
Aliasing restrictions of C11 formalized in Coq

Robbert Krebbers

ICIS, Radboud University Nijmegen, The Netherlands

Abstract. The C11 standard of the C programming language describes
dynamic typing restrictions on memory operations to make more effec-
tive optimizations based on alias analysis possible. These restrictions are
subtle due to the low-level nature of C, and have not been treated in a
formal semantics before. We present an executable formal memory model
for C that incorporates these restrictions, and at the same time describes
required low-level operations.
Our memory model and essential properties of it have been fully formal-
ized using the Coq proof assistant.

1 Introduction

Aliasing is when multiple pointers refer to the same object in memory. Consider:

int f(int *p, int *q) { int x = *q; *p = 10; return x; }

When f is called with aliased pointers for the arguments p and q, the assignment
to *p also affects *q. As a result, a compiler cannot transform the function body
of f into *p = 10; return (*q);.

Unlike this example, there are many situations in which pointers cannot alias.
It is essential for an optimizing compiler to determine when aliasing cannot occur,
and use this information to generate faster code. The technique of determining
whether pointers are aliased or not is called alias analysis.

In type-based alias analysis, type information is used to determine whether
pointers are aliased or not. Given the following example

float g(int *p, float *q) { float x = *q; *p = 10; return x; }

a compiler should be able to assume that p and q are not aliased as their types
differ. However, the static type system of C is too weak to enforce this restriction
because a union type can be used to call g with aliased pointers.

union { int x; float y; } u = { .y = 3.14 }; g(&u.x, &u.y);

A union is C’s version of a sum type, but contrary to ordinary sum types, unions
are untagged instead of tagged. This means that their current variant cannot be
obtained. Unions destroy the property that each memory area has a unique type
that is statically known. The effective type [6, 6.5p6-7] of a memory area thus
depends on the run time behavior of the program.

The strict-aliasing restrictions [6, 6.5p6-7] imply that a pointer to a variant of
a union type (not to the whole union itself) can only be used for an access (a read

2 Robbert Krebbers

or store) if the union is in that particular variant. Calling g with aliased pointers
(as in the example where u is in the y variant, and is accessed through a pointer
p to the x variant) thus results in undefined behavior, meaning the program may
do literally anything. C uses a “garbage in, garbage out” principle for undefined
behavior to refrain compilers from having to insert (possibly expensive) checks
to handle corner cases. A compiler thus does not have to generate code that tests
whether effective types are violated (here: to test whether p and q are aliased),
but is allowed to assume no such violations occur.

As widely used compilers (e.g. GCC and Clang) perform optimizations based
on C’s aliasing restrictions, it is essential to capture these in a formal memory
model for C. Not doing so, makes it possible to prove certain programs to be
correct when they may crash when compiled with an actual C compiler.

Approach. The main challenge of formalizing C’s strict-aliasing restrictions is
that both high-level (by means of typed expressions) and low-level (by means of
byte-wise manipulation) access to memory is allowed. Hence, an abstract “Java-
like” memory model would not be satisfactory as it would disallow most forms
of byte-wise manipulation.

Significant existing formal semantics for C (e.g. Leroy et al. [10], Ellison and
Rosu [3]) model the memory using a finite partial function to objects, where each
object consist of an array of bytes. Bytes are symbolic to capture indeterminate
storage and pointer representations. However, because no information about the
variants of unions is stored, this approach cannot capture C’s strict-aliasing
restrictions. We refine this approach in two ways.

– Instead of using an array of bytes as the contents of each object, we use
well-typed trees with arrays of bits that represent base values as leafs.

– We use symbolic bits instead of bytes as the smallest available unit.

The first refinement is to capture strict-aliasing restrictions: effective types are
modeled by the state of the trees in the memory model. Our use of trees also
captures restrictions on padding bytes1 simply because these are not represented.
The second is to deal with bit fields as part of structs (in future work) where
specific bits instead of whole bytes may be indeterminate.

The novelty of our memory model is that it also describes low-level operations
such as byte-wise copying of objects and type-punning. As depicted in Figure 1,
the model has three layers: (a) abstract values: trees with mathematical integers
and pointers as leafs, (b) memory values: trees with arrays of bits as leafs, and
(c) arrays of bits. Memory values are internal to the memory model, and abstract
values are used for its external interface. Pointers are represented by a pair of a
cell identifier and a path through the corresponding memory value.

In order to enable type-based alias analysis, we have to ensure that only under
certain conditions a union can be read using a pointer to another variant than

1 In particular: “When a value is stored in an object of structure or union type,
including in a member object, the bytes of the object representation that correspond
to any padding bytes take unspecified values” [6, 6.2.6.1p6].

