We also have encountered some
problems with Aydemir’s methodology, namely to prove existentially quantified
goals a renaming lemma is required.

It turned out that the framework of Aydemir et al. [2] was less suitable for
our developments due to our notion of type annotated variables. In order to
make an implementation of type annotated variables in their framework’s mod-
ule Var we are required to define a total order on avar. This is an unnecessary
burden so we stepped back to Coq’s library which supports weak finite sets.
To avoid ending up using multiple implementations (and hence different named
and stated lemmas) we have used Coq’s finite set library for both kind of finite
sets. Nonetheless the formalization of CoC in Aydemir’s framework was very
useful to us. Many concepts, including some Coq tactics, could easily be reused
for our developments.

Some theorems that are very hard to prove for ordinary PTSs are rather
easy to prove in Γ∞-style. Since contexts are absent, lemmas like thinning,
weakening and strengthening are trivial. Therefore lemmas about substitution
and renaming are much easier to prove. Hence it might be useful to transform
a given theorem to Γ∞, prove it there, and then translate it back.

An obvious goal for further research is to extend this formalization to the
other direction of the correspondence theorem. The proof of this direction as
given by Geuvers et al. requires a lot of work, mainly because it depends on
the strengthening lemma. According to previous research [1, 13] this lemma is
very hard to prove. Furthermore a lot of operations on contexts and the notion
of topological sorting are required.

During our developments it has become clear that many details in [9] are are
left implicit and our formalization has definitely cleared these up. We conclude
that formalizing of (meta) mathematics is very useful!

Acknowledgements

The author would like to thank James McKinna for his supervision, Freek
Wiedijk for his review, the participants of the Coq Club mailinglist for their kind
answers to the author’s questions and Brian Aydemir and Arthur Charguéraud
for making their framework and formalizations publicly available.

References

[1] R. Adams. A Formalization of the Theory of Pure Type Systems in Coq.
Obtained from http://www.cs.rhul.ac.uk/~robin/coqPTS/ on Decem-

18 REFERENCES

ber 5, 2009.

[2] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S Weirich.
Engineering Formal Metatheory. In ACM SIGPLAN - SIGACT Symposium
on Principles of Programming Languages, January 2008.

[3] H. Barendregt. Lambda Calculi with Types. In Handbook of Logic in
Computer Science, pages 117–309. Oxford University Press, 1992.

[4] B. Barras. Coq en coq. Rapport de Recherche 3026, INRIA, 1996.

[5] L.S. van Benthem Jutting, J. McKinna, and R. Pollack. Checking Algo-
rithms for Pure Type Systems. In TYPES ’93: Proceedings of the interna-
tional workshop on Types for proofs and programs, pages 19–61. Springer-
Verlag, 1994.

[6] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development. Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. Springer Verlag, 2004.

[7] N. G. De Bruijn. Lambda Calculus Notation with Nameless Dummies, a
Tool for Automatic Formula Manipulation, with Application to the Church-
Rosser Theorem. Indagationes Mathematicae, pages 381–392, 1972.

[8] The Coq Development Team. The Coq Proof Assistant. Web page, obtained
from http://coq.inria.fr on December 5, 2009.

[9] H. Geuvers, J. McKinna, and F. Wiedijk. Pure Type Systems without
Explicit Contexts. Unpublished, obtained from http://www.cs.ru.nl/

~james/2009-TLCA/submitted.pdf on December 5, 2009.

[10] J. Harrison. The HOL Light theorem prover. Web page, obtained from
http://www.cl.cam.ac.uk/~jrh13/hol-light/ on December 5, 2009.

[11] R Krebbers, A. Chlipala, B. Aydemir, and B. Barras. Meta the-
ory: induction over terms with abstract variables. Thread on
Coq Club mailinglist, http://logical.saclay.inria.fr/coq-puma/
messages/54ac6bcf64e2d60f, 2009.

[12] C. McBride and J. McKinna. I Am Not a Number; I Am a Free Variable.
In Proceedings of ACM SIGPLAN Haskell Workshop, 2004.

[13] J. McKinna and R. Pollack. Some Lambda Calculus and Type Theory
Formalized. Journal of Automated Reasoning, 23(3–4), November 1999.

[14] The Mizar Development Team. Mizar Home Page. Web page, obtained
from http://mizar.uwb.edu.pl on December 5, 2009.

[15] R. Pollack. The LEGO Proof Assistant. Web page, obtained from http:
//www.dcs.ed.ac.uk/home/lego/ on December 5, 2009.

[16] R. Pollack. How to Believe a Machine-Checked Proof. In Twenty Five
Years of Constructive Type Theory. Oxford Univ. Press, 1998.