Aliasing restrictions of C11 formalized in Coq 3

(a)

33 •

(b)

1000010000000000 ································

(c)
1000010000000000 ································

ofval

toval

mtobits mofbits

Fig. 1. The representations of struct { short x, *p; } s = { 33; &s.x }.

the current one (this is called type-punning [6, 6.5.2.3]). Since the C11 standard
is unclear about these conditions2, we follow the GCC documentation [4] on it. It
states that “type-punning is allowed, provided the memory is accessed through
the union type”. This means that the function f has defined behavior3:

union U { int x; float y; };

int f() { union U t; t.y = 3.0; return t.x; }

whereas the function g exhibits undefined behavior:

int g() { union U t; int *p = &t.x; t.y = 3.0; return *p; }

We formalize the previously described behavior by decorating the formal defini-
tion of pointers with annotations. Whenever a pointer to a variant of some union
is stored in memory, or used as the argument of a function, the annotations are
changed to ensure that type-punning is no longer possible via that pointer.

We tried to follow the C11 standard [6] as closely as possible. Unfortunately,
it is often ambiguous due to its use of natural language (see the example above,
this message [12] on the standard’s committee’s mailing list, and Defect Report
#260 and #236 [5]). In the case of ambiguities, we tried to err on the side of
caution. Generally, this means assigning undefined behavior.

Related work. The first formalization of a significant part of C is due to Nor-
rish [14] using HOL4. He considered C89, in which C’s aliasing restrictions were
not introduced yet, and thus used a memory model based on just arrays of bytes.
Tuch et al. [18] also consider a memory model based on just arrays of bytes.

Leroy et al. have formalized a large part of a C memory model as part of
CompCert; a verified optimizing C compiler in Coq [11,10]. The first version of
their memory model [11] uses type-annotated symbolic bytes to represent integer,
floating point, and pointer values. This version describes some aliasing restric-
tions (namely those on the level of base types), but at the cost of prohibiting any
kind of “bit twiddling”. In the second version of their memory model [10], type
information has been removed, and symbolic bytes were only used for pointer
values and indeterminate storage. Integers and floating points were represented

2 The term type-punning is merely used in a footnote, but for the related common
initial segment rule, it uses the notion of visible, which is not clearly defined either.

3 Provided size_of(int) ≤ size_of(float) and ints do not have trap values.

4 Robbert Krebbers

using numeric bytes. We adapt their choice of using symbolic representations for
indeterminate storage and pointers. Moreover, we adapt their notion of memory
extensions [11]. As an extension of CompCert, Robert and Leroy have verified
an untyped alias analysis [16].

Ellison and Rosu [3] have defined an executable semantics of the C11 standard
in the K-framework. Their memory model is based on the CompCert memory
model by Leroy et al. and does not describe the aliasing restrictions we consider.

The idea of a memory model that uses trees instead of arrays of plain bits,
and paths instead of offsets to model pointers, has been used for object oriented
languages before. It goes back to at least Rossie and Friedman [17], and has been
used by Ramananandro et al. [15] for C++. However, we found no evidence in
the literature of using trees to define a memory model for C.

Contribution. This work presents an executable mathematically precise version
of a large part of the (non-concurrent) C memory model. In particular:

– We give a formal definition of the core of the C type system (Section 2).
– Our formalization is parametrized by an abstract interface to allow imple-

mentations that use multiple integer representations (Section 3).
– We define a memory model that describes a large set of subtly interacting

features: effective types, byte-level operations, type-punning, indeterminate
memory, and pointers “one past the last element” (Sections 4 to 6).

– We demonstrate that our memory model is suitable for formal proofs by
verifying essential algebraic laws, an abstract version of memcpy, and an
essential property for aliasing analysis (Section 6).

– All proofs have been formalized using the Coq proof assistant (Section 7).

As this paper describes a large formalization effort, we often just give represen-
tative parts of definitions due to space restrictions. The interested reader can
find all details online as part of our Coq formalization.

Notations. We let Bopt denote the option type, which is inductively defined as
either ⊥ or x for some x ∈ B. We often implicitly lift operations to operate on
the option type, which is done using the option monad in the Coq formalization.
A partial function f : A→ Bopt is called finite if its domain dom f is finite. The
operation f [x := y] stores the value y at index x.

2 Types

We treat the most relevant C-types: integers, pointers, arrays, structs, unions,
and the void type. Floating point and function types are omitted as these are
orthogonal to the aliasing restrictions described in this paper. The void type
plays a dual role, it is used for functions without a return value, and for pointers
to data of an unspecified type.

Aliasing restrictions of C11 formalized in Coq 5

Definition 2.1. Integer, base, and full types are inductively defined as:

si ∈ signedness ::= signed | unsigned

τi ∈ inttype ::= si k

τb ∈ basetype ::= τi | τ∗
τ ∈ type ::= τb | void | τ [n] | struct s | union u

In the above definition, k ranges over integer ranks (see Section 3), and s, u ∈
tag range over struct and union names (called tags). Environments (Γ ∈ env)
are finite partial functions from tags to lists of types representing struct and
union fields. Since fields are represented using lists, they are nameless. We allow
structs and unions with the same name for simplicity.

The above definition still allows ill-formed types as void[0]. Also, we have to
ensure that cyclic structs and unions are only allowed when recursion is guarded
by a pointer. The type struct T1 { struct T1 x; }; should thus be prohib-
ited whereas struct T2 { struct T2 *p; }; should be allowed.

Definition 2.2. The judgment Γ `b τb describes valid base types, Γ ` τ valid
types, and Γ `∗ τ types to which pointers are allowed.

Γ `b τi
Γ `∗ τ
Γ `b τ∗

Γ `b τb
Γ ` τb

Γ ` τ 0 < n

Γ ` τ [n]

Γ s = ~τ

Γ ` struct s

Γ u = ~τ

Γ ` union u

Γ `b τb
Γ `∗ τb Γ `∗ void

Γ ` τ 0 < n

Γ `∗ τ [n] Γ `∗ struct s Γ `∗ union u

The judgment for well-formed environments Γ valid is defined as:

∅ valid

Γ valid Γ ` ~τ s /∈ dom Γ 0 < |~τ |
(s : ~τ , Γ) valid

Due to the fact that C allows (mutually) recursive struct and union types, we
allow pointers to struct and union types before they are declared in the Γ `∗ τ
judgment. Note that Γ ` τ does not imply Γ valid.

Well-formedness of Γ = T2 : [struct T2∗] can be derived using the judgments
∅ `∗ struct T2, ∅ `b struct T2∗, ∅ ` struct T2∗, and thus Γ valid. The environment
T1 : [struct T1] is ill-formed because we do not have ∅ ` struct T1.

Lemma 2.3. Given an arbitrary set A, and functions fb : basetype → A, fa :
type → N → A → A, fs, fu : tag → list type → list A → A, the function
type iter : env→ type→ A is total for well-formed environments and types.

type iterΓ τb := fb τb

type iterΓ (τ [n]) := fa τ n (type iterΓ τ)

type iterΓ (struct s) := fs s (Γ s) (type iterΓ (Γ s))

type iterΓ (union u) := fu u (Γ u) (type iterΓ (Γ u))

We often lift type iter Γ to operate pointwise on lists of types.

6 Robbert Krebbers

The previous lemma is used to define functions where recursion on fields of
unions and structs is needed. Totality is proven by well-founded induction on
the size of the type environment.

Our formalization of the C type system differs in various ways from existing
work. In CompCert [10], fields of structs and unions are not stored in an envi-
ronment, but are stored in the types itself. Hence, instead of having a construct
struct s, they have a construct struct s ~τ and a special pointer type struct ptr s
to allow recursive structs. Although this relieves one from having to carry a type
environment around, the main disadvantage is that one has to roll and unroll
types at certain places, and that one loses canonicity.

Affeldt and Marti [1] have also formalized a part of the C type system. Like
us, they use an environment to capture the types of fields of structs, but they
define non-cyclicity of type environments using a complex constraint on paths
through types. Our definition Γ valid follows the structure of type environments,
and seems more easy to use (for example for proving termination of the iteration
function type iter). Also, they omit union types, and do not parametrize by an
abstract interface to allow multiple integer implementations.

3 Integer arithmetic

In order to make C portable, the C standard gives compilers a lot of freedom to
represent integers and to perform integer arithmetic. First of all, it does not spec-
ify the sizes of integer types. For example, signed int does not necessarily have
to be 32 bits, use two’s complement representation, and be able to exactly hold
values between −231 and 231 − 1. Only some minimum limits are described [6,
5.2.4.2.1]. Secondly, the standard puts few constraints on the way integers are
represented as bits. Thirdly, overflow of signed integers is undefined behavior,
whereas it wraps around modulo for the case of unsigned integers.

In order to capture different integer implementations, our memory model is
parametrized by an abstract interface of integer implementations. This interface
consists of a set K of integer ranks and functions:

char : K endianize : K → list bool→ list bool
int : K deendianize : K → list bool→ list bool

ptr rank : K int binop ok : inttype→ binop→ Z→ Z→ bool
char bits : N≥8 int binop : inttype→ binop→ Z→ Z→ Z
rank size : K → N>0 int cast ok : inttype→ Z→ bool

int cast : inttype→ Z→ Z

Here, binop is the inductive type of the C binary operations.

op ∈ binop ::= + | - | * | << | >> | / | % | == | <= | < | & | | | ^

Unary operations are derived from the binary operations.
The rank char is the rank of the smallest available integer type, and ptr rank

the rank of the types size_t and ptrdiff_t. At an actual machine char corre-
sponds to a byte, and its bit size is char bits (called CHAR_BIT in the C header
files). The function rank size k gives the byte size of an integer with rank k.

Aliasing restrictions of C11 formalized in Coq 7

Since all modern architectures use two’s complement representation, we allow
representations to differ solely in endianness. The function endianize takes a list of
bits in little endian order and permutes them according to the implementation’s
endianness. The function deendianize performs the inverse.

Since we restrict to two’s complement, and do not allow integer representa-
tions to contain padding bits, an x ∈ Z is an integer of type signed k in case
−2char bits∗rank size k−1 ≤ x < 2char bits∗rank size k−1. An x ∈ Z is an integer of type
unsigned k in case 0 ≤ x < 2char bits∗rank size k.

In order to deal with underspecification of operations, our interface not just
contains a function int binop to perform binary operations, but also a predicate
int binop ok τ op x y that describes when op is allowed to be performed on integers
x and y of type τ . This is to allow both strict implementations that make integer
overflow undefined, and those that let it wrap (as for example GCC with the
-fno-strict-overflow flag and CompCert do). This predicate should be at
least as strong as what is allowed by the C standard. Whenever an operation is
allowed by the C standard, the result of int binop τ op x y should correspond to
its specification by the standard.

Integer promotions/demotions should be handled explicitly using casts, for
which we use a similar treatment as for operations.

Finally, a C environment consists of an integer implementation with integer
ranks K, a valid typing environment Γ , and functions sizeof : type → N>0 and
fieldsizes : list type→ list N. These functions should satisfy:

sizeof (si k) = rank size k sizeof void = 1 sizeof (τ [n]) = n ∗ sizeof τ

sizeof (struct s) = Σ fieldsizes ~τ if Γ s = ~τ

sizeof τi ≤ zi for each i < |~τ | and fieldsizes ~τ = ~z

sizeof τi ≤ sizeof (union u) for each i < |~τ | and Γ u = ~τ

We define bitsizeof τ as sizeof τ · char bits. We let sizeof void = 1 so as to capture
that a void pointer can point to individual bytes.

Although the definition of a C environment does not explicitly state anything
about alignment, it is implicitly there. If an implementation has constraints on
alignment, it should set up the function fieldsizes in such a way. Together with
the dynamic typing constraints of the memory (as defined in Section 4) it is
ensured that no improperly aligned stores and reads will occur.

Nita et al. describe a more concrete notion of a C platform than our notion
of a C environment [13]. Important difference are that alignment is implicit in
our definition, that we allow pointers τ∗ whose size can depend on τ , and that
we restrict to 2’s complement.

4 Bits, bytes and memory values

This section defines the internals of our memory model, and the representation of
pointers. In the remainder of this paper we implicitly parametrize all definitions
and proofs by a C environment with ranks K and typing environment Γ .

8 Robbert Krebbers

struct T {
union U {

signed char x[2]; int y;
} u;
void *p;

} s = {
{ .x = {33,34} }, s.u.x + 2

}

ws =

.0

signed char: 10000100 01000100

void∗: (ptr p)0 (ptr p)1 . . . (ptr p)31

rp p

Fig. 2. A memory value ws with pointer p = (xs, rp, 2)signed short>void on x86.

Definition 4.1. Bits, memory values, objects, and memories are defined as:

b ∈ bit ::= β | (ptr p)i | indet

w ∈ mval ::= baseτb
~b | array ~w | structs ~w | unionu (i, w) | unionu~b

o ∈ obj ::= w | freed τ

Memories (m ∈ mem) are finite partial functions of a countable set of memory
indexes (x ∈ index) to objects.

A bit is either a concrete bit β (with β a Boolean), the ith fragment bit
(ptr p)i of a pointer p (see Definition 4.2 for pointers), or the indeterminate bit
indet. As shown in Figure 2, integers are represented using concrete sequences of
bits, and pointers as sequences of fragments. This way of representing pointers
is similar to Leroy et al. [10], but is on the level of bits instead of bytes.

Memory values are decorated with types, so that we can read off the type
typeof w of each memory value w. As empty arrays are prohibited, we do not
store the element type of the array ~w construct. We define the following partial
function:

indextypem x :=

{
typeof w if mx = w

τ if mx = freed τ

We consider two kinds of union values. The construct unionu (i, w) represents

unions that are in a particular variant i, and the construct unionu~b represents
unions whose variant is unknown. Unions of the latter kind can be obtained
by byte-wise copying, and will appear in uninitialized memory. Note that the
variant of a union is internal to the memory model, and should not be exposed
through the operational semantics (as an actual machine does not store it).

Leroy et al. [10] represent pointers as pairs (x, i) where x identifies the object
in the whole memory, and i the offset into that object. Since we use trees as the
contents of objects, we use paths through these trees to represent pointers.

Definition 4.2. References, addresses and pointers are defined as:

r ∈ ref ::= T | r s
 i | r u

 q i | r
n
 i

a ∈ addr ::= (x, r, i)τ>σ

p ∈ ptr ::= NULL τ | a

Aliasing restrictions of C11 formalized in Coq 9

References are paths from the top of a memory value to a subtree: the con-
struct r

s
 i is used to take the ith field of a struct s, the construct r

s
 q i to

take the ith variant of a union u (the annotation q ∈ {◦, •} will be explained on

page 11), and the construct r
n
 i to take the i element of an array of length n.

We use r1 ++ r2 to denote the concatenation of r1 and r2. We define r : τ � σ
to capture that r is a well-typed reference from type τ to σ.

In order to represent pointers, we have defined a richer structure than refer-
ences, namely addresses. An address (x, r, i)τ>σ consists of: (a) an object iden-
tifier x, (b) a reference r to a subtree of the memory value in the object at x,
(c) an offset i to refer to a particular byte in the subtree at r (note that one
cannot address individual bits in C), (d) the type τ of the subtree, and (e) the
type σ to which the address is cast. The type τ is stored so we do not have to
recompute it when performing a pointer cast.

Typing. We define typing judgments for all of the previously defined structures.
As array indexing in C is performed using pointer arithmetic, we need some
auxiliary operations on references to define the typing judgment of addresses.

refoffset r :=

{
i if r = r′

n
 i

0 otherwise
refsize r :=

{
n if r = r′

n
 i

0 otherwise

r ⊕ j :=

{
r′

n
 i+ j if r = r′

n
 i

r otherwise

Definition 4.3. The typing judgment m ` a : σ for addresses is defined as:

refoffset r = 0, r : indextypem x� τ, τ > σ, i ≤ sizeof τ · refsize r, sizeof σ | i
m ` (x, r, i)τ>σ : σ

Here, i | j means that i is a divisor of j. The relation τ > σ, type τ is pointer
castable to σ, is the reflexive closure of: τ > unsigned char and τ > void.

The premise refoffset r = 0 ensures that r always points to the first element of
an array subobject, the byte index i is then used to select an individual byte (if τ
is unsigned char or void), or an element of the whole array. Adding j to (x, r, i)τ>σ
thus consists of changing the offset into i+ j · sizeof σ instead of moving r. Only
when a pointer is dereferenced, or used for struct or union indexing, we use the
normalized reference r ⊕ i÷ sizeof σ.

An address remains well-typed after the object it points to has been deal-
located (indextype is defined on freed objects as well). However, as addresses of
deallocated objects are indeterminate [6, 6.2.4p2], we forbid them to be used for
pointer arithmetic, etc. We use the non-strict inequality i ≤ sizeof τ · refsize r in
the typing rule to allow addresses to be “one past the last element” [6, 6.5.6p8].
We call an address strict if is not “one past the last element” and its object has
not been deallocated.

We define judgments m ` p : τ for pointers, m ` b valid for bits, m ` w : τ for
memory values, and m ` o : τ for objects. We display the rule for the construct

10 Robbert Krebbers

unionu~b of a union whose variant is unknown for illustration.

Γ u = ~τ |~τ | 6= 1 m ` ~b valid |~b| = bitsizeof (union u)

m ` unionu~b : union u

We exclude unions with only one variant in this rule because their variant is
always known. Validity of memories, notation m valid, is defined as:

∀xw .mx = o→ ∃τ .m ` o : τ ∧ sizeof τ < 2char bits∗(rank size ptr rank)−1

We need the restriction on the size to ensure that the result of pointer subtraction
is representable by a signed integer of rank ptr rank.

Conversion from and to bits. We compute the bit representation mtobits w of
a memory value w by flattening it and inserting padding bits (as specified by
fieldsizes). The bit representation of ws displayed in Figure 2 is thus:

mtobits ws = 1000010001000100 indet indet . . . indet (ptr p)0 (ptr p)1 . . . (ptr p)31

Likewise, given a type τ and sequence of bits ~b, we construct a memory value
mofbits τ ~b of type τ by iteration on τ (using Lemma 2.3). In the case of a union
type u, we obviously cannot guess the variant as that information is not stored
in the bit representation, so we use the unionu~b construct.

Notice that mtobits and mofbits are neither left nor right cancellative. We do
not have mofbits τ (mtobits w) = w for each m ` w : τ as variants of unions may

have gotten lost, nor mtobits (mofbits τ ~b) = ~b for each ~b with |~b| = bitsizeof τ as
padding bits become indeterminate during the conversion.

Operations. In Section 6 we will define the following memory operations:

1. alloc : mem→ index→ type→ mem allocates a new object.
2. free : mem→ index→ mem deallocates an object.
3. !! : mem→ addr→ valopt yields a stored value or fails in case it does not

exist or effective types are violated.
4. [:=] : mem→ addr→ val→ mem stores a value.

Here, val is the data type of abstract values (see Section 5). Many of the above
operations are partial, but are defined using a total function that assigns a default
behavior to ease formalization. For example, alloc should only be used on fresh
indexes, and [:=] should only be used if the address is accessible (i.e.

!! succeeds). Notice that we model an unbounded memory as we consider a
countable set of memory indexes. Formalizing a bounded memory is orthogonal
to the strict-aliasing restrictions, and thus left for future work.

So as to define these operations, we first define variants on memory values,
and lift those to whole memories in Section 6.

Aliasing restrictions of C11 formalized in Coq 11

Definition 4.4. The empty memory value new : type→ mval is defined as:

new τb := baseτb (indet . . . indet) (bitsizeof τb times)

new (τ [n]) := array (new τ . . . new τ) (n times)

new (struct s) := structs (new τ0 . . . new τn−1) if Γ s = τ0 . . . τn−1

new (union u) :=

{
unionu (0, new τ) if Γ u = τ

unionu (indet . . . indet) (bitsizeof (union u) times) otherwise

The operation new is used to create an empty memory value to implement
alloc. The definition is well-defined for valid types by Lemma 2.3.

Definition 4.5. The operation !! : mval→ ref → mvalopt is defined as:

w !! T := w

(array ~w) !! (T
n
 i ++ r) := wi !! r

(structs ~w) !! (T
s
 i ++ r) := wi !! r

(unionu (i, w)) !! (T
u
 q i ++ r) := w !! r

(unionu (j, w)) !! (T
u
 • i ++ r) := (mofbits τi (mtobits w)) !! r if Γ u = ~τ , i 6= j

(unionu~b) !! (T
u
 q i ++ r) := (mofbits τi~b) !! r if Γ u = ~τ

The look up operation is taking annotations q on union references r
s
 q i

into account: q = • means that we may access a union using a different variant
than the current one (this is called type-punning [6, 6.5.2.3]), and q = ◦ means
that this is prohibited. To enable type-punning, we convert back and forth to
bits so as to interpret the memory value using a different type.

To ensure that type-punning is merely allowed when the memory is accessed
“through the union type” [4], we change all annotations into ◦ whenever a pointer
is stored in memory (see the definition of the function btobits in Section 5) or
used as the argument of a function. This operation is called freezing a pointer,
and the pointers whose annotations are all of the shape ◦ are called frozen.
Frozen pointers cannot be used for type-punning by definition of !! .

The strict-aliasing restrictions [6, 6.5p6-7] state that an access affects the
effective type of the accessed object. Since the word “access” covers both reads
and stores [6, 3.1], this means that not only a store has a side-effects, but also a
read. We factor these side-effects out using a function force : ref → mval→ mval
that changes the effective types after a succeeded look up. To define the force and
store operation, we define an auxiliary operation alter f : ref → mval→ mval that
applies f : mval→ mval to a subtree and changes the effective types accordingly.
The interesting cases for unions are as follows (where Γ u = ~τ and i 6= j):

alter f (T
u
 q i ++ r) (unionu (j, w)) := unionu (i, alter f r (mofbits τi (mtobits w)))

alter f (T
u
 q i ++ r) (unionu~b) := unionu (i, alter f r (mofbits τi ~b))

Now force r w := alter (λw′ . w′) r w and w[r := w′] := alter (λ .w′) r w.

12 Robbert Krebbers

5 Abstract values

The notion of memory values, as defined in the previous section, is quite low-level
and exposes implementation-specific properties as bit representations. These de-
tails should remain internal to the memory model.

Definition 5.1. Base values and abstract values are defined as:

vb ∈ baseval ::= indetτb | intτi i | ptr p | byte~b

v ∈ val ::= vb | array~v | structs ~v | unions (i, v) | unionu ~v

Abstract values contain mathematical integers and pointers instead of bit
arrays as their leafs. As fragment bits of pointers need to be kept outside of
the memory when performing a byte-wise copy, the byte~b construct still exposes
some low-level details. The typing rule for this construct is:

Not all ~b indet Not all ~b of the shape β m ` ~b valid |~b| = char bits

m `b byte~b : unsigned char

This rule ensures that the byte~b is only used if ~b cannot be interpreted as an
integer intunsigned char i or indetunsigned char. The judgment m `b vb : τb moreover
ensures that integers intτi i are within range, and pointers ptr p are typed.

The function base binop : binop→ baseval→ baseval→ baseval that performs
a binary operation on base values is defined as:

base binop op (intτb i) (intτb j) := intτ (int binop τb op i j)

base binop + (ptr (x, r, i)τ>σ) (intτb j) := ptr (x, r, i+ j · sizeof σ)τ>σ

and so on . . . , together with a predicate base binop ok : binop → baseval →
baseval→ bool that describes when it is allowed to perform the operation. Binary
operations are prohibited on indetτb and byte~b constructs.

Base values are converted into bit sequences as follows:

btobits (indetτb) := indet . . . indet (bitsizeof τb times)

btobits (intτi x) := endianize (τi-little endian representation of x)

btobits (ptr p) := (ptr (freeze p))0 . . . (ptr (freeze p))bitsizeof (typeof p∗)−1

btobits (byte~b) := ~b

This function will be used to store values in memory (see Definition 6.1), hence
we freeze pointers so as to avoid prohibited type-punning. The inverse function
bofbits is defined in such a way that invalid bit patterns yield an indetτb .

Abstract values contain the construct unionu ~v for unions whose variant is
unknown. The values ~v correspond to interpretations of all variants of u. Of
course, these values should be consistent in the sense that they can be represented
by the same bit sequence. The typing rule to ensure this is:

Γ u = ~τ |~τ | 6= 1 m ` ~b valid |~b| = bitsizeof (union u) ∀i . vi = vofbits τi ~b

m ` unionu ~v : union u

Aliasing restrictions of C11 formalized in Coq 13

The operation vofbits to obtain the bit representation of an abstract value, is
defined similarly as its variant mtobits on memory values, but uses bofbits on the
leafs. Obtaining a memory value ofval v and bit representation vtobits v from a
value v is more challenging as the evidence of existence of a bit representation of
a unionu ~v construct is only present in the typing judgment, and not in the value
itself. We reconstruct the bits by “merging” the bit representations of all variants
~v. For this, we define a join t on bits satisfying indet t b = b, b t indet = b, and
b t b = b. The case for the unknown union construct is

ofval (unionu (v0 . . . vn−1)) := unionu (vtobits v0 t . . . t vtobits vn−1)

where t is applied pointwise to the bit sequences obtained from vtobits. This
reconstruction is well-defined for well-typed abstract values.

6 The memory

Now that we have all definitions in place, we can finally combine them to define
the main memory operations. In order to shorten these definitions we lift the
operations !! and [:=] on memory values to whole memories. We define
m !! (x, r) := mx !! r, and m[(x, r) := w] := m[x := (mx)[r := w]]. Notations
are overloaded for conciseness of presentation.

Definition 6.1. The main memory operations are defined as:

m !! (x, r, i)τ>σ :=

let r̂ := r ⊕ i÷ sizeof σ, j := i mod sizeof σ in

if τ = σ then toval (m !! (x, r̂))

else vofbits (unsigned char) (jth byte of m !! (x, r̂))

m[(x, r, i)τ>σ := v] :=

let r̂ := r ⊕ i÷ sizeof σ, j := i mod sizeof σ in

if τ = σ then m[(x, r̂) := ofval v]

else m[(x, r̂) := set jth byte of m !! (x, r̂) to vtobits v]

force (x, r, i)τ>σ m := let r̂ := r ⊕ i÷ sizeof σ in m[x := force r̂ (mx)]

alloc x τ m := m[x := new τ]

free x m := m[x := freed (indextypem x)]

The lookup operation m !! (x, r, i)τ>σ normalizes the reference r, and then
makes a case distinction on whether a whole subobject or a specific byte should
be returned. In case of the former (i.e. τ = σ), it converts the memory value
m !! (x, r̂) of the subobject in question into an abstract value. Otherwise, it
yields an abstract value representing the jth byte of m !! (x, r̂).

In the Coq development we have proved the expected laws about the inter-
action between the memory operations. We list some for illustration:

– If m valid, m ` a : τ , and m !! a = v, then m ` v : τ
– If m valid, m ` a : τ , m ` v : τ , and m ` a′ : σ, then m[a := v] ` a′ : σ

14 Robbert Krebbers

– If m valid, a1 ⊥ a2, m ` a2 : τ2, m ` v2 : τ2, and m !! a1 = v1, then
m[a2 := v2] !! a1 = v1

Here, a1 ⊥ a2, denotes that a1 and a2 are disjoint, which means that somewhere
along their path from the top of the whole object to their subobject they take a
different branch at an array of struct subobject.

Theorem 6.2 (Strict-aliasing). Given a memory m with m valid, and frozen
addresses m ` a1 : σ1 and m ` a2 : σ2 such that σ1, σ2 6= unsigned char and σ1
not a subtype of σ2 and vice versa. Now a1 ⊥ a2, or accessing a1 after accessing
a2 and vice versa fails.

Using this theorem, a compiler can optimize the generated code in the ex-
ample below based on the assumption that p and q are not aliased.

float g(int *p, float *q) { float x = *q; *p = 10; return x; }

If these pointers are aliased, the program exhibits undefined behavior as both
the read from *q, and the assignment to *p, are considered an access (captured
by the operations force and [:=] respectively).

In order to prove the correctness of program transformations one has to relate
the memory states during execution of the original program to the memory states
during execution of the transformed program. Leroy and Blazy [11] defined the
notions of memory extensions and injections to facilitate this. We adapt memory
extensions to our memory model, and demonstrate it by verifying an abstract
version of the memcpy function that copies an object byte-wise.

A memory extension is a binary relation v on memories. The relation m1 v
m2 captures that m2 makes more memory contents determinate, and that m2 has
fewer restrictions on effective types. This means that m2 allows more behaviors.
In order to define v we first define relations vm on bits, abstract values, memory
values, and objects. Some rules of these relations are:

b vm b

m ` b valid

indet vm b

w1 vm w2

unionu (i, w1) vm unionu (i, w2)

~b1 vm ~b2
unionu~b1 vm unionu~b2

Γ u = ~τ |~τ | 6= 1 w vm mofbits τi ~b m ` ~b valid |~b| = bitsizeof (union u)

unionu (i, w) vm unionu~b

The relation m1 v m2 is now defined as for all x and o with m1 x = o1 there
exists an o2 wm2

o1 s.t. m2 x = o2. This relation is a partial order. In order
to use memory extensions to reason about program transformations we have to
prove that all memory operations are respected by it. For example:

– If w1 vm w2 then mtobits w1 vm mtobits w2

– If m1 valid, m1 v m2 and m1 !! a = v1, then ∃v2 wm2 v1 s.t. m2 !! a = v2

So as to show that a copy by assignment can be transformed into a byte-wise
copy we proved that if m ` w : τ , then ofval (toval w) vm mofbits τ (mtobits w).

Aliasing restrictions of C11 formalized in Coq 15

7 Formalization in Coq

Developing a formal version of a C11 memory model turned out to be much
more difficult than we anticipated due to the complex and highly subtle nature
of the aliasing restrictions introduced by the C99 and C11 standards. Hence, the
use of a proof assistant has been essential for our development.

Since Coq is also a functional programming language, we can execute the
memory model using it. This will be essential for the implementation of a certified
interpreter in future work. We used Coq to formally prove properties such as:

– Type preservation and essential laws of the the memory operations.
– Compatibility of operations with respect to memory extensions.
– The fact that memory extensions form a partial order and respect typing.
– Correctness of an abstract memcpy and the Strict-aliasing Theorem 6.2.

We used Coq’s notation mechanism combined with unicode symbols and type
classes to let the Coq development correspond better to the definitions on paper.
Type classes were also used to parametrize the whole development by an abstract
interface for integer implementations and C environments (Section 3).

Although many operations on our memory model are partial, we formalized
many such operations using a total function that assigns an appropriate default
behavior. To account for partiality, we defined predicates that describe when
these operations may be used. Alternatives include using the option monad or
dependent types, but our approach turned out to be convenient as various proofs
could be done easily by induction on the aforementioned predicate.

Our Coq code, available at http://robbertkrebbers.nl/research/ch2o/,
is about 8.500 lines of code including comments and white space. Apart from
that, we developed a library on general purpose theory (finite sets, finite func-
tions, lists, the option monad, etc.) of about 10.000 lines.

8 Conclusion

The eventual goal of this work is to develop a formal semantics for a large part
of the C11 programming language [8]. In previous work [9] we have developed a
concise operational and axiomatic semantics for non-local control flow (goto and
return statements). Recently, we have extended this work to include sequence
points and non-deterministic expressions with side-effects [7]. The next step is
to integrate our memory model into our operational semantics. Once integrated,
we intend to develop a verified interpreter so we can test the memory model
using actual C programs.

There are many other obvious extensions to our memory model: support for
floating points, bit fields, variable length arrays, concurrency, etc. Bit fields are
presumably easy to integrate as bits are already the smallest available unit in
our memory model. Concurrency in C and C++ has received a lot of attention
in formal developments (see e.g. Batty et al. [2]), but is extremely challenging

http://robbertkrebbers.nl/research/ch2o/

16 Robbert Krebbers

on its own. Treating the weaker aliasing restrictions on base types (e.g. reading
a signed int using an unsigned int) is left for future work too.

In order to integrate the memory model into our axiomatic semantics based
on separation logic [9], we have to be able to split memory objects into disjoint
subobjects. This requires a disjoint union operation on memory values. Besides,
the axiomatic semantics should take types seriously as our memory model is
typed. The work of Tuch et al. [18] may be interesting for this even though they
do not consider the aliasing restrictions of C.

Acknowledgments. I thank Freek Wiedijk, Herman Geuvers, Michael Nahas, and
the anonymous referees for their helpful suggestions. I thank Xavier Leroy for
many discussions on the CompCert memory model. This work is financed by the
Netherlands Organisation for Scientific Research (NWO).

References

1. R. Affeldt and N. Marti. Towards formal verification of TLS network packet pro-
cessing written in C. In PLPV, pages 35–46, 2013.

2. M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++
concurrency. In POPL, pages 55–66, 2011.

3. C. Ellison and G. Rosu. An executable formal semantics of C with applications.
In POPL, pages 533–544, 2012.

4. GNU. GCC, the GNU Compiler Collection, 2011. http://gcc.gnu.org/.
5. International Organization for Standardization. WG14 Defect Report Summary,

2008. http://www.open-std.org/jtc1/sc22/wg14/www/docs/.
6. International Organization for Standardization. ISO/IEC 9899-2011: Program-

ming languages – C. ISO Working Group 14, 2012.
7. R. Krebbers. An operational and axiomatic semantics for non-determinism and

sequence points in C, 2013. Draft.
8. R. Krebbers and F. Wiedijk. A Formalization of the C99 Standard in HOL, Isabelle

and Coq. In CICM, volume 6824 of LNAI, pages 297–299, 2011.
9. R. Krebbers and F. Wiedijk. Separation Logic for Non-local Control Flow and

Block Scope Variables. In FoSSaCS, volume 7794 of LNCS, pages 257–272, 2013.
10. X. Leroy, A. W. Appel, S. Blazy, and G. Stewart. The CompCert Memory Model,

Version 2. Research report RR-7987, INRIA, 2012.
11. X. Leroy and S. Blazy. Formal verification of a C-like memory model and its uses

for verifying program transformations. JAR, 41(1):1–31, 2008.
12. N. Maclaren. What is an Object in C Terms?, 2001. Mailing list message, http:

//www.open-std.org/jtc1/sc22/wg14/9350.
13. M. Nita, D. Grossman, and C. Chambers. A theory of platform-dependent low-level

software. In POPL, pages 209–220, 2008.
14. M. Norrish. C formalised in HOL. PhD thesis, University of Cambridge, 1998.
15. T. Ramananandro, G. Dos Reis, and X. Leroy. Formal verification of object layout

for C++ multiple inheritance. In POPL, pages 67–80, 2011.
16. V. Robert and X. Leroy. A Formally-Verified Alias Analysis. In CPP, volume 7679

of LNCS, pages 11–26, 2012.
17. J. G. Rossie and D. P. Friedman. An Algebraic Semantics of Subobjects. In

OOPSLA, pages 187–199, 1995.
18. H. Tuch, G. Klein, and M. Norrish. Types, bytes, and separation logic. In POPL,

pages 97–108, 2007.

http://gcc.gnu.org/
http://www.open-std.org/jtc1/sc22/wg14/www/docs/
http://www.open-std.org/jtc1/sc22/wg14/9350
http://www.open-std.org/jtc1/sc22/wg14/9350

	Aliasing restrictions of C11 formalized in Coq

